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Lattice calculation of gluon screening masses
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We studySU(3) gluon electric and magnetic masses at finite temperatures using quenched lattice QCD on
a 20°x 32x 6 lattice. We focus on temperature regions betweril, and 6T, which are realized in BNL
Relativistic Heavy lon Collider and CERN Large Hadron Collider experiments. Stochastic quantization with a
gauge-fixing term is employed to calculate gluon propagators. The temperature dependence of the electric mass
is found to be consistent with the hard-thermal-loop perturbation, and the magnetic mass has finite values in the
temperature region of interest. Both screening masses have little gauge parameter dependence. The behavior of
the gluon propagators is very different in confinement or deconfinement physics. The short distance magnetic
part behaves like a confined propagator even in the deconfinement phase. A simulation with a larger lattice,
322X 48% 6, shows that the magnetic mass has a stronger finite size effect than the electric mass.
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[. INTRODUCTION length scale, and furthermoregll must be introduced as an
electric(Debye scale, whose influence appears as a Yukawa-
One of the most interesting features of Q@§uantum  type potential rather than a Coulomb-like one, angfT/as
chromodynamicsis the transition from the confinement to a magnetic scale. In QCD, the magnetic mass, which cannot
the deconfinement phase. In this new state of QCD, quarkise accessed perturbatively, acts as a cutoff factor in the in-
and gluons confined in the hadron at zero temperature movieared problem and consequently becomes an essential ele-
freely when the system reaches a sufficiently high temperament of thermal QCD.
ture. The quark-gluon plasm@GP was realized at high The QCD coupling constant strength near the critical tem-
temperature in the early universe, and is expected to be prgeratureT, is still of the order of 1. Therefore perturbation
duced in heavy-ion collision experiments at the CERN Supetheory is not applicable. However, these regions are currently
Proton SynchrotroiiSPS, BNL Relativistic Heavy lon Col-  being investigated with great interest in much theoretical and
lider (RHIC), and CERN Large Hadron CollidefLHC). experimental research. After hard-thermal-logiTL) re-
Thus it is an urgent task to accumulate theoretical knowledgsummation was consistently formulated by Braaten and
about the QGP. Pisarski, there were several improvemdmt$8] for unsolved
The massless gluon in the QGP medium is changed into problems. Comparison of this method with lattice numerical
dressed massive gluon after quantum corrections. Thdata has been reported; one-loop HTL calculations of the free
screening effect is characterized by a mass pole of the propanergy of a QGP are in good agreement with the lattice nu-
gator and is closely related to thermal QCD phenomenologymerical resulf9,10]. However, a recent two-loop HTL cal-
One example is a screened heavy-quark potential, which isulation indicates that it does not yet have adequate conver-
frequently discussed in relation 8 or Y suppression. For gence[11]. As another approach, 3D reduction theory has
calculations of jet quenching, which might be a fingerprint ofalso been widely studied and has yielded some promising
a QGP, a model including the electric and magnetic masseagumentg12], but this method, which is defined only for
has been proposdd]. A nonperturbative quantitative study the high temperature limit, cannot be applied to confinement/
in the vicinity of T, and up to several times, is of great  deconfinement physics.
importance for understanding QGP physics. For reliable phenomenological analyses of high energy
The thermal field theory2—4] is the most basic method heavy-ion collisions, it is important to obtain information on
of studying the QGP and has provided many informativethe magnetic and electric masses of gluons nonperturba-
observations. At zero temperature, many calculations basdi/ely; a numerical study of lattice QCD as a first-principles
on perturbative QCD have described experimental refbijts calculation should play an important role here.
and there is no doubt that QCD is a theory of strong inter- There have been many lattice studies of finite-temperature
action. It is natural to employ the perturbative approach toQCD, but only a few calculations of the electric and mag-
thermal QCD. Because of asymptotic freedom at high temnetic screening masses can be found in the literdtiig
perature, the coupling constant is expected to become smaither than for the case of col®U(2) [14,15. The electric
enough to carry out the perturbations. In such a high energgnass has been estimated from the Polyakov loop correlation
state, quarks and gluons must behave as an ideal gas; yet thisictions to obtain the screened heavy-quark—antiquark po-
simple consideration is spoiled by an infrared divergdde  tential [16—18.
which is known to bear a hierarchy on the energy scale in the The main aim of our study is to obtain reliab&U(3)
QGP systeni3,4]. One usually defines T/as a perturbative electric and magnetic masses through large-scale lattice
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QCD simulations and to reveal their temperature dependenaeerical techniqué¢27]. The simplest standard Wilson gauge
[19]. We also compare our numerical data with the predic-action of lattice QCD can be defined from continuum QCD
tions of leading order perturbatioftOP), HTL resumma- as
tion, and other analyses.

Since our mass extraction is. bgsgd on measuring a gauge ngﬁz (1_
dependent gluon propagator, it is important to check the
gauge invariance of both screening magg$§. This test is
essentia! partic_ularly for the magnetic mass, because it has a % UI(X+,&)UL(X)]), g 2N2c' )
poor definition in the frame of the perturbation.

Gluons are essential ingredients in QCD dynamics, and ] )
QCD undergoes a phase transition from the confinement th€ré & link variable,U ,(x), stands for theSU(3) color
the deconfinement phase when the temperature increas@@uge field:

1

3ReTt[UV(x)UM(x+;)

Therefore, we expect gluon propagators to show different U, (X) = e9%uAu() @)
behavior in each phase, and their study provides information " '
on confinement/deconfinement dynami2g]. wherea,, is the lattice spacing, i.e., the lattice cutoff, akd

We measure gluon propagators, which depend on thespresents the gauge potential of the gluon. In this study, we
gauge used, and therefore a gauge-fixing procedure is indigdopt the quenched lattice simulatiépure gauge QCD
pensable. However, gauge fixing on the lattice is difficultwithout a dynamical quark effect, using EQ).
practically and conceptually. Usually, gauge fixing is carried
out by the iterative techniqui22], and it is very time con- B. Gauge fixing and Gribov copy on lattices

suming. The conceptual difficulty is that the gauge is not \ye are interested in a direct calculation of the gluon

uniquely fixed; this is known as the Gribov copy problem yropagator, and the extraction of electric and magnetic
[23]. In order to overcome these difficulties, we adopt here &creening masses from it. Therefore we must fix the gauge of
stochastic quantization with Zwanziger's gauge-fixing termthe gluon fields on the lattice, where the gauge transforma-

[24-26, instead of the path integral method. tion is given by
In this paper, we extend our previous results front 20 A
X 32X 6 lattice simulationg[19] to the level that present UM(x)HwT(x)UM(x)w(er uw). 3

computer power can reach; we add more detailed values for

the electric and magnetic masses and results at higher ters- stands for a gauge rotation matréxSU(3) on the lattice.

perature from the larger-lattice 32 48x 6 simulation. We In this study, we focus on a Lorentz-type gauge, which is

also give a detailed description of the algorithm employed irdefined in the continuum as

this study. In Sec. I, we describe the stochastic gauge quan-

tization together with the Gribov copy problem. The defini- I, Au(x)=0, (4)

tions of the gluon propagator and electric and magnetigN

masses are given. A large part of Sec. Ill is devoted to our

simulation results on the small lattice 22032 6. First we 4

describe all input parameters of the simulation and the sta-  A%(x)= >, 2 ImTrt3{U,,(x)—U ,(x—)}=0. (5)

tistics needed to measure reliable gluon propagators. Then u=1

we show the gluon behavior and the electric and magneti . _ .

masses extracted from it. The gauge dependence check aE' re tba is the SU(N) gepgrator with .the relation "]

temperature dependence for both screening masses are al:sc?&a1 - The above conditioi5) is equivalent to

given. Finally, we compare the numerical data with the per- 5.1=0

turbative argument, add the higher temperature result, and @ '

comment on the finite-volume effect. Section IV gives the

conclusions. 1= ReTro'(x)U ,(x) o(x+ ). (6)
The main part of the calculation was carried out on the Xou

SX-5(NEC) vector-parallel computer of RCNRCMC),

Osaka University. We used a parallel queue with 4, 8, and 1

CPUs and required about six months to complete this workt

hile in the discrete lattice theory

ilson [28] and Mandula and Ogilvi¢22] suggested the
ollowing condition for the gauge-fixing method on the lat-

ice:
max,| . (7)
Il. STOCHASTIC GAUGE FIXING ON LATTICES
AND GLUON PROPAGATORS The continuum version of Eq7) was discussed in Refi29]
and[30].

A. Latfice gauge action The conditiong6) and(7) are not equivalent to each other

The lattice regularization scheme of QCD is the gaugesince there may be local maxima or minimalofhich sat-
invariant Euclidean theory which enables us to perform dasfy Eq. (6). The gauge-fixing configuration cannot be
nonperturbative calculation based on the Monte Carlo nuuniquely fixed; this is called the “Gribov copy{23] and is
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.- Jd A
Gauge fixing plane W
9,A,=0 Monte Carlo Steps

A
(Au] NN

Langevin Steps

FIG. 1. Gribov[23] pointed out that a gauge is not uniquely . . .
fixed for non-Abelian theories, which is called the Gribov copy FIG- 2. The figure illustrates the gauge-fixing procedure by the

problem. This does not appear in the perturbative frame. ThdVilson-Mandula-Ogilvie iterative method and by stochastic gauge

existence of the Gribov copy has been confirmed in several workfXing. Gray arrows indicate the gauge rotation for each algorithm.
[31-33. In the first algorithm, Monte Carlo update steps are performed with-

out restriction on thel,,A,,=0 plane. When a gauge-fixed configu-

illustrated in Fig. 1. If we study this problem using a numeri- ration is needed, the gauge configuration is rotated to the gauge-

cal lattice simulation based on the iterative procedure, it idxed plane.d,A, =0, by iteration[22]. On the other hand, in the
very difficult to find a true maximum case of Langevin gauge fixing, configurations are updated by fluc-

tuation around?, A, =0.

C. Stochastic gauge fixing ) ) o .
o . In this stochastic quantization with Lorentz-type gauge
Our approach to the gauge-fixing procedure is to use thﬁxing, A? fluctuates around the gauge-fixing plan@=0.

stochastic gauge quantization instead of the Monte Carlg.,, example, when we take=1.0 andA7=0.01, A® on
path integral. The stochastic quantization is based on thgsy g \vith ,8’=6.0 behaves as shown in Fig. 3. \We confirm

Langevin equation which introduces virtual time in addition that A2 fluctuates around®=0 which indicates that good

to the Euclidean coordinate. Zwanziger introduced a gaugegaug|e fixing is achieved
fixing term as :

There are two reasons for using the stochastic gauge-
dA2 ss 1 fixing method in this stu_dy. One is a practical ?s;ue. When
M +=D2(A)9,AP+ 92, (8)  We use the standard Wilson-Mandula gauge-fixing method
dr SAZ a # a [22], the iterative procedure is applied to accepted gauge
configurations for each Monte Carlo step in Fig. 2. Then the
whereD2°(A) is a covariant derivativer stands for Lange- number of iterations is unpredictable, particularly for large
vin time, andy is a Gaussian noise term. The second term onattices. On the other hand, in algorith(®), we simulta-
the right-hand side is a gauge-fixing term.is a gauge pa-
rameter;=0 corresponds to the Lorentz gauge and1 to Axdxdx®
the Feynman gauge. 10 - T ' T - T
Mizutani and Nakamurf26] developed the lattice version ¢
of the stochastic gauge fixing. The link variables are rotated
through the following gauge transformation depending on

the virtual time: 4
. a ~ 2 X A
U, (%, 7+ A7) =0 (x, e U (x, D o(x+,7). (9 h
. 3
Heref stands for the force 2l ¥ '._" A
JS 4 :
fo=- Yo A7+ n3JAT, (10) o 1
’ ]

and the gauge rotation matrix is given by X A , \ . | . l .
105 200 400 600 800

steps

_
(=3
(=3
(=7

w= eiBAataAT/a. (11)

) . ) FIG. 3. These data are produced on the lattiéx & with A7

If o=1, Eqg.(9) is a lattice Langevin process. Gauge rota- =01 (Langevin step intervaland &= 1.0 (gauge parametemt

tion, Eq.(9), with Eq. (11), leads to the gauge-fixing term as g=6.0. The solid line means the averageXf.{A%(x)}?, while

A7—0. Equation(9) means that the gauge rotation andthe dashed line is the value af'(1). A? fluctuates around?=0

Langevin step are executed alternately, as illustrated imnd gauge configurations are sufficiently fixed on the,=0
Fig. 2. plane.
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neously repeat the steps of update and gauge rotation in Fi¢ 2 — T T T T - L L ™
2 and are free from the convergence problem of gauge fixing
Therefore we can estimate the CPU time precisely. More- s

o No gauge fix ( Heat bath)| —

over, this algorithm, in which the gauge parametecan be o Gauge fix (Langevin)
changed at will, is advantageous when testing gauge invari | i
ance.

A conceptual problem is the Gribov ambiguit®3]. The

algorithm has a noteworthy feature, i.e., the second term 01**[" e b

Eq. (8) gives rise to a configuration such that O'_ b , B
d 2 A2 <0in Q, - % B
dr % >0 out of Q. (12) 05 .

Here () stands for the Gribov region, 19 10 20 30 40 50 60 70 80 90 100

FIG. 4. Autocorrelation of the Polyakov loops for the Langevin
algorithm with stochastic gauge fixing\¢=0.03) and the pseudo-
heat-bath update algorithm as a function of the iteration steps. This
calculation is done g8=6.1 on the §x 4 lattice.

Gribov regionQ={A%(x)|3,A%(x)=0,—a,D3">0}.
(13

That is, the stochastic gauge-fixing term is attractrepul-
sive) inside (outsid the Gribov region24,29 if we start In our study, to avoid a mixture of the longitudinal and

from the trivial configurationf/A,,=0j. Although our algo-  y,syerse modes, we adopt the transverse condifipr
rithm may not completely eliminate copies, we conclude that

it trocti thod =0 and measure the partially Fourier transformed propaga-
LIS a more efiective method. _ _ tor including one momentunp,=2m/N, or p,=2m/N,

Since the update algorithm described here is not as pop 31]. We will obtain the gluon mass using a lattice energy-
lar as the Metropolis or pseudo-heat-bath method, we sho

. . ) omentum relation. This is different from other calculations
the autocorrelation of the Polyakov linég7)L(7+n7) in [13,14], where the mass extraction from zero momentum
Fig. 4 together with that of the pseudo-heat-bath. S

propagator was studied.
In thermal perturbative QCID2—4], the electric mass is
D. Definition of gluon propagators defined from the temporal part of the gluon polarization ten-
We define the gauge fiek,(x) in terms of the link vari- sorll,,, while its spatial part is conside_red as the magn'etic
ables as mass. Thus we can construct an electric propagator using a
temporal one:

AL (x)=22 M Trt2U ,(x). (14)

1 2T 21
Ge(p,2)~ > N—,O,Oz o,N—,o,z
X y

We calculate massless gluon correlation functions with finite _ . . :
momentum. In the same way, a magnetic propagator is defined by spatial

components:

2w
XA~ Py, =Py, Pu0). (19 Gn(P2)~3 N—X'O’OZ) - a7

GMV(p)Upy!ptiz):<TrAM(pX1pylpth) 1 2
Gxx O,N—y,O,Z +ny
TABLE |. We estimate a lattice cutoff and its temperature scale Because the screening mass is given as a pole of the de-
by using mainly theQcp_TaRO fit function [34,35. We adoptT, nominator of the momentum space propagatop3{m?),
~256[36]. Ge(2) and G,,(z) are expected to behave as exponential

- - damping functions in the direction on distanceZ=1/T
B a T(Mev) TT. B a T TITe  with the masses

(GeV) (GeV) MeV)
— o—Ee(m (D)2
58  1.33 222 086 6.4 352 586 229 Ge(m)(2)~ e TemiP=, (18
500 1.62 270 105 65 412 690 2.69
595 1.77 205 115 6.6 460 767 2.99 Ill. RESULTS

6.0 2.04 340 132 6.7 524 874 341
6.05 2.09 349 136 6.8 5.96 994  3.88
6.1 2.27 378 1.47 6.9 6.76 1128 4.40 We use mainly the lattice of sizBJXNyNZNt=202><32

6.2 2.64 447 174 7.0 7.64 1274 4.97 X6 which satisfies the conditioN,=3N;. On this lattice
6.3 3.05 509 199 7.1 861 1436 5.61 the long range area correspondsztel/T and thus reliable
information for screening physics may be produced.

A. Simulation parameters
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T/T =2.69, At=0.05, 0=1.0 A1=0.05, 0=1.0
10 T T T T T T T T
L — — T
G0 T/T=0.862

—_ -0 TT=105
= A-AT/T =229
N = E TT=497 | 3
o S F o T =4 E
G (=} — =~ Free

=] B

& z

bt g

g A 001 —
s le F -3
= =1 7. S N
\Na N [ £

I OO
© 0.001} 3

4 -
. 1 . | . | . 1 .
0 2000 4000 6000 8000 10000 0.0001 M|
steps o 5 15

FIG. 5. Typical gluon propagator behavior as a function of
Langevin steps on the lattice 2032x 6. We find that fluctuations
of G,,(12) are much larger than those Gf,(6). In order to in-
vestigate the screening effect, the long range contribution should
adopted. Consequently, we need a large number of statistics.

FIG. 6. The electric propagator in the confinem(mitcles) and
deconfinementother symbols regions withP,y=27/Ny . All
b%ropagators are found to become massive compared Wlth the free

propagator(long dashed ling In the confinement regions, the
propagator at long distances behaves like a very massive particle

We summarize lattice cutoff values and the correspondin@nd vanishes, whereas the propagator beytinbas a finite mass.
temperature in Table I. Varying, i.e., the lattice coupling
constant, we change the temperatdre 1/N;a. The pure ment and deconfinement regions. The electric gluon mass in
gauge lattice withN;= 6 has critical3.~5.89, and we adopt the confinement region becomes heavier; the electric gluon is
T.~256[36] as the critical temperature. To estimate the lat-completely screened in the confinement regions. This was
tice cutoff value, we employ the results in Ref34,35. first observed in Refl21]. Consequently, we cannot employ

In addition, we prepare a lattice of the siz€3218x6 in  the assumption Eq18). On the contrary, the propagator in
order to investigate the finite-size effect of screening massetfie deconfinement regions decreases exponentially even at
and to obtain them at higher temperature. long distances with a finite mass.

Similar behavior is seen in the magnetic parts in Fig. 7;
B. Necessary statistics to obtain reliable gluon propagators a|th0U9h the long distance magnetic gluons have large errors
here, all magnetic gluons are found to be massive at long

We observe a large fluctuation of the gauge propagatorgjisiances in the confinement/deconfinement phase, and their

particularly at long distances, i.e., we suffer from a long
autocorrelation time. We show in Fig. 5 the typical behaV|or
of gluon propagators$s(z) as a function of the Langevin
step. In order to analyze the gluon propagator and measur BT —
the screening masses we require 0.2x0L@° steps as the Eo :'g\ﬁ

typical number of simulation data. r '\‘é

A1=0.04, 0=1.0

/N_0,0)

C. Gluon propagators

Although the gluon propagator itself is gauge dependentZ
it gives us some insights into the gluon dynamics of them 001} Gomﬂw
confinement/deconfinement physics. ,:H E T =115

The electric propagator is shown in Fig! @here the free 5 r <>~<> T/T =2.69
massless propagator is also shown by the dashed line. Gl | A
ons at short distances, i.es<6=1/T, have very similar be- E %
havior to the free propagator. However, at long distances, L :
gluon propagators decrease more rapidly than the free one I 1
This indicates that the electric screening mass does notvar *™% 5 10 15
ish at all temperatures.

Comparing the data below and abodlg, we find that the FIG. 7. The magnetic gluon propagator in the confinement
dynamics of the gluon is completely different in the confine-(circles and deconfinementother symbols regions with Pxy)

=27/Ny(y, - Although the magnetic gluon propagators in this figure
have large errors at long distances, they seem to have similar be-
YIn the following, all the propagators are normalizedzat0, havior to the electric part, except for the short distance behavior in
namely they are divided b (z=0) to compare each other. the deconfinement regions.
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10° , , TABLE II. This shows the typical example of the Langevin step
dependence atT/T.=2.69. For all simulations for At
%% =0.03-0.05, approximately 0.2—-x40° steps (measurements
10" L T _ are used after eliminating about 3000—-5000 steps as thermalization.
== * p#0” means including the momenturR,,y=27/Ny, . We ex-
%§§§ trapolate these data td7=0 and then obtainmsa(p,=0)
100 L $ =0.470(38) andna(p,=0)=0.199(52) using the lattice energy-
§§@§f§f{ . momentum relation.
G{t) f T
10" | ___ AT Number of steps  mpa(p+#0) mg.a(p#0)
0.05 275000 0.4008) 0.54422)
) 0.045 240000 0.3642) 0.527121)
10 ¢ E 0.04 380000 0.3911) 0.50821)
0.035 280 000 0.3698) 0.55124)
s . ‘ 0.0325 300000 0.3369) 0.56528)
19 50 10.0 20.0 30.0 0.03 320000 0.3614) 0.55124)
t
0.00 0.36%46) 0.56140)

FIG. 8. Transverse gluon propagatoiGr(t) with p
=((2m/N,),0,0), on 48x 64 atB= 6.8 (confinement phageSolid
line represents the free propagafad]. WhererE(|5|4+ b%) U4 and $="1tan }(b? 52)' The upward

convex shape of the gluon propagators in the deconfinement
effective mass in the confinement phase is heavier. We notioggion may provide us with hints about the glue dynamics.
that the short distance behavior of magnetic gluons in the Below the critical temperatur@., we obtain a similar
deconfinement regions looks unconventional. The magnetigesult even for electric gluons at short distances. This seems
gluon propagators follow a convex curve at short distancesatural since the perturbative argument in the confinement
while the electric ones do not. The magnetic gluons behaveegions is generally not suitable and the confining correlation

as if they had an imaginary screening mass or negative spefunction would also give a the negative spectral function.
tral function, which may be the reason why the magnetic

mass is not screened, at least in LOP calculation. D. Mass as a pole
As clearly seen in Fig. 7 and as we discuss below, the , )
effective mass of the magnetic maszidependent. We take 10 obtain the screening mass from the propagators, the
a value around=1/T as the electric case, since it is a rel- following formula is used:
evant quantity at finite-temperature screening. G~ E ~N.J2 21
Gluons are essential ingredients of QCD but they are con- e(m)~ COSH Eg(m)(P)(2—N/2)]. (21)
fined belowT.. As shown in Fig. 8, their propagator is con- we employ data foz=1/T(=N,a), because the screening
vex upward at several regions. This is possible only when theffect occurs at sufficiently long distances. All fittings are

spectral function isiot positive definite. This peculiar behav- gone fromz=6 to N,/2, andy?NDF~0O(1), where NDF
ior was first observed in Re[22] and confirmed in Ref. indicates the number of degrees of freedom.

[37]. The feature does not contradict the fundamental postu- T obtain the final result ah7=0, we must extrapolate

late of quantum field theories, because gluons in the confingne data with respect to the Langevin step width. The Runge-
ment region are not physically observable particles. Insteadcytta algorithm is applied to reduce the finite Langevin step
this is a glimpse of the confinement mechanism in the infra , dependencé3s]. We perform simulations for a set of
red _region which is still far from our understanding. Gribov’s parameters withA 7=0.03—0.05. Table Il and Fig. 9 repre-
conjecture for the gluon propagator sentE(p) measured here versusr. The slight dependence

of A7 enables us to use a linear function when fitting data.

p)~ ; (19) We finally obtain the mass f_rorE(p) by the following lat-
p?+b*/p? tice energy-momentum relatign4]:>

3
. . . . E i
vanishes ap?=0, and its Fourier transformation to the co- SinhZ_a:Sinr?%jLE sian. (22)
ordinate space is not convex downward, 2 2 = 2

E. Gauge invariance

~ Z
. _ artcoseo H
G r e codrtsing+ ), (20 The screening mass is physical and expected to be gauge

invariant. However, since the gluon propagators defined by

2We thank E. Seiler and D. Zwanziger for helpful discussions on
this point. 3We “assume” this relation to extract the mass.

014506-6



LATTICE CALCULATION OF GLUON SCREENING MASSES PHYSICAL REVIEW B9, 014506 (2004

T/T =269 T/T =2.69, At=0.05,
1 T 1 T T T
© Magnetic © Magnetic
0.8 - s Electric 1 0.8 r = Electric
S 5
Q 06 1 S 06 |
R - L
\(,\'r 0.4 T y i 04 ¢ T
& TE - = o g_ T . -
m m
0.2 r - 02 i
O L L L O L L L L L L L
0.02 0.03 0A04 0.05 0.06 03 04 05 06 07 08 09 1 1.1
T
o

FIG. 9. A7 dependence of masses is slight. To obtain a final

: . ¢ FIG. 10. Gauge dependence for electric and magnetic screening
value atA7=0, we use the linear function for the extrapolation.

masses. Gauge dependence of both screening masses is very slight.

Egs. (16) and (17) are gauge dependent, it is important to L
check whether the screening masses obtained here are gatﬁlg we Set'““.=27.TT’ Wh'Ch is the Matsubara frequency as
invariant or not. In addition, since the magnetic mass canno € renormalization point an{Azl.O?;Tc .[9] as the QCD
be defined by a perturbative calculation, it is particularlymaSS scalebg andb.l are the first two universal coefficients
important to check its gauge dependence. In Fig. 10, wé' the renormalization group,

show the gauge parameterdependence of the electric and
magnetic masses. The gauge dependence of both screening
masses is found to be very slight, namely, the result strongly )
suggests that they are gauge invariant and physical obser(S & result, we obtain
ables.

bo=1IN./487?, b;=(34/3[N./(167%)]%. (25

C.=1.633), x?NDF=0.715,

F. Temperature dependence

=0.48231 2/NDF=0.979. 2
We study the temperature dependence of the screening Cn=04823D, X/ 0.979 26

mSﬁSeI:eEgi Laeg%il iT) Cn:cloﬁiziowhéf(gevr\/i?nu;itgesﬂialI;(sadelr—]lI CThe scalings expected in E(R3) for electric and magnetic
or LHC [39]. Table 11l and Fig. 11 show electric and mag- masses are found to work well. However, the magnitude of

; LOP_ i
netic masses as a function of the temperature. The magnet?ce 's larger tharCe™"=1. On the other hand, for magnetic

part definitely has nonzero mass in this temperature region.
As T increases, botmg, /T decrease monotonically, and at :
almost all temperatures, the magnetic mass is less than th I
electric one, except very nedr, where the electric mass 4t :
decreases very quickly asapproached .

G. Comparison with LOP and HTL resummation results T

We perform a fitting analysis for our numerical results m/T ¥

using the following ansatz: 2
m m

T =Ced(T), = =Cqng®(T), (23 i

whoseg dependence is predicted by the perturbative and 3D .
reduction analysi$3,4] and we assum€, andC,, are free
parameters. In the following discussion, the data abbve

~1.5T. are used. Here we use the running couplings FIG. 11. Temperature dependence of electric and magnetic
screening masses. The dotted line is fitted by the assumptjon
2( )= _ ﬁ log(2logu/A) (24) ~gZT. For the electric mass, the dashed and solid lines represent
)= S log(w/A) | = 2by  log(wlA) )’

LOP and HTL resummation results, respectively.
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TABLE Ill. Temperature dependence of the electric and magnetic masses which are extrapolated to the
Langevin stepA 7=0.

TIT, me/T My /T T/T, me/T My /T
1.05 1.506438) 2.802054) 2.69 2.820228 1.194312
1.15 2.694288 2.484258) 2.99 2.892234) 1590319
1.32 3.348408 2.406246) 3.41 2.190450 0.960168)
1.36 2.904336) 1.986296) 3.88 2.292222) 0.8523198)
1.47 3.138342 1.866222) 4.40 2.5981698 1.134414)
1.74 2.700426) 1.620300 4.97 2.310084) 0.8046398
1.99 2.898498 1.608270 5.61 2.106390 0.486336)
2.29 2.484234) 0.990264)

mass, a self-consistent inclusion technique in R&J] gives  intermediate regions abowe=6 until the disappearance of
mg=O.56&12T, which is close to our fitting result. the propagator, we obtain similar results for the electric and
The HTL resummation technique applying the free energymagnetic masses as seen in Fig. 12 in the same temperature
of the hot gluon plasma has been widely discus$ed0]. regions.
Rebhan gave a formula for the electric mass in the one-loop Using the criterion describing above, we may consistently
HTL perturbation theory41] and for the case o U(3), obtain both screening masses on the large lattice, and can
argue that the magnetic mass has a stronger finite-size effect
than the electric oneE(p) appearing in Eq(17) are shown
in Table IV atT/T.=8.99 and 16.12. The momenta for the
small and large lattices ar@,=27/N,~0.314 and p,
=2m/N,~0.196, respectively; namely, the result on the

Here we assume the magnetic mass to be of the ordgf.of ¢ jattice implies that the magnetic mass at high tempera-
SUbSt.'t““_”g our fitted vqlue fany,, we can ;olve the above ture (T/T.>5) seems to be going to zero, while on the large
equation iteratively. In Fig. 11, we show this HTL resumma- |sitice it remains finité.

tion together with the LOP result. The HTL result gives a Although it is very difficult to measure the long distance

better description than the naive perturbation, upon compag on propagators, we can add the higher temperature results

ing with our numerical experiment. _ (T/T,=8.99,16.12) summarized in Table V. In Fig. 13 we
The electric mass was obtained also using a he®yy again fit the data including these new points. The fit for the

potential from theSU(3) Polyakov loop correlator at finite |arge lattice data by Eq23) hence results in

temperature in Ref417,18. Our results here are inconsis-

tent with theirs, since the mass extraction from the hegoyy Ce=1694), x?*/NDF=0.66,

potential cannot be consistently performed due to ambiguity Cn=0.54916), x?/NDF=1.27. (28

of its fitting assumption. In addition, a 3D reduction argu-

ment [12] has shown thatm./gT goes down wherr in- These results are shown in Fig. 13. It should be noticed that

creases, but even dt~1000\s the electric mass is still Ce is the same value as given in E@6), while C;, ~10%

about 3n.o. This observation agrees qualitatively with our larger on the large lattice and is very close Mo,
analysis. =0.568)°T calculated by the self-consistent inclusion tech-
nique in Ref.[40].

3g m
140 e
27T me’O

2mg
m, 2

m2=m3, +0(g%) |, Meo=gT.

i

H. Higher T and finite-size effect

Although the main result in this paper is based on studies V. CONCLUSIONS

for the small lattice size Z0< 32x 6 as discussed in the pre-  We have measured the gluon propagators and obtained the
vious section, we additionally perform the simulation on theelectric and magnetic masses by lattice QCD simulations in
large lattice 32X 48x 6 to go to higher temperature regions the quenched approximation f&U(3) betweenT =T, and
and to check the finite-size effect of the screening massesT_. Features of the QGP in this temperature region will be
However, as the lattice size increases, the behavior of thextensively studied theoretically and experimentally in the
long distance gluon cannot be controlled because of a largeear future.
fluctuation. A typical result on the large lattice is shown in  Our screening mass studies are the first reliable measure-
Fig. 12. Even after 0.3—0:410° measurements, we could ment in SU(3) lattice calculations. We mainly investigate
not determine the electric gluon propagator at long distanceghe temperature dependence for the electric and magnetic
(z=16), while the magnetic gluon is properly correlafed.
Nevertheless, provided that we adopt only the data for the———
Note that the data fog=7.5 and 8.0 for the small lattice are
considered to be preliminary and indeed we do not use these data
“Magnetic propagator determination is also difficult n&ar for our main studies by the previous section.
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T/T =4.97, A1=0.05, 0=1.0 5
S L R S B S S B L L L
£ O o o 3 i
o < o ] 4 QO Magnetic (Large lattice)
P o 0-.;;;9__::;@ i O Electric (Large lattice)
1 < o - i @ Magnetic (Small lattice)
< & 3 B Electric (Small lattice)
] 3
0.15— —% m/’l" L
i ] 2
001 0 G (32°x48x6) 4 |
E 2 3
¢ G (327x48x6) .
h 1k
0.001 - L E
i 3 ol v L v VT T b b
o g 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
00001 ——v v Lo Ly Ly T/T
0 5 10 15 20 c

FIG. 12. Typical electric and magnetic propagators on the large FIG. 13. The temperature dependence including higher tempera-
lattice 32x 48x 6 (open, and the data for 2 32x 6 (band be-  ture points on the large lattice 3248x 6.
tween dotted lines with errpare reproduced by using the values in

Table 111 Bth calculations give very similar values for the electric +j5n calculation up to a fef.: They exclude the two-gluon
and magnetic parts. exchange as the dominant screening mechanism, and suggest
that some kind of one-gluon exchange may describe the po-
masses which do not vanish on?2032x 6 lattices. In all  tential effectively as a result of the complex interaction, and
temperature regions we find that the electric magss al-  that at about (1.5-3). a mixture of one- and two-gluon
ways larger than the magnetic omg,, except near the criti- exchange may explain the behavior. Therefore, due to the
cal temperature point. As the temperature goes down towarambiguity of the fitting assumptions, it is not clear whether
T, me/T drops down quickly, whilen,,,/T is still going up. we can compare our screening masses directly with those
Consequently, using data aboV&T .~ 1.5 we conclude that obtained by the potential calculation.
the scalingam,~gT andm,,~g>T work well. Furthermore, In order to investigate the nature of the QGP, especially
a HTL resummation calculation has recently been developethe excitation modes in the plasma, Datta and Gupta recently
and compared with nonperturbative lattice simulations. Wecalculated glueball masses at finite temperature and made an
have also compared our numerical results with LOP andnteresting observation. They measured the screening masses
HTL resummation and find a good improvement of the HTLof A] ¥ (scalay and A, ~ (gluebal), which allow two- and
electric mass. These comparison studieSf3) screening three-gluon exchange, and their ratidl.7 is near 3/2. The
masses qualitatively seem to agree with the casg d(f2) A, " mass is twice that obtained by Kaczmarkal., and
[14]. shows similar temperature dependence. There are now sev-
The electric masses obtained here are not consistent widral nonperturbative methods to study the QGP: our direct
those obtained by heawyq potential calculations from an measurement of the gluon propagators, glueball screening
SU(3) Polyakov loop correlator at finite temperature in masses, and Polyakov line correlators. These analyses
Refs.[17,18. In Ref.[18], the authors did extensive analyses Strongly suggest that the QGP abdvgis far from a free gas
with three different temporal extents and two different gaugeand has a nontrivial structure. Much more detailed analyses
actions, obtaining a very reliable potential as a function ofin future are highly desirable.
the temperature. They observe that the potential aligve The screening mass on the lattice is extracted from the

cannot be described properly by the leading order perturbegauge dependent propagator, and the magnetic mass is not
well defined in perturbation theory. We have nonperturba-

tively confirmed the gauge invariance of both screening
masses. In Ref20] it was reported that th8 U(2) magnetic
propagator exhibits a complicated gauge dependent structure

TABLE IV. Data extracted from the small and large lattices in
the same coupling region3=7.5 andB=8.0.

B AT mya(p#0) mea(p+ 0)

TABLE V. Simulation parameters and screening masses for the

Small lattice size 20<32x 6 large lattice 32x48x 6. Lattice scales are estimated from Refs.

7.5 0.05 0.30015) 0.45509) (34,39,
8.0 0.04 0.31(09 0.45714
09 [ B al(Gevy T Mev) TIT, My /T me/T
Large lattice si 48x
arge lattice size 348X 6 7.0 7.64 1274 497 1.1289 2.556156
7.5 0.05 0.23(03) 0.43308) 75 13.8 2303 899 1.0184) 2.178144)
8.0 0.04 0.21604) 0.40614) 8.0 247 4127 1612 0.9880) 2.256120
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at low momentum. Therefore, since the gauge dependena long distances. Nevertheless, the screening masses were
for the screening masses is investigated within Lorentz-typestimated, and we find that the magnetic mass is sensitive to
gauge fixing based on stochastic gauge quantization in thige lattice size effect. Thus on a too small lattice we cannot
study, we plan to extend our analysis to a simulation withdeal with the magnetic mass consistently. Moreover, the
Coulomb-type gauge fixing. simulations even at higher temperatur€sT.~9 and 16
We have seen a qualitative difference of the gluon dynamshow that nonperturbative results are far from LOP. This
ics between the confinement and deconfinement phases lapservation is compatible with that of Ref42,14].
direct propagator measurement. The electric and magnetic For quantization with gauge fixing, stochastic gauge fix-
gluons in the confinement phase indicate a very massive paing was adopted. We think the stochastic gauge fixing has
ticle behavior, while after the phase transition, they have detter features to reduce some of the difficulties of nonper-
finite mass. In addition, in the deconfinement phase, théurbative gauge fixing. It is consequently possible to do a
magnetic gluon at short distances seems to be still in theractical simulation of gluon screenings effectively. How-
confinement phase. This may be related to the difficulty ofever, we also see that the gluon propagators have large fluc-
the perturbative argument for spatial gluon components antlations and unexpected behavior at long distances and may
the fact that a magnetic Wilson loop gives a nonzero spatiaheed further calculations.
string tension even at high temperatufé2,43. The color screening data we obtained here are useful in-
The magnetic mass has been the subject of many discuermation for QGP phenomenology, for instance, jet quench-

sions. Perturbatively, it is difficult to handle. To our knowl- |ng or the heavy-quark potentiaL We p|an to Study dEaS
edge, there is no complete perturbative cal_culatlon Whl_ch iSvell as theqq potential relating a baryon bound state, a non-
free from any assumption or model. The naive expectation igerturbative QCD vertex calculation, quark propagators, etc.,

that it VaniShes, but it is necessary to have a finite value as @s”f]g stochastic gauge fixing, which will he|p us to under-
cutoff factor in the infrared regime. On the other hand, thestand the QGP.

finite spatial string tension even at- T, indicates “confine-
ment” in the magnetic sector. _ ACKNOWLEDGMENTS
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