X-ray Fluorescence Spectrometry of Some "Cerrado Soils" in Brazil

Tadao Ando, Junji Washiyama¹ and Jamil Macedo*

Faculty of Applied Biological Science, Hiroshima
University, Higashi-Hiroshima, 724, Japan

* Centro de Pesquisa Agropecuaria dos Cerrados,
BR20/Km18, 73.300, Planaltina, DF, Brazil
Received April 30, 1992

Abstract More than 50 million ha of Cerrado region in Brazil is estimated to be developed as farmland. Since Cerrado soils include various soil types, a great number of soil samples should be analyzed for better land use and better soil management. In this study, 64 soil samples were analyzed by X-ray fluorecence spectrometry (XFS) and chemical analyses to estimate the elemental composition of Cerrado soils and to examine the applicability of XFS to them.

Higher concentrations of exchangeable Al were found only in the soils of pH (N-KCl) lower than 4.5. The Al concentrations increased exponentially with decreasing in soil pH. The linear correlation between soil pH (X) and exchangeable Al (Y, mg/100g dry soil) was highly significant (log Y=8.430-1.983X, r=0.982, n=30) in the mineral soils.

The concentrations of skeletal elements (Si, Al, Fe and Ti) were very similar through horizons in most of the Cerrado soils. However, the elemental compositions were location-specific and did not always relate to the soil type. The analytical results indicated that the composition of skeletal elements was determined mainly by the parent materials.

Although K, Ca, Mg, P, Zn and Mn tended to accumulate in the surface horizons, the variation among horizons was much smaller than that among the sampling sites. The soils in Brasilia contained generally very low amount of these nutrient reserves. High linear correlation coefficients between total and available nutrient contents of Ca, Mn, Mg and P indicated that concentrations of these available nutrients in soils could be estimated from XFS data.

Key words; available nutrients, Cerrado, soil fertility, soil elements, X-ray fluorescence spectrometry

INTRODUCTION

One of the major constraints to limit agricultural production in the Cerrado region in Brazil is reported to be in the soils (Lopes and Cox, 1977, Goedert, *et al*, 1982); low fertility status, Al-toxicity, low water retention capacity and so on. In order to establish a productive, stable and efficient agricultural system in this region, proper soil management on the basis of the informations of the soil properties is indispensable.

¹ Present address; Nippon Soda Co., LTD, Ohtemachi 2-2-1, Chiyodaku, Tokyo, 100, Japan

The soil survey has been intensively undertaken in the Cerrado region. Although soil surveys attempt to provide the facts about many different soil properties, not all of which are closely related to soil management for agricultural production. Further, each soil map unit may include not only one kind of soil as defined by a classification system but most frequently includes many different kinds of soil (Boul and Couto, 1978).

Soil management practice, however, is site-specific. Even in the Cerrado region where dark red latosol and red yellow latosol are dominant soil types (Goedert *et al* 1982), the soil properties may be different from place to place. Moreover, more than 50 million ha of Cerrado region including various soil types is estimated to be developed as farmland (Goedert *et al*, 1980). Therefore, a great number of soil samples should be analyzed for better land use and better soil management.

In the Cerrado region, dry spell is one of the serious problem in the crop production during rainy season. This problem can be partially overcomed by amendment of the subsoils (RITCHEY et al, 1980). This fact indicates that properties of subsoils also should be taken into consideration. However, there is little informations available on properties of the subsoils in Cerrado region.

X-ray fluorescence spectrometry (XFS) will be useful for obtaining informations on soil properties. It is a rapid and reliable method for quantitative determination of chemical composition of soils (Yamasaki, 1978, Yamasaki et al, 1980). By applying XFS to soil, we can obtain informations on elemental composition of soils, amount of nutrient reserves and presence of toxic and valuable elements in soils. The objectives of this research are to estimate the elemental composition and the amount of nutrient reserves of some Cerrado soils by applying XFS and to examine the applicability of this method for obtaining informations on properties of Cerrado soils.

Table 1. Outlines of the soil samples and sampling sites

No.	Soil sample	parent materials	vegetation	altitude, m
1	Dark red latosol	The Tertiary sediments	Cerrado, pasture	1000
2	Red yellow latosol	The Tertiary sediments	Cerrado	1000
3	Red yellow latosol	The Tertiary sediments	grassland	1000
4	Red yellow latosol	The Tertiary sediments	grassland	1000
5	Plinthic yellow latosol	The Tertiary sediments	Cerradão	1000
6	Low humic gley soil	The Tertiary sediments	humic grassland	1000
7	Organic soil	The Quarternary sediments	grassland	950
8	Quartz sandy soil	The Tertiary/Quarternary sediments	Cerrado	1000
9	Dark red latosol	The Tertiary sediments	Cerrado	_
10	Dark red latosol	The Tertiary sediments	Cerrado, pasture	720
11	Red yellow latosol	The Tertiary sediments	Cerrado	640
12	Humic gley soil	sediments derived from basic rocks	humic grassland	720
13	Dusky red latosol	sediments derived from basic rocks	Cerrado	800
14	Dusky red latosol	sediments derived from basic rocks	Cerradão	820
15	Dusky red latosol	sediments derived from basic rocks	semi-deciduous forest	740

MATERIALS AND METHODS

Soil samples

The samples of Cerrado soils were collected from Brasilia, DF. and Goias State, Brazil at the beginning of December, 1981. The sampling sites were selected to cover the major soil types in the area. General description of each sampling site and soils is shown in Table 1. The soil samples were air-dried, passed through a 2 mm sieve, and used for XFS and chemical analysis.

X-ray Fluorescence Spectrometry (XFS)

The air dried soils were dried at 110℃ for 24 hours and grinded in a tungsten carbide container by a vibrating sample mill (Heiko TI-100) for 3 min. About 4 g of the fine powder of soil sample was then pelletised under the pressure of 300 kg/cm². X-ray fluorescence spectrometry of the pelltised soil samples were carried out by an automatic X-ray fluorescence spectrometer (Toshiba AFV-777). The analytical conditions are shown in Table 2.

Chemical Analysis

To obtain the calibration curves for each element, the fused soil samples were prepared for 15 representative soil samples. The fine soil powder (1.5 g) were thoroughly mixed with 5 g of solder glass (Toshiba TGF-102) and fused in a platinum dish by using a high frequency heating furnace at 1100℃ for 4 min. The fused soil samples thus prepared were dissolved into concentrated HCl and evaporated to dryness at 100℃. The residue was dissolved with conc. HCl and filtered through Toyo No. 5C filter paper. Total Si content was calculated from the silica content estimated gravimetrically by ashing the residue. Total Fe, Ti, Ca, Mg, Mn and Zn contents of the filtrates were determined by an atomic ab-

Element		dent X-r	ay ¹⁾	2 θ	Detector ²⁾	PH	A ³⁾	Slit ⁴⁾		Coefficient of ⁵⁾
Element	Tube	kV	mA	2.0	Detector	Base	Window	Sitt	crystal	determination r ²
Fe	W	25	20	57.510	SC	200	400	F	LiF	0.988
Mn	W	50	40	62.960	SC	150	500	С	LiF	0.983
Ti	W	50	40	86. 120	SC	200	400	F	LiF	0.947
Ca	Cr	40	35	113. 200	PC	250	300	F	LiF	0.999
K	Cr	40	35	136.800	PC	200	300	F	LiF	0.994
S	Cr	40	35	110.675	PC	200	250	F	Ge-111	
P	Cr	40	35	140.848	PC	200	200	С	Ge-111	0.999
Si	Cr	40	35	107.980	PC	150	250	С	EDDT	0.973
Al	Cr	40	35	142. 504	PC	150	250	F	EDDT	0.998
Mg	Cr	40	35	136. 820	PC	250	250	F	ADP	0.994
Zn	W	50	40	scan	SC	200	>200	С	LiF	0.992

Table 2. Analytical conditions for X-ray fluorescence spectrometry

¹⁾ Tube: W=tungsten, Cr=chromium, kV=tube voltage, mA=tube current

²⁾ Detector: SC=scintillation counter, PC=proportional counter

³⁾ PHA: pulse height analyzer

⁴⁾ Slit: F=fine (0.15°), C=coarse (0.50°)

⁵⁾ Multiple correlation between X-ray fluorescene intensity and element concentration determined chemically.

sorption spectrophotometer (Hitachi 208). Total K and Na contents of the filtrates were analysed by a flame photometer (Eiko FLA). Total Al content was determined by a colorimetric aluminon method (Yuan and Fiskell, 1959) with some modifications. Total P content was determined by a modified Murphy and Riley's (1959) colorimetric method after digestion of soils with 1: 1 nitric acid-sulfuric acid mixture. Total organic C and N contents were determined by a CN coder (Yanaco MT500)

The pH of the soil suspension (1:2.5 H₂O or N-KCl) was measured with a glass elec-

Table 3. Properties of some Cerrado soils (Brasilia)

		·	depth			pl	H	Exch. Al
No.	soil	horizon	cm	soil colour	soil texture	H ₂ O	KCl	3.9 44 6.3 3.1 3.0 1.1 1.9 42 0.4 40 0.5 35 0.2 75 0.5 30 0.7 30 9.2 75 10.4 44 4.3 42 4.9 30 6.8 31 8.0 32 5.1 30 5.1 71 11.4 366 14.2 380 11.1 70 5.1 71 11.4 366 14.2 380 11.1 76 10.1 55 13.3 465 13.3 465 12.7 86 16.4 72 22.4 61 40.6 55 27.1 84 6.4 400 3.1 105 1.6
1	dark red latosol	A ₁ A ₃ B ₁ B ₂	0- 20 20- 30 30- 70 70-110+	5YR3/3 5YR3/6 2.5YR4/8 2.5YR4/8	SL SL SL SL	4.92 4.85 4.82 4.71	3.90 3.84 4.01 4.11	6.3 3.0
2	red yellow latosol	$egin{array}{c} A_1 & & & & & \\ A_3 & & & & & \\ B_1 & & & & & \\ B_{21} & & & & & \\ B_{22} & & & & & \\ B_3 CA & & & & \end{array}$	0- 15 15- 40 40- 70 70-140 140-230 230-250+	7.5YR3/2 5YR4/4 5YR4/6 5YR5/8 5YR5/8 5YR5/8	C C C C	5. 39 5. 40 5. 08 5. 20 5. 45 5. 52	4. 42 4. 40 4. 85 5. 75 6. 30 6. 50	0.5 0.2 0.5 0.7
3	red yellow latosol	$egin{array}{c} A_1 \ A_3 \ B_1 \ B_2 \ \end{array}$	0- 15 15- 30 30- 60 60-120+	10YR3/4 10YR3/4 10YR4/6 10YR7/8	SL SL SL SL	4.79 4.79 5.06 5.18	3.80 3.75 3.94 3.92	10.4 4.3
4	red yellow latosol	$A_1 \\ A_3 \\ B_1 \\ B_2$	0- 15 15- 25 25- 70 70-120+	10YR3/3 10YR4/4 10YR5/8 10YR6/8	SL SL SL SL	4.82 4.83 4.97 5.07	3.80 3.81 3.92 3.90	8. 0 5. 1
5	plinthic yellow latosol	$\begin{array}{c} A_1 \\ A_3 \\ B_1 \\ B_2 \end{array}$	0- 15 15- 30 30- 60 60-100	10YR3/1 7.5YR5/8 10YR5/2 10YR7/3	SiCL SL SL SL	4.70 4.70 4.88 4.93	3.71 3.66 3.80 3.76	14. 2 11. 1
6	low humic gley soil	A ₁ A ₃ C ₁ C ₂	0- 20 20- 30 30- 60 60-120	2.5YR3/1 2.5Y5/1 2.5Y7/2 2.5Y7/2	SL SL SL SL	4. 09 4. 40 5. 05 4. 95	3.51 3.53 3.65 3.65	14.0 13.3
7	organic soil	A ₁ C ₁ II A II C	0- 50 50- 55 55- 70 70- 90	N1.5 5Y4/1 N1.5 2.5Y8/2	C C C	4.70 4.59 4.30 4.86	3.86 3.72 3.61 3.55	22. 4 40. 6
8	quartz sandy soil	A ₁ A ₃ C ₁ C ₂	0- 20 20- 60 60-100 100-130	10YR2/2 10YR4/2 10YR6/3 2.5Y8/2	S S S	5. 10 5. 09 4. 57 5. 12	3.84 4.00 4.05 4.29	3. 1

trode pH meter. Exchangeable Al was extracted with N-KCl (pH 7.0) from the soils (1: 2.5 N-KCl) and determined by a modified Yuan and Fiskell's (1959) colorimetric aluminon method.

Available P content was determined by Bray-P2 method (Bray and Kurtz, 1945). Available Ca, Mg, Mn, Zn and Cu were extracted with 0.2N-HCl from the soils (1:5 0.2N-HCl, 30min-shaking) and determined by atomic absorption spectrophotometry. Available K and Na in the 0.2N-HCl extracts were determined by flame photometry.

RESULTS AND DISCUSSION

Soil Properties

Some properties of the soil samples collected from Brasilia and Goias State are shown in

pΗ depth Exch. Al No. soil horizon soil colour soil texture cm mg/100g H_2O KCl A_1 0 - 202.5YR2/2 C 5.45 4.37 0.8 dark С A_3 20- 40 2.5YR2/4 5.30 4.26 0.9 red B_1 40- 90 2.5YR3/4 С 5.40 4.89 0.1 latosol B_2 90-140+ 2.5YR3/6 C 5.47 5.72 0.0 A_1 0 - 205YR3/3 C 5.59 4.49 0.3 20- 30 2.5YR3/2 C A_3 5.42 4.31 0.8 dark B_1 30- 60 2.5YR3/4 C 5.46 4.65 0.1 10 red C B_{21} 60-100 2.5YR3/6 5.42 5.39 0.0latosol C B_{22} 100-185 2.5YR3/6 5.58 6.12 0.1 С IIC 185-230 2.5YR3/6 5.46 6.10 0.0 A_1 0 - 20SL 7.5YR3/4 5.65 4.550.1 red A_3 20- 35 7.5YR4/4 SL 5.44 4.80 0.1 11 yellow B_1 35- 85 7.5YR4/6 SL 5.70 5.84 0.0 latosol B_2 85-140 10YR4/6 L 6.19 6.82 0.1 A_1 0- 20 2.5Y2/2CL6.044.80 0.0 humic Cg_1 20- 50 5Y5/1 С 6.18 4.37 0.2 12 Cg_2 gley 50-80 5Y4/1 С 6.85 5.12 0.0 С Cg_3 80-90 5BG5/1 7.50 5.89 0.0 C A_1 0- 20 7.5R2/35.22 4.13 2.1 dusky С A_3 20- 40 7.5R3/3 5.17 4.23 1.4 red 13 40-80 C B_1 10R2/3 5.34 4.42 0.8 latosol С B_2 80-140 10R3/4 5.50 5.03 1.0 A_1 C 0 - 202.5YR2/3 7.22 6.90 0.0 dusky 20- 40 2.5YR2/4 C A_3 6.40 5.40 0.0 14 red C B_1 40-90 2.5YR3/4 6.43 5.63 0.2 latosol B_2 90-150 2.5YR3/4 C 6.15 5.69 0.1 A_1 0 - 202.5YR3/3 C 5.88 5.31 0.2 dusky 20- 40 2.5YR3/4 C A_3 5.20 4.16 1.0 15 red С B_1 40-100 1R3/5 5.224.60 0.3 latosol B_2 С 100-150 1YR3/5 4.995.14 0.2

Table 4. Properties of some Cerrado soils (Goiania)

Tables 3 and 4, respectively. Soil colour, soil texture, pH and exchangeable Al content widely varied among the sampling sites, but they were very similar through horizons in each sampling site.

Most of the soils showed strong acidity, especially in A horizons. Some subsoils (No.2, 10 and 11) showed higher pH in N-KCl suspension than that in water suspension. Higher concentrations of exchangeable Al (greater than 1 mg/100 g dry soil) were found only in the soils of pH (KCl) lower than 4.5.

Strong acid soils are widely distributed in Cerrado region. Al toxicity in these acid soils is estimated as one of the major limiting factors in crop production. As shown in Tables 3 and 4, exchangeable Al concentration is negligible in the soils of pH (KCl) higher than 4.5. The Al toxicity, if any, will appear in the soils pH (KCl) lower than 4.5.

The concentrations of exchangeable Al increased exponentially with decreasing in soil pH (KCl). The linear correlation between soil pH (KCl) and logarithum of exchangeable Al concentra-

Fig. 1. Relationship between pH (X) and exchangeable Al concentration (Y) in some Cerrado soils of lower pH than 4.5. The equation for only mineral soils (♠) is shown in the figure. The equation for all the soils including organic soil (○) and humic grey soil (♠) was as follows; log Y=8.542-2.012X (r=0.961, n=39).

tion was highly significant, especially in the mineral soils of pH (KCl) lower than 4.5 (Fig. 1). This relationsip is valid even in the quartz sandy soil of low total Al content (Table 5). *Elemental Composition*

Tables 5 and 6 show the concentrations of major mineral elements in the soils collected from Brasilia and Goias State, respectively. The determination was carried out by XFS and the elemental concentrations were estimated using the calibration curves obtained from the chemical analyses of the same soil samples. Coefficients of determination in the correlation between X-ray intensity and the value determined chemically in 15 representative soil samples are shown in Table 2. The coefficients are high enough to characterize elemental composition of soils, though precision of the determination will be improved by employing a glass beads technique (Yamasaki *et al.*, 1980).

A skeleton of mineral soil is usually composed of oxides of Si, Al, Fe and Ti. As shown in Tables 5 and 6, concentrations of skeletal elements were found to be 9.7-43.6% Si, 1.6-20.3% Al, 0.7-20.9% Fe and 0.4-3.8% Ti. The elemental composition of soil skeleton was quite location specific. Even in the soils which belong to the same soil type and found under the similar climatic and topographic conditions as No. 2 and No. 3, the

elemental composition varied greatly place to place. It did not always relate to soil type. However, the concentration of skeletal elements were found to be very similar through horizons in most of the Cerrado soils (Tables 5 and 6). This indicates that analysis of surface soils is enough to characterize soil skeleton. The exceptions were the soils No. 7 and 10. The differences in parent materials have been maintained in the composition of skeletal

Table 5. Elemental composition of some Cerrado soils (Brasilia) determined by X-ray fluorescence spectrometry

(dry soil basis)

SECONDO POR												
No	soil	horizon	Si	Al	Fe	Ti	K	Ca	Mg	P	Zn	Mn
1 r 1 1 2 3 3 1 1 1 1 1 1 1 1	5011	110112011	%	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm
	33.	A_1	29.0	7.8	3.8	1.2	1010	170	441	306	20	84
1	dark red	A_3	28.8	8.2	3.0	1.2	1020	tr*	439	239	20	52
1	latosol	B_1	25.9	8.9	3.2	1.3	1110	tr	527	215	18	33
	latosor	B_2	28.0	8.9	3. 2	1.3	1180	tr	573	183	25	25
		A ₁	14.0	18.6	7.9	2. 1	500	250	226	332	29	66
	red	A_3	14.0	19.3	7.9	2. 1	480	tr	212	239	27	60
2	yellow	B_1	12.9	20.0	8.0	2.2	460	tr	261	231	16	76
4	latosol	B_{21}	13.8	20.3	8.0	2.2	460	tr	230	207	25	66
	iatosoi	B_{22}	13.8	20.1	8.3	2.2	460	tr	228	183	20	66
		B ₃ CA	14.3	20.0	8.3	2.2	460	tr	230	175	1 1	76
	red	A ₁	26.8	11.3	2.7	1.4	730	tr	374	207	25	19
2	yellow	A ₃	26.6	12.7	2.3	1.5	640	tr	402	175	31	14
J	latosol	B_1	23.9	14.4	2.3	1.6	650	tr	443	137	20	11
	latosol	B_2	25.9	15. 1	2.0	1.6	620	tr	378	122	33	6
	red yellow latosol	A ₁	28.0	9.5	3.3	1.3	910	150	436	272	18	36
1		A_3	28.0	10.2	2.9	1.3	930	tr	428	191	29	19
4		B_1	25.3	11.3	3.0	1.4	1080	tr	484	160	23	11
	latosoi	B_2	26.1	14.0	2.4	1.5	770	tr	443	130	37	6
	plinthic	A ₁	27.0	12. 2	1.8	1.5	720	tr	402	215	33	14
5	yellow	A ₃	27.8	13.8	1.1	1.6	680	tr	454	115	27	6
3	latosol	B_1	25.0	14.9	1.0	1.6	710	tr	393	115	31	3
	iatosoi	B_2	26.8	16.0	1.1	1.6	720	tr	363	93	37	3
	low	A_1	28.6	11.5	1.5	1.5	650	tr	378	168	27	11
c	humic	A ₃	28.8	13.1	1.0	1.5	610	tr	460	115	27	6
0	gley	C ₁	25.5	15.2	0.9	1.7	600	tr	505	115	29	3
	soil	C ₂	28.2	14.7	1.0	1.7	590	tr	499	100	29	tr
		A ₁	23.0	7.1	0.9	0.8	820	150	274	2203	25	38
7	organic	C_1	30.7	13.6	1.0	1.3	3370	tr	963	191	23	tr
'∣	soil	ΠA	21.6	6.8	0.9	1.0	1280	tr	369	358	23	33
		пС	32.0	14.3	0.8	1.5	1300	tr	638	79	25	tr
	quartz	A_1	43.3	1.6	0.8	0.4	300	tr	55	122	tr	11
8	sandy	A_3	43.6	1.6	0.7	0.4	270	tr	37	79	3	5
٥	soil	C_1	42.0	2.7	0.7	0.5	310	tr	46	93	3	tr
	5011	C_2	43.5	1.8	0.8	0.5	280	tr	49	65	6	27
**************												-

^{*}tr:<100ppmCa, <1ppmZn or <1ppmMn

elements. This may be attributed to the different parent materials mixed in layers of these sites which is possibly due to erosion and deposition.

The similar elemental composition was found among different soil types; red yellow latosol (No. 3 and 4), plinthic yellow latosol (No. 5) and low humic gley soil (No. 6). In these soils, not only skeletal elements but also other elements were similarly contained (Tables 5 and 6). Since these soils were found in the close vicinity, the parent materials (The Tertiary sediments) are supposed to be the same. These facts indicate that the composition of skeletal elements of the soils is mainly determined by the parent materials and is not much affected by other soil formation factors.

Table 6. Elemental composition of some Cerrado soils (Goiania) determined by X-ray fluorescence spectrometry

(dry soil basis)

No. Soil horizon Si Al Fe Ti K Ca Mg P Dym												-	-
	No	eoil	horizon					K	Ca	Mg	Р	Zn	Mn
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	140.	3011	110112011	%	%	%	%	ppm	ppm	ppm	ppm	ppm	ppm
9 red latosol B ₁ 16.5 6.7 13.4 3.7 380 100 306 1351 35 718 B ₂ 15.4 7.0 13.2 3.7 360 tr* 288 3766 11 579 A ₃ 24.1 8.6 5.5 1.2 5710 410 809 449 23 347 dark B ₁ 21.8 10.3 6.4 1.3 6290 100 786 297 20 264 latosol B ₂₁ 21.6 10.8 6.9 1.3 6580 100 757 264 33 244 860 11C 19.1 12.0 7.8 1.3 7460 tr 759 323 16 249 IIC 19.1 12.0 7.8 1.3 7460 tr 759 323 16 249 IIC 19.1 12.0 7.8 1.3 7460 tr 759 323 16 249 IIC 19.1 12.0 7.8 1.3 7460 tr 753 323 27 860 red A ₃ 27.6 4.3 7.0 2.8 390 tr 264 376 27 196 latosol B ₁ 23.2 5.6 8.5 3.3 380 tr 312 376 13 194 latosol IIB2 22.3 6.0 9.0 3.4 390 tr 284 376 8 238 humic C _{g1} 28.2 7.2 4.5 2.4 2100 1260 1344 349 66 487 c _{g1} 28.2 25.9 8.5 3.3 2.4 2460 1920 1940 323 62 634 soil C _{g3} 29.6 6.6 2.6 2.8 4950 3030 2831 394 72 729 dusky A ₃ 10.3 6.9 20.4 3.6 490 310 668 1870 31 1233 red B ₁ 10.0 7.2 20.6 3.6 440 170 720 1259 33 1153 dusky A ₄ 11.8 6.6 17.9 3.8 650 7960 691 1764 35 1250 B ₂ 10.9 7.7 19.3 3.6 400 410 569 948 27 1053 dusky A ₃ 11.8 7.2 18.6 3.7 480 180 660 561 394 57 662 dusky A ₃ 11.8 7.2 18.9 3.7 480 180 660 561 394 57 662 dusky A ₃ 11.8 7.2 18.6 3.7 480 180 660 561 394 57 662 latosol B ₁ 11.2 7.5 18.9 3.7 420 1070 571 1168 23 1172 latosol B ₂ 10.9 7.7 19.3 3.6 400 410 569 948 27 1053		3 1 -	A_1	17.3	6.7	11.8	3.7	810	590	544	2593	41	1835
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			A_3	16.5	6.7	13.4	3.7	380	100	306	1351	35	718
A1	9		B_1	16.8	7.0	13. 2	3.7	360	tr*	283	776	11	579
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			B_2	15.4	7.3	13.7	3.7	340	tr	288	586	18	521
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			A_1	25.3	7.4	4.9	1.1	5900	610	929	487	47	347
Ted B ₁ 21.8 10.3 6.4 1.3 6290 100 786 297 20 264 249 216 21.6 10.8 6.9 1.3 6580 100 757 264 33 244 249		.11 .	A ₃	24.1	8.6	5.5	1.2	5710	410	809	449	23	347
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10		B_i	21.8	10.3	6.4	1.3	6290	100	786	297	20	264
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10		B ₂₁	21.6	10.8	6.9	1.3	6580	100	757	264	33	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		latosoi	B_{22}	18.8	11.6	8.5	1.3	6940	tr	759	323	16 249 27 860 11 285 27 196	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			пС	19.1	12.0	7.8	1.3	7460	tr	753	323	27	860
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	A ₁	26. 1	4.3	7.3	2.9	420	380	328	546	11	285
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		yellow	A ₃	27.6	4.3	7.0	2.8	390	tr	264	376	27	196
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11		B ₁	23. 2	5.6	8.5	3.3	380	tr	312	376	13	194
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			II B2	22.3	6.0	9.0	3.4	390	tr	288	376	8	238
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			A ₁	32.0	3.8	3.8	3.0	530	2600	1340	1339	70	1926
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10		Cg ₁	28. 2	7.2	4.5	2.4	2100	1260	1344	349	66	487
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	-	Cg ₂	25.9	8.5	3.3	2.4	2460	1920	1940	323	62	634
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		SOII	Cg ₃	29.6	6.6	2.6	2.8	4950	3030	2831	394	72	729
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 1	A_1	10.3	7.0	20.4	3.6	510	200	734	1764	37	1212
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	-	A_3	10.3	6.9	20.4	3.6	490	310	668	1870	31	1233
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13		B ₁	10.0	7.2	20.6	3.6	440	170	720	1259	33	1153
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		latosoi	B_2	9.7	7.4	20.9	3.5	430	160	691	1106	27	1090
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 - 1 -	A ₁	11.8	6.6	17.9	3.8	650	7960	691	1764	35	1250
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			A ₃	11.8	7.2	18.6	3.7	480	1840	617	1461	33	1300
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14		B ₁	11.2	7.5	18.9	3.7	420	1070	571	1168	23	1172
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		latosoi	B_2	10.9	7.7	19.3	3.6	400	410	569	948	27	1053
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	***************************************	1 .1	A ₁	19.1	8.8	10.4	2. 1	3780	680	561	394	57	662
latosol B ₁ 17.3 9.9 11.1 2.0 3630 130 601 332 39 667	٠, ٣	1	A ₃	21.8	7.6	9.2	2.2	3300	300	533	412	47	840
B ₂ 17.8 10.5 11.4 1.9 3900 tr 611 289 39 608	15		B_1	17.3	9.9	11.1	2.0	3630	130	601	332	39	667
		iatosoi	B_2	17.8	10.5	11.4	1.9	3900	tr	611	289	39	608

^{*}tr: <100ppmCa

Varied concentrations of K, Ca, Mg, P and Mn in the soils were observed (Tables 5 and 6). Although these elements, except K, tended to accumulate in the surface horizon, the variation among horizons was much smaller than that among the sampling sites. The soils in Brasilia contained generally very low amount of these nutrients, but some other Cerrado soils in Goias State contained relatively high amount of the nutrients.

Total K content of the soils was generally very low, but high in the soils No. 10, 12 and

Table 7. Organic carbon, total N and available nutrient concentions of some Cerrado soils (Brasilia) (dry soil basis)

No. Soil horizon C. % N, % ppm K Na Ca Mg Zn Mn Ca dark A1 1.49 0.07 3.6 45 4 17 23 2.1 23.3 1.1 1.40	O ONIJO salvhla sutvi										Dasis)		
C. % N. % ppm K Na Ca Mg Zn Mn Ca dark A1 1.49 0.07 3.6 45 4 17 23 2.1 23.3 1.	No.	soil	horizon	organic	total	Bray-P		0.2NHCl soluble nutrients, ppm					,
1 red latosol A3 black 1.20 black 0.05 black 1.4 black 22 black 3 black 7 black 4 black 2.0 black 11.1 black 1.1 black 1.1 black 1.1 black 2.0 black 11.1 black 1.1 black 2.0 black 11.1 black 1.1 black 2.0 black 4.7 bla				C, %	N, %	ppm	K	Na	Ca	Mg	Zn	Mn	Cu
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			A ₁	1.49	0.07	3.6	45	4	17	23	2. 1	23.3	1.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•		A_3	1.20	0.05	1.4	22	3	7	4	2.0	11.1	1.4
Red	1		B_1	0.67	0.02	1.2	8	4	4	2	0.8	4.7	0.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 3 4 5	iatosoi	B_2	0.04	0.01	1.0	5	4	4	2	1.0	2.9	1.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	***************************************		A ₁	2.63	0.12	8.0	47	4	48	59	4.8	5.4	0.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			A_3	1.91	0.08	1.8	27	3	2	7	1.8	4.1	0.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	ł .	B_1	1.32	0.04	1.7	7	3	1	2	2.9	1.7	0.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2		B_{21}	0.86	0.04	1.1	3	3	2	1	1.5	0.6	0.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		latusui	B_{22}	0.61	0.01	1.3	5	3	2	1	2.2	0.5	1 Cu 3 1.5 1 1.4 7 0.9 9 1.1 4 0.7 1 0.4 7 0.3 6 0.4 5 0.3 3 0.3 8 1.8 0 1.7 6 0.7 4 0.6 8 1.8 9 1.7 3 0.8 6 0.6 7 1.9 3 1.0 4 0.7 3 0.5 9 2.3 3 1.7 4 0.9 4 0.9 6 0.2 4 0.7 6 0.3 2 0.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 4 5		B ₃ CA	0.47	0.01	1.9	1	3	1	1	2.5	0.3	0.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		red	A_1	1.57	0.08	1.9	26	4	14	5	4.0	2.8	1.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3		A ₃	1.46	0.07	1.4	11	5	3	2	3.3	1.0	1.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	J	1 *	B_1	0.67	0.03	1.5	4	5		1	1.7	0.6	0.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			B_2	0.44	0.02	1.2	3	3	3	1	4.0	0.4	0.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		rad	A_1	1.60	0.07	4.7	22	5	12	8	1.8	1.8	1.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	1	A_3	1.32	0.06	1.4	11	6	3	2	1.9	1.9	1.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4		B_1	0.72	0.03	1.3	5	3	2	1	2.3	2.3	0.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		latosol	B_2	0.43	0.02	1.1	3	3	1	1	1.6	1.6	0.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		nlinthia	A_1	1.75	0.08	5.6	23	5	14	3	3. 1	0.7	1.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	=	-	A_3	0.96	0.04	2.9	11	6	4	2	2.2	0.3	1.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	٦		B_1	0.54	0.02	2.6	6	4	3	2	7.8	0.4	0.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		iatosoi	B_2	0. 25	-	2.2	9	5	2	2	5.7	0.3	0.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		low	A ₁	2.06	0.09	3. 1	12	4	2	3	3. 2	0.9	2.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	humic	A ₃	1.33	0.13	2.4	10	5	1	2	2.2	0.3	1.7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	gley	C ₁	0.40	0.02	3.2	4	10	1	2	0.5	0.4	0.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		soil	C_2	0. 26	0.01	2.5	3	4	0	1	3. 1	0.4	0.9
7 soil IIA 12.58 0.41 2.7 6 4 5 2 3.5 0.6 0. IIC 0.15 0.01 2.8 3 3 0 1 4.3 0.2 0. quartz A ₃ 0.40 0.01 3.0 3 2 1 1 2.2 0.3 0.				12.42		11.7	8	5		5	2.7	1.6	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	organic		3. 18	0.07	1	2	4	2	1	4.3	1	
quartz A1 1.53 0.07 7.0 22 2 2 6 3.1 1.9 0. 8 sandy A3 0.40 0.01 3.0 3 2 1 1 2.2 0.3 0.	1	soil	1 i	12.58	0.41	2.7	6	4	5	2	3.5	0.6	0.3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			ПС	0. 15	0.01	2.8	3	3	0	1	4.3	0.2	0.2
8 sandy A ₃ 0.40 0.01 3.0 3 2 1 1 2.2 0.3 0.		anartz	1		0.07			i I	2	6			
	8	sandy	1 8		0.01		3	2	1	1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	١				_	2.0	1	2	1	1	7.9	0.2	0.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		JV11	C ₂	0. 13		2.5	1	3	1	1	1.9	0.2	0.2

15 in Goias State. Total Ca concentration was high on the sites No. 12 and 14, but all the soils in Brasilia contained trace amount of Ca. Total Mg concentration was remarkably high in No. 14 and remarkably low in No. 8 (quarts sandy soil). Total P concentration was high in the soils No. 9, 13, and 14, but very low in the soils in Brasilia except the surface horizon of the organic soil. Concentration of total Zn and Mn were significantly low in the soils collected in Brasilia.

Organic C, Total N and Available Nutrients.

Tables 7 and 8 show the concentrations of organic C, total N and available nutrients in some Cerrado soils collected from Brasilia and Goias State, respectively. These concentrations varied considerably among soils, though they were higher in A horizons of most of the

Table 8. Organic carbon, totalN and available nutrient concentrations of some Cerrado soils (Goiania) (dry soil basis)

	••	•	organic	total	Bray-P		0.2NF	ICl solı	35 123 4.8 185.9 9.5 18 10 0.7 60.7 7.6 13 9 0.8 41.5 7.3 2 5 1.1 30.2 6.2 189 58 6.2 47.1 2.5 39 59 1.9 35.7 8.2 14 15 1.8 25.5 0.5 16 15 1.3 25.8 0.1 10 6 1.2 11.2 1.4 14 9 1.3 24.4 0.4 59 68 2.2 27.2 3.4 12 8 6.1 8.5 2.7 4 4 1.2 5.6 1.9 3 10 0.8 9.9 1.7 848 326 7.3 331.0 8.3 88 323 3.5 45.1 5.0 854 664 2.7 <			
No. 9 10 11 12 13 14	soil	horizon	C, %	N, %	ppm	K	Na	Ca	Mg	Zn	Mn	Cu
	dark	A ₁	3.83	0. 22	10.4	226	5	1			1 1	
٥	red	A_3	1.94	0.09	7.2	28	2	18	10	0.7	60.7	
9	latosol	B_1	1.23	0.05	1.9	16	2	13	9	0.8	41.5	7.3
9 10 11 12 13	latosoi	B_2	0.81	0.02	2.0	. 6	3	2	5	1.1	30.2	6.2
		A_1	1.81	0.10	3.7	62	3	189		1	Mn Constitution of the con	
	dark	A_3	1.74	0.09	3.2	56	3	39	59	1.9	1 1	
10	red	B_1	0.90	0.04	1.4	44	2	14	15	1.8	1 1	0.5
10	latosol	B_{21}	0.63	0.02	1.1	46	2	16	15		25.8	0.1
	latosoi	B_{22}	0.30	0.01	1.2	12	3	10	6	}	11.2	1.4
**********		пС	0.19	0.01	1.9	11	5	14	9	1.3	24.4	0.4
	red	A_1	1.77	0.08	2.9	63	2	59	68	2.2	27.2	3.4
11	yellow	A_3	0.95	0.04	3.3	49	3	12	8	6.1	8.5	2.7
11	latosol	Bi	0.69	0.02	2.3	10	2	4	4	1	5.6	1.9
	latosoi	II B2	0.31	0.01	1.9	13	4	3	10	0.8	9.9	1.7
	humic gley soil	A_1	2.57	0.16	14.8	98	20	848		1		
1.9		Cg ₁	0.44	0.02	1.2	11	212	88	323	3.5	45.1	5.0
12		Cg ₂	0.31	0.01	1.8	15	348	854	664	2.7	42.6	5.6
	SOII	Cg ₃	0.16		1.4	19	337	1011	807	3. 1	64.6	4.1
	dusky	A ₁	2.09	0.09	12.1	44	5	129	22	11.5	111.3	
12	red	A ₃	2.36	0.11	17.2	29	4	70	7	3.2	111.0	5.0
13	latosol	B ₁	1.54	0.06	2.7	13	3 -	6	4	1.9	64.0	4.8
	1210301	B_2	0.99	0.04	1.5	5	3	4	2	0.5	45.8	4.8
	dusky	A_1	3.88	0. 29	13.4	210	11	3264	373	3.2	247.5	1.0
1.4	red	A ₃	2. 16	0.13	3.7	76	4	312	112	1.3	149.1	2.7
14	latosol	B_1	1.20	0.05	2.8	30	3	151	110	0.8	76.5	3.5
	iatosoi	B_2	0.68	0.02	2.6	10	3	23	48	0.8	40.7	3.1
	dusky	A ₁	1.62	0.08	2.3	63	2	241	87	5.1	66.8	4.6
15	red	A ₃	1.74	0.10	1.9	30	2	29	32	4.7	81.3	4.4
10	latosol	B ₁	0.86	0.02	3. 2	10	2	12	11	1.0	43.2	4.1
	iatosoi	B_2	0.56	0.02	0.7	8	2	7	26	0.7	43.7	3.0

soils. All the Brasilia soils contained scarce amount of available nutrients, while the soils in Goias State were generally rich in these nutrients compared with Brasilia soils.

The concentrations of the available P, exchangeable K, Ca, Mg and some trace elements are reported to be very low in Cerrado soils (Lopes and Cox, 1977). Our results on Brasilia soils are in good agreement with this report. Even though the availability of these nutrients were very low, we can expect some nutrient supply from the soils by increasing the availability through use of mycorrhyza or nutrient-deficiency tolerant crops or other means, if the soils contain nutrient reserves as a potential source. But if not, these nutrients must be applied as fertilizers. X-ray fluorescence spectrometry of soils can offer the informations on potential nutrient reserves in soils. Table 5 showed that Brasilia soils generally contained very low amount of total K, Ca, Mg, P and Mn. For these soils, application of these nutrients is essential to increase crop productivity.

The amount of available nutrients in soils is supposed to be related to the total nutrient content of the soils. If there is a close relationship between total and available nutrient content, we will be able to estimate available nutrient content from XFS data of soils. In order to examine this possibility, coefficients of linear correlations between two parameters were calculated. Relatively high correlation coefficients were obtained for Ca (r=0.982, n=64), Mn (r=0.873, n=60), Mg (r=0.855, n=64) and P (r=0.745, n=64). On the other hand, K (r=0.048, n=64) and Zn (r=0.228, n=63) showed very low correlation coefficients. An approximation of the available Ca, Mn, Mg and P contents of Cerrado soils from the XFS data is possible.

Acknowledgements The senior author is most grateful to Drs. Elmar Wagner, Edson Lobato, Morethson Resende and J. Madeira Netto, senior staffs of CPAC; and Dr. Tamotsu Ogata, head of Japan-Brazil Cooperative Research Team at CPAC, for giving him a chance to do a research work at CPAC and also for their nice orientation and encouragement. The senior author would also like to express his most sincere thanks to Dr. Luiz J.C.B. Carvalho, Dr. M. Fukuhara, Ms. Nair S. Hayasida, Mr. Fernado Filho, Mr. M. Habu and many other CPAC and JICA staffs for their kind assistance.

REFERENCES

- Boul, S.W. and Couto, W., 1978, Fertility management interpretations and soil surveys of the tropics. In "Diversity of soils in the tropics", pp.65-75, ASA, ASSS, Madison.
- GOEDERT, W.J., LOBATO, E., and WAGNER, E., 1980, Potential agricola da regian dos Cerrados Brasilieiros. *Pesq. Agropec.Bras.*, Brasilia, 15:1-17.
- GOEDERT, W.J., LOBATO, E., and RESENDE M., 1982, Management of tropical soils and world food prospects. Paper presented in Commission VI, during the 12th ICSS, New Delhi.
- LOPES, A.S. and Cox, F.R., 1977, A survey of the fertility status of surface soils under "Cerrado" vegetation in Brazil., Soil Sci. Am.J., 41:742-747.
- Murphy J. and Riley J.P., 1962, A modified single solution method for the determination of phosphate in natural waters., *Analytica Chimica Acta.*, 27:31-36.
- RITCHEY, K.D., SOUZA, D.M.G., LOBATO, E. and CORREA, O., 1980, Calcium leaching to increase rooting depth in a Brazilian savannah oxisol. *Agron.J.*, 72:40-44.

- Yamasaki, S., 1978 An examination of the total analysis of major elements in soil samples., *Soil Sci. Plant Nutr.*, 24:305-308.
- Yamasaki, S., Katayama, M. and Sasaki, T., 1980, Total analysis of major constituents in soils by X-ray emmition spectrometry with a glass beads technique. *Soil Sci. Plant Nutr.*, 26:25-36.
- Yuan, T.L. and Fiskell, J.G.A., 1959, Aluminum studies. Soil and plant analysis of aluminum by modification of aluminon method. J. Agr. Food Chem., 7:115-117.

数種ブラジル・セラード土壌の蛍光X線分析

安藤 忠男·鷲山 順慈*·Jamil Macedol

広島大学生物生産学部,東広島市724

¹ Centro de Pesquisa Agropecuaria dos Cerrados BM20/Km18, 73.300, Planaltina, DF, Brazil

ブラジルの広大な荒地セラードで、5000万 ha 以上の規模の農業開発が進行している。セラード土壌では、低肥沃度、土壌酸性、低保水性などの土壌に主として起因する種々の作物生育阻害要因により、作物の生産性が制約されていると考えられる。従って、この地域の適正な土地利用計画や土壌管理計画の策定に対しては、膨大な点数の土壌情報の収集が必要と考えられるので、土壌含有元素について迅速な測定が可能である蛍光X線分析法の利用を検討した。

ブラジルのゴイアス州およびブラジリア地区から土壌試料を収集し、セラード土壌の元素組成や可給態養分を推定するとともに、これらの分析に蛍光 X線分析法を適用しうるか否かを検討した。土壌試料は、上記地区の15地点から主要土壌型を網羅する64点採取し、蛍光 X線分析と化学分析により測定した。土壌の骨格元素 (Si, Al, Fe および Ti) の濃度は、大部分のセラード土壌において、層位間の変動は極めて小さかったが、地点間の差異は大きく、土壌型とは必ずしも関係していなかった。これらの分析結果から土壌の骨格元素の組成は、主として土壌母材によって決定されており、他の土壌生成因子の影響は比較的小さいものと考えられた。

セラード土壌の主要な作物生育阻害要因と考えられている置換性 Al 濃度は、いずれの土壌でも pH 4.5(1:2.5N-KCl)付近より pH が低下するに従って指数関数的に増加した。鉱質土壌では、置換性 Al 濃度(Y, Almg/100g 乾土)と土壌 pH(X, 1:2.5 NKCl)との間に log Y=8.430-1.983X (r=0.982, n=30) の非常に高い関係が認められた。

K, Ca, Mg, P, Zn および Mn は表層土壌に集積する傾向が認められたが、その層位間差異は採取地点間差異よりも小さいものであった。またブラジリア地区の土壌ではこれらの元素濃度が著しく低く、作物の生育阻害要因となっているものと考えられた。Ca, Mn, Mg および P については、土壌中の全濃度と可給態濃度との間に比較的高い相関が認められたことから、蛍光 X線分析法によりこれらの元素の全濃度を測定することにより、可給態濃度を推定することが可能であると結論した。

キーワード:可給態養分、セラード、土壌肥沃度、土壌元素、螢光X線分析