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We calculate the eigenvalue distribution of the Faddeev-Popov operator in Coulomb gauge QCD using
quenched SU(3) lattice simulation. In the confinement phase, the density of the low-lying eigenvalues
increases with lattice volume, and the confinement criterion is satisfied. Moreover, even in the deconfine-
ment phase, the behavior of the FP eigenvalue density is qualitatively the same as in the confinement
phase. This is consistent with the fact that the color-Coulomb potential is not screened in the deconfined
phase.
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I. INTRODUCTION

One of the most challenging issues in elementary parti-
cle and nuclear physics is to understand the confinement of
the quarks and gluons in quantum chromodynamics
(QCD). To understand the mechanism of confinement,
there are several approaches in which topological objects
are responsible for color confinement. Color monopoles in
maximal Abelian gauge and center vortices in maximal
center gauge are well-known examples [1,2]. To clarify the
mechanism of confinement, it is important to choose a
proper gauge to extract the relevant degrees of freedom
for color confinement.

The confinement mechanism in Coulomb gauge QCD
has received a lot of attention recently. Coulomb gauge is a
physical gauge in the sense that there are no unphysical
degrees of freedom. Accordingly, Coulomb gauge is con-
venient for a variational approach and many attempts have
been made to examine color confinement and hadron spec-
troscopy [3–8]. It is firstly discussed by Gribov in ’70s that
the instantaneous interaction provides the long-range in-
teraction [9], and this is further elaborated by Zwanziger
recently [10]. In Coulomb gauge, the time-time component
of the gluon propagator can be decomposed into the in-
stantaneous part and the noninstantaneous (polarization)
part [11],

 D00� ~x; t� � I� ~x���t� � P� ~x; t�: (1)

It has been found that D00 is a renormalization-group
invariant and, as a result, both I and P are separately
renormalization-group invariants [10–12]. Renormal-
izability of Coulomb gauge QCD was also studied within
the Hamiltonian formalism [10,12] and the Lagrangian
formalism [13]. Furthermore, Zwanziger showed that the
color-Coulomb potential which is the instantaneous inter-
action energy between heavy quarks is stronger than a
physical potential:

 VCoul�R� � V�R�: (2)

This inequality tells us that the necessary condition for the
physical potential being a confining potential is that the

color-Coulomb potential is also a confining potential, i.e.,
‘‘no confinement without color-Coulomb confinement’’
[14].

In SU(2) lattice calculations, it was reported that the
instantaneous part of the gluon propagator, I� ~k�, is strongly
enhanced at ~k � 0 [15,16]. Furthermore, the recent
Monte Carlo simulations in the SU(2) and SU(3) lattice
gauge theories showed that the color-Coulomb potential
rises linearly with distance, and its string tension has 2� 3
times larger value than that of the Wilson potential, which
is an expected result from the Zwanziger’s inequality
[17,18]. In addition, it was shown that an asymptotic scal-
ing violation for the color-Coulomb string tension is
weaker than that of the Wilson string tension [19,20].

In the deconfinement phase, the static potential of a
quark-antiquark pair is screened due to the screening effect
[21–24]. In contrast, it has been shown by numerical
simulations that the color-Coulomb potential is a confining
potential even in the deconfinement phase, that is, the
color-Coulomb potential is not screened above the critical
temperature of the confinement/deconfinement phase tran-
sition [17,18]. Thus the color-Coulomb string tension does
not serve as an order parameter for the confinement/
deconfinement phase transition. This observation implies
that the confinement is attributed to the instantaneous
interaction in Coulomb gauge, whereas the confinement/
deconfinement phase transition will be caused by the non-
instantaneous interaction.

In Gribov-Zwanziger confinement scenario, the singular
behavior of the color-Coulomb potential in the infrared
region is governed by the near-zero modes of the Faddeev-
Popov (FP) operator. As Gribov pointed out, Coulomb
gauge does not fix a gauge completely and the gauge
configurations are restricted to the Gribov region where
the FP operator is positive. On the boundary of the Gribov
region, so-called the Gribov horizon, the lowest eigenvalue
of the FP operator vanishes. Because of entropy consider-
ations, a probability distribution gets concentrated near the
Gribov horizon [25]. The ghost propagator which is the
expectation value of the inverse of the FP operator becomes
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singular in the infrared limit. The color-Coulomb potential
in the color-singlet channel is given by

 

VCoul� ~x� ~y� � g2 Tr	TaTb


�

�Z
d3zGac� ~x; ~z;Atr���r2

~z�G
cb� ~z; ~y;Atr�

�
;

(3)

where G is the Green’s function of the FP operator and h�i
denotes an Euclidean expectation value. Ta (a � 1; . . . ; 8)
are the generators of su�3� Lie algebra. The singular
behavior of the ghost propagator in the infrared region
leads to the long-range interaction of the color-Coulomb
potential which is responsible for the color confinement.

Recently Greensite, Olejnı́k and Zwanziger studied the
spectrum of the FP operator in Coulomb gauge using
SU(2) lattice gauge simulation. The authors discussed the
self-energy of an isolated quark and derived the necessary
condition for the color confinement [26]. It was shown that
the FP eigenvalue density of the lowest modes becomes
denser as the lattice volume increases and the necessary
condition is satisfied in the infinite volume limit.

In this paper, we investigate the distribution of the FP
eigenvalues in SU(3) lattice gauge simulations, and check
whether the necessary condition for color confinement is
satisfied or not. In Sec. II we discuss the necessary condi-
tion for the confinement in Coulomb gauge and introduce
the definition of the FP operator on a lattice. Section III is
devoted to show results of our numerical simulations. We
discuss the confinement criterion also in the deconfinement
phase. In Sec. IV, we give conclusions.

II. COLOR-COULOMB SELF-ENERGY

The Coulomb gauge Hamiltonian can be expressed as
the sum of the gluonic part and the instantaneous part [11]:

 

H �
1

2

Z
d3x��Ea;tri � ~x; t��

2 � Bai � ~x; t�
2�

�
1

2

Z
d3y

Z
d3z�a� ~y; t�V ab� ~y; ~z;Atr��b� ~z; t�: (4)

Here Ea;tri are the transverse components of the color
electric field, Bai the color magnetic field, �a� ~x; t� the color
charge density. The kernel of the instantaneous interaction
is given by

 V ab� ~y; ~z;Atr� �
Z
d3xGac� ~y; ~x;Atr���r2

~x�G
cb� ~x; ~z;Atr�;

(5)

where Aa;tri are the transverse components of the gluon
field. G is the Green’s function of the FP operator Mab �
�@iDab

i � ��
ab@2 � gfabcAc;tri @i whose expectation

value hGab� ~x; ~y;Atr�i � G� ~x� ~y��ab is the ghost propaga-
tor. The instantaneous interaction energy due to color
charges originates from the longitudinal color electric
field. In this study, we focus on the relation between the
instantaneous interaction and the spectrum of the FP op-
erator, and we do not discuss the noninstantaneous inter-
action which may be relevant to the confinement/
deconfinement phase transition.

The color-Coulomb self-energy for an isolated color
charge, whose energy diverges in the infrared limit in a
confining theory, is [26]

 Ec � Tr	TaTb
g2hV ab� ~x; ~x;Atr�i: (6)

The color-Coulomb self-energy is ultraviolet divergent in
the continuum limit both in an Abelian and a nonAbelian
gauge theories, and can be regularized by introducing the
cutoff. The interesting point is that the infrared divergence
may exist in a confining theory in the infinite volume.

On a lattice, the FP operator is an 8V3 � 8V3 sparse
matrix (V3 is the lattice 3-volume) and expressed in terms
of SU(3) spatial link variables Ui as

 Mab
xy �

X
i

Re Tr	fTa; Tbg�Ui�x� �Ui�x� î���x;y

� 2TbTaUi�x��y;x�î � 2TaTbUi�x� î��y;x�î
:

(7)

The Green’s function of the FP operator can be expanded in
terms of the eigenvectors �a

n� ~x� and the eigenvalues �n of
the FP operator;

 G ab� ~x; ~y;Atr� �
X
n

�an � ~x��b
n� ~y�

�n
: (8)

From Eqs. (5), (6), and (8), we obtain

 Ec �
g2CD
8V3

�X
n

Fn
�2
n

�
: (9)

Here CD�>0� is the Casimir invariant for the representa-
tion D and Fn the expectation values of the negative
Laplacian in the FP eigenmodes,

 Fn �
Z
d3x�an � ~x���r

2��a
n� ~x�: (10)

We define the normalized density of the FP eigenvalues

 ���� �
N��; �� ���

8V3��
; (11)

where N��; �� ��� is the number of eigenvalues in the
range 	�; ����
. The total number of the eigenvalues is
8V3 on a lattice and the FP eigenvalue density is normal-
ized to 1. Then we have
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 Ec � g2CD
Z �max

0
d�
h����F���i

�2 ; (12)

where the upper limit of the integration �max corresponds
to the UV lattice cutoff. In the Gribov-Zwanziger scenario
the gauge configurations are restricted to the Gribov re-
gion, and therefore the lower limit of the integration is
zero. If the condition

 lim
�!0

h����F���i
�

> 0 (13)

is satisfied in the infinite volume limit, the color-Coulomb
self-energy diverges in the infrared region. This is the
necessary condition for the color confinement [26]. In
this paper, we investigate whether the necessary condition
for color confinement is satisfied in the quenched SU(3)
lattice gauge simulation.

The FP eigenvalue density of the near-zero modes is
closely related to the infrared behavior of the color-
Coulomb potential. From Eqs. (3) and (6), the color-
Coulomb self-energy can be expressed as

 Ec � VCoul� ~x� ~x� �
Z d3p

�2��3
~VCoul� ~p�

�
Z �

0

dj ~pj
4�
j ~pj2 ~VCoul�j ~pj�: (14)

Here we introduce the ultraviolet cutoff �. If the condition
(13) is satisfied, the color-Coulomb self-energy diverges in
the infrared region. Accordingly, the right-hand side of
Eq. (14) diverges in the infrared limit. It means that the
color-Coulomb potential is more singular in the infrared
region than the Coulomb potential ~V� ~p� � 1=j ~pj2. Since
the color-Coulomb potential provides an upper bound for
the physical potential, the condition (13) is the necessary
condition for the physical potential being a confining
potential.

In the Abelian gauge theory (or at the zero-th order in the
coupling), the FP operator is the negative Laplacian. Thus
the FP eigenfunctions are the plane waves and � � ~k2. By
counting the number of states in momentum space, it is
easy to show that

 ���� �

����
�
p

4�2 ; F��� � �; (15)

in the infinite volume limit. Obviously the necessary con-
dition (13) is not satisfied in this case.

III. NUMERICAL SIMULATIONS

We calculate the FP eigenvalue density by the SU(3)
lattice gauge simulations in quenched approximation. The
lattice configurations are generated by the heat-bath
Monte Carlo technique with the Wilson plaquette action
(at � � 5:60� 6:11) and the Iwasaki improved action (at

� � 2:605), and we used 100 (60) thermalized configura-
tions on 84 � 204 �244� at zero temperature and 123 � 6�
243 � 6 at finite temperature. In these simulations we
adopt the iterative method to fix a gauge [27]. In the
iterative gauge fixing procedure, we minimize the func-
tional

 FU	g
 �
X
x;i

Re Tr
�

1�
1

3
gy�x�Ui�x�g�x� î�

�
(16)

with respect to the gauge transformation g�x� and find the
local minimum of FU	g
. The Hessian matrix associated
with FU	g
 is the lattice FP operator in Eq. (7) and the local
minima of the corresponding F’s define the Gribov region
[28]. Since the Hessian matrix is positive at a local mini-
mum, the adopted method limits the lattice configurations
to the Gribov region and the FP operator has no negative
eigenvalues. We used the LAPACK package to extract the
whole eigenvalues of the FP operator on the 84 lattice,
while for larger lattice volumes, we used the ARPACK
package to evaluate the lowest 1000 eigenvalues and cor-
responding eigenvectors of the FP operator because we are
interested in the behavior of the low-lying FP eigenmodes.
Since there are eight trivial zero modes corresponding to
the spatially constant eigenvectors, we obtain the FP ei-
genvalue density from the remaining 992 eigenvalues.

A. Full spectrum of the FP operator

The full spectrum of the FP operator on the 84 lattice at
� � 6:00 is displayed in Fig. 1 in lattice units, and the case
of the free field, Ui � I, is also shown for comparison. We
show also a smooth eigenvalue distribution for the free
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FIG. 1. The FP eigenvalue density at � � 6:00 on the 84

lattice is shown by open diamond symbols with error bars as a
function of �. The vertical bars represent the FP eigenvalue
density in the free field on the 84 lattice and its scaling is
displayed in the right-hand side of the figure. The dashed line
is obtained by folding the vertical bars with normalized Gauss
functions of a fixed width to smooth out the eigenvalue distri-
bution for comparison with the interacting case.
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field case by folding the vertical bars with normalized
Gauss functions of a fixed width to smooth out the eigen-
value distribution for comparison with the interacting case
(dashed curve). We see that the whole eigenvalues of the
FP operator shifts to lower values; namely, the number of
the lowest eigenmodes is enhanced if the interaction turns
on.

Furthermore, from this figure, we can see some bump
structures, which correspond to the peaks in the case of the
free field. The FP operator for the free field is the negative
Laplacian and the FP eigenvalues are, on a L4 lattice,

 � � 4
X3

i�1

sin2 ni�
L
; ni � 0; 1; . . . ; L� 1: (17)

Thus, the FP eigenvalues degenerate and the eigenvalue
density of the FP operator is the sum of the delta functions.
The degeneracy of the FP eigenvalues is lost and the peaks
are broadened if the interaction turns on. Eventually, the
neighboring peaks overlap and the FP eigenvalues are
distributed like those in the figure. Therefore, the appear-
ance of the bumps is due to the finite volume effect.

The FP eigenvalue density in physical units is shown in
Fig. 2. The three curves deviate from each other signifi-
cantly above �� 1	GeV2
. It means that the ���� depends
on the lattice cutoff seriously above �� 1 	GeV2
.
However, we are interested in the behavior of the FP
eigenvalue density near � � 0 and we will not discuss
the cutoff dependence of the results anymore in this study.

B. FP eigenvalue density with the improved action

In Fig. 3 we plot the FP eigenvalue density on the 204

lattice with the Iwasaki action [29]. It is clear from this
figure that the behavior of ���� at small � with the Iwasaki

action is similar to that of the Wilson action and there is no
serious dependence of the FP eigenvalue density on the
form of the lattice action.

C. h����F���i=� in the confined phase

Figures 4 and 5 show ���� and F��� at � � 6:0 on
124 � 244 lattice volumes. We see that ���� bends sharply
as the lattice volume increases. On the other hand, ���� is
almost saturated above �� 0:15. F��� becomes flat at
smaller value of � as the lattice volume increases. From
these figures, it seems that as �! 0 the FP eigenvalue
density ���� and the average Laplacian F��� approach
positive constants in the infinite volume limit; namely,
the confinement criterion is satisfied in SU(3) Yang-Mills
theory.
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FIG. 2. The FP eigenvalue density at � � 5:60� 6:00 on the
84 lattice in physical units. The lattice couplings � � 5:60, 5.80,
6.00 correspond to the lattice spacings a� 0:250, 0.150,
0.104 fm, respectively [30]. The FP eigenvalues span a wider
range as the lattice spacing decreases since �max � 1=a2.
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FIG. 3. FP eigenvalue density on the 204 lattice with the
Wilson action and the Iwasaki action. The lattice coupling � �
2:605 for Iwasaki action corresponds to the lattice spacing a�
0:107 fm, and � � 6:00 for the Wilson action yields a�
0:103 fm.
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FIG. 4. The FP eigenvalue density ���� in the confinement
phase on a variety of lattice sizes.
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To compare the behavior of ���� in the nonAbelian
theory with that in the Abelian theory, we plot ����=

����
�
p

in Fig. 6. In the Abelian theory it is constant because
���� �

����
�
p

(see Eq. (15)). In the nonAbelian theory, we
observe that ����=

����
�
p

is almost constant above ��
1	GeV2
. It means that the qualitatative behaivor of ����
in the nonAbelian theory is very similar to that of the
Abelian theory at large �. In contrast, at small �,
����=

����
�
p

is not constant and it seems to diverge as �!
0 in the infinite volume limit. The FP eigenvalue density in
the nonAbelian theory shows a completely different be-
havior at small � compared to that of the Abelian theory
and we see the enhancement of the near-zero modes of the
FP operator. In the Gribov-Zwanziger scenario, these near-
zero modes cause the color-Coulomb potential to be more
singular in the infrared region than the simple pole.

In the work given by Greensite et al., similar behaviors
of ���� and F��� were observed in the SU(2) lattice gauge
simulation. However, they did not exclude the possibility
that ���� and F��� vanish as �! 0 and they gave the
estimates

 ���� � �0:25; F��� � �0:38 (18)

by a scaling analysis. Then they concluded that the neces-
sary condition for the confinement is indeed satisfied in
SU(2) Yang-Mills theory. We have fitted the data on 244

lattice with the functions,

 ���� � c1�p � c2

����
�
p
; F��� � c3�q � c4�; (19)

where we introduced the last terms c2

����
�
p

and c4� which
dominate the perturbative behavior at large �. The three-
parameter fitting gives the exponents

 p � 0:15�10�; q � 0:29�4�; (20)

with �2=ndf � 1:60 for ���� and �2=ndf � 0:763 for
F��� respectively.

In Fig. 7 we plot ����F���=� as a function of �. As �
approaches to 0, ����F���=� decreases for the free field
(see Eq. (15)) while increases for the interacting field. In
addition, the 244 lattice simulation shows that ����F���=�
at smaller � becomes flatter than the case of the 164 lattice
simulation. From this figure, we expect that ����F���=�
diverges or goes to positive constant, and it is unlikely that
����F���=� goes to zero as �! 0 in the infinite volume
limit. Therefore, we conclude that the color-Coulomb self-
energy of an isolated color charge is infrared divergent in
SU(3) gauge theory.

D. h����F���i=� in the deconfined phase

����, F��� and ����F���=� in the deconfinement phase
on 123 � 6� 243 � 6 lattice volumes are displayed in
Figs. 8–10. The simulations are carried out at � � 6:11
which corresponds to T=Tc � 1:5. Here Tc is the critical
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FIG. 7. ����F���=� vs � in the confinement phase.
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FIG. 5. The average Laplacian F��� in the confinement phase.
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temperature of the confinement/deconfinement phase tran-
sition. These figures show that there are no drastic changes
of these behaviors in the deconfinement phase. This is
consistent with the facts that the color-Coulomb potential
rises linearly with distance even in the deconfinement
phase and the color-Coulomb string tension does not serve
as an order parameter for the confinement/deconfinement
phase transition. We conclude that the necessary condition
for color confinement is satisfied even in the deconfine-
ment phase.

This result may not be a surprising result, since in
Coulomb gauge the FP operator is a purely spatial quantity
and does not depend on time explicitly. On the other hand,
the time extent of a lattice determines temperature.
Therefore, the FP operator is insensitive to temperature
and it is natural that the spectrum of the FP operator does
not show a critical behavior.

IV. CONCLUSIONS

We have calculated the eigenvalue distribution of the FP
operator in Coulomb gauge using quenched SU(3) lattice
gauge simulations. In the confinement phase, we observe
the accumulation of the near-zero eigenvalues of the FP
operator at large lattice volumes. Moreover, the lattice
simulations reveal that the average Laplacian approaches
positive constant as �! 0. We conclude that the confine-
ment criterion is satisfied in the SU(3) gauge theory. This
supports the Gribov-Zwanziger confinement scenario. The
results we obtained are qualitatively consistent with those
of the SU(2) lattice simulation carried out by Greensite
et al.

The near-zero modes of the FP operator survive above
the critical temperature, and the behaviors of the FP eigen-
value density and the average Laplacian in the deconfine-
ment phase are qualitatively the same as in the confinement
phase. Accordingly, the confinement criterion is satisfied
even in the deconfinement phase in SU(3) gauge theory. It
is not surprising that the spectrum of the FP operator is
insensitive to temperature, because the FP operator is a
spatial quantity. We note that the criterion is not a sufficient
condition but a necessary condition for the confinement;
namely, the color-Coulomb energy is not the ground state
energy but the excited state energy of color charges [14]. If
we take the noninstantaneous interaction into account
when discussing in the deconfinement phase, the energy
of an isolated color charge will be finite in the infrared limit
and the isolated color charge can exist.

As we have shown in this paper, the spectrum of the FP
operator does not change drastically above the critical
temperature. This would indicate that confining features
survive even in the deconfinement phase. Actually, it is
known that the spatial Wilson loop which is a gauge
invariant quantity shows the area law behavior above the
critical temperature. Therefore, we expect that further
studies in Coulomb gauge provide insight into the under-
standing of the strongly correlated quark-gluon plasma.

 

0 0.1 0.2 0.3 0.4
λ

0

0.01

0.02

0.03

ρ(
λ)

12
3
x6

16
3
x6

24
3
x6

T/T
c
~1.5 (β=6.11)

FIG. 8. The FP eigenvalue density ���� in the deconfinement
phase.
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FIG. 10. ����F���=� vs � in the deconfinement phase.
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The color-Coulomb potential can be obtained by calcu-
lating the FP eigenvalues and eigenvectors. It is valuable to
see whether the lowest eigenmodes of the FP operator
produce the linearly rising behavior of the color-
Coulomb potential for large quark separations. We address
this issue in our future investigation.
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