
AN APPROACH TO TEACHING
A COMPUTER PROGRAMMING
LANGUAGE

Toru Tamaki1 Takeshi Hagiwara2

Yoshinobu Maeda2 Yasuo Nakamura2

1Graduate School of Science and Technology,
 Niigata University, Niigata, Japan

2Faculty of Engineering, Niigata University, Niigata, Japan

Programming Languages

FORTRAN / C / C++ Internet

Commercial
software

Education

Science

Pascal / FORTRAN / C / C++

Perl / Ruby / PHP

Visual C++
Visual Studio .NET

Procedural language

Non-procedural language
Lisp / Prolog

Our Programming Course

basic
Programming lecture

basic
Programming lab

practical
Programming lecture

practical
Programming lab

30 weeks in total
● Two semesters, for a year
● 45h for lecture (class): 1.5h / week
● 90h for lab (practice): 3h / week
● C language

1st semester

2nd semester

Students' Present Ability

Question :
"rewrite the mathematical
equation in C statement".

x=
ab

c− d

a2

x=(a+b)/(c-d/(a+2))
Answer :

% of correct answers : 74%

About 100 students
had learned almost for a year.
allowed to see any texts, but no talking.
tasked 5 questions in 15 min.

Students' Present Ability

Question :
"fill the blanks to sum up all elements of the array a[128]"

int i, sum=0;
for(; ;)
 sum += a[i];
printf("%d\n", sum);

Answer :
for(i=0;i<128;i++)

% of correct answers : 41%

Lack of fundamental knowledge
Necessity for training the basics

Well Known, but Harmful
Sample Program

#include <stdio.h>
int main(int argc, char *argv[]){
 printf("Hello World!\n");
 return 0;
}

in C language:

Required to input the program, and execute it
Many unknown symbols and rules
No common basics with other programming languages

Problems :

Well Known, but Harmful
Sample Program

1: #include <stdio.h>
2: int main(int argc, char *argv[]){
3: printf("Hello World!\n");
4: return 0;
5: }

in C language:

Provided for making code ease to see
Must not be written into the actual program file
May be seen as a part of the program for beginners

Line numbers :

Well Known, but Harmful
Sample Program

1: #include <stdio.h>
2: int main(int argc, char *argv[]){
3: printf("Hello World!\n");
4: return 0;
5: }

in C language:

#inclde (stdio.h)
int main(int argc, char *argv[]){
 prinf("Hello World!\n);
 return 0
}

Well Known, but Harmful
Sample Program

1: #include <stdio.h>
2: int main(int argc, char *argv[]){
3: printf("Hello World!\n");
4: return 0;
5: }

in C language:

#inclde (stdio.h)
int main(int argc, char *argv[]){
 prinf("Hello World!\n);
 return 0
}

Wrong parentheses

No correspondenceNo semicolon

Miss spelling

Well Known, but Harmful
Sample Program

1: #include <stdio.h>
2: int main(int argc, char *argv[]){
3: printf("Hello World!\n");
4: return 0;
5: }

in C language:

#inclde (stdio.h)
int main(int argc, char *argv[]){
 prinf("Hello World!\n);
 return 0
}

Wrong parentheses

No correspondenceNo semicolon

Miss spelling

test.c: In function `main':
test.c:1: undefined or invalid # directive
test.c:1: `#include' expects "FILENAME" or <FILENAME>
test.c:3: possible real start of unterminated constant
test.c:3: unterminated string or character constant
test.c:5: parse error before `}'

Well Known, but Harmful
Sample Program

#include <stdio.h>
int main(int argc, char *argv[]){
 printf("Hello World!\n");
 return 0;
}

program hello(input, output);
begin
 writeln('Hello World!');
end.

in Pascal:

in C language:

Different rules for different languages

Compatibility :

NO BASICS !

Proposed Materials

✔ Beginning with the basics.
• Common to all procedural languages.
• Based on C, but applicable to Pascal/Fortran/C++/etc.

✔ Without execution on computers.
• Writing answers on a paper
• Computing by students' brains, not by computers

✔ Without any knowledge about programming, only
a little mathematics in high-school level is needed.

• Fundamental mathematical functions (ex: sin / cos / exp)
• Some symbols (ex.   e)

✔ Repeat one topic with many exercises to train the
sense of programming.

Programming Drill

Exercise 1.
"Evaluation" is to calculate (ex: the evaluation of 1+1 is 2).
Evaluate the following statements in C.

statement:

1+2

22*3.3

2-1

10.2+5.1

10/5

answer:

3

42.6

1

15.3

2

Contents of the Drill

Contents of the Drill

Exercise 2.
"Evaluation" is to judge a statement whether it is true:1 or
false:0 (ex: The evaluation of 1>0 is 1, that is, true).
Evaluate the following statements in C.

statement:

0 < 1

1.0 != 10.0

-1 >= 3

3 < -1.5

answer:

1

1

0

0

Contents of the Drill

Exercise 3.
A statement is evaluated in left-first order.
Evaluate the following statements in C.

statement:

-2+4-3.5

3*8/4

10/ 2/5

1.1 + 0.1 < 1.1

answer:

1.5

6

1

0

Topics in the Drill
● evaluation of statements
● value assignment to variable
● initialization of variable
● mathematical functions
● int and float types
● declaration
● value range
● char type
● printf function
● array
● initialization at declaration

● while loop
● double loop
● infinite loop
● if
● else
● modular
● arithmetic operators
● for loop
● flowchart

20 more topics
about 250 exercises

Practical Training with Drill
in Our Programming Lab

Drill

Drill

Exam for last week of topic
12:50

14:20
14:35

16:05 Exam for today's topic

3 hours for weekly lab
About 50 exercises
per week
Two small exams at
the beginning and the
end of each weekly
lab

Practical Training with Drill
in Our Programming Course

1st exam

15

weeks

programming task
3 hours / week

programming task
3 hours / week

drill : 4 weeks
3 hours / week

1.5 hours
/ week programming task

3 hours / week

class
(lecture)

1

practice
(lab)

2nd exam

Oct. 2003

Feb. 2004

Questionnaires on understanding

drawing flowchart

understangind flowchart

&&, ||

combination of if and loop

else

if

modular

infinite loop

double loop

for loop

while loop

array

printf function

int and float types

assignment to variable

order of evaluation

evaluation

0% 20% 40% 60% 80% 100%

well not at all
1st exam 2nd exam

Results of short exams

drawing flowchart

if and loop

double loop

for and array

int and float

declaration

assignment

correcting statement

rewriting equation 2

rewriting equation 1

evaluation 3

evaluation 2

evaluation 1

0% 20% 40% 60% 80% 100%

correct partially wrong wrong

74%

41%

Correlations

lecture lab

lecture 1.00 0.59 0.48 0.54
lab 0.59 1.00 0.60 0.66

0.48 0.60 1.00 0.69
0.54 0.66 0.69 1.00

1st
exam

2nd
exam

1st exam
2nd exam

Correlations among grades of lecture, lab, and exams.

Lecture and lab are graded independently.
Lecture : writing examination
Lab : two exams (5% each) and reports of three tasks
(30% each).

Grades :

Scattered Diagrams

0 20 40 60 80 100
0

20

40

60

80

100

Lecture

La
b

0 20 40 60 80 100
0

3

6

9

12

15

Lecture
1s

t e
xa

m

0 20 40 60 80 100
0

3

6

9

12

15

Lecture

2n
d

ex
am

0 20 40 60 80 100
0

3

6

9

12

15

Lab

1s
t e

xa
m

0 20 40 60 80 100
0

3

6

9

12

15

Lab

2n
d

ex
am

0 3 6 9 12 15
0

3

6

9

12

15

1st exam
2n

d
ex

am

Conclusions
● Proposed a new material to train the basics

of programming, and shown the result of the
practical training in our programming course.

● The sort examinations on the drill have
some correlations with grades of lecture and
lab.

● The effect of the drill on students' ability on
programming have not yet validated.

