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LETTER

Unified Approach to Image Distortion: D-U and U-D Models

Toru TAMAKI†a), Member

SUMMARY We propose a unified view to deal with two formulations
of image distortion and a method for estimating the distortion parameters
for both of the formulations; So far the formulations have been devel-
oped separately. The proposed method is based on image registration and
consists of nonlinear optimization to estimate parameters including view
change and radial distortion. Experimental results demonstrate that our ap-
proach can deal with the two formulations simultaneously.
key words: radial distortion, distortion model, undistortion, image regis-
tration

1. Introduction

Calibrating the intrinsic camera parameters and correcting
image distortion are important processes for computer vi-
sion. Much research on computer vision formulate the prob-
lems without considering distortion because of simplicity,
but distortion is inevitable when we use an ordinary lens in-
stalled on an inexpensive camera; sometimes a point may
be displaced more than ten pixels around the corner of the
image. Pre-calibration of the intrinsic camera parameters
and correction of distorted image are thus required for such
research to produce better images.

For considering distortion, there is a practical problem.
Based on a single distortion model proposed in an early
study in photogrammetry [9], many studies on correcting
distortion have been done by image registration [3], [4] or
correspondences between corners [5], circles [6], curves [7]
or feature points [8]. In such studies, two different formu-
lations of the distortion model have been used by different
papers. Computational cost depends if a model of distortion
includes higher order terms, but the cost differs for different
applications even when the order of a model of distortion is
fixed.

In this paper, we show the relation between the two
formulations, and propose a method for estimating the dis-
tortion parameters for both the formulations. Those formu-
lations have been reported [6], [12], [17], but the parameters
for them have never estimated at the same time. The pro-
posed method is based on image registration, and estimates
the parameters of the transformations of view change and
radial distortion by a nonlinear optimization that minimizes
residuals between the distorted image and a calibration pat-
tern.
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In Sect. 2, we explain the distortion model and its for-
mulations. Then how to estimate the distortion parameters
and correct an image with both of the formulations are dis-
cussed in Sect. 3. Finally, we present experimental results in
Sect. 4.

2. One Distortion Model and Two Formulations

Usually the distortion of image is observed by the following
two steps. At first, a point in a three-dimensional space is
projected onto the image plane through a camera lens (see
Fig. 1). Let pu = (xu, yu)T be the projected, undistorted co-
ordinates on an image. Then pu is moved by the distortion
to the distorted point pd = (xd, yd)T (see Fig. 2).

The relationship between pu and pd in an image is of-
ten modeled by five intrinsic camera parameters [10], [11]
θd = (κ1, κ2, cx, cy, sx)T : the radial distortion parameters κ1
and κ2, the image center (cx, cy)T , and the horizontal scale
factor sx. Although we consider only the radial distortion,
the following discussion can be applied to other models in-
volving higher-order term or decentering distortion [9], [12].

The radial distortion at a point p = (x, y) is represented
by the following function with respect to the image center:

f (p, θd) =


x − cx

sx
(1 + κ1R(p)2 + κ2R(p)4) + cx

(y − cy)(1 + κ1R(p)2 + κ2R(p)4) + cy

 , (1)

R(p) =

√(
x − cx

sx

)2

+ (y − cy)2. (2)

Note that the inverse of f is not expressed in a closed-form.
Here, there are two ways to apply the function to im-

age coordinates. One is Distorted-to-Undistorted formula-
tion (D-U model) in which the undistorted coordinates is
expressed as a function of the distorted coordinates:

pu = f (pd, θd). (3)

The other is Undistorted-to-Distorted formulation (U-D
model), the distorted coordinates is expressed by the undis-
torted coordinates:

pd = f (pu, θd). (4)

Historically, the D-U model was proposed to correct
plate coordinates of a photographed point on a film [9] and
has been used for long time in photogrammetry and com-
puter vision [7], [8], [10], [11], [13]–[15]. Since the inverse
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Fig. 1 View change.

Fig. 2 Distortion.

of f is not an explicit function, it is inconvenient to make
a combined transformation with projection and distortion.
Therefore, sometimes the U-D model is used as an approxi-
mation of the D-U model [6].

However, some studies used the U-D model [4], [5],
[16] as the exact formulation, and also used D-U model as
an approximation of the U-D model [12], [17].

Usually computer vision applications require not the
distortion parameters but just a corrected, distortion-free im-
age. Therefore, any formulations or even the nonparametric
approach [18] are employed if they can correct distortion un-
der consideration.

Figure 3 illustrates an example where the barrel dis-
tortion is approximated by each of the formulations (here
|p| denotes the distance between p and the image center be-
cause the distortion is usually represented with respect to the
image center). In this case, the two formulations are close
to the actual distortion for small |pd|. Since we assume that
|pd | ≤ 300 ∼ 400 for ordinary digital images, the difference
between the formulations is not significant and both of them
can be used for correction.

Nevertheless, it is important to develop a method for
the two formulations and to choose an appropriate one. As
we will show in Sect. 3.5, different models are suitable for
correcting distortion and distorting images in terms of com-
putational cost, and a preferred model depends on a task.
The proposed method described in the next section provides
estimations for both the formulations in a single framework,

Fig. 3 Example of the distortion approximated by different
formulations.

while existing studies [6], [12], [17] estimate parameters for
one of the two formulations.

3. Correction Methods

In this section we describes details of the U-D and D-U
models, and explain how to estimate distortion parameters
and correct distortion for both the formulations.

The proposed method based on image registration es-
tablishes a correspondence between an ideal (distortion-
free) calibration pattern I1 and a distorted image I2 of a
printed pattern observed by a camera [1], [2]. The obser-
vation is modeled by successive two transformations; view
change and distortion. I2 is regarded as an image generated
from I1 by applying these transformations. The proposed
method estimates parameters of the transformations by min-
imizing the difference between I1 and I2, that is, the sum of
the squares of intensity residuals of the two images.

3.1 Modeling View Change

Given two images of a planar object from different view-
points, the relationship between them is described by
the planar perspective motion model with eight parame-
ters [19], [20]. As shown in Fig. 1, I1 and I2 can be con-
sidered as different views of the same plane.

The model warps a point p = (x, y)T on I1 to the corre-
sponding point pu = (xu, yu)T on I2 by

pu = u(p, θu) =
1

θu1 x + θu2y + 1

(
θu3 x + θu4y + θu5
θu6 x + θu7y + θu8

)
, (5)

where θu = (θu1, . . . , θ
u
8)T .

3.2 Distortion by U-D Formulation

At first, we consider the U-D formulation; the undistorted
point pu is further moved to pd by Eq. (4). The Jacobian
of pd is derived straightforward by using the chain rule of
vector differentiation [21]:
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∂pd

∂θ
=

(
∂pd

∂θd

∂pd

∂θu

)
=

(
∂ f

∂θd

∂ f
∂pu

∂u
∂θu

)
. (6)

where θ = (θ1, . . . , θ13)T = (θu, θd)T . In this case, The Ja-
cobian of the combined transformation with u and f is also
derived straightforward.

3.3 Distortion by D-U Formulation

Next, we consider the D-U formulation. Eq. (3) is rewritten
as follows:

pd = f−1(pu, θd) ≡ d(pu, θd). (7)

where d is the inverse function of f and is implemented
by an iterative procedure [10] because d is not expressed in
closed-form. Therefore, the Jacobian of d as well as that of
the combined transformation with u and d seems to be dif-
ficult to calculate, and most researchers have tried to avoid
the difficulty.

Here we introduce the implicit function theorem [22]
for systems [23]. This theorem can represent the Jacobian
of d as an explicit form through f . Let F be a function of
q = (pu, θd) and pd represented by

F(q, pd) = pu − f (pd, θd). (8)

If F(q, d(q)) = 0 is satisfied for ∀q, pd = d(q) is called
an implicit function determined by F(q, pd) = 0. In our
case, the condition is theoretically always satisfied because
we defined d as the inverse of f , and numerically Eq. (8) is
almost 0 (it can be less than 10−10).

According to the theorem, the Jacobian is given by the
following equations:

∂d
∂q
= − ∂F
∂pd

−1 ∂F
∂q
= − ∂F
∂pd

−1 (
∂F
∂pu

∂F

∂θd

)
, (9)

unless ∂F
∂pd is singular. On the other hand, the Jacobian is

also decomposed into two parts as follows:

∂d
∂q
=

(
∂d
∂pu

∂d

∂θd

)
. (10)

Therefore, the desired Jacobians of d are:

∂d

∂θd
= − ∂F
∂pd

−1 ∂F

∂θd
= − ∂ f
∂pd

−1 ∂ f

∂θd
, (11)

∂d
∂pu
= − ∂F
∂pd

−1 ∂F
∂pu
=
∂ f
∂pd

−1

. (12)

3.4 Minimization

Image registration seeks to minimize the residuals ri of in-
tensities of I1 and I2. The function to be totally minimized
is the sum of the squares of the residuals over the image I1:

min
θ

∑
i

ri
2 , pi ∈ I1, (13)

ri = I1(pi) − I2(pd
i ), (14)

pd
i = f (pu

i , θ
d) for U-D model, (15)

pd
i = d(pu

i , θ
d) for D-U model, (16)

pu
i = u(pi, θ

u). (17)

Estimating the parameters θ, the objective function is mini-
mized by Gauss-Newton method [21], an iterative optimiza-
tion method. At each iteration of the optimization, the de-
cent direction is calculated until the estimation converges.

To calculate the decent direction of the cost function,
Jacobian of r with respect to θ:

∂r
∂θ
=

(
∂r
∂θu

∂r

∂θd

)
, (18)

is required. We show the derivations for both the formula-
tions based on the discussions above.
For D-U model:

∂r
∂θu =

∂r
∂I2

∂I2

∂pd

∂pd

∂pu

∂pu

∂θu = −
∂I2

∂pd

∂d
∂pu

∂u
∂θu

= −∇I2(pd)
∂ f
∂pd

−1 ∂u
∂θu , (19)

∂r

∂θd
=
∂r
∂I2

∂I2

∂pd

∂pd

∂θd
= ∇I2(pd)

∂ f
∂pd

−1 ∂ f

∂θd
. (20)

For U-D model:
∂r
∂θu =

∂r
∂I2

∂I2

∂pd

∂pd

∂pu

∂pu

∂θu = −
∂I2

∂pd

∂ f
∂pu

∂u
∂θu

= −∇I2(pd)
∂ f
∂pu

∂u
∂θu , (21)

∂r

∂θd
=
∂r
∂I2

∂I2

∂pd

∂pd

∂θd
= −∇I2(pd)

∂ f

∂θd
. (22)

3.5 Correcting Distortion

After the distortion parameters θd are estimated, we can use
them for correction. For every point pu in the corrected im-
age I′2, the intensity is decided by that of the corresponding
point in the distorted image I2 as follows:

I′2(pu) = I2( f (pu, θd)) for U-D model, (23)

I′2(pu) = I2(d(pu, θd)) for D-U model. (24)

Actually, U-D is faster than D-U because Eq. (24) in-
volves the computation of the iterative procedure for d (see
Sect. 3.3). Note that the Jacobian also involves d, so com-
putational cost for D-U is larger than that for U-D.

Note that the distortion parameters can be used to make
an image distorted; e.g., CG is superimposed on a distorted
real image. In this case, the above equations are used in-
versely as follows;

I(pd) = I′(d(pd, θd)) for U-D model, (25)

I(pd) = I′( f (pd, θd)) for D-U model, (26)

where I is a distorted image of an undistorted image I′, and
in turn the U-D model involves the iterative procedure.
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(a)

(b)

Fig. 4 (a) Calibration pattern. (b) Captured image with distortion.
(640 × 480)

Table 1 Estimated parameters.

κ1 κ2 cx cy sx

U-D −4.96e − 07 7.49e − 13 298.7 241.2 0.762
D-U 5.07e − 07 −4.22e − 13 297.7 241.2 0.978

4. Experimental Results

We conducted experiments with the proposed method using
a real distorted image. We used a photograph (Fig. 4 (a)) as
the calibration pattern I1, then printed it with a laser printer
and captured a distorted image I2 (Fig. 4 (b)) of the printed
sheet by a digital camera.

Table 1 shows the estimated parameters of each of the
formulations. The image centers are almost identical, how-
ever, the horizontal scales differ greatly. The reason is that
sx is theoretically absorbed into θu for U-D formulation; the
view change stretches the image horizontally while sx(< 1)
makes the stretched image shrink. Therefore, it is difficult
to estimate sx accurately by U-D formulation.

Although the signs of the distortion parameters are in-
verted, in Fig. 5 we can see that κ1 and κ2 have the same ef-
fect on the distortion curves of the two formulations which
are quite similar to each other for |pd| < 400 (the distance
between a point in I2 and the center is less than about 400)
Note that we used sx = 1 for U-D because of the reason
above. The distorted images are corrected well (Fig. 6) by
both the formulations (sx = 1 for U-D). Therefore, both of
them are comparable with each other except the estimation
of sx and the computational cost (see Sect. 3.5).

Fig. 5 Distortion curves of the two formulations.

(a)

(b)

Fig. 6 Corrected images by (a) U-D model (sx = 1) and (b) D-U model.

5. Conclusions

We have proposed a unified approach to deal with two for-
mulations of image distortion and a method for estimating
the distortion parameters by using the two formulations. The
proposed method is based on image registration to calculate
Jacobians of U-D and D-U models by using implicit func-
tion theorem. Since the key of the proposed method is to
use differentiation of a function that is not expressed in an
explicit form, the discussion of the paper can be extended
to other optimization based calibration methods other than
image registration.
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