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Abstract. We construct examples of supersingular Calabi-Yau threefolds in char-
acteristic 2 making use of the method by Schoen. Unirational Calabi-Yau three-
folds of five different topological types are obtained. There are two examples with
the third Betti number zero among them, and they are counted as other examples
of non-liftable Calabi-Yau threefolds in characteristic 2 after the one given by
Schröer.
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1. Introduction

Let k be an algebraically closed field k of characteristic p ≥ 0. A Calabi-
Yau threefold X is a nonsingular projective threefold which satisfies KX =
0 and H1(X,OX) = 0. When p > 0, we call a Calabi-Yau threefold X
supersingular if the condition on its Artin-Mazur formal groupΦ3(X,Gm) ∼=
Ĝa is satisfied (cf. [2]).

We are interested in understanding properties of Calabi-Yau threefolds
in positive characteristic in comparison with those of complex Calabi-Yau
manifolds or Calabi-Yau varieties in characteristic zero, especially the Hodge
decomposition and the Hodge symmetry in k = C,

Hd(X,C) ∼=
⊕

i+j=d

Hj(Ωi
X), Hj(Ωi

X) ∼= Hi(Ωj
X).
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It is not clear what the analogous statements of these facts are in posi-
tive characteristic. Thus it would be interesting to calculate the possible
combinations of the Betti numbers and the Hodge numbers of Calabi-Yau
threefolds in positive characteristic.

Schoen constructed Calabi-Yau threefolds as fiber products and their
small resolutions of two rational elliptic surfaces over the base P1

C [15].
We make a slight modification and consider fiber products of two rational
quasi-elliptic surfaces, which exist only in p = 2, 3, over the base P1

k. In
this situation, we can no longer hope neither that these fiber products be
nonsingular, nor there exist any small resolutions.

This is a sequel to our article in characteristic 3 [8], and we will work in
characteristic 2 throughout this paper.

Explicit constructions of supersingular Calabi-Yau threefolds with the
following Betti numbers (b0, b1, b2, b3, b4, b5, b6) are given up to now:

– (1, 0, 1, 204, 1, 0, 1) in p ≡ 2, 3, 4 mod 5 (Fermat quintic),
– (1, 0, 41, 0, 41, 0, 1) in p = 3 [5],
– (1, 0, 23, 0, 23, 0, 1) in p = 2, 3 [16],
– (1, 0, 20, 6, 20, 0, 1), (1, 0, 25, 4, 25, 0, 1), (1, 0, 30, 2, 30, 0, 1),

(1, 0, 35, 0, 35, 0, 1), (1, 0, 41, 0, 41, 0, 1) in p = 3
and (1, 0, 27, 8, 27, 0, 1) in p = 2 in [8], [6].

We add the five more types in p = 2 as in Theorem 1.
Our result is as follows:

Theorem 1 In characteristic 2, we construct Calabi-Yau threefolds with
the following properties:

1. X is unirational, therefore supersingular.
2. ρ(X) = b2(X).
3. πalg

1 (X) = {1}.
4. (b0, b1, b2, b3, b4, b5, b6) = (1, 0, 25, 4, 25, 0, 1), (1, 0, 36, 2, 36, 0, 1).

(1, 0, 47, 0, 47, 0, 1), (1, 0, 52, 2, 52, 0, 1), (1, 0, 63, 0, 63, 0, 1).
5. X admits a fibration X → P1 whose general fiber is a non-normal ra-

tional surface.
6. X admits a fibration whose general fiber is a supersingularK3 surface. In

some cases, X has also a fibration whose general fiber is a supersingular
K3 surface with three rational double points of type A1.

7. Futhermore, X admits a fibration over a rational surface whose gen-
eral fiber is a rational curve with an ordinary cusp (i.e., a quasi-elliptic
fibration).

Note that the examples with b3(X) = 0 do not lift to characteristic zero.
Since these examples have e(X) = 96 and 128, they are different from one
given by Schröer in [16]. The examples with e(X) = 72, 104 have b3(X) = 2,
but we could not prove that these are rigid Calabi-Yau’s, i.e. H1(TX) = 0.
It is still an open question whether our Calabi-Yau’s with positive b3 are
liftable to characteristic zero or not. It is still not known if there exist any
Calabi-Yau threefolds with b3(X) = 0 in p ≥ 5.
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2. Preliminaries

Let X be a nonsingular projective variety of dimension three over an al-
gebraically closed field k of characteristic p ≥ 0. The topological Euler-
Poincaré characteristic e(X) of X is defined as e(X) :=

∑6
i=0(−1)ibi(X)

with the i-th Betti number bi(X) := dimQl
Hi

et(X,Ql) (l �= p) and satisfies
e(X) = −2χ(Ω1

X).
A quasi-elliptic surface ϕ : Y → C is a nonsingular projective surface

Y with a morphism to a nonsingular curve C, satisfying OC = ϕ∗OY and
the general fiber is a rational curve with an ordinary cusp. Quasi-elliptic
surfaces exist only in characteristic 2 and 3, enjoying properties analogous
to elliptic surfaces (cf. [4]). Let Σ be the closure of the nonsmooth locus of
Yη/η inside Y . We call it the moving cusp of ϕ : Y → C.

A variety X is said to be unirational if there exists a dominant rational
map from P3 to X . X is said to be separably (resp. purely inseparably) uni-
rational if there exists a dominant rational map P3 - -→ X whose extension
of function fields is separable (resp. purely inseparable).

3. Construction

Let ϕ1 : Y1 → P1 and ϕ2 : Y2 → P1 be relatively minimal quasi-elliptic
rational surfaces with section. Take a fiber product (cf. [8])

Y1 ×P1 Y2

�������
���

��

�����
���

���
�

Y1

ϕ1

���������
��� Y2

ϕ2

�����
�������

P1.

This fiber product Y1 ×P1 Y2 is irreducible and locally of complete inter-
section. It has the trivial canonical bundle KY1×P1Y2 = 0 and satisfies
H1(OY1×P1Y2) = 0, but necessarily has singularities. These singularities
are hypersurface singularities, but not isolated. To get a Calabi-Yau three-
fold, we try to find a crepant resolution π : X → Y1 ×P1 Y2. We use the
complete classification of relatively minimal rational quasi-elliptic surfaces
with section up to isomorphism.

Theorem 2 (Ito [10]) A rational quasi-elliptic surface with section in p =
2 is given by one of the following:
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Type of
degenerate fibers Weierstrass form MWG

(a) II∗ y2 = x3 + t5 1
(b) I∗4 y2 = x3 + t2x+ t5 Z/2
(c) III, III∗ y2 = x3 + t3x Z/2
(d) Two I∗0’s y2 = x3 + at2x+ t3, a ∈ k Z/2⊕2

(e) I∗2, two III’s y2 = x3 + (t3 + t)x Z/2⊕2

(f) I∗0, four III’s y2 = x3 + (t3 + at2 + t)x, a ∈ k∗ Z/2⊕3

(g) Eight III’s y2 = x3 + (t3 + at2 + bt)x+ t3, a ∈ k, b ∈ k∗ Z/2⊕4

Here I∗0, I∗2, I∗4, II∗, III and III∗ stand for the types of singular fibers in the
sense of Kodaira.

When either a fiber ϕ−1
1 (t) or ϕ−1

2 (t) does have all the components with
multiplicity one for any t ∈ P1, the fiber product Y1 ×P1 Y2 is normal by
Serre’s criterion. We call the case (st) for the fiber product Y1 ×P1 Y2 when
ϕi : Yi → P1 (i = 1, 2) are of types (s) and (t) as in Theorem 2 respectively,
with the condition above.

Our first result is that there do exist some candidates for Calabi-Yau.

Proposition 3 For the following six cases, the fiber product Y1×P1Y2 has a
resolution of singularities π : X → Y1×P1Y2 such that X\π−1(Sing (Y1×P1

Y2)) ∼= Y1 ×P1 Y2 \ Sing (Y1 ×P1 Y2) and KX = π∗KY1×P1Y2 are satisfied.

(bb): (b) and (b), the singular fiber of type I∗4 does not meet the singular fiber
of type I∗4,

(bc-1): (b) and (c), the singular fiber of type I∗4 meets the singular fiber of type
III,

(bd): (b) and (d), the singular fiber of type I∗4 does not meet the singular fibers
of type I∗0,

(be-1): (b) and (e), the singular fiber of type I∗4 meets one of the singular fibers
of type III,

(dd): (d) and (d), the singular fibers of type I∗0 do not meet the singular fibers
of type I∗0,

(de-1): (d) and (e), both the singular fibers of type I∗0 meet the singular fibers of
type III.

Remark 1. We do not claim that Proposition 3 is the exhaustive list. There
may exist Calabi-Yau threefolds birational to the fiber product Y1 ×P1 Y2

in other combinations. In some cases, what would be called Calabi-Yau
threefolds with simple singularities are observed.

To obtain equations of singularities, we need to observe the quasi-elliptic
fibrations along the moving cusps and special fibers.

Let ϕ : Y → C be a quasi-elliptic surface in characteristic 2 which is
given by y2 = x3+φ(t)x+ψ(t). Bombieri and Mumford defined an invariant
ω ∈ Ω1

k(C)/k by ω := (dφ/dt)3/((dψ/dt)2 + φ(dφ/dt)2)dt in [3].
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Proposition 4 (Bombieri-Mumford [3]) We take a point P in the mov-
ing cusp Σ and any local coordinate t on C at ϕ(P ). If P is chosen generally
and the invariant ω is null, i.e., ω ≡ 0, then in suitable formal coordinates
x, y on Y at P , one has

ϕ∗t = y2 + x3.

When ω �≡ 0, the corresponding normal forms are given in [3], but the
local parameter of the base curve cannot be chosen arbitrarily there. For
our concrete equations, we have the following.

Proposition 5 Consider the Weierstrass equations

y2 = x3 + tx,

y2 = x3 + (t2 + t)x,
y2 = x3 + (at4 + (a+ 1)t2 + t)x,

which correspond to types (c), (e), (f) in Theorem 2 respectively. These
equations can be put into normal forms in some formal power series in x̃, ỹ
along the moving cusp

t′ = 4
√
λ x̃3 + ỹ2 + x̃2ỹ,

t′2 + t′ = 4
√
λ2 + λ x̃3 + ỹ2 + x̃2ỹ,

at′4 + (a+ 1)t′2 + t′ = 4
√
aλ4 + (a+ 1)λ2 + λ x̃3 + ỹ2 + x̃2ỹ,

where t′ := t + λ, λ ∈ k. Here λ = 0 in (c), λ2 + λ = 0 in (e) and
aλ4 + (a+ 1)λ2 + λ = 0 in (f) correspond to singular fibers of type III.

Proof. Consider the case (c). Since the ordinary cusp on the fiber over t = λ
for any λ ∈ k is given by x +

√
λ = y = 0, we change the coordinates

x′ = x+
√
λ, y′ = y, t′ := t+ λ to get the local equation

t′(x′ +
√
λ) + y′2 + x′3 +

√
λx′2 = 0

from the Weierstrass form. Then,

t′ =
y′2 + x′3 +

√
λx′2

x′ +
√
λ

= 4
√
λx̃3 + ỹ2 + x̃2ỹ

where x̃ :=
y′

x′ +
√
λ

, ỹ := x′ +
4
√
λy′

x′ +
√
λ

in k[[x′, y′, t′]]. The other cases can

be treated similarly. 	

We need the following Weierstrass forms from Theorem 2 whose fiber

over t = 0 corresponds to each special fiber:
III∗ : (c) y2 + x3 + t3x = 0,

I∗0 : (d) y2 + x3 + at2x+ t3 = 0, a ∈ k,
I∗2 : (e) y2 + x3 + (t+ 1)t2x = 0,
I∗4 : (b) y2 + x3 + t2x+ t5 = 0.

Starting from these equations, we obtain the following lemma:
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Lemma 6 For a relatively minimal rational quasi-elliptic surface ϕ : Y →
P1 of type (c), (d), (e) and (b), choose a point P ∈ ϕ−1(0) ⊂ Y outside the
smooth part of ϕ. Then the pull-back by ϕ of the local parameter t of the
base curve is expressed as in Figure 1 in suitable formal coordinates x, y,
where u is a unit in k[[x, y]] ∼= ÔY,P .

Proof. A local equation of the singular fiber over t = 0 at the point where
the component of multiplicity l intersects the component of multiplicity m
can be written ϕ∗t = xlym provided either l or m is prime to characteristic
p. All the other local equations can be obtained by direct calculations. We
take the case (d) to illustrate them.

The surface of type (d) is locally defined in the Weierstrass form by
y2 +x3 +at2x+ t3 = 0 in Spec k[x, y][[t]]. Recall that the singular fiber over
t = 0 is of type I∗0. After a blow-up at the singular point, we have a local
equation

y1
2 + x1

3t1 + at1x1 + t1 = 0,

where x = x1t1, y = y1t1, t = t1. Since the exceptional divisor E = {y1 =
t1 = 0} is the component of multiplicity two, the roots of x1

3 + ax1 + 1 = 0
correspond to the points where components of multiplicity one pass through.
The 1-form

dt = dt1 =
(x1 +

√
a)2t1

x1
3 + ax1 + 1

dx1

shows that the moving cusp intersects the component of multiplicity two of
the singular fiber at x1 =

√
a, y1 = 0.

For λ ∈ k, we set x̃1 := x1 + λ to get

y1
2 + (x̃1

3 + λx̃1
2 + 1)t1 + (λ2 + a)(x̃1 + λ)t1 = 0.

Therefore, when λ =
√
a,

t = t1 =
y1

2

1 +
√
ax̃1

2 + x̃1
3 =

y1
2

(1 +
√
ax̃1)2

(1 + ux̃1
3),

where we set u :=
∞∑
l=0

x̃1
l

(1 +
√
ax̃1

2)l−1
. Letting x := 3

√
ux̃1, y :=

y1
1 +

√
ax̃1

,

we get the local equation

ϕ∗t = y2(1 + x3).

When λ is not equal to either
√
a or three roots of the equation x1

3 +
ax1 + 1 = 0,

t = t1 =
y1

2

x̃1
3 + λx̃1

2 + 1 + (λ2 + a)(x̃1 + λ)

=
(

y1√
1 + aλ+ λ3

)2

· 1

1 +
a+ λ2 + x̃1

2 + λx̃1

1 + aλ+ λ3
x̃1

.
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ϕ∗t = xy2

ϕ∗t = (1 + x)y2

ϕ∗t = x3y2

ϕ∗t = x3

ϕ∗t = x3y4

ϕ∗t = (1 + x)y4

ϕ∗t = x2 + ux3y2

ϕ∗t = u2x2 + x3

ϕ∗t = (1 + x)3x2y4

Type III∗ in (c)

Σ

ϕ∗t = xy2

ϕ∗t = (1 + x)y2

ϕ∗t = (1 + x3)y2

Type I∗0 in (d)

Σ

ϕ∗t = xy2

ϕ∗t = (1 + x)y2

ϕ∗t = (1 + x)x2y2

ϕ∗t = u2x2 + x3

ϕ∗t = u2x2 + y2x3

Type I∗2 in (e)

Σ

ϕ∗t = xy2

ϕ∗t = (1 + x)y2

ϕ∗t = (1 + x)x2y2

ϕ∗t = u2x2 + x3

ϕ∗t = (1 + xy2)x2y2

ϕ∗t = (1 + xy2)y2

ϕ∗t = (1 + x3y2)y2

Type I∗4 in (b)

Σ

Fig. 1.
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Since
a+ λ2 + x̃1

2 + λx̃1

1 + aλ+ λ3
is a unit in k[[x̃1]], we have the desired result.

The other cases can be treated similarly. 	


4. Crepant Resolutions

In this section we study certain hypersurface singularities of dimension
three, that have crepant resolutions. All these singularities can be resolved
by successive blow-ups along nonsingular curves. For the classification of
rational double points in characteristic p, we refer the reader to [1].

Proposition 7 The following hypersurface singularities k[[x, y, z, w]]/(f)
in p = 2 have crepant resolutions.

(1) f = x3 + y2 + z3,
(2) f = x3 + y2 + z2w,
(3) f = x2 + xy2 + z2 + z2w,
(4) f = x3 + y2 + z4w,
(5) f = x2 + xy2 + z2 + z4w,
(6) f = x2 + xy2 + z2 + z3 + z3w.

Remark 2. Let π : X → V be a resolution of three dimensional Gorenstein
singularities which satisfies π∗KV = KX . A problem is if one can classify
the complete local rings ÔV,v up to isomorphism, where v is a general point
of a one dimensional singular locus of V . In characteristic zero, it is known
(cf. [13, Corollary 1.14]) that the local ring in question is of the form

ÔV,v
∼= k[[x, y, z]]/(g) ⊗k k[[w]],

for a rational double point k[[x, y, z]]/(g). However, each resolution process
indicates that the singularities (2), (3), (4), (5), (6) in Proposition 7 (and (7)
in Remark 3 below) cannot be written in this form. This is a phenomenon
specific to positive characteristic (cf. [8, Remark 4.2]).

Proposition 8 The following hypersurface singularities k[[x, y, z, w]]/(f)
in p = 2 have crepant resolutions.

©1 f = x3 + y2 + z2w3,
©2 f = x3 + y2 + z3w4,
©3 f = x2 + xy2 + y2z + z2w3,
©4 f = x2 + xy2 + y2z + z4w3,
©5 f = x2 + xy2 + z2w2 + z2w3,
©6 f = x2 + xy2 + z2w2 + z4w3,
©7 f = x2 + xy2 + z2w.

Proof of Proposition 7. All the singularities have the singular locus consist-
ing of a curve C := {x = y = z = 0}. We first blow up with the reduced
center C.
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For the singularity (1), this is a trivial deformation of the rational double
point of type D0

4, so after blowing up C there appear three distinct trivial
deformations of the rational double point of type A1, and additional three
blow-ups give a crepant resolution. The singularity (2) is resolved by a single
blow-up along C. For (3), after blowing up C, there appears a singularity
which is locally a trivial deformation of a rational double point of type
A1. For the singularity (4), after a blow-up along C, one has the singularity
x3z+y2+z2w = 0. Then blow up its reduced singular locus {x = y = z = 0},
and we have another singularity x2z+y2+z2w = 0. Then blow up its reduced
singular locus {x = y = z = 0}, and there remains a trivial deformation
of the rational double point of type A1. For (5), after the blow-up along
C, there appear two disjoint one-dimensional singularities, one is a trivial
deformation of the rational double point of type A1, another is given by
x2+(x+1)y2z+z2w = 0, which can be resolved by two additional blow-ups.
For (6), after the blow-up along C, there appear two disjoint singularities
which are trivial deformations of A1. 	

Remark 3. We call the singularity x3z + y2 + z2w = 0 which appeared in
the proof above, of type (7):

(7) x3z + y2 + z2w = 0.

Note that it is not isomorphic to any singularities in Proposition 7. Its
general hyperplane section is a rational double point of type D1

6, but this is
not a trivial deformation of any rational double point. On the other hand,
it can be checked that the singularities given by x2z + y2 + z2w = 0 and
x2+(x+1)y2z+z2w = 0, which appeared in the proof above, are isomorphic
to the singularity of type (3) in Proposition 7.

Proof of Proposition 8. The singularity of type ©7 has the singular locus
C1 := {x = y = z = 0}. All the other singularities have the singular locus
C1 := {x = y = z = 0} and C2 := {x = y = w = 0} intersecting at the
origin O. We first blow up with the reduced center C1.

For the singularity ©1 , after the blow-up along C1, we have y2 + w3 +
x3z = 0. Then blow up its singular locus C2 = {x = y = w = 0}, and we
have xz+ y2 +xw3 = 0. This is a trivial deformation of the rational double
point of type A1. Note that the morphism from this singular locus to C2 is a
triple cover which ramifies at the origin. For ©2 , after the blow-up along C1,
there appears an irreducible curve in the singular locus of the threefold. This
curve maps to C1 with the mapping degree three and a ramification point
at the origin. After six additional blow-ups along the reduced nonsingular
curves in the singular locus, we have a crepant resolution. For ©3 , after
the blow-up along C1, we have two disjoint singularities: one is a trivial
deformation of A1 which is resolved by a blow-up, another is given by x2 +
xy2z + y2z + w3 = 0, which is of type (2) in Proposition 7 and can be
resolved by an additional blow-up. For ©4 , after the blow-up along C1, we
have two disjoint singularities: one is a trivial deformation of A1 which is
resolved by a blow-up, another is given by x2+xy2z+y2z+z2w3 = 0, which
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is resolved by three additional blow-ups. For ©5 , after the blow-up along
C1, there remains the singularity whose locus is connected and consists of
three irreducible curves. After five additional blow-ups along irreducible
curves, we get a crepant resolution. For ©6 , after the blow-up along C1,
there remains the singularity whose locus is connected and consists of four
irreducible curves. Then after eight additional blow-ups along the reduced
nonsingular curves in the singular locus, we get a crepant resolution. For
the singularity ©7 , after the blow-up along C1, there appears the singularity
x2 + xy + z2w = 0 whose singular locus is {x = y = z = 0}. The additional
blow-up along this reduced curve gives a crepant resolution. 	
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Proof of Proposition 3. Propositions 4, 5 and local calculation starting
from the equations in Lemma 6 show that, in cases (bb), (bc-1), (bd), (be-
1), (dd) and (de-1), all the singularities on the fiber product Y1 ×P1 Y2 are
exhausted by those given in Propositions 7, 8 (cf. Figure 2). That is, for any
x ∈ Sing(Y1 ×P1 Y2), there is an isomorphism

ÔY1×P1Y2,x
∼= k[[x, y, z, w]]/(f),

where f is one of the equations in Propositions 7, 8, and the configurations
are as indicated in Figure 2. It can be checked that crepant resolutions
can be obtained by successive blow-ups π : X → Y1 ×P1 Y2 along reduced
nonsingular curves in the singular loci.

Consider, for example, the case (dd). We know that the set of singu-
lar points Sing(Y1 ×P1 Y2) consists of five P1’s, that is, Γ which is the
fiber product of the moving cusps, and C1, . . . , C4 which correspond to the
components of multiplicity two in fibers of type I∗0. Then expressing the con-
dition by the linear fractional functions, we see that the singularity along Γ
is given by the equation y2 +x3 +w2 + z3 = 0 outside the four points where
Γ intersects C1, . . . , C4. This singularity is isomorphic to the singularity of
type (1) in Proposition 7. At these four points, the singularities are given
by y2 + x3 + z2(1 + w3) = 0, which is the singularity of type ©1 in Propo-
sition 8. Outside these four points the singularity along Ci (i = 1, . . . , 4) is
given either by x3 + y2 + z2w = 0 or x3 + y2 + z2(1 + w) = 0. Both are
isomorphic to the singularity of type (2) in Proposition 7.

We blow up C1, . . . , C4, then blow up Γ . There still remains the singu-
larity of this threefold, whose locus is a nonsingular curve of genus 2 and
maps to Γ with its mapping degree three. By blowing up this reduced curve,
we get a projective resolution of singularities π : X → Y1 ×P1 Y2. 	


5. Rationality of the singularities

We call a singular point x on a normal variety W a rational singularity if
there exists a resolution of singularities π : X →W such that (Riπ∗OX)x =
(Riπ∗ωX)x = 0 for all i > 0. In this section, we show that i) our examples
of threefolds are indeed Calabi-Yau, ii) all the singularities treated in the
previous section are rational singularities.

Remark 4. The definition of rational singularities is not well established in
positive characteristic. Since we do not know whether the Grauert-Riemenschneider
vanishing theorem holds or not, it may be natural to add an extra condition
on Riπ∗ωX to the definition of rational singularities in characteristic 0 (cf.
[11, 5.9]).

Proposition 9 For our examples of threefolds obtained in Proposition 3,
we have H1(OX) = 0.

Proof. It is observed that X and Y1 ×P1 Y2 are anti-canonical members of
nonsingular rational fourfolds, from which the vanishing follows (cf. [6]). 	
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Proposition 10 The sheaf Riπ∗OX with i > 0 is zero for the crepant
resolution π : X → Y1 ×P1 Y2 in Proposition 3. All the singularities treated
in Propositions 7 and 8 are rational singularities.

Lemma 11 Let W be one of the singularities given in Proposition 7 or the
singularity of type (7) in Remark 3. Let C ⊂ W be the one-dimensional
singular locus of W with the reduced scheme structure. Then there exists a
flat morphism W → Spec k[[t]] whose fiber has a rational double point along
C and C is a section of this morphism.

Proof. The assertion is obvious for the singularity of type (1) in Proposi-
tion 7. For singularities of other types, observation on local equations gives
that a general hyperplane section has a rational double point of type D0

4,
D0

4, E0
8, D0

8, D0
4 and D1

6 for type (2), (3), (4), (5), (6) and (7) respectively.
The desired morphism can be constructed concretely as

W := Spec k[[x, y, z, t]]/(f) → Spec k[[t]],

with

(2) f = x3 + y2 + z2(t+ z),
(3) f = x2 + xy2 + z2 + z2(t+ z),
(4) f = x3 + y2 + z4(t+ z),
(5) f = x2 + xy2 + z2 + z4(t+ z),
(6) f = x2 + xy2 + z2 + z3 + z3t,
(7) f = x3z + y2 + z2(t+ y). 	

Proof of Proposition 10. Recall that our resolution of singularities π : X →
Y1×P1Y2 is a succession of blow-ups along reduced nonsingular curves. Then
by the previous lemma, we know that, for each blow-up π′ : W ′ →W , there
exists a flat family W ′ →W → Spec k[[t]] such that the fiber W ′

t →Wt is a
partial resolution of a rational double point for any t ∈ Spec k[[t]]. It follows
that H1(OW ′

t
) = 0. Then inductive arguments based on the Leray spectral

sequence gives R1π∗OX = 0 along the singularities treated in Proposition 7
(cf. [8]). So this sheaf is possibly supported on finite points. On the other
hand, we know H0(R1π∗OX) = 0 from H1(OX) = 0. So it follows that
R1π∗OX = 0. Since the inverse image of each point of Y1 ×P1 Y2 by π is of
dimension smaller than two, we have Riπ∗OX = 0 for i > 0. The desired
result follows from ωX

∼= OX . 	


6. Unirationality and topological invariants

In this section we calculate topological invariants of our examples of Calabi-
Yau threefolds.

Proposition 12 The Calabi-Yau threefolds obtained in the previous sec-
tions are purely inseparably unirational.
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Proof. A general property of quasi-elliptic surfaces says that the base change
of ϕ : Y → P1 by the Frobenius morphism P1 → P1 is a non-normal ratio-
nal surface.X admits a fibration f : X → P1 induced from the quasi-elliptic
fibrations. Then the base change X ×P1 P1 by the Frobenius morphism
P1 → P1 is a rational threefold. 	


For the algebraic fundamental group, the following is known (cf. [12]):

Proposition 13 If a nonsingular projective threefold X is purely insepara-
bly unirational, then its algebraic fundamental group πalg

1 (X) is trivial.

We calculate the topological Euler-Poincaré characteristic as well as the
Betti numbers of our Calabi-Yau’s. First we recall the following theorem.

Theorem 14 (Nygaard [12]) If a nonsingular projective threefold X is
unirational, then the Picard number and the second Betti number of X co-
incide, i.e. ρ(X) = b2(X).

Proposition 15 The Calabi-Yau threefolds obtained in the previous sec-
tions have the following invariants.

(bb) (bc-1) (bd) (be-1) (dd) (de-1)
e(X) 96 128 72 104 48 72
ρ(X) 47 63 36 52 25 36

In case (bb) and (bc-1), it follows that the third Betti number b3(X) = 0,
hence X does not admit any projective lifting to characteristic 0.

Proof. Our crepant resolution is a sequence of blow-ups along nonsingular
curves as we saw in Section 4. For a blow-up π : X → Y along a nonsingular
curve C ⊂ Y , we have a formula

e(X) − e(Y ) = e(E) − e(C),

where E := π−1(C) is the exceptional set (cf. [8, Lemma 6.5]). Now we cal-
culate the Euler-Poincaré characteristic. We have the following table using
the same method as in characteristic 3 case [8, Proposition 6.4]:

(bb) (bc-1) (bd) (be-1) (dd) (de-1)
e(Y1 ×P1 Y2) 40 48 40 48 40 48

In the case (bd), we have a total of 17 irreducible divisors as exceptional sets,
whose normalizations are P1-bundles over P1, except the last one which is
over an elliptic curve (cf. Figure 3). Thus e(X) = 40 + (4 − 2) × 16 + (4 −
4) × 1 = 72.

In the case (bc-1), we have a total of 36 irreducible divisors as exceptional
sets. Among them, there are two divisors with Euler-Poincaré characteristic
6, and four divisors with Euler-Poincaré characteristic 5. All the remaining
ones have Euler-Poincaré characteristic 4. Thus e(X) = 48 + (6 − 2) × 2 +
(5 − 2) × 4 + (4 − 2) × 30 = 128.
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the singularity of type (7)

: a locus of singularity which is

locally a trivial deformation of A1

Fig. 3.

We can calculate similarly for the other cases analyzing the processes of
the blow-ups carefully.

For the Picard number, we use the following formula for the fibration
f := (ϕ1 ×P1 ϕ2) ◦ π : X → P1 as in [15, (3.2), p. 182]

ρ(X) = 3 +
∑
t∈P1

(#{irreducible components of f−1(t)} − 1)

+ #{irreducible exceptional divisors
with respect to π which are horizontal to f}.

Now the Betti numbers are calculated from Theorem 14 and the Poincaré
duality theorem, thus we get the desired result. 	


7. Fibrational structures

We call a morphism f : X → C from a Calabi-Yau threefold X to a curve
C a fibration when the natural map OC → f∗OX is an isomorphism. Then
it follows that C ∼= P1 from the Leray spectral sequence and H1(OX) = 0.
By the adjunction formula, we see that a fiber has a trivial dualizing sheaf.

Quasi-elliptic fibrations on K3 surfaces in p = 2 played a central role
in the proof of the equivalence between being unirational and being super-
singular, i.e. ρ = b2 for K3 surfaces [14]. On the other hand, it is observed
that some Calabi-Yau threefolds admit fibrations which are not generically
smooth.

Proposition 16 The Calabi-Yau threefold X obtained as (bb), (bd), (dd),
(bc-1), (be-1), (de-1) in the previous sections admits at least two types of
fibrations g : X → P1 whose general fibers are i) a non-normal rational
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surface, ii) a supersingular K3 surface. In (bc-1), (be-1), (de-1), there exists
one more type of fibrations whose general fiber is a normal surface with three
rational double points of type A1 whose minimal resolution is a supersingular
K3 surface.

Proof. We denote by g the composition of X π→ Y1 ×P1 Y2
proj1→ Y1 and a

P1-fibration τ : Y1 → P1. This g is indeed a fibration. Then a fiber g−1(t)
with t ∈ P1 is factored by the following Cartesian products

Spec k ×P1 X → X
↓ ↓ π

Spec k ×P1 Y1 ×P1 Y2 → Y1 ×P1 Y2

↓ ↓ proj1
Spec k ×P1 Y1 → Y1

↓ ↓ τ
Spec k

[t]→ P1

Spec k ×P1 Y1 ×P1 Y2 is the base change of ϕ2 : Y2 → P1 by the double
cover ϕ1|τ−1(t) : Spec k×P1 Y1 → P1. To study a general fiber of g, we need
to know the ramification points of this double cover P1 → P1 for a general
t ∈ P1, and the effects of blow-ups in π.

For a P1-fibration τ on Y1, consider the morphism (ϕ1, τ) : Y1 → P1 ×k

P1 of mapping degree two and its Stein factorization Y1 → S → P1 ×k P1.
The case should be devided into three.

i) The Picard number ρ(S) = 2,
ii-1) ρ(S) �= 2 and τ = Φ|Σ1|,
ii-2) ρ(S) �= 2 and τ �= Φ|Σ1|,

where Φ|Σ1| is the morphism on Y1 induced from the complete linear system
|Σ1| associated to the moving cusp Σ1 on Y1. In case i), the double cover
ϕ1|τ−1(t) : τ−1(t) → P1 for a general t ∈ P1 is inseparable by Proposition 17
below. A general fiber of g comes from the base change of Y2 → P1 by the
Frobenius morphism P1 → P1 and is a non-normal rational surface.
In case ii-1), Proposition 17 tells that there exists a point on the base s0 ∈ P1

such that a general double cover ϕ1|τ−1(t) : τ−1(t) → P1 is ramified over
this s0 ∈ P1. Recall that a special fiber of type III∗ (resp. of type I∗2) lies
over s0 ∈ P1 when Y1 is of type (c) (resp. of type (e)) (cf. Proposition 3).
In case ii-2), a general fiber of g comes from the base change of Y2 → P1

by the double cover ϕ|τ−1(t) : τ−1(t) → P1 which is ramified at a general
point of the base P1.

By local calculation we see that, in ii-1) and ii-2), the base change of ϕ2 :
Y2 → P1 by the double cover ϕ1|τ−1(t) : τ−1(t) → P1 with a general t ∈ P1

is a normal surface with one rational double point of type D0
4 whose minimal

resolution is aK3 surface with a quasi-elliptic fibration. So the next question
is which component of Sing(Y1×P1 Y2) penetrates this rational double point
(cf. Figure 2). In (bb), (bd), (dd), the component Γ goes through this
rational double point of type D0

4. The singularity of Y1 ×P1 Y2 along this
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component is of type (1) in Proposition 7. Since it is a trivial deformation of
a rational double point of type D0

4, the rational double point of type D0
4 on

a general fiber is resolved after successive blow-ups in π. In (bc-1), (be-1),
(de-1), when τ = Φ|Σ|, the singularity of Y1 ×P1 Y2 along the component
which penetrates the D0

4 is again of type (1), which is resolved after four
blow-ups in π. In (bc-1), (be-1), (de-1), when τ �= Φ|Σ|, Γ penetrates this
D0

4-singularity. Since the singularities along Γ is of type (2) in Proposition 7,
there will be a single blow-up along this component in π and there remain
three rational double points of type A1 on a general fiber. 	

Remark 5. For a not generically smooth fibration in positive characteristic,
some conditions on singularities which appear in general fiber are observed
in [7] and [17]. In particular, the possible types of rational double points are
determined.

For such fibrations of Calabi-Yau threefolds, the following examples are
known.
i) f : X → P1, whose general fiber is not normal.

1. A general fiber is a fiber product of a rational curve with an ordinary
cusp and an elliptic curve in p = 2, 3 [6].

2. A general fiber is a non-normal rational surface in p = 2 in our examples
in Proposition 3 and in p = 3 [8].

ii) f : X → P1, whose general fiber is normal.

1. A general fiber is a normal surface with twelve rational double points of
type A1 (resp. a normal surface with one rational double point of type
D0

4) in p = 2; a general fiber is a normal surface with two rational double
points of type A2 in p = 3 in [6].

2. A general fiber is a normal surface with three rational double points of
type A1 in p = 2 in Proposition 16; a general fiber is a normal surface
with one rational double point of type A2 in p = 3 [8]. All these normal
surfaces are birationally equivalent to supersingular K3 surfaces.

8. Geometry on rational surfaces

Let ϕ : Y → P1 be a relatively minimal rational quasi-elliptic surface with
section. Choose a P1-fibration τ : Y → P1 and take the Stein factorization
of (ϕ, τ) as Y → S → P1 ×k P1. The morphism S → P1 ×k P1 is a
double cover and we are interested in its ramification locus. We put ρ(S) :=
dimQ NS(S) ⊗ Q. If ρ(S) �= ρ(P1 ×k P1), it is easy to see that the above
double cover is separable.

Proposition 17 Let ϕ : Y → P1 be a relatively minimal rational quasi-
elliptic surface either of type (b), (c), (d), (e) in Theorem 2. Under the
notation as above, we have the following:
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1. The complete linear system |Σ| associated with the moving cusp Σ gives
a P1-fibration Φ|Σ| : Y → P1. If we put τ = Φ|Σ|, the Picard number
ρ(S) is two in (b) and (d), three in (c) and four in (e). In (c) (resp. (e)),
the ramification divisor of the double cover corresponds to the irreducible
component in the fiber of type III∗ (resp. I∗2) which intersects the moving
cusp.

2. There exist P1-fibrations τ which attain the following ρ(S) under τ �=
Φ|Σ|, that is, ρ(S) = 2, 3 in (b); ρ(S) = 2 in (c); ρ(S) = 2, 4 in (d);
ρ(S) = 2, 4 in (e).

3. When ρ(S) = 2, the morphism (ϕ, τ) : Y → P1 ×k P1 is purely insepa-
rable.

4. When ρ(S) > 2 and τ �= Φ|Σ|, the moving cusp of ϕ corresponds to the
ramification divisor of the double cover S → P1 ×k P1.

Proof. 1) Recall that on a relatively minimal rational quasi-elliptic surface
Y , the self-intersection number of a P1 is always greater than −3, and any
P1 with self-intersection number −2 (resp. −1) is in a fiber (resp. a section)
of the quasi-elliptic fibration. Since (Σ2) = 0, it follows from the Riemann-
Roch theorem that the complete linear system |Σ| has a positive dimension
and base point free. So it induces a P1-fibration. The Picard number ρ(S)
can be calculated by counting (−2)-curves on Y contracted by (ϕ, τ). For the
second assertion for (c) (resp. (e)), consider the double cover Φ−1

|Σ|(t) → P1

for a general t ∈ P1. Then it can be checked by arguments on intersection
numbers that this cover is one-to-one at the unique intersection point of
Φ−1
|Σ|(t) and the component in question.

2) It can be seen that the dual graph of a singular fiber of a P1-fibration
on a relatively minimal rational quasi-elliptic surface Y is one of the graphs
in Figure 4. Finding such subgraphs in the dual graph consisting of all the
(−1)-curves and (−2)-curves on each Y (cf. Figure 5), we can determine all
the P1-fibrational structures on Y .

3) We shall show that rank(Ω1
Y/P1×kP1) = 1 in the following exact se-

quence under ρ(S) = 2.

(ϕ, τ)∗Ω1
P1×kP1 → Ω1

Y → Ω1
Y/P1×kP1 → 0.
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Consider the exact sequences of torsion free sheaves

0

��
τ∗Ω1

P1(B)

��

α

�������������

0 �� ϕ∗Ω1
P1(2Σ +A) �� Ω1

Y
��

��

Ω1
Y/P1/tor �� 0

Ω1
Y/P1/torsion

��
0,

where A (resp. B) is an effective divisor whose support coincides with that of
irreducible components of reducible fibers of ϕ (resp. of τ) with multiplicity
≥ 2 (cf. [3]). Suppose that α is a non-zero map. Then it follows that the
linear system |ϕ−1(s) + 2τ−1(t) − 2Σ − A − B| is non-empty. Take the
intersection number with ϕ−1(s), then we have

(ϕ−1(s), ϕ−1(s) + 2τ−1(t) − 2Σ −A−B) = −(ϕ−1(s), B).

By using the classification of the dual graphs given above, we see that
B contains at least one (−1)-curve and the above intersection number is
negative. But this contradicts the fact that ϕ−1(s) is a nef divisor.

4) We have (ϕ−1(s), τ−1(t)) = 2 and (Σ, τ−1(t)) ≥ 1. We claim that
Σ ∩ τ−1(t) consists of a single point for a general t ∈ P1 and it is the
unique ramification point of the double cover ϕ|τ−1(t) : τ−1(t) → P1. In-
deed, since p = 2, the double cover ϕ|τ−1(t) : τ−1(t) ∼= P1 → P1 has
a single ramification point. Pick up any point Q in Σ ∩ τ−1(t), then the
fiber ϕ−1(ϕ(Q)) has an ordinary cusp at Q. The local intersection number
satisfies (ϕ−1(ϕ(Q)), τ−1(t))Q ≥ 2. Since we have (ϕ−1(ϕ(Q)), τ−1(t)) ≥
(ϕ−1(ϕ(Q)), τ−1(t))Q, it follows that the above intersection numbers are
two and Q is the unique ramification point. 	
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