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Abstract: We give a characterization of decomposable polynomial valued 2-forms in terms of their
components. Such 2-forms must satisfy some cubic condition in addition to Pliicker's quadratic
relation. Several GL(n, K) X GL(n, K)-invariant varieties naturally appear during this character-
ization, and we state the mutual relation of these varieties and study their geometric properties
in detail.

Key words: polynomial valued 2-form, decomposability, Pliicker's relation, variety
Introduction

Let V be an z-dimensional vector space over the field K of real numbers or complex numbers
(n=>2) and V* be its dual space. As is well known, an element CE A2V* is decomposable i.e., it can be
expressed as C=a/\ B for some «a, B € V* if and only if C satisfies Pliicker's relation

Clv1, v2) Clws, v4)—Clv, v3)Clvg, v4)+Cli, vCW2; v3)=0

for any »:€V. (For example, see [9], [19]). The main purpose of this paper is to give a similar
characterization of decomposable “polynomial valued” 2-forms. This problem is closely related to
the existence of local isometric imbeddings of Riemannian manifolds into the Euclidean space
with codimension 1 (cf. [2], [7]).

To explain the results, we first fix the notations. We put V=K* (K=R or C) and let A be a
polynomial ring over K with m variables 1, * * *, xm: A=Klx1, ** *, #m], and A=2 >0 A (49=K) be the
homogeneous decomposition of A. An element a €V* & Al may be considered as an Al-valued 1-
form on V. Then, for B EV*, the exterior product a A g € A2V* Q Al is naturally defined as in the
scalar valued case, and we say that CEAZV* @ A1 is decomposable if it is expressed as e /A B for some
a2 €V* @ Al and B €V*. In this polynomial valued case, decomposable 2-forms also satisfy
Plicker's relation. But this relation is not sufficient to characterize decomposable 2-forms in
contrast to the scalar valued case. In fact the algebraic set of A2V* & Al defined by only Pliicker's
relation is not irreducible and it decomposes into two irreducible components, one of which just
coincides with the set of decomposable 2-forms. To obtain a complete characterization of
decomposable 2-forms, we must add one cubic condition on C. This additional condition is stated

20044108 1 BHEAT ; 200441158 1 A =3

33



54 Yoshio AGAOKA

as follows: “For any vi€V, the polynomials C@i, v2), Clw1, v3), Clwe, v3) are linearly dependent in
A?”. We here give one example: Consider the 2-form C=x101 A w2 + x201 /\ ws+x302 Aws, where
{0} is a basis of V*. Then, it is easy to see that C satisfies Pliicker's relation, but does not satisfy
the above cubic condition, and hence we know that this form C is not decomposable.

The other irreducible component of the algebraic set defined by Pliicker's relation consists of
Al-valued 2-forms that can be reduced to some 38-dimensional subspace of V. As in the case of
Pliicker's relation, the algebraic set defined by the above cubic condition also decomposes into two
irreducible components; one is the variety of decomposable forms, and the other is the variety
consisting of 2-forms that take value in two variables x1, x2 after some variable transformation.

In order to understand the variety of decomposable 2-forms, it is natural to treat these three
varieties simultaneously. All these varieties are characterized by two types of conditions on C,
and they are related to each other by possessing one common defining equation for each pair
(Theorem 1). In addition, the algebraic set defined by only one type of condition on C splits into
two irreducible components (Theorem 2). In considering this mutual relation, another three
varieties naturally appear as subsets of the above varieties. In this paper, we characterize these
six varieties completely by giving their defining equations, inclusion relations, dimension, and
clarify their geometric meaning by introducing a parametrization of each variety (Proposition 3
and Theorem 8).

The space A2V* @ Al may be considered as a sort of 3-tensor space, and the results of this
paper possess some resemblance to the case of the 3-tensor space C2 & C2 @ C2 studied in [38]. It is
desirable and also interesting to extend our results to more general 3-tensor spaces such as A3V¥,
¢ ® ¢ ® C, ete (cf. [5], [6]).

As stated above, the decomposability of polynomial valued 2-forms C is naturally related to
the problem of local isometric imbeddings of Riemannian manifolds thi-ough the notion of the
partial Gauss equation that was introduced in [2]. By definition, the partial Gauss equation is
expressed as

) C=a1/\ Bi+ - +ar/Bs,

where CE A2V* @ Al is a given 2-form and ai€V* & Al, BiEV*. Roughly speaking, if an #-
dimensional Riemannian manifold M* (#=dim V) is locally isometrically imbedded into R#*, then
certain 2-form C constructed from the curvature of M must be expressed in the above form (A).
(For the precise statement, see [2].) In particular, the results stated in this paper is related to the
case of hypersurfaces of R#*1 (the case #=1), and the conditions on the decomposability of C serve
as obstructions to the existence of local isometric imbeddings of M into R**1. For further
applications in geometry, we must obtain a similar characterization of 2-forms C in (A) for larger 7.

§1. Statement of the main results

In this section, after fixing some notations, we state the main results of this paper. The proof
of Theorem 1 and Theorem 2 stated below will be given in the subsequent sections.
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Let C be an element of A2V* ® AL, We define two linear maps dc and ec as follows:

dc: V—V* Q A, dcw)=v]C,
ec: N2V—A1  eclv1 A v2)=Cl1, v2),

where v]C implies the interior product. In terms of these maps, we define the following five
subsets of A2V* & Al:

T ={CeENV* Q AL|C = aAB for some a EV* Q AL, BEV*},
Sa={Ce A2V* ® Al|rank dc < 8},
Ta3={Ce NV* ® Al|rank ec < 2},
T4={Ce NV* @ Al|rank dc < 2},
Ss={Ce N2V* @ Al|rank ec < 1}

As we will see later, these five subsets are all irreducible varieties of A2V* & Al. We remark that
if rank dc < k, then C can be considered as an element of A2W* & At where W is a k-dimensional
subspace of V. In fact, since dim Ker dc = n—F, there exists a basis {e1, * - ent of V satisfying ex+11C
=...=¢,|C=0. Then, by using the dual basis { i}, the 2-form C is expressed as ZkiciCiwi A oj,
where Cij=Clei, ¢j). Similarly, it is easy to see that if rank ec < I, the number of variables m can be
reduced to ! after some variable transformation.

Next, we define several conditions on CEA2V* & Al in order to describe the defining equations
of Zi. We say that C satisfies condition (Cp) if it satisfies classical Pliicker's relation:

Clv1, v2)Cws, va) —Cl1, v3)Clvz, v4)+C1, v9CH2, v3) =0EA?2
for any vectors 2i€V. This condition is equivalent to CAC=0& AV* & A2. Next, if the polynomials
Clv1, v2), Clv1, v3), Clve, v3)
are linearly dependent in A! for any u;, we say that C satisfies condition (Cg). Using the
components of C, this condition is expressed as cubic polynomial relations of C. Finally, for
positive integer k, we say that C satisfies condition (Ck) if the polynomials
Clv1, v2), Clw1, v3), * -+, Cw1,ve+2)
are linearly dependent in A! for any vi. It is easy to see that this condition is equivalent to

rank @W]C)<k for any v €YV,

where “rank” means the usual rank of the (m, #)-matrix »]C €V* ® AL In this paper, we use this
condition only in the cases k=1 and 2. Note that condition (C1) is quadratic and (Ce) is cubic, and
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clearly, condition (C1) implies (C2) and (Co). By using these four conditions (Cp), (Cg), (Cv), (C2), we
can completely characterize the subset £; C A2V* (X Al in the following way.

Theorem 1. (1) CE £1if and only if C satisfies (Cp) and (Cq).
(2) C€ 22 if and only if C satisfies (Cp) and (Cg).
(8) CE Z3if and only if C satisfies (Cq) and (Co).
(4) Ce& Z4if and only if C satisfies (Cp) and (Cr).
(56) CE& Zs5if and only if C satisfies (Cy).
In addition, each subset Zi (1<i<5) is an irreducible algebraic variety of /\2V* & AL,

In particular, the decomposability of C € A2V* & Al is completely characterized by two types of
conditions (Cp) and (Cg). In the case m<2, we remark that C is decomposable if and only if it
satisfies condition (Cr) only, because condition (Cg) is automatically satisfied in this case.

By definition, an element C belongs to Z2 if and only if rank dc<38, and hence, 22 is defined
by quartic polynomials. But, the above theorem asserts that this condition can be reduced to
lower degree conditions (Cp) and (Co).

By Theorem 1, we have clearly £1N Zg= X1 N 3= X2N X3, and C belongs to this algebraic set
if and only if C satisfies three conditions (Cp), (Cg), (C2). In the following, we denote this algebraic
set by Ze.

Next, we characterize the algebraic set of A2V* & A! defined by one of (Cp), (Cg), (Co).

Theorem 2. (1) C satisfies condition (Cr) if and only if C € 21U Za.
(2) C satisfies condition (Cq) if and only if C € Z1U Za.
(8) C satisfies condition (C2) if and only if C € ZaU Za.

By definition, any element CEZXi1 can be parametrized by the pair (o, ) EV¥ @ A1XV* as C
=a/\ B. Other varieties Z2~ X¢ also have similar parametrization, by which we can understand
their geometric meaning.

Proposition 3. (1) CEZz if and only if C=f1B1/\ B2-+1f2B81/\ Ba+13B2/\ Bs for some i€AL and BiEV*.
(2) CE€Zsif and only if C=AQ1+12Q0 for some iEAL and Qi€ N2V*.

(8) CEZ4sif and only if C=fB1/\ B2 for some fEAL and BiSV*.

(4) CEZsif and only if C=fQ for some fEAL and Q € A2V*.

(5) CEZeif and only if C={1B1+/2B2)/\ B for some iEAL and B:iEV*.

Proof. For the statements (1) and (3), “if” parts are easy to see. The converse parts are already
proved after the definition of the varieties 1~ Zs, where we show C=X%;-1Cjwi A\ w; under the
condition rank dc < k. The statements (2) and (4) are almost trivial because the condition rank ec
< ! implies that the number of variables m can be reduced to I, as stated in the same place. For
the statement (5), we assume for some time that the definition of Z¢is 22N 23 (since we did not
prove Theorem 1 yet). Then, if CE Ze, C is expressed as fiB1/AB2+/281/ Bs+/3B2/\ B3 from the
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condition CEXg. Next, since the number of variables is reducible to two, we may put, by the
symmetry, f3=qf1+bf2 (a2, b€K). Then, after substituting this into the above expression, we have C
=(B1+bB2—aB3) A{f1B2+f2B3). The converse part is trivial from (1) and (2). g.e.d.

This parametrization may be considered as a canonical form of each variety Xi. This
proposition is useful in the proof of Theorems 1 and 2. We summarize the inclusion relations of Z;

in the following figure:
21
decomposable
(Cp), (Co)
24 e 22
rank dc<2 (Cp), (Co), (C2) rank dc< 3
(Cp), (C1) (Cp), (C2)
25 23
rank ec<1 rank ec<2
(o)) (Co), (C2)

(Note that condition (C1) implies (C2) and (Cg), as stated before.)

Finally we state one remark. The group GL(z, K) X GL(m, K) acts naturally on the space A2V*
® A1, and it is easy to see that the above varieties Z1~2Z¢ are invariant under this group action.
It is an interesting problem to classify all GL(z, K) X GL(n, K)-invariant subvarieties of AZV* &) A!
as in the case of the 3-tensor space C2 @ C2 & C2 (cf. [3]). Perhaps another new concept is
required to solve this problem in addition to (Cp), (Cq) and (Ck), and to know such fundamental
concept is one important step to understand the 3-tensor space /A2V* & AL

§2. Preliminary lemmas
In this section we prepare several lemmas to prove the results in §1. Each lemma plays a
crucial role in the proof of Theorems 1 and 2.

First, we prove the following lemma.

Lemma 4. Assume CE N2V* Q Al satisfies conditions (Cp), (Cq), and there exists v EV such that rank
WIC)2>2. Then, there exist a basis {e1, * *, en} and az~anEK satisfying

Cii=aiC1i—aiCyj,

for 154, 1<m, where Ci=Clei, ¢j) and a1= —1. In addition, such {ai} uniquely exists if we fix a basis {e:}.
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Proof We choose a basis {e1,* * *, es} such that e1=v, and let {w1,* - -, on} be the dual basis of {ei}.
Then we have

viC=C12w2+*** +Cirwa.

By rearranging the indices if necessary, we may assume that {C12, C13} is linearly independent
because rank @w]CO)>2. Since {Ci2, Cis, Ce3} is dependent from condition (Cq), Ce3 is uniquely
expressed as Ces=asCi2—a2Cis. Next, for 4<i<n, we substitute this equality into Pliicker's

relation
C12C3i—C13Cai+ C1iC23=0.
Then we have immediately
C12(Csi+asC1) = C13(Cei+a2Cu).

Since {Ciz, Cis} is independent, the above expression is equal to 4iC12C13 for some Gi€K. In
particular, we have

Coi=aiCi2—a2Cii.

(Note that this equality holds for 1<i<#x.) Uniqueness of a4~ax is clear from this expression. We
substitute this equality into

C12Cii— C1iCoi+ C1jCai=0.
Then we have the desired equality Ci=a;C1i—aiC1j because C1270. q.e.d.

Before proving the next lemma, we introduce a notation |f1f2 /3| (i€AY, which we often use

in the following arguments. We express fi€A! as %=1 fp xp, and put

fiv fa fa
lfifefaloer=| fu foo fag| EAS
fir for for

We define |f1/2f3] by
()

If1fefal =(frf2 /3] pa)1<p<g<r<m EASD- - - DAS3,

ie., |fifzfs] is the set of (3) polynomials |fif2f3]per (1<p<g<r<m) arranged in some fixed order.
Then, addition and scalar multiplication of |f1 f2 f3|' is naturally defined. For example, we have
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the equalities

[itfefafal = |f1fafal + | f2fs fal,
lafifefs|l =alfrifefsl.

Clearly, |fifefs! is skew symmetric with respect to {f1, f2, 3}, and |f1f2/3] =0 if and only if {f1, f2, fs}
is linearly dependent in AL

Using vectors i€V, we put Ci=C@i, v)). Then, in terms of the above notation, condition (Cg) is
expressed as

|Gy Cie Gie | =0.
By replacing the vector v by ve+2i, we have
|Cii Cix Cit|+1Cy Cit Gz | =0.
In the same way, condition (Ce) is expressed in the form
{Ci Cax Cit| =0.
In this equality, we replace vi by vi+v;. Then it follows that
|Cy Cix Cit + | Cii G Cat| =0.
In particular, if C satisfies both conditions (Cq) and (Ce), we have from the above two equalities
| Cij Cie G| =0
because | Cii Cx Ca| = — | Cy Ci Ciz | . In addition, by replacing v; by vi+ vp in this equality, we have
| Cij Cor Cit] + | Gy Cix Cit| =0.

Now, using this notation, we prove the following lemma.

Lemma 5. Assume C € N2V* Q Al satisfies condition (CP) or (C2). In addition, there exist v1, v2, v3€EV
such that {C12, C13, Ca3} (Cii=CW;, v7) is linearly independent in A*. Then C is expressed in the form C=f181
A Bz+12B1/A\ Bs+faBa/\ Bs for some fi€AL BiEV™,

Proof We fix a basis {e1, "+, en} of V such that e1=v1, e2=v2, e3=vs. Since {Ci2, Ci3, Ca3} is

linearly independent, we may assume C12= x1, C13=x2, C23=x3 after some variable transformation.

Now, we divide the proof into two cases.
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(@) The case where C satisfies condition (Cp). In this case, we have for 4<i<#,
C12C3i— C13C2i+ C1iCa3=x1Csi—x2C2i +x3C1i=0.
From this equality, we have easily
Cii=ai x1—bi x2,
Coi=ci x1—bi x3,

Cai=ci x2—ai X3

for some ai, bi, ci. Note that by putting a2=1, bs=c1= —1, a1=as=b1=bs=c2=¢3=0, the above
equalities hold for 1<{<#. Next, we substitute them into

C12Ci5— C1iCo+ C1iCai=0.
Then, we have
Ci=(ai cj—aj ci)x1+ Bj ci—bi ¢j)x2+(aj bi—ai bjxs.
Hence, by putting B1= Zaiwi, B2= Zbiwi, B3= Zciwi {oi} is the dual basis of {ei}), we have
C =x1B1/A\B3—x2B2/\ Ba—x3B1/\ Ba.

(i) The case where C satisfies condition (C2). In this case, as prepared above, we have |Ciz C13
Cii| =|Co1 Cas Coil =|Cs1 Cs2 C3i| =0, and hence, Cii€ {1, x2), Coi€ (x1, x3), C3i€ (x2, x3). In
addition, from (Cz), we have

| C12 C13 Cai| + | C12 Ce3 C1i| =0,
| Coa Ca1 C3i| + | Cas C31 C2i| =0,
| Cs1 Cs2 C1i| + | Cs1 C12 C3:| =0.
Using these conditions, we obtain easily
Cii=ai x1—bi x2,
Coi=ci x1—bi x3,
Csi=ci x2—ai x3.

Next, for 2<i<% and t€K, we have

(e1+te) | C=Ci2w2+ - - * + Crnon+H{Cirw1+ * * * + Cinwon)
={Ci101+(Ci2+1Cig)wa+* * * +(Cin+1Cin) 0n.

40



Decomposability of polynomial valued 2-forms 61

Since rank ((e1+1¢:) 1 C) <2 for any parameter ¢, we have in particular, dim (Ci2+{Ciz, C13+1Cis, Cyj
+1Ci) <2 for 254, j<n. If |t] is sufficiently small, first two elements are linearly independent,
and hence

Cij+HCiE (Cr2+1Ciz, C13+1Ciz) C {x1, %2, x3) .
Since CyE€ (x1, x2, #3), we have C4€ (x1, x2, x3), and we may put Ci=py x1+gij x2+7i x3. Next, we

take out the coefficient of x1, x2, 23 in the above three elements Ci2+Ci2, C13+1Cis, C1j+1Cy. Then,
since these vectors span the space of dimension<2, it follows that

1—tc; 0 thi
0 1—tci tai | =t(tci— {(ci rij+bi pi+ai gt —ri+aj bi—ai bi}=0
aji+itpi —bji+igi i

for any ¢. In particular, we have 75=a; bi—ai bj. Similarly, using the conditions rank ((ez+e)]C)<
2, rank ((e3+12:)1C)< 2, we obtain gi==bj ci—bi ¢j, pi=ai cj—aj ci. Hence, it follows that

Ci= (@i cj—aj cix1+ (bj ci—bi w2+ (@j bi—ai bj)xs.
Then, in the same way as in the case (i), we have the desired result. q.e.d.

We prepare one more lemma for later use.

Lemma 6. Assume that CE N2V* @ Al satisfies condition (Co) and there exists a vector vEV such that
rank (] C)>3. Then, there exist a basis {e1,* *, en} of V and az~an €K satisfying

Ci=aiCii—aiCy (a1=—1).

Proof We fix a basis {e1," "+, en} such that e1=v. Then, in the same way as in the proof of
Lemma 4, we may assume that {C1z,** -, Cy} is linearly independent and Ci1,5+1~C12 € {C12," * *,
C1). (Note that p=>4 because rank (»]C)>3.) From condition (Co), the set {Cu, Cyj, Ci} is linearly
dependent for 2<i#;<p, and hence, we may put

Ci=aiiC1i—ajiCyy
for some a;; €K. (Note that Ci= —Cji.) In addition, we have from condition (Cg)

| C1i Cy Ciz | + | C1i Cie Ci5| =0

for 2<3, 7, k<p @, j, k are all distinct). By substituting the above expression into this equality, we

have immediately
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(@ji—ar) | C1i C1j C1e| =0.

Since {C1i, C1j, Ci} is linearly independent, we have @ji=aki. Therefore, we may put ai=ai for 2 <
i <p. Hence, by putting a1=—1, we obtain C;j=ajC1i—aiCy; for 1<, 7<p.

Next, we express C1,p+1~Cin as

C1,p+1=bp+1, 2C12-+ * * + +bp+1,pC1p,

Cin=bnaC12+ - * + +bnpCip.
Then, for 2<i#i<p, p+1< A <n, we have from (Co)

0 =|Cu Cy Cial +|Ci Cua Gyl
= | Cui Cy Cia] + | C1i C1a aiCri—aiCyj
= |Cu Cy Cia +taiCirl.

In particular, we have Cia +aiCu € (Cu, Cy). Since p 24, there exists an index k @Q<LEL)), different
from i, j. Hence, by replacing j by k, we have in the same way, Cia +aiCi € {C1i, C1z), which implies
Ciz +aiCia € (C1i) . Therefore, we may express

Cia =airCii—aiCi

for 1<i<p, p+1< 2 <n. (We may include the case i=1 because a1= —1.) We will show that the
value @ia does not depend on 7. For this purpose, we put vi=ei, ve=eitej, va=ert+ten (254, 4, RSP,
i, j, k are all distinct, p+1< A <z and t€K is a parameter). Then, from (Cq), we have

0 = |C1, v2) Cloa, v3) Cloz, v3) |
= | C1i+Cy Cir+1tC1a Cir+iCir +Cie+1tCjal
= | C1i+Cyj C1e+1C1a arCri—ai Cre+arCri—aiCre+1(ain Cri—aiC1i +aja Cyi—aiCia) |
=t| C1+Cy Cre+iCus aiaCiit+aiaCyl
=¢|Cui+Cyj Cre+t(baz2Cia+ -+ - +bapCrp) @in—ain)Cy |.

Then, by taking out the coefficient of Ci, C1j, Cix, we have
1 1 0
t| tha by 1+tbar |[=Haia—ain )1 +ibar)=0

0 ar—aixr 0

for any f, which implies g¢ia =gja. In particular, we may put ai2 =aa, and therefore,
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Cir=aiCii—aiCi

for 1<i<p, p+1< 4 L.
Finally, we show the equality

Crp=auCir—arCu

forp+1< A, u <. In the same way as above, we put v1=e1, v2=ei+sex, v3=¢j+te, Qi #;<p, p+
1< 4 # u <z, and s, tEK are parameters), and apply condition (Cg). Then, we have

0 =|Cu+sCu Cy+itCiy Ci+iCin +sCaj+stCasnl
= | Cui+sCu. Cy+iCi aj Cli—aiCy+tau Cri—aiCiu)—s(arCy—aiCia) +stCayl
= | C1i+sCia Cy+iCuu tap Cii—sarCii+stCaul
= | C1i+sC1r Cyj+tC1u st(Caru —auCir +a1C1u) |
=st|Ciit+sCir Ciyj+itCip Cap—aunCir+arCul.

Now, assume that st#0 and |s|, |#| are sufficiently small. Then, since {Cii+sCu, Cy+iCus} is
linearly independent, we have

Cru—auCia +axCiu € (CritsCu, Cij+iCiu).
In particular, taking the limit s, {0, it follows that
Cru—auC1a +arC1: € (Cu, Cy).

Using an index k (2<k<p), which is different from 7 and 7, we repeat the same procedure. Then,
we have

Caru—auCutarCu € (Cx, Cyj) N (Cui, Cw) N {Cyj, C1x) =10},
which implies Cap=au.C11 —a1C1x, and we complete the proof of the lemma. g.e.d.
§3. Proof of Theorems

Using the lemmas prepared in §2, we give a proof of Theorems 1 and 2 in this section.

Proof of Theorem 1. (5) If CE Is, then C is expressed as f Q (fFEAL, Q € A2V*) by Proposition
3 (4), and hence, condition (C1) clearly holds. Conversely, assume C satisfies condition (C1). Then,
for any vector v €V, we have rank 1C)<1. If C=0, then the theorem holds trivially, and hence we
may assume that there exists » such that rank @JC)=1. We fix a basis {e1," * -, ex} such that e1=y,
and by the symmetry, we may put C12=x1, C1i< {x1). From the condition rank (e2]C)< 1, we have
dim{Cz1, Cas,* * *, Con) <1, in particular, Coi€ {x1). Next, for 2<i<#z, we have
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(e1+1ei) | C=tCirw1+ (C12+1Ci2) w2+ * * * +(C1n+tCin) 0m,

as in the proof of Lemma 5 (ii). Since rank ((e1+#2:)JC)<1, we have dim (Ciz+tCi, Cii+iCi) <1
for 2 <i, j<#x. If |¢| is sufficiently small, C12+tCiz2 is not zero, and hence

Cyj+1Ci € (Cr2+1Ci2) = (x1).

In particular, we have Cy€ (x1) because CyE (x1). Therefore, the coefficients of C are all contained
in the space (x1), and hence, rank ec<1, i.e., CE Zs.

(4) If CE Z4, Cis expressed as f81/\ Bz by Proposition 38 (8). Then, we have clearly CAC=0
and C satisfies condition (Cp). In addition, from Proposition 8 (4), we have clearly CE X5, which
implies that C satisfies (C), just we showed above. Next, assume that C satisfies (C?) and (Cv).
From condition (C1), we have CE 5, and we may express C as fQ f#0€AL Q € A2V*). Then, from
condition (Cp), we have CAC=2Q AQ =0, i.e., @ A Q =0, which is equivalent to classical Pliicker's
relation. Hence Q is decomposable, and C is expressed as f81/\ B2. Thus, by Proposition 38 (3), we
have CE Z4.

(1) Assume that CE Z1. Then C is expressed as o A B, and hence it satisfies Pliicker's relation
CAC=0. Next, for any vectors vi €V, we put C;i=Cwi, v), Bi= B ©:). Then from the condition 8 AC
=0, we have B1C2s— B2Cia+ B3Ci2=0, which implies that {Ci2, C13, Czs} is linearly dependent in
the case (B1, B2, B3)¥0.If B1= B2= B3=0, we have clearly C12=C13=C23=0, and we obtain the
same conclusion. Now, we prove the converse part. First, assume that there exists &€V such that
rank ]C)2=2. Then, by Lemma 4, Cjj is expressed as

Cii=ajC1i—aiCyj,

for some ai€K. Then, by putting ¢ = £ Cuwi and B = Zaiwi, we have C = a A B, which implies
that C is decomposable. Next, assume that rank @]C)<1 for any ». In this case, the 2-form C
satisfies two conditions (Cp) and (C1). Hence, by Theorem 1 (4), which we showed above, we have
CE Z4. In particular, from Proposition 3 (8), C is expressed as fB1/A B2, which implies that C is

decomposable.

(8) By Proposition 3 (2), “only if’ part is clear. We assume that C satisfies conditions (Cq)
and (C2). From (C2), we have rank @]C)< 2 for any vE€V. If rank @] C)<1 for any v, then C satisfies
condition (C1), and in particular, CE Zs5C 23 (cf. Proposition 3 (2), (4)). If there exists » such that
rank (v]JC)=2, then, as before, we can choose a basis {ei} such that e1=v, {C12, Ci3} is linearly
independent and C14~Ci1»€ (C12, C13). Since two conditions (C@) and (C2) hold, we have the
following two equalities, which we showed in §2, after the proof of Lemma 4.
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B) | Cij Cir Cit| =0,
©) | Cij Cor Cit| + | Coj Ci Cit| =0.

From (B), we have |Ci2 C13 Czt| =0, i.e., C2€ (C12, C13). From (C), we have |Ca1 G C13| + | Cp1
Caz: C13] =0. Since Cp1, C2E {(Ciz, C13), the second term is zero, and hence, we have Cs € (Ci2, C13),
which shows that the 2-form C is (Ci2, Ci3)-valued. In particular, the number of variables is
reducible to two, and hence we have CE X3,

(2) If CE 39, it is expressed as fi81A B2+f2B81/\ Bs+f3B2/\ B3 by Proposition 8 (1). And in
addition, without loss of generality, we may assume {B1, B2, Bs} is linearly independent, by
changing f; if necessary. We extend { 8i} to a basis of V* and denote its dual by {e:}. Then, for any
vector v= Zai ¢iSV, we have

vI1C =a1e1)C+aze2)CtazeslC
=g1(f1B2+/2B3) +az(—f1B1+f3B3) —as(f2B1+/382)
= — (a2 fi+as f2) B1+ (a1 fr—as f3) B2+ (a1 fa+az f3) Ba.

By using the equality
—ai(az fi+as fo) +az(e1 fi—as f3) +aslar fa+az f3)=0,

we can easily check that rank (w]C)<2, and hence, C satisfies condition (Ce). From the above
expression of C, Pliicker's relation CAC=0 is clearly satisfied.

Next, we assume that C satisfies conditions (Cp) and (C2). If there exist »: €V such that {C@1,
v2), Clv1, v3), Clve, v3)} is linearly independent, then by Lemma 5 and Proposition 3 (1), we have CE
To. If {Cl1, v2), Clw1, v3), Clwz, va)} is dependent for any v;, then C satisfies conditions (Cp), (Cq),
(C2). Hence, by Theorem 1 (1), (3), it is decomposable and the number of variables can be
reducible to two. Using these two facts, it is easy to see that C is in the form (f11+/f282) A B3, and
by Proposition 3 (1), we have CE Zs.

Finally, we show that Ziis an irreducible variety. By definition and Theorem 1 (1), each i is
an algebraic set of A2V* @ Al because it is defined by the vanishing of some polynomials of C. In
addition, by Proposition 3, it is just equal to the image of certain polynomial map from some
affine space, and hence it is irreducible. g.e.d.

Proof of Theorem 2. For three statements, “if” parts are all clear from Theorem 1. We prove
“only if” parts.

(1) Assuming that C satisfies (Cp) and C& Z1, we show CE Z2. By Theorem 1 (1) and the
condition C€ Z1, C does not satisfy condition (Cg), namely, there exist v1, v2, v3 such that {C(1, v2),
C(v1, v3), Clwz, v3)} is linearly independent. Then, by Lemma 5, C is expressed in the form fif1/\ B2
+72B81/\ Bs+f3B2/\ B3, and hence CE Zs.
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(2) We assume that C satisfies (Cg) and C& 3. Then, C does not satisfy (C2), as above. Hence,
there exists v such that rank @w]C)>3, and by Lemma 6, we have Cj=gajC1i—aiCij for some ai.
Using this expression, we have immediately CE X1 as we have done in the proof of Theorem 1 (D).

(3) Assume that the conditions (C2) and C& Z3 hold. Then, since C does not satisfy (Cq), we
have CE Z2 by Lemma 5, in the same way as (1). g.e.d.

§4. Dimension and the inverse formula

Scalar valued decomposable 2-forms CE /\2V* are expressed as B1/A B2. But two 1-forms 1, B2
EV* are not uniquely determined from C. In contrast, for Al-valued decomposable 2-forms C= a A
B, two 1-forms o EV* @ Al and B EV* are essentially uniquely determined if C is sufficiently
generic (precisely, if CE Z1\ Z4). In this section, using this result, we express « and B explicitly in
terms of the components of C. In addition, we determine the dimension of each variety Zi by
using the results obtained in previous sections.

Proposition 7. Assume CE E1\Zsand C=a N B = o' B' (e, 'EV* QAL B, B'EV*). Then
there exist k (#0)EK and fEAL such that o'= ka + f B, B'=1/k* B.

Proof. Since C satisfies conditions (CP) and C& Z4, it does not satisfy (C1), and hence, there
exists €V such that rank (] C) >2. Then, by Lemma 4, Cjj is expressed as

Ci=aiC1i—aiCyj,

by using some @ €K, which is uniquely determined. In addition, as stated in the proof of Lemma
4, we may assume that {Ci2, C13} is linearly independent by changing the indices if necessary. We put
ai= a ), Bi= B (@), o'i= o'(e) and B'i= B'(). If B1=0, then we have C12=a1B2 and Ci13=a18s3,
which implies that C12 and Cis are parallel. Hence, we have 17#0. In the same way, we have B1#
0. Then, from the condition 8 AC= 8 A a A B =0, we have

B1Cii— BiC1i+ BiC1i=0,
namely,

Bi Bj
Ci=—C1;——C1i.
i Bl iy Bl L

Since the coefficient Bi/B1 is uniquely determined from Lemma 4, we have Bi/f1=p8"/B"1, which
implies B'=pB"/B1* B . Next, from the equality C1i= a1Bi— aif1, we have
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1
ai=— (1Bi—Cu).
B1

Then, in terms of the dual basis {wi}, we have

o =X wio;

= —1--2 (a1Bi—Cu) wi
B1

1
= Bl(mB e1]C).

Using this equality, we obtain

1
[ — 1 | J— C
8'1(0”3 e1]C)

a'r B
—Bl BlB (cxlB Bix)

=fB +ka,

where /= a'1/ B1— a1/ B'1€A! and k= §1/ 1.
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g.e.d.

Remark. As is easy to see, we cannot drop the condition C¢¥ Z4 in this proposition. In particular,
it is necessary #>>3 and m>2 to hold the above condition, because rank ®1C)=2 for some vEV.

(Note that (w]C)®)=0.)

Now, we give the explicit inverse formula for generic C. Using a basis {e1," -

Clei, &)= % =1Cijp 1. Then, since {C1, Cyj, Cy} is dependent, we have
Cip Cip Cip
Cliq Cqu Cijq =0,
Cir Cyr Cyr

and this equality implies

Cip GCip
Cyq Cijg

_ Cip Cip
Ciig Cijq

Ciip Cijp

Cy+
Y Cig Ciig

1

Clzp Cl]p

1ig Cljg

Hence, if #0, we have

Ci=0.

*, en}, we put Cij=
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Cup Cip Cip Cip
1 Cii
Ci = Ciig_Cig Cujg Cijg
v Clip Cljp
Cliq Cqu
Then, combining with the expression
Bi Bi
Cg——‘;lCU'"—B-*Ch,
appeared in the proof of Proposition 7, we have
Cip Cip
Bi | Cig Gig
B1 | Cup Cupl|’
Cliq Cqu

because the coefficient of Cyj is uniquely determined from Lemma 4. From this expression, the 1-
form B is uniquely determined up to a non-zero constant, and this gives the inverse formula of B.
Note that the right hand side of this expression does not depend on the choice of indices , P, q
unless the denominator is zero. The inverse formula for o is already given in the proof of
Proposition 7:

o =i( a1f —e1lC).
B

From this expression we know that the 1-form « is essentially equal to e1)C up to a non-zero
constant. We remark that CE X1 belongs to Z4 if and only if the determinant

Cip Cinp

D
. Cijg Cirg

is zero for all vectors »; and indices p, g, where Ci=C({i, v)). The denominator of the inverse
formula of B is a special case of this determinant (D).
Finally, we determine the dimension of the varieties 21~ Zs.
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Theorem 8. The dimension of the variety X is given in the following table:

n=2 m=1 n>28 and m=>2
Z; m n—3 (r—D0m+1)
PP m 2n—3 3(n+m—3)
Ts m ® 2G) +2m—4
I m 2n—3 2n+m—4
s m ) ®+m—1
PP m 2n—3 3n+2m—7

In the case n=2, all varieties i are equal to the whole space N\2V* @ Al~AL, and in the case m=1, 3= s
= N2V* Q Al ~ N\2V* and Z1= Za= Z4= Zg coincides with the set of scalar valued decomposable elements
of N2V* @ A ~ A2V,

Proof If n=2, then any element CE A2V* & A! can be expressed as fB1/\Bz. Hence, by
Proposition 3, we have CE Z; for 1=1~6, which implies %i= A2V* @ AL Next, in the case m=1, it
is easy to see that any element of =1, Sz, 24, Z6 (resp. 3, Zs) is expressed in the form 181/ B2
(resp. 1Q). (Note that B1/A B2+ B1ABs+ B2 ABs=(B1+ B2) A(Ba+ B3), and it is decomposable.) In
particular, the variety £1= Zg= Z4= Zg coincides with the set of decomposable elements of AZV*
and Z3= Zs is equal to the whole space. The dimension of X1 is easily determined by calculating the
dimension of the isotropy subgroup of B1/A B2(#0) under the action of the general linear group
GL@, K), because GL(#, K) acts transitively on the set £1\{0}. We omit the explicit calculations.

Next, we consider the case# >3 and m=>2. If C= a A B € Z1\ Z4, then by Proposition 7, the
parametrization of C by o and B has the freedom which is expressed uniquely by the pair &, )€
KXA! Hence, we have dim Zi=dim V* Q Al+dim V*—1—dim Al= (z—1)m+1).

For the variety Z2, we first assume m2>3, and CE Z2\ Zg, i.e., C satisfies (Cp), (C2), but not (Co).
Then, using a suitable basis {ei}, the set {C12, C13, Czs} is linearly independent, and as stated in the
proof of Lemma 5, we have

Cii=aiC12—biCus,
Coi=c¢iC12—biCss,
Cai=ciC13—aiC23

for 4 <i<su. In addition, other Cj is also expressed in terms of {Ci2, C13, Cz3} and {a, bi, cila<i <n.
Since these parameters are uniquely determined by C, we have dim Zz=3m+3x—3)=3(@+m—3).
If m=2, any element CE I3 is contained in X1 because it satisfies conditions (Cp) and (Co). Note
that condition (Co) is automatically satisfied in the case m=2.) Conversely, since any element CE
31 is expressed as (fiB1-+/282) A Bs in the case m=2, we have £1C Zz by Proposition 3 (1). Hence,
we have Z1= 22, and in particular, dim Z2=dim Z1=3(—1), which is equal to 3(z+m—3).

For the variety Xs, we take an element CE Z3\ Zs. Then, from the condition C# X5, we may
assume that {C12, C13} is independent, and other Cj is uniquely expressed as a linear combination
of {C12, Cis} because the number of variables is reducible to two. Hence, we have dim Z3=2m-+
{®—2tx2=2@)+2m—4.

Next, any element of Z4 is expressed as fB1/\ Bz2. As showed above, the dimension of the
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variety of decomposable elements of A2V* is 2n—3, and the degree of freedom of f is m. Since the
scalar multiplication appears in common, we have dim Z4=@Qn—3)+m—1=2n+m—4.

For the variety Zs, any element of Zs is expressed in the form fQ, and by the same reason as
above, we have dim Ss=@+m—1.

Finally, for the variety Zs, we take an element CE Z¢\ Z4. Then, since it does not satisfy (C1),
we can apply Lemma 4. As stated in the proof of this lemma, {C12, Ci3} is linearly independent,
and in addition, we have C14~C1s € (C12, C13)from condition (Cz2). Hence, we may put C1i=biCi2-+
¢iC1s for 4<i<#. Since other Cj is expressed as

Ci=a;iC1i—aiCyj

for some @i (a1=—1), C is parametrized by {Ci2, C13, az,"**, @n, ba,* * * ,bn, c4," * *, cn}. It is easy to check
that these parameters are uniquely determined by C, and therefore, we have dim Ze=2m+®x—1)
+2n—38)=3n+2m—71. q.e.d.

We remark that the exceptional case #=2 or m=1 in this theorem corresponds to the case
where the action of the product group GL(, K) XGL(n, K) on N\2V* @ Al reduces to the single
‘group GL(m, K) or GL(n, K), i.e., the case where the 3-tensor space A2V* & Al is reduced to a 1- or
2-tensor space. And so we must treat separately to determine the dimension of the variety,
though two equalities dim Z4= 2z+m—4 and dim Z5=@-+m—1 always hold without the
assumption #2>3 and m 2> 2.
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Local isometric imbeddings of P?(H) and P2?(Cay)

Yoshio AGAOKA and Eiji KANEDA
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Abstract. We investigate local isometric imbeddings of the quaternion projective plane
P2(H) and the Cayley projective plane P2(Cay) into the Euclidean spaces. We prove
a non-existence theorem of local isometric imbeddings (see Theorem 2), by which we can
conclude that the isometric imbeddings given in Kobayashi [8] are the least dimensional
isometric imbeddings of P?(H) and P?(Cay).

Key words: Pseudo-nullity, isometric imbedding, projective plane.

1. Introduction

In this paper we investigate local isometric imbeddings of the quaternion
projective plane P?(H) and the Cayley projective plane P?(Cay) into the
Euclidean spaces.

In [5], we determined the pseudo-nullity p(G/K) for each compact rank
one symmetric space G/K. (For the definition of the pseudo-nullity, see
[5].) Utilizing p(G/K), we have obtained the following result concerning
the non-existence of isometric imbeddings of the complex projective spaces
P™(C)(n > 2), the quaternion projective spaces P"(H) (n > 2) and the
Cayley projective plane P?(Cay) (see Theorem 5.6 of [5]).

Theorem 1 Let G/K be one of the complez projective space P*(C) (n >
2), the quaternion projective space P"(H) (n > 2) and the Cayley pro-
jective plane P?(Cay). Define an integer ¢(G/K) by setting ¢(G/K) =
2dim G/K —p(G/K), i.e.,
min{dn — 2, 3n+1}, ¢ G/K = P"(C) (n> 2),
¢(G/K)= ¢ min{8n -3, ™m+1}, if G/K =P"(H) (n>2),
25, if G/K = P?(Cay).
Then, any open set of G/K cannot be isometrically imbedded into the Fu-
clidean space R with Q < ¢(G/K) —1.

2000 Mathematics Subject Classification : 17B20, 53B25, 53C35.
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400 Y. Agacka and E. Kaneda

As is well known, P*(C) (resp. P"(H), resp. P2(Cay)) can be glob-
ally isometrically imbedded into R +2n (resp. R2“2+3”, resp. R?0) (see
Kobayashi [8]). By these facts, it follows that if G/K = P?(H) or P?(Cay),
then G/K can be isometrically imbedded into R¥G/5)+1 Then a natural
question arises: Is there any isometric imbedding of G/K = P?(H) or
P?(Cay) into the Euclidean space R(G/K) 7

In this paper, we will solve this problem. The main result of this paper
is the following

Theorem 2 Let G/K be the quaternion projective plane P2(H) or the
Cayley projective plane P?(Cay). Then any open set of G/K cannot
be isometrically imbedded into the Buclidean space RIG/X). Accordingly,
RAG/E)I+L s the least dimensional Euclidean space into which G/K can be
locally isometrically imbedded.

2. The Gauss equation

In the following G/K implies the quaternion projective plane P?(H) =
Sp(3)/5p(2) xSp(1) or the Cayley projective plane P?(Cay) = Fy/Spin(9).

Let g (resp. t) be the Lie algebra of G (resp. K). Let g = £ +m be the
canonical decomposition of g associated with the Riemannian symmetric
pair (G, K). We denote by (, ) the inner product of g given by the (—1)-
multiple of the Killing form of g. As usual we identify m with the tangent
space T,(G/K) at the origin o = {K} € G/K. We assume that the G-
invariant Riemannian metric g of G/K satisfies g(X,Y) = (X, Y) (X, Y €
m). Then the curvature tensor R at o is given by

R(X,Y)Z=-[X,Y], Z], VX,Y,Zem. (2.1)

Suppose that there is a local isometric imbedding of G/K into the
Euclidean space R%, i.e., there is an open set U of G /K and an isometric
imbedding f of U into R%. Because of homogeneity, we may assume that
U contains the origin 0 € G/K. Let N be the normal space of f(U) at f(o)
and let (, ) be the inner product of N induced from the canonical inner
product of R?. Then NN is a vector space with dim NV = @ — dim G/K and
the second fundamental form ¥ of f at o, which is regarded as an N-valued
symmetric bilinear form on m, must satisfy the following Gauss equation:

~(R(X,Y)Z,W) =(®(X, Z), 0 (Y,W))

’ 2.2
~(W(X, W), ®(Y, 2)), VX,Y, Z, Wem. (22)
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On the contrary, we can prove

Theorem 3 Let G/K = P?(H) or P?(Cay). If dim N < ¢(G/K) -
dim G/K, then the Gauss equation (2.2) does not admit any solution, i.e.,
there is no N -valued symmetric bilinear form ¥ on m satisfying (2.2).

Theorem 3 implies that if G/K = P?(H) or P>(Cay), then there is no
local isometric imbedding of G/K into RYG/K) proving Theorem 2.

We now make a preparatory discussion for the proof of Theorem 3.
Take and fix a maximal abelian subspace a of m. Then we have dima = 1,
because rank(G/K) = 1. We consider the root space decompositions of £
and m with respect to a. Let A\ € a. We define subspaces () (C &) and
m(A\) (C m) by setting

¢\ ={Xect]| [H [H X]]=-(\ H’X, VHeca},
m(\)={Y em | [H, [H Y]] =-( H?, VHea}.
) is called a restricted root when m()\) # 0. We denote by X the set of
non-zero restricted roots. In the case where G/K = P?(H) or P?(Cay),

it is well known that there is a restricted root u satisfying X' = {£u, +2u}
and

£=£(0) + &(u) + &(2n) (orthogonal direct sum), (2.3)
m=m(0) + m(u) + m(2x) (orthogonal direct sum), (2.4)

where m(0) = a = Ry (see § 5 of [5]). In the following discussions we fix
this restricted root x4 and the decompositions (2.3) and (2.4).
For convenience, for each integer ¢ we set

8 = &(Jip), m; =m(jilp) (il <2) and & =m; =0 (|i| > 2).
Then we have
Proposition 4 (1) Leti, 7=0,1,2. Then
&, €] C By + g,
[my, my] C 45+ 8, (2.5)
[£, my] C My + Mg

(2) dim’Ei = dimmi (Z = 1, 2).
(3) The following table summarizes the basic data for P*(H) and P?(Cay).
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G/K dimG/K dimm; dimmy, ¢(G/K)
P2(H) 8 4 3 13
P?(Cay) 16 8 7 25

Proof. (1) and (2) are well known (see Helgason [7], p. 335). (3) is obtained
by Table 2 and Table 3 of [5]. O

3. Proof of Theorem 3

In this section we prove Theorem 3. Here we suppose that dim N =
¢(G/K) — dimG/K and that there is a solution W of the Gauss equation
(2.2).

Let Y €'m. We define a linear map ¥y of m to N by

Ty:m>Y — ¥(Y,Y) € N.

By Ker(¥y)(C m) we denote the kernel of the linear map ¥y. We now
show a key proposition, which plays an important role in the following
discussion.

Proposition 5 LetY e m (Y # 0) and let k € K satisfy Ad(k)u € RY .
Then

Ker(Ty) = Ad(k)ms. (3.1)
In particular, Ker(¥,) = my.

Before proceeding to the proof of Proposition 5, we recall the notion
of pseudo-abelian subspaces of m defined in [5]. Let V be a subspace of m.
Then, V is called pseudo-abelian if it satisfies [V, V] C % (or equivalently,
[[V, V], a] = 0). By (2.5) we can easily verify that my is pseudo-abelian.
On the contrary, we have

Lemma 6 Let G/K = P?(H) or P?(Cay). Then, any pseudo-abelian
subspace V' of m with dimV > 2 must be contained in ms.

Proof. Let V be a pseudo-abelian subspace of m satisfying V' ¢ my. Then
by Lemma 5.4 of [5], we obtain dim V' < 1+ n(u), where n(u) is the local
pseudo-nullity associated with y. (For the definition of the local pseudo-
nullity, see § 3 in [5].) Moreover, we have n(u) = 1 if G/K = P?(H) or
P2(Cay) (see Table 2 of [5]). Therefore, we get dimV < 2, proving the
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lemma. u
We now start the proof of Proposition 5.

Proof of Proposition 5. We first note that dimKer(¥y) > dimmgy > 2.

In fact, since dim NV = ¢(G/K) — dim G/K = dim G/K — dimmgy, we have

dim Ker(¥y) > dim G/K — dim N = dimmy > 2 (see Proposition 4 (3)).
In § 1 of [2], by considering the Gauss equation (2.2), we have proved

R(Ker(¥y), Ker(¥y))Y =0. (3.2)
Because of (2.1), the equality (3.2) means

[Ker(¥y), Ker(¥y)], Y] =0. (3.3)
Applying Ad(k™1) to the both sides of (3.3), we get

[[Ad(k~HKer(Ty), Ad(k~H)Ker(¥y)], u] = 0.

(Note that Ad(k~1)Y can be written as Ad(k~1)Y = cp for some ¢ € R (¢ #
0).) Since a = Ry, we know that Ad(k~1)Ker(¥y) is a pseudo-abelian
subspace of m with dim Ad(k~!)Ker(¥y) > dimmg > 2. Therefore, we
have Ad(k~!)Ker(Py) = mg (see Lemma 6). This proves (3.1). O

Utilizing Proposition 5, we will characterize solutions ¥ of the Gauss
equation (2.2). For this purpose we need more informations about the action
of the isotropy group Ad(K).

As is well known, any element of m is conjugate to an element of Ru(=
a) under the action of Ad(K). More strongly, under our assumption G/K =
P2(H) or P?(Cay), we have

Proposition 7 (1) Let Yy € a+ my satisfy Yo # 0. Then there is an
element kg € K satisfying Ad(ko)u € RYy and Ad(ko)(a + mg) = a + ms.
Consequently, Ad(ko)ms coincides with the orthogonal complement of RYy
i a4+ ma, e,

Ad(ko)mg = {¥g € a+mz | (Y5, Yo) = 0}. (3.4)

(2) Let Y1 € my satisfy Y1 # 0. Then there is an element k1 € K satis-
fying Ad(k1)p € RY1 and Ad(k1)(a + mp) = my. Consequently, Ad(ki)mo
coincides with the orthogonal complement of RY1 in my, i.e.,

Ad(ky)mg = {¥{ e my | (Y{, Y1) = 0}. (3.5)
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Under the same setting in Proposition 7 (2), we have

Proposition 8 Let Y7 € m; satisfy Y1 # 0. Then there is an element
ki € K satisfying

Ad(K )= —j—g{u + l% 1}, (3.6)
Ad(K)Ys = —1\/—5{1’2 + l_ul_:”ll?—fl ([, Y1), Y2 } VY €m.  (3.7)

Here |v| denotes the norm of v € m, i.e., |v| = (v, v)Y/2.

The proofs of Proposition 7 and Proposition 8 will be given in §4.
Utilizing Propositions 5, 7 and 8 we first show the following:

Proposition 9 Assume that dim N = ¢(G/K)—dim G/K and that there
is a solution W of the Gauss equation (2.2). Then there exist two vectors A
and B € N satisfying

\Il(Yb,Yb/):(Yb,Yd)A, VYOaY()lea'l_mf2> (3.8)

¥(¥i, ¥)) = (%, Y))B, Wi, Yiem, (3.9
1

‘I’(Y&,Yj@):— \I’(,u,, U,LL, Yl],Yz]), VYleml,VYZEmQ.(B.lO)

(14, )2

Proof. First we prove
U (Yy, Y5) =0, VYo, Y] € a+m; satisfying (Yo, Yg) = 0. (3.11)

We may assume that Yo, Y # 0. Then, by Proposition 7 (1), we know that
there is an element kg € K satisfying Ad(ko)p € RYp. Since (Y, Y3) = 0,
we have Yy € Ad(ko)my. Then, by Proposition 5, we know Y] € Ker(¥y,).
Hence ¥(Yp, Yy) = 0, completing the proof of (3.11).

Now (3.8) can be proved by (3.11) as follows: Let Yy and Y{ be two
elements of a + my of the same length. Since (Yo + Yy, Yo — YY) = 0, we
obtain W(Yp + Yy, Yy — Yy) = 0. Hence, we have ¥(Yp, Yp) = ¥U(Y{, YY).
This implies that ¥(Yy, Yp)/ (Yo, Yo) (Yo € a+me, ¥y # 0) takes a constant
value A (€ IN). Therefore, we have ¥(Yy, Yo) = (Yo, Yo)A for any Yj €
a+ my. Now (3.8) follows immediately from this equality.

In a similar manner, by applying Proposition 7(2) we can prove (3.9).

Finally, we prove (3.10). Without loss of generality, we may assume
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that Y1 # 0. Apply Proposition 8 to this Y7 (€ m;). Then there is an
element k] € K satisfying (3.6) and (3.7). By (3.1) we have

0="T(Ad(k))u, Ad(K})Y2)

1 |1l 1
=¥ (u+ Y Yot e[l Vi 1, v3]).

Note that [[u, Y1), Y2] € my (see Proposition 4 (1)) and [[u, Y2], 1] =
2[[u, Y1], Y] (see Lemma 5.3 of [5]). Then, we have

1 1
(Y1, [le, 11, Vo)) = 5 (%3, [, ¥a), Ya]) = =5 (Y1, ¥4, [, Yal) =00.
Hence by (3.9) we have W (Y7, [[u, Y1), Y2]) =0. This together with ¥ (u, Y3)
= 0 proves (3.10). O

To calculate the left hand side of the Gauss equation (2.2), we prepare
one more proposition, which will be proved in the last section of this paper.

Proposition 10 (1) LetYp, Y5 € a+mg and Y1 € my. Then:

[Ya, [¥o, Y]] == (s, p)(Yo, Yo) Y1, (3.12)
"4(/% /“’)(Yba YO)YI),: 7’f (%7 Y'OI) =0,
Yo, [Yo, Y]] = , 3.13
(2) LetYr, Y €em; and Yy € a+my. Then:
_4(/1‘7 u)(Yh Yl)Yglla Zf (}/17 Y-ll) - Oa
v, Vi, Y]] = 3.14
%, 4, ¥ 0, # vieRry, O
Y1, Y1, Yol] = —(u, p)(V1, Y1)Y0. (3.15)

With these preparations, we start the proof of Theorem 3. We first
show a series of lemmas by using the Gauss equation (2.2) and Proposition
9.

Lemma 11 (A, A) = (B, B) = 4(u, ).

Proof. Take an element Y, € my satisfying (Y2, Vo) =1. Put X =Z =p
and Y = W =Y, into the Gauss equation (2.2). Then, since ¥(u, Y3) = 0,
we have

([[u" sz]’ ,U,], }/2) = <lII(Iu'7 /"')7 ‘Il(},% Y2)>
Since W(u, u)/(p, p) = ¥ (Y2, Y2) = A and ([[u, Y2], p], Y2) = 4(u, p)?,
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we have (A, A) = 4(u, p).

Next, we prove (B, B) = 4(u, ). Take elements Y7, Y{ of m; satisfying
Y, ) =0, Y)=1land (V1,Y)=0. Put X =Z=Y,and Y =W =
Y/ into (2.2). Then, since ¥(Y1, Y{) = 0, we have

([[Yla Y;L/]) Yi]a YY) = <‘I’(Y17 le)) II](YEI.I7 lfll)>

Since ¥(Y1, Y1) = ¥(V{,Y]) = B and [[Y1, Y]], V1] = 4(u, p)Y{ (see
(3.14)), we have (B, B) = 4(u, u). O

Lemma 12 (A, ¥,(m;)) = (B, ¥,(m1)) =0.
Proof. Let Y7 be an arbitrary element of m;. Take an element Y5 € my

satisfying (Y2, Y2) = 1. Put X = Z =Y,, Y = g and W = V3 into (2.2).
Then, since ¥ (u, ¥3) = 0, we have

([Ye, ul, Ya], Y1) = (®(Ya, Ya), ©(u, Y1)).

Since W(Ys, Y2) = A and [[Ya, p], Y| = 4(p, p)u (see (3.13)), we have
(A, ¥(u, Y1)) = 4(p, u)(u, Y1) = 0. Since Y is an arbitrary element of
my, we have (A, ®¥,(m;)) = 0.

Next, let Y7 be an arbitrary element of m;. Take an element Y/ emy
satisfying (Y/, Y1) =0and (Y{,Y/)=1. Pt X =Z =Y/, Y =y and
W =Y into (2.2). Then, since ¥ (Y3, ¥7) = 0, we have

([[lel7 /'L]a Yll]a Yl) - <\I’(Y1/7 }/1/)7 ‘I’(/'L: Y1)>

& Since U(Y{, Y]) = B and [[Y{, p], Y{] = (u, p)p (see (3.15)), we have
(B, ¥(u, Y1)) = (4, u)(1, Y1) = 0. Since Y] is an arbitrary element of my,
we have (B, ¥, (m1)) = 0. O

Viewing Proposition 4 (3), we have dim IV = dimm;+1. Since Ker(¥,,)
Amy = mg Nm; = 0, we have dim ¥, (m;) = dimm; = dim N — 1. Con-
sequently, by Lemma 12 and Lemma 11, we easily have B = +£A. More
strongly, we can show

Lemma 13 A = B.

Proof. By the above discussion, it suffices to prove (A, B) > 0. Let Y; €
my satisfy (Y1,Y1) =1. In 22), weptt X = Z =pand Y = W = Y7.
Then, we have

([l 711, u], Y1) = (@ (s, p), ©(Y1, Y1)) — (B(p, Y1), T(¥1, p)).
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Since W (u, u) = (4, w)A, ®(Y1, Y1) = B and [[u, Y1, p] = (p, p)?*Y1, we
have
(1> ) (A, B) = (1, 0)* (Y1, V) + (¥, Y1), ¥ (g, 1)) > (u, )%
This proves (A, B) > 0. O
Utilizing Lemma, 13, we have

Lemma 14 Let Yy, Y/ € my. Then

Proof. Put X =Z=yu,Y =Y; and W =Y/ into (2.2). Then we have

‘(“/J" le]a ,u]) },1,) = <‘I’(/J, w), ¥(¥r, Y1l>> - <‘I’(,Ll,, YY)) ‘I’(le, ,UJ)>

Since ¥(u, p) = (p, pw)A, ¥(Y1, Y{) = (Y1, Y{)B and A = B, the first term
of the right hand side becomes (®(u, p), ¥ (Y1, Y{)) = 4(u, p)?(Ys, ¥{)
(see Lemma 11). Therefore, by [[u, Y1), p] = (4, p)?Y1, we have

(T (s, Ya), ® (s, Y1) =4, 1)2(Ya, YY) = (o w)2(Y, ¥7)
=3(u, p)*(M, Y7).
O

‘We are now in a position to complete the proof of Theorem 3. Let Y7 €
my (Y1 # 0) and Y2 € my (Y2 # 0). Note that [Y7, Y2] € £ (see Proposition
4 (1)). We also note that [Yi, Ya] # 0. In fact, if [Y7, Y2] = 0, then the
2-dimensional subspace generated by Y7 and Y3 forms an abelian subspace
of m, which contradicts rank(G/K) = 1. Now, set Y{ = [[¥1, ¥3], p]. Then
it is clear that Y] € m;y (see Proposition 4 (1)). Moreover, we have Y/ # 0,
because [u, Y] = (1, u)?[V1, Y2] # 0.

Now, put X =Y, Y =Y,, Z = p and W = Y7/ into (2.2). Since
(Y, u) = 0, we have

(2, Yal, ], Y{) = (@ (Y1, ), ®(Ye, YY)). (3.17)
By (3.10) and (3.16), the right hand side of (3.17) becomes

(B (Y1, p), (Yo, Y{))=—(T(u, Y1), ©ly, [[u Y1), Y2))/ (1, p)*
= -——3(Y17 [[U7 Yﬂ» Y-.'ZD
=3("1, Yal, [, Y7])
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=3([["1, Yz, 1], 7).

Putting this equality into (3.17), we have ([[Y1, Y2], u], Y{) = 0, which
contradicts our assumption ([[Y1, Ya], p], ¥{) = (¥4, Y{) # 0.

As we have shown above, starting from the assumption that the Gauss
equation (2.2) admits a solution W, we finally arrive at a contradiction.
Accordingly, we can conclude that if G/K = P2(H) or P?(Cay), then
the Gauss equation (2.2) does not admit any solution in case dim N =
¢9(G/K) — dim G/K. This completes the proof of Theorem 3. O

4. The action of the isotropy group Ad(K)

In this section we prove Propositions 7, 8 and 10, which are needed in
the proof of Theorem 3.

Lemma 15 Let X; €8 (i=1, 2). Then
[Xi, (X, ul] = =i%(u, 1) (Xi, X)) (4.1)
&

Proof. By (2.5) we have [X;, [X;, p]] € a + mg;. By the Jacobi identity
we have

[y [, [, )] = [l X3, 1%, ) + [ X, [l X, ] =0,

because [[u, Xil, ,u] € RX;. Therefore, we have [Xi, (X5, u]] € a. Since
a = Ry, there is a scalar ¢ € R satisfying [X;, [X;, u]] = cu. Then we have
¢ = —i*(i, u)(X;, X;), because

cu, 1) = ([Xi, [Xi, ], p) = (Xs, [[Xs, pl, p])
= —(ip, ) (X, X5).

O
By the above lemma, we obtain
Lemma 16 Let X; € ¥ (i =1, 2) satisfy X; # 0. Then
Ad(exp(£X:)) = cos (il ul| Xt
sin(lullXilt) v ) vie R (4.2)

|l X
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Proof. Let n be a non-negative integer. By induction of n, we can easily
show
(2d X;)*" = (=1)" (3wl X))
(ad X;)*"H p= (—1)" (6|l X:)*" X, 4.

ll

Consequently, for all ¢ € R we have

X[ 42n 2n+1
Ad(exp(tX;))p= Z{é—@(ad X))+ (Qtn——:l)!(ad Xi)2n+1,u,}

n=0

o0

=

n=0

(%IMHX £)"

§ : 1) 2n+1

Sm( lullelt)

=cos(z|u|| X;|t)u + -
(il Xt + =

O

With these preparations, we proceed to the proof of Proposition 7. Let
Yy € a+my. If Yy € a, then we have only to set kg = e, where e is the
identity element of K.

Now we assume that Yy ¢ a and write Yp = cu+ Y2 (c € R, Y2 €
my, Ys # 0). Set Xo = [Yp, ). Then we easily have X = [Y, u] € ¥5 and
(X2, ] = —4(u, u)?Ys. Moreover, we have |Xa| = 2|u|?|Y2|, because

(X2, X2) = ([Y2, g}, [Ya, u]) = —([[Y2, ], p], Y2) =4(, u)? (Y2, Y2).

Putting this X3 into Lemma 16, we have

Ad(exp(tXy))p=cos(4|ul*|Y2|t)n — llyilsm(éllul 1Ys|t)Y2, VieR.

Take to € R satisfying cos(4|u?[Yalte) = c(|ul/|Yo|) and sin(4|u|?|Yalto) =
—|Y2|/|Yo]. Let us set ko = exp(tpX2). Then we have kg € K and

Ad(ka)p = Ad(oxp(toXe))u = 1 (cu-+ YD) = v

Thus we get Ad(ko)u € RYp. By (2.5) we immediately have [Xa, a+mg] C
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a + mg. Hence, we have Ad(kp)(a + mg) = a + mg. Since Ad(kp) is an
orthogonal transformation of m, we know that Ad(ko)ms coincides with
the orthogonal complement of RYj in a + mg. This finishes the proof of
Proposition 7 (1).

To prove Proposition 7 (2), we first show

Lemma 17 Let Xq € £1. Then
(X1, [ X1, Yol = = (i, ) (X1, X1)Yo, VYa € my.
Proof. By (4.1), we have
(X1, [X1, @] = = (b, ) (X1, X1)p. (4.3)

Let Y5 be a non-zero element of my. Then, as in the proof of Proposition
7(1), we know that there is a scalar ¢y € R such that the element kg =
exp(toX2) € K satisfies Ad(kp)u € RY2, where we set Xy = [Ya, u] € &.
Then, we have Ad(kg)€; = &1, because [ Xy, t1] C ¥ (see Proposition 4 (1)).
Now, applying Ad(ko) to the both sides of (4.3), we have
[Ad(ko) X1, [Ad(ko) X1, Ya]] = — (b, 1)(X1, X1)Y2
= —(u, p)(Ad(ko) X1, Ad(ko)X1)Ya.
Writing X instead-of Ad(kg)X1 € &1, we get the lemma. O

Now we return to the proof of Proposition 7(2). Set X3 = [Y1, p]. In
the same way as in the proof of (1), we can easily prove X; € &, [ X1, p] =
—(p, 1)?Y7 and | X1| = |u|?|Y1|. Applying Lemma 16 to this X, we have

Ad(exp(tX1))p = cos(|uf* [V t)p

- %smum:”mwm, Ve R (4.4)

Let Y5 € mo. By Lemma, 17, we have
(ad X1)*"Ys = (—1)" (||| X1))*" Y2,
(ad X1)*"*1Ys = (=1)™(|ul| X1 ))*"[X1, Ya].
From these equalities, it follows
Ad(exp(tX1)) Y2 = cos(|ul*|Y1]t) Yz

sin(|pl®|Ya]t)

A [Y1, 4], Y2|, Vte R (4.5)
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Let us take t; € R satisfying |u|®|Yilt; = —7/2 and set k; = exp(t1X1).
Then we can easily show that k; € K, Ad(k1)p = (|u]/|Y1])Y1 € m1 and

1
IZEEY

Hence, we have Ad(k;)u € RY; and Ad(ki1)mg C [[Yl, ], mg]. Since
[[¥1, p], mg] C my (see Proposition 4 (1)), we have Ad(k1)(a+ mg) C my.
Therefore, we have Ad(k1)(a + mg) = my, because dim(a + mg) = dimmy
(see Proposition 4 (3)). Since Ad(k;) is an orthogonal transformation of m,
we know that Ad(k;)ms coincides with the orthogonal complement of RY;
in m;. This completes the proof of Proposition 7 (2). O

Ad(k1)Ys = [[¥7, pl, Y. (4.6)

Next we prove Proposition 8. Under the same situation as in the proof
of Proposition 7 (2), let us set kj = exp(¢1X1/2). Then by the equalities
(4.4) and (4.5) we easily obtain (3.6) and (3.7). O

Finally, we prove Proposition 10. First we show Proposition 10 (1).
If Yo € a, then there is nothing to prove. Hence we may assume that
Yy € a. Applying Proposition 7 (1), we have an element ky € K satisfying
Ad(ko)p € RYy and Ad(ko)(a + mg) = a+ mp. Then, it is easily seen that
Ad(ko)my = my. If we write Ad(ko)p = c¥p (c € R), then we have ¢ =
(4, 1)/ (Yo, Yp). Let Y; be an element of m; (¢ = 1, 2). Apply Ad(ko) to
the both sides of the equality [,u, [, Y;]] = —i2(u, p)%Y; (i = 1, 2). Then,
since ¢? = (u, u)/ (Yo, Yo), we have

[Yba [Yba Ad(kO)Y;H = —iz(ﬂ'? M)(Yba YO) Ad(kO)}/:L7 =1, 2.

Now, (3.12) and (3.13) follow immediately from the above equality. (Note
the equality (3.4) and the fact Ad(ko)m; = my.)

By applying Proposition 7 (2), Proposition 10 (2) can be also shown in
a similar manner. Details are left to the readers. 0

Thus, we have completed the proofs of Propositions 7, 8 and 10.
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Rigidity of the canonical isometric imbedding
of the Cayley projective plane P2?(Cay)

Yoshio AGAOKA and Eiji KANEDA
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Abstract. In [7], we have proved that P?(Cay) cannot be isometrically immersed into
R?5 even locally. In this paper, we investigate isometric immersions of P2(Cay) into
R?8 and prove that the canonical isometric imbedding f, of P?(Cay) into R2®, which
is defined in Kobayashi [17], is rigid in the following strongest sense: Any isometric
immersion f; of a connected open set U(C P2(Cay)) into R?® coincides with f, up
to a euclidean transformation of R?8, i.e., there is a euclidean transformation a of R26
satisfying f; = afy on U.

Key words: curvature invariant, isometric immersion, Cayley projective plane, rigidity.

1. Introduction

In the previous paper [7], we investigated the problem of (local) isomet-
ric immersions. of the quaternion projective plane P?(H) and the Cayley
projective plane P?(Cay). In particular, we proved the following non-
existence theorem of (local) isometric immersions:

Theorem 1 Any open set of the Cayley projective plane P?(Cay) cannot
be isometrically immersed into R,

As is well-known, there is an isometric immersion f, of P?(Cay) into
the euclidean space R?®, which is called the canonical isometric imbedding
of P?(Cay) (Kobayashi [17]). This fact, together with Theorem 1, implies
that R is the least dimensional euclidean space into which P?(Cay) can
be (locally) isometrically immersed.

In this paper, we consider (local) isometric immersions of P?(Cay)
into R and discuss the rigidity of the canonical isometric imbedding f.
Concerning the rigidity of f; Kaneda [15] has shown that the canonical
isometric imbedding f is of finite type, i.e., the space of local infinitesimal
isometric deformations of f is of finite dimension. However, it seems to the
authors that any further result concerning the rigidity of f, has not been

2000 Mathematics Subject Classification : 17B20, 53B25, 53C24, 53C35.
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obtained.
In the present paper, we will show the rigidity of the canonical isometric
imbedding f, in the following strongest form:

Theorem 2 Let f be the canonical isometric imbedding of P%(Cay) into
the euclidean space R?. Then, for any isometric immersion f, defined
on a connected open set U of P2(Cay) into R, there exists a euclidean
transformation a of R satisfying f; = afg on U.

To prove Theorem 2, we first establish a rigidity theorem for an iso-
metric immersion of a Riemannian manifold. Let M be an n-dimensional
Riemannian manifold and let f, be an isometric immersion of M into the
m-dimensional euclidean space R™. We will prove that if the Gauss equa-
tion in codimension 7 (= m —n) admits essentially one solution everywhere
on M, then f, is rigid, i.e., for any isometric immersion f; of M into
R™ there exists a euclidean transformation a of R™ such that f; = afy,
(see Theorem 5). This theorem may be established by various methods;
for example, by combining the results of Nomizu [19] and Szczarba [21],
[22] (cf. Agaoka [1]) or by solving a differential system of Pfaff (cf. Bishop—
Crittenden [10], Ch. X). In this paper, we will give a simple proof based on a
congruence theorem of differentiable mappings, which is easy to understand
and gives a clear view on the geometric meaning (see Theorem 6).

Next, we will show that for the Cayley projective plane P?(Cay) the
Gauss equation in codimension 10 (= 26 —dim P?(Cay)) admits essentially
one solution (see Theorem 10). To show this, we utilize the results obtained
in [6] and [7]. Among all, the result concerning pseudo-abelian subspaces
(Proposition 8) plays an important role in our proof.

Then, Theorem 2 is a direct consequence of Theorem 5 and Theorem 10.

Throughout this paper we assume the differentiability of class C*°. No-
tations for Lie algebras are the same as those used in [6] and [7].

2. The Gauss equation

Let M be a Riemannian manifold and T'(M) the tangent bundle of M.
We denote by g the Riemannian metric of M and by R the Riemannian
curvature tensor of type (1, 3) with respect to g.

Let N be a euclidean vector space, i.e., IN is a vector space over R
endowed with an inner product ( , ). Let p € M and let S°T}(M)® N
be the space of IN-valued symmetric bilinear forms on T,(M). We call the
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following equation on ¥ € SQT; (M) ® N the Gauss equation at p € M:

'—gp(Rp(x, y)z, w)=<‘If(x, z):‘Ile) w)> - <III($7 w))‘IJ(ya Z)>> (2'1)

where z, y, z, w € Tp(M). We denote by G,(IN) the set of all solutions of
(2.1), which is called the Gaussian variety associated with IV at p € M. As
is well-known, G,(IN') = () happens in case the dimensionality r (= dim V)
is so small, however, G,(IN) # 0 if r is sufficiently large (see Cartan [11] or
Kaneda-Tanaka [16]).

Let N1 and N3 be two euclidean vector spaces and let ¢ be a lin-
ear mapping of N1 to Na. Define a linear map @ of SQT;(M) ® Nj to
SQT;(M)®N2 by '

(BT) (e, y)=0(¥(z, y)), CeST(M)® Ny, x,yeTy(M). (22)
Then, we can easily verify

Lemma 3 Let ¢ be a linear mapping of a euclidean vector space N1 to a
euclidean vector space Na. Assume that ¢ is isometric, i.e., <<p(m), go(y)>2
= <:J:, y)l (z, y € N1), where < , >Z (1 =1, 2) denotes the inner product of
N;. Then §Gp(N1) C Gp(N2). In particular, if dim N1 = dim N, then
PGp(N1) = Gp(IN2).

In view of Lemma 3, the solvability of the Gauss equation (2.1) sub-
stantially depends on the dimensionality of N. To emphasize dim IN we
call (2.1) the Gauss equation in codimension 7 (= dim IV).

Let N be a euclidean vector space and let O(IN) be the orthogonal
transformation group of IN. We define an action of O(IN) on S*T*(M)® N
by

(h¥)(z, y) = h(¥(z, v)),

where ¥ € S?T}(M)® N, h € O(N), z, y € T,(M). We say that two
elements ¥ and W' ¢ S2TZ;" (M) ® N are equivalent if there is an element
h € O(N) such that ' = hW. It is easily seen that if ¥ and ¥’ €
S2T*(M) ® N are equivalent and ¥ € G,(IN), then ¥’ € G,(N). We say
that the Gaussian variety G,(IV) is EOS if G,(IN) # 0 and if it consists of
essentially one solution, i.e., any solutions of the Gauss equation (2.1) are
equivalent to each other under the action of O(IV).
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Proposition 4 Let M be a Riemannian manifold and let p € M. Let N
be an r-dimensional euclidean vector space such that Go(IN') is EOS. Then:
(1) Let W be an arbitrary element of G,(IN). Then, the vectors ¥(z, y)
(z, y € Tp(M)) span the whole space N.
(2) Let Ny be a euclidean vector space. Then:

(2a) Gp(N1) =0 ifdim N; < 1

(2b) Gp(IN1) is EOS if dim N1 = r;

(2¢) Gp(IN1) is not EOS if dim N1 > 7.

Proof. Note that if ¥/ € SZT];" (M) ® N is equivalent to ¥, then we have
|9’ (z, y)| = |¥(z, y)| for any z, y € Tp(M), where |n| denotes the norm of
n € N with respect to ( , ).

Now, suppose that the vectors ¥(z, y) (z,y € Tp(M)) do not span
the whole space IN. Then, there is a non-zero vector n € IN satisfying
(n, ¥(z, y)) = 0 for any z, y € T,(M). Define an element ¥’ € S2T;(M)®
N by

U=+ () en,

where £* is a non-zero element of T,;(M). Then, it is easy to see that
¥’ € G,(N). However, by a simple calculation, we have |¥'(z, z)|> =
|W(z, z)|?> + |n|?¢*(z)?. Therefore, if we take z € Tp(M) such that £*(x) #
0, then we have |®'(z, z)| # |®(z, z)|. This proves that ¥’ is not equivalent
to W and hence G,(IN) is not EOS. Thus, we obtain (1).

Next we prove (2). First assume dim N7 = r. Let ¢ be an isometric
linear isomorphism of IV onto Ni. Then we have O(IN1) = ¢ - O(N) -~ 1.
Moreover, by Lemma 3 we have $G,(IN) = G,(IN1). Since Gp(IN) is EOS,
O(N) acts transitively on G,(IN). Therefore, it is easily seen that O(IN1)
acts transitively on G,(IV1). This proves that G,(IN1) is EOS.

We next consider the case dim N1 < r. Suppose that G,(IN1) # 0 and
¥, € Go(IN1). Let ¢ be an isometric linear mapping of IN; to IN. Then,
we know that ¢ ¥; € G,(IN) and the vectors (pW1)(z, y) (z, y € Tp(M))
are contained in the proper subspace ¢(IN1) (€ IN). This contradicts (1).
The case dim N1 > r is similarly dealt with. O

We say that a Riemannian manifold M is formally rigid in codimension
r if there is a euclidean vector space N with dim IN = r such that the Gaus-
sian variety G,(IV) is EOS at each p € M. By virtue of Proposition 4 (2),
we know that if M is formally rigid in codimension 7, then it is not formally
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rigid in any other codimension 7’ (# 7).

Remark 1 It should be noted that there is a Riemannian manifold M
that is not formally rigid in any codimension r. For example, assume that
M is the space of negative constant curvature of dimension n. Let N be a
euclidean vector space of dimension r. Then, by Otsuki’s lemma we have
Gp(N) =0 if r < n—1 (see Otsuki [20]). On the other hand, Kaneda [13]
proved that if r = n — 1, then G,(IN) # 0 and around a suitable ¥q €
Gp(IN), Gp(IN) forms a submanifold of S 2T1;" (M)® N of dimension n(n—1)
(see Theorem 3.1 of [13]). Since n(n — 1) > dim O(IN), G,(IN) cannot be
EOS. If r > n, then by Proposition 4 (2a) we know that G,(IN) is not EOS.
Accordingly, the space of negative constant curvature M is not formally
rigid in any codimension r.

Remark 2 For each Riemannian submanifold M C R™ listed below,

Gp(IN) is known to be EOS at each p € M, where IN is the normal vector

space of M at p in R™:

(1) The sphere S C R™"! (n > 3);

(2) The symplectic group Sp(2) C R® (see Agaoka [1]);

(3) A submanifold M C R™ with type number > 3 (see Allendoerfer [9],
Kobayashi-Nomizu [18]).

Consequently, these submanifolds are formally rigid in our sense and it
has been proved that they are actually rigid in R™ (see [1], [9]).

However, we note that the formal rigidness of M in codimension r does
not imply the existence of an isometric immersion of M into R™" (n =
dim M). Indeed, Kaneda [14] gave an example of three dimensional Rie-
mannian manifold M that is formally rigid in codimension 1 but cannot be
locally isometrically immersed into R*.

We will prove in the next section that if a connected Riemannian mani-
fold M is formally rigid in codimension r and if there is an isometric immer-
sion f of M into R™" (n = dim M), then M (precisely, f(M)) is actually
rigid in R™*" (see Theorem 5).

3. Rigidity theorem
In this section, we will prove the following rigidity theorem:

Theorem 5 Let M be an n-dimensional Riemannian manifold and let f,
be an isometric immersion of M into the euclidean space R™. Assume:
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(1) M is connected;

(2) M is formally rigid in codimension r =m —n.

Then, any isometric immersion f; of M into the euclidean space R™ co-
incides with fq up to a euclidean transformation of R™, i.e., there exists a
euclidean transformation a of R™ such that f; = af.

Before proceeding to the proof of Theorem 5, we make some prepara-
tions. Let M(m, m’) be the space of real matrices of degree m x m/, where
m and m' are non-negative integers. In what follows we identify M (m, 1)
with the m-dimensional euclidean space R™ in a natural way. Then, we
note that the canonical inner product < , > of R™ is given by (v, w> =ty.
w for v, w € R™.

Let us define an operation of M(m, m) on R™ by

M(m, m)x R™> (H,v) — H-ve R"

where - means the usual matrix multiplication.
Let V be the Riemannian connection associated with M. Let f =

8(fL, ..., f™) be a differentiable map of M into the euclidean space R™.
k

,—-/\—-\ . .
By V---V f we denote the k-th order covariant derivative of f, which is
defined as follows:

k k
v$1"'mGf= (...,le"'mGf,.-.)ER P
where p € M; x1, ..., xx € Tp(M). (Precisely, see Tanaka [23], Kaneda-
Tanaka [16] or Kaneda [14].) It is known that VV f and VVV f satisfy the

following integrability conditions:

VaVyf =VyVaf, (3.1)
VoVaVyf = VaVoVyf = Vi oyl (3.2)

We say that a differentiable map f of M into R™ is 2-generic if at
each p € M, the whole space R™ is spanned by the vectors of the form
Vo f (x € Tp(M)), Vy VL f (y, z € Tp(M)). It is clear that if f is 2-generic,
then we have the inequality m < (1/2)n(n + 3). Note that a 2-generic map
f is not necessarily an immersion.

We first show the following congruence theorem:
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Theorem 6 Let M be an n-dimensional Riemannian manifold and let
fi (1=0,1) be two differentiable maps of M into the euclidean space R™.
Assume:

(1) M is connected,

(2) fo is 2-generic;

(3) At each p € M there is an element H(p) € O(m) satisfying

Vef1=H(p) (Vafo), Vz € Tp(M), (3.3)
VyVef1=H(®) (VyVifo), Yy, 2 € Tp(M). (3.4)

Then, f1 coincides with fy up to a euclidean transformation of R™. More
precisely, H(p) is identically equal to a constant value Hy € O(m) every-
where on M and f can be written as f; = Hofy+co, where ¢y is a constant
vector of-R™.

Proof. We first note that, since f, is 2-generic, H(p) satisfying (3.3)
and (3.4) is uniquely determined at each p € M and the map H: M >
p +— H(p) € O(m) is differentiable. Via the canonical inclusion O(m) C
M (m, m), we can regard H as an M (m, m)-valued function on M satisfying

‘HH = I, (3.5)

where I, denotes the identity matrix of degree m. Differentiate (3.5) co-
variantly. Then by Leibnitz’ law we get

Vo("H)H(p) + ' H(p)(VoH) =0, Va € Ty(M). (3.6)

In this equality, the covariant derivative V,H means the element of M (m,m)
given by Vo H = (thfg ), where h] denotes the (7, j)-component of H. By
the very definition of V,H we have V,(*H) =*(V,H).

Let us define an M (m, m)-valued 1-form L by

L(z) ="H(p)(VoH), =z € Tp(M). (3.7)
Then, by (3.6) we have
'L(z) + L(z) =0, Vz € Tp(M), (3.8)

implying that the matrix L(z) € M(m, m) is skew-symmetric.
We now show that the equality L(z) = 0 holds for any = € T,(M).
Since f is 2-generic, it suffices to prove

L(y) - (Vzfo) =0, Vz,yeT(M), (3.9)
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L(z) - (VyVafo) =0, Vz,y, z € TH(M). (3.10)
Differentiating (3.3) and (3.4) covariantly, we have
vyvm.fl = VyH : (fo[)) + H(p) ' (vvafo)a
YV, y € T,(M),
VeVyVef1 = V.H-(VyVefo) + H(p) - (VVyVafo),
Vi, y, z € Tp(M).
Then by (3.4) and (3.11) we have V, H - (V5 f() = 0 for each z, y € T,(M).

Consequently, multiplying *H(p) from the left, we have (3.9).
We now prove (3.10). Exchanging z and y in (3.12), we have

Vyvzvmfl = vyH ' (vzvmfo) + H(p) ’ (vyvzvmfo)a
Vz,y, z € Tp(M).

(3.11)

(3.12)

(3.13)
Subtract (3.13) from (3.12). Then, using the integrability condition (3.2)
and the equality (3.3), we have

VH(VyVofo) = VyH(V,Vafy), Vz,y, z € T,(M). (3.14)
Consequently, multiplying *H (p) from the left, we get

L(z) - (VyVafo) = L(y) - (VoVaifo), Vz,y, 2 € Tp(M). (3.15)
Since L(z) is a skew-symmetric matrix, we have

(L(2) - (VyVafo), Vuto) = —(VyVafo, L(z) - (Vufo)) = 0.
Therefore, to prove (3.10), we have to show

<L(z) - (VyVazFo)s VUwa()} =0, Vz,y,z v, weT,(M). (3.16)

Define an element X € ®5T;(M) by

X(z, 9y, z, v, w) = <L(z) (VyVafo)s VUwaO>,

(3.17)
z, Y, 2, v, w € Ty(M).

In the following, we will show X(z,y, z, v, w) = 0 for z,y, z, v,w €
Tp(M). By the integrability condition (3.1) and by (3.15), we easily know
that X(z, y, z, v, w) is symmetric with respect to the pairs {z, y}, {v, w}
and {z, y}. Further, since L(z) is a skew-symmetric endomorphism of R™
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(see (3.8)), it follows that
X(Z> Y, Z, 0, ’LU) = —_X(Z, v, W, Y, 33) (318)

Therefore, X (z, y, z, v, w) is anti-symmetric with respect to the pair {z, w},
because

X(z7 y’ w) /U’ w) = —X(z7 ,U, w) y7 x) = _X(IU, z) w’ y7 :C)
= X(v,y, 2,2 w)= X1 2 w)
=—-X(y, 2z, w, v, z) = —X(z, ¥, w, v, ).

Consequently, we get

'X(Z’ y7 w? v) w) = '——X(Z7 y) w? ’U7 x) = —"'.X(Z, w7 y? m? U)
= X(z,w,v,z,y)= X(z v, w,vy,z).

This, together with (3.18), proves X(z, vy, z, v, w) = 0. Thus we get (3.10).
By the above argument, we know that L(z) = *H(p)(V H) = 0 for
any z € Tp(M). This implies that H is a locally constant function and
hence H is identically equal to an element Hy € O(m) on M, because M is
connected. Consequently, the difference ¢ = f; — Hp - f, satisfies

Voc=Va(f1—Ho- fo) =Vefi—Ho- (Vafo) =0, VzeTy(M).

Therefore, ¢ is also identically equal to a constant vector ¢p € R™, com-
pleting the proof of the theorem. Cl

Remark 3 The argument in the proof of the equality X = 0 is essentially
the same that is developed in the proof of the uniqueness of the metric
connection of the normal bundle associated with an isometric imbedding
(see the proof of Theorem 1 of [19]); It is almost the same that is used
to calculate the third prolongation of the symbol of the operator L (see
Proposition 2.2 of [16]). Here we remark that X = 0 can be proved without
assuming the existence of (isometric) immersions.

We are now in a position to prove Theorem 5.

Proof of Theorem 5. We show that the map f; (1 =0, 1) is 2-generic and
for each p € M there is an element H(p) € O(m) satisfying the equalities
(3.3) and (3.4).

Let i = 0 or 1. Let f; Tp,(M) (resp. IN;) be the tangent vector space
(resp. normal vector space).of f;(M) at f;(p) € R™. Then, we have
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dim f;,7,(M) = n and dim N; = m — n. We regard f,,T,(M) and N;
as euclidean vector spaces endowed with the inner products induced from
the inner product < , > of R™. By a natural parallel displacement from
f;i(p) to the origin o € R™, we regard f; T,(M) and N; as linear sub-
spaces of R™. Since f; is an isometric immersion, f;, T,(M) is spanned by
the vectors Vy f; (z € T,(M)) and

(VoFi Vyfi) = go(z, y), Yo,y € Tp(M). (3.19)

The second order derivative VV f,, which is so called the second fun-
damental form of f,, satisfies VV f; € S?T*(M)® N; and VV f; € Gp(IN;)
(see [23], [16]). Since Gp(IN;) is EOS, the vectors V,V, f; (z, y € Tp(M))
span IN;, implying that f, is 2-generic (see Proposition 4 (1)). Take an
isometric linear isomorphism @3 of Ng onto N1. Since g3 VV f € Gp(IN1)
and since Gp(IN1) is EOS (see Proposition 4 (2b)), there is an element h; €
O(N1) such that h1(p3VV fy) = VVf;. On the other hand, in view of
(3.19) we also know that there is an isometric linear isomorphism ¢; of
FouTp(M) onto f1,T,(M) satistying ¢1(Vzfo) = Vo f:1 (z € T,(M)). De-
fine a linear endomorphism H(p) of R™ satisfying H (p)| Fo.To(b) = P1 and
H(p)|y, = h1 - 2. Then, it is easily seen that H(p) € O(m) and the
equalities (3.3) and (3.4) are satisfied.

Therefore, by Theorem 6 we know that f; can be written as f; = af,
where a denotes the euclidean transformation of R™ defined by R™ > o +—
Hy -z + cog € R™. Thus, we obtain the theorem. O

4. The Cayley projective plane P%(Cay)

Let M = G/K be a compact Riemannian symmetric space. Let g (resp.
£) be the Lie algebra of G (resp. K). We denote by g = £+ m the canonical
decomposition of g associated with the symmetric pair (G, K). We denote
by (, ) the inner product of g given by the (—1)-multiple of the Killing
form of g. As usual, we can identify m with the tangent space T,(G/K) at
the origin 0 = {K}. We assume that the G-invariant Riemannian metric g
of G/K satisfies

9(X,Y)=(X,Y), VX, Y em.

Then, it is well-known that at the origin o the Riemannian curvature tensor
R of type (1, 3) is given by
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R(X,Y)Z=-[[X,Y], Z], X,Y,Zem.

Hereafter, we consider the case of the Cayley projective plane P?(Cay).
As is well-known, P?(Cay) can be represented by P?(Cay) = G/K, where
G = Fy and K = Spin(9). Take a maximal abelian subspace a of m and fix
it in the following discussions. We note that since rank(P?(Cay)) = 1, we
have dima = 1.

For each element A € a we define two subspaces €(A) C £ and m(\) Cm
by

t\)={Xet|[H [H X]] =-(\, H)?X, VHEa},
m(A)={Y em| [H, [H Y]] =-(\ H)?, VHEa}.
We call X\ a restricted root if m()\) # 0. Let X be the set of all non-zero
restricted roots. In the case of P?(Cay), there is a restricted root u such
that ¥ = {&u, +2u}. We take and fix such a restricted root u. Then we
have m(0) = a = Ry and
E=2(0) +€(n) +€(2n)  (orthogonal direct sum),
m=m(0) + m(x) + m(2u) (orthogonal direct sum).

(For details, see [6], [7].) For simplicity, for each integer ¢ we set & = &(|i|u),
m; = m(|é|p) (Ji| <2), & =m; =0 (|¢| > 2). Then we have

Proposition 7 ([7]) (1) Leti, j=0,1,2. Then:
8, ] C ¥pj+ 8,
[mz-, mj] C¥ry+ 8-, (4.1)
[£, mj] C miy; + My,

(2) dimm = 16, dimEl = dimm1 = 8, diméz = dimmg =17,

In what follows, we recall the results obtained in [7], which will be
needed in the proof of Theorem 2. Let V be a subspace of m. V is called
pseudo-abelian if it satisfies [V, V] C ¥ (or equivalently [[V, V], a] = 0).
(Precisely, see [6].) As is easily seen, my is a pseudo-abelian subspace of m,

because [mg, my] C & (see (4.1)).
On the contrary, we have

Proposition 8 Let G/K = P?(Cay). Then, any pseudo-abelian sub-
space V of m with dimV > 2 must be contained in msy.
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For the proof, see Lemma 6 of [7]. The following proposition summarizes
the results of [7] (see Proposition 7, Proposition 10 and Lemma 17 of [7]).

Proposition 9 (1) LetYp € a+my and Y1 € my. Assume that Yy # 0,
Y1 # 0. Then, there are elements ko, k1 € K satisfying

Ad(ko)u € RYp, Ad(ko)my = {Y§ € a+mjy | (¥{, Yo) =0}, (4
Ad(k1)u € RY:, Ad(k)mg = {¥] € my | (¥{, Y1) = 0}. (4.3)
(2) Let Yy, YO/ € a-+mg, Yy, Yl emy and X1 € 8. Then:

[¥o, [Yo, Y5]] = { 4k #) (()YO )%, Z: ;?:2/0 : Y
[¥6, [Yo, Yil] = —(u, 1) (Yo, Yo) Y, (4.5)
[¥1, Y1, Yo]] = = (4, p) (Y2, Y2) Y0, (4.6)
vi, 13, 4] = { 4 éyl Y :ﬁ fggj Y
(X1, [X1, Yol = —(, p) (X3, X1)Yo. (4.8)

5. Solutions of the Gauss equation
In this and the next sections, we prove

Theorem 10 The projective plane P%(Cay) is formally rigid in codimen-
sion 10 (= 26 — dim P%(Cay)).

If this theorem is established, then Theorem 2 immediately follows from
Theorem 5.

On account of homogeneity of P?2(Cay), in order to show Theorem 10
we have only to prove that the Gaussian variety G,(IN) is EOS at the origin
o for any euclidean vector space N with dim IV = 10.

In what follows we assume that M = P?(Cay) and that N is a eu-
clidean vector space with dim IN = 10. We will prove the following theorem:

‘Theorem 11 Let ¥ € Go(N). Then:

(1) There are linearly independent vectors A and B € N satisfying
(la) (A, A) = (B, B) = 4(y, p) and (A, B) = 2(u, p);
(16) (Yo, Yy) = (Yo, Y5)A, VY, Y§ € a+ my;
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(16) ‘I’(Yl, Yi’) = (Yl, Yll)B, VYl, Yi’ € my;

(1d) <A7 ‘I,(p’> ml)) = <Ba ‘Ij(,u> m1)> =0.
(2) ‘I’(Yla Y2) + (1/(#'7 AU’>2)‘I’(/'L7 [[/'l‘v Yi]) YZD =0, V1 em, VY2 €
mo.
(3) (s Vi), T, VD)) = (1, w2(¥3, YY), VY3, Y] €my.

Before proceeding to the proof of Theorem 11 we make a somewhat
lengthy preparation. Let N be a euclidean vector space and let S?m* ® N
be the space of N-valued symmetric bilinear forms on m. Let ¥ € Sm* ®
N and Y € m. We define a linear map ¥y of m to N by

Uy ma3Y — ¥, Y)eN

and denote by Ker(W¥y) the kernel of ¥y. We say that an element ¥ € m
is singular (resp. non-singular) with respect to ¥ if ¥y (m) # N (resp.
Py(m) = N). Apparently, 0 (¢ m) is a singular element for any ¥ €
S’m* ® N.

Proposition 12 Let ¥ € G,(N). Let Y € m (Y # 0) and let k be an
element of K satisfying Ad(k)u € RY . Then:

(1) Ker(¥y) C Ad(k)my. Conseguently, dimKer(¥y) < 7.

(2) Assume that Y is non-singular with respect to W. Then, it holds that
dim Ker(¥y) = 6 and Ker(¥y) C Ad(k)ms.

(3) Assume that Y is singular with respect to ¥. Then, it holds that
Ker(¥y) = Ad(k)mg, dimKer(¥y) =7 and dim ¥y (m) = 9.

Proof. First, note that dim Ker(¥y) > dimm—dim IV = 6. Consequently,
it is easy to see that Y is singular (resp. non-singular) with respect to W if
and only if dim Ker(®y) > 6 (resp. dim Ker(¥y) = 6).

Multiplying Y by a non-zero scalar if necessary, we may assume that
Y = Ad(k)u. From the Gauss equation (2.1) it follows that

R,(Ker(¥y),Ker(¥y))Y = 0.

In our terminology we have
[Ker(¥y), Ker(Ty)], Y] =0.

Applying Ad(k~1) to the both sides of the above equality, we have
[[Ad(k™) Ker(¥y), Ad(k~") Ker(¥y)], pu] = 0.
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Since a = Ry, it follows that Ad(k~!) Ker(¥y) is a pseudo-abelian sub-
space of m. By Proposition 8 and by the fact dim Ker(®y) > 6, we have
Ad(k™) Ker(¥y) C my and hence Ker(¥y) C Ad(k)mg, proving (1).

Assume that Y is non-singular with respect to W. Then, as we have
stated above, we have dim Ker(¥y) = 6. Since dimmgy = 7 (see Proposi-
tion 7 (2)), it follows that Ker(¥y) C Ad(k)mg, proving (2).

Finally, we assume Y is singular with respect to ¥. Then, we have
dim Ker(¥y) > 6. Since Ker(¥y) C Ad(k)mz and since dimmgy = 7, we
have dim Ker(¥y) = 7 and Ker(¥y) = Ad(k)my. This proves (3). O

Corollary 13 Let ¥ € G,(IN). Let Yp € a+mg (Yp # 0) and Y1 €
my (Y1 #0). Then:

(1) Ker(¥y,) C {Yy € a+ma | (Y], Yo) = 0}. In particular, if Yo is
singular with respect to ¥, then Ker(¥y,) = {Yy € a+my | (Y, Yo) = 0}.
(2) Ker(¥y,) C {Y]{ emy | (Y{, Y1) =0}. In particular, if Y1 is singular
with respect to ¥, then Ker(¥y,) = {Y{ e my | (Y{, Y1) = 0}.

Proof. Let Yp € a+my (Yp # 0). By Proposition 9 (1), we know that there
is an element ky € K satisfying (4.2). Applying Proposition 12 to Yy, we
easily get Ker(Wy,) C {Yj € a+mg | (Y7, Yo) = 0}. Assume that Y is
singular with respect to ¥. Then, by the equality Ker(®y,) = Ad(ko)ma,
we get (1).

The assertion (2) is similarly dealt with. O

Let ¥ € S?m* ® N. A subspace U of m is called singular with respect
to W if each element of U is singular with respect to W.

Proposition 14 Let ¥ € Go(N). Let Y e m (Y #0) and let k € K
satisfy Ad(k)u € RY. Assume that Y is non-singular with respect to W.
Then:

(1) Ker(Wy) is a singular subspace with respect to ¥.
(2) There is an element Y' € Ad(k)mgy satisfying (Y, Y') # 0 and

N =R¥(Y,Y')+ ®yu(m) (orthogonal direct sum), (5.1)
where Y" is an arbitrary non-zero element of Ker(¥y).

Proof. Since Y is non-singular with respect to ¥, we have Ker(¥y) C
Ad(k)my (see Proposition 12). Take a non-zero element Y’ € Ad(k)msy such
that (Y7, Ker(¥y)) = 0. Then, since Y’ ¢ Ker(¥y), we have ®(Y, Y') #
0.
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Let Y € Ker(¥y) (Y” # 0). Then, by the Gauss equation (2.1) we
have

(Y, ", Y], w)
= <‘II(Y/’ Y)a lII(Y”> W)> - <\I’(Y,a W), ‘II(Y”7 Y))) (52)

where W is an arbitrary element of m. Note that the left hand side of (5.2)
vanishes, because

[v', ¥, Y] € [[Ad(k )m2, Ad(k)ms], Ad(k)p]
= Ad(k)[[ma, mg], p] = 0.

We also note that ¥(Y”,Y) = 0, because Y € Ker(¥y). Consequently,
we have (¥(Y',Y), ¥(Y", W)) = 0. This implies that each element of
Uy (m) is orthogonal to W(Y’, Y). Therefore, Ty (m) # N, implying
that Y” is singular with respect to W. Hence, by Proposition 12 (3) we
have dim Wy~ (m) = 9, which proves (5.1). O

The following lemma assures that for each ¥ € G,(IN) there are many
high dimensional singular subspaces with respect to W.

Lemma 15 Let ¥ € G,(IN). Then, there are singular subspaces U and V
with respect to W satisfyingU C a+mg, V Cmy, dimU > 6 anddim V' > 6.

Proof. If a+mgy contains no non-singular element with respect to ¥, then
we can take U = a + my. (Note that dim(a + mg) = 8.) On the contrary,
if a + my contains a non-singular element Yp, then we set U = Ker(¥y,).
Then, we know that U C a + mg, dimU = 6 (see Proposition 12 (2) and
Corollary 13 (1)) and that U is a singular subspace with respect to ¥ (see
Proposition 14 (1)). Similarly, we can select a singular subspace V C my
with dim V' > 6. O

Proposition 16 Let W € G,(N). Let U and V be arbitrary singular
subspaces with respect to ¥ satisfying U C a+mg, V Cmy, dimU > 6 and
dimV > 6. Then there are two vectors A and B € N satisfying:

(1) (A, A)=(B, B) =4(u, p);

(2) ¥ Yo)=(& Y0)A, VYVE€U, VYp € a+my;

(3) T, Y1)=(n,Y1)B, VneV, V¥ € my;

(4) (A, ‘I’Yo(ml)> = (B, ‘I’Yo(ml» =0, VYpe€a+ms.
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Proof. Let £ € U (£ #0). Since £ is singular with respect to ¥, Ker(®,)
coincides with the orthogonal complement of R¢ in a + my (see Corol-
lary 13 (1)). Hence, the equality ¥(£, Yp) = 0 holds for each Yy € a +
mg satisfying (€, Yp) = 0. In particular, we have

W, &)=0, V¢ € €U with (¢, €) =0.

Then, applying the same argument as in the proof of Proposition 9 of [7],
we can prove that there is a vector A € IN satisfying

B, )= A, Vel (5.3)

Let Yy € a + my satisfy (Yp, U) = 0. Then, since (§, Yp) = 0, we have
W€, Yp) =0 and (€, Yp)A = 0. This, together with (5.3), proves (2). The
assertion (3) can be proved in the same way.

We now prove (1). Let &, & € U satisfy (£, &) = 0 and (£, €) =
¢,8)=1.PutX=2Z=¢andY =W = ¢ into the Gauss equation (2.1).
Then, we have

([le, €1, €], €) = (T(&, &), (£, &) — (T(&, &), ¥(¢, ).
Since [, €], €] = 4(u, W' (see (44)), (£, €) = T(¢, &) = A and
W, &) =0, we have (A, A) = 4(u, p). Similarly, by (4.7) we can prove
(B, B) = 4(u, ), proving (1).

Finally, we prove (4). Let Y3 € m; and Y € a+my. Take an element £ €
U satisfying (¢, Yp) = 0 and (&, £) = 1. Such & can exist, because dim U >

6. Put X =72 =¢ Y =Yy and W = Y7 into the Gauss equation (2.1).
Then we have

([l&, Yol, €], Y1) = (T(¢, €), T (Yo, Y1)) — (B(E, Y1), T (Yo, €)).

Since (€, ¥o) = 0, we have (€, Yp) = 0 and [€, Yol, &] = 4(u, )¥p (see
(4.4)). Moreover, since W(&, ) = A and (Yp, Y1) = 0, we have

(A, Ty, (1)) = (¥(§, £), ¥ (Yo, 11))
(®(¢, Y1), (Yo, €)) + 4(u, p)(Yo, Y1)
0.

Since Y7 is an arbitrary element of my, we have (A, ¥y, (m;)) = 0. In a
similar way, the equality (B, Wy, (m1)) = 0 can be proved. O
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Remark 4 As seen in the proof of Lemma 15, singular subspaces U and
V may not be uniquely determined. However, it is noted that the vectors A
and B in Proposition 16 do not depend on the choice of U and V. In fact,
let U’ and V' be different singular subspaces with respect to ¥ satisfying
U Ca+mg and V' C my with dimU’ > 6, dimV’ > 6. Let A’ and B’ be
vectors of IV satisfying (1) ~ (4) of Proposition 16. Then, since dim(a +
my) =dimm; =8, wehave UNU' # 0, VNV’ #0. Take £ e UNTU’ and
n € VNV’ such that (£, £) = (7, n) = 1. Then we have A = (£, £) = A’
and B = ¥(n, n) = B’, showing our assertion.

In the following discussions, we fix an element ¥ € G,(IV), singular
subspaces U, V' and vectors A, B stated in Proposition 16 and prove several
lemmas which are indispensable to the proof of Theorem 11.

Lemma 17 Let( e U, n eV, Yy € a+mp and Y1 € my. Set C =
(A, B) — (u, ). Then C > 0 and:
(1) (Fy(n), ¥y, (1)) = {{(¥(Yo, Y0), B) — (1, 1)(Yo, Yo)} (m, Y1);

Proof. Putting X = Z =Y, Y =Y; and W = 7 into (2.1), we have
([¥o, vi], Yo], n) = (¥ (Yo, %o), (Y3, m)) — (¥ (Yo, 1), T (Y3, Yo)).

Since [[Yo, Y4), Y] = (4, 1) (Yo, Yo)¥i (see (4.5)) and W (Y3, ) = (¥3, n)B,
we easily get (1). Putting Yy = £ € U into (1), we easily have (2). If
we set Y1 =71 € V in (2), we have (W¢(n), We(n)) = C(&, €)(n, n). Since
Ker(¥¢) Nmy = 0 (see Corollary 13 (1)), we have W,(n) # 0 if n # 0.
Consequently, we have C > 0. O

Let Yy € a-+my. Let €0 be a non-zero element of U satisfying (£, Yp) =
0. (Such &0 exists, because dimU > 6.) We define a linear mapping
Oy, 0: V — N by

1
Oy, e0(n) = Py, (n) + W‘I’fo(ﬂfoa nl, Yo]), nev.
Then we have
Lemma 18 <A, @Yo,ﬁo (V)> = <‘I’£O (V), ®Yo,§0 (V)) = 0.

Proof. 'We first note that [[¢%, 7], Yo] € my for n € V and note that
Oy, ,e0(V) C Py, (my) + ¥eo(my). By Proposition 16 (4), we have
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(A, Tyy(my1)) = (A, Weo(my)) = 0 and hence (A, Oy, (o(V)) = 0.
Let n,” € V. Then by putting X =Yy, Y =7/, Z =nand W = £9
into the Gauss equation (2.1), we have

([[¥, 7], m], €°) = (@ (Yo, n), ¥(n', £2)) — (¥ (Yp, £9), ®(, n))
= (Wy,(n), Teo(')) — (A, B)(Yg, ) (7, m).

Since (Yp, £°) = 0, we have

(Tyy (n), eo(n')) = ([[Yo, 7], m], £°). (5.4)
On the other hand, we have

(Teo ([1€° 1], Vo)), Teo(n)) = C(£°, €%)([[°, ], Y0), 7)
(see Lemma 17 (2)). Therefore,

(Oyy,e0(n), Teo(n'))

~ () + 5z )\Pgo(ng L Y], o))
([Ym 1, ], €°) + ([I€° nl, Yo], ')
~([%o, 71, [€% 7)) + ([¢°, 77] [Yo,n])
=0.
This completes the proof. O

We can further show

Lemma 19 Letn € V. Assume that [[EO, nl, Yb] eV. Then:
©yye0(n)
_ 3 (1 1)
= |, %), B - s e, 0 {1+ 2 ). (59)

Proof. Set nf/ = [[50, nl, Yo}. By Lemma 18, Lemma 17 and the equality
(5.4) we have

(Oy,,0(n), Oy e0(n))

1
= <‘I’Yo(?7) + C(go, é—o)
= (¥y,(n), Oy, e0(n))

Weo(n'), Oy, o (77)>
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= (Ty, (1), Ty (m)) + 52?01‘?5”“(”)’ Teo (1))
= {(¥ (Yo, Yo), B) — (i, 1)(Yo, Yo)}(n, n)

1 ,
+ W([[Yo, 7'l n], €°).

Since [£°, n] € #1, by (4.8) and (4.5) we have
([[Yo, 0, n], £°) =—([¥o, 7], [€°, n])

= (Yo, [[€% nl, 7'])
= (Yo, [1€% =), [1€°, ), Yo]])

—(u, w)([°, 7], €°, m)) (Yo, Yo)
= (, w)([£° 1€°, M), m) (%%, Yo)
= —(u, w)*(€° £%)(n, m)(Yo, Yo).

Therefore, we obtain (5.5). O

i

Lemma 20 Let Yy € a+my. Then:

1) (¥(Yo, Yo), B) = (u, u)(Yo, Yo){1 + (1, )/C}.

(2) Let €% be a mon-zero element of U satisfying (Y, £€9) = 0. Then,
Oy, e0(n) =0, i.e., the equality

holds for each n € V satisfying [[€°, n}, Yo] € V.

Proof. We first show that there is a non-zero element n° € V satisfying
Oy, ¢0(n°) = 0and [[¢°, nV], Yg] € V. Let D be the orthogonal complement
of RA + W0 (V) in N and let V' be the orthogonal complement of V' in
m;. By Lemma 18, we easily have @y, c0(V) C D. Therefore, to obtain
nY satisfying the above condition, it suffices to find a non-zero solution 1 =
n° € V of the system of linear homogeneous equations

(®yq e0(m), D) = ([1% 7], Yo], V') =0. (5.7)

Since Ker(¥q) Nm; = 0 (see Corollaryl3 (1)) and (A, ¥eo(my)) =0 (see
Proposition 16 (4)), we have dim(RA 4+ o (V)) = 1 +dimV > 7. (Recall
that we are assuming V' C m; and dimV > 6.) Hence, we have dim D <
dim N — 7 = 3. Moreover, we have dim V' =8 — dim V' < 2. Consequently,
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the rank of the system (5.7) is less than or equal to 5. Therefore, we can find
a non-zero solution n° € V of (5.7). Putting n = n° into (5.5), we obtain
the equality (1). Further, putting (1) into (5.5), we have Oy, ¢o(n) = 0 for
any 1 € V satisfying [[{0, nl, YO} ev. O

Lemma 21 The vectors A and B are linearly independent and (A, B) =
2, 1)y C = (b ).

Proof. Let £ € U with (£, §) = 1. Since ¥(£, &) = A (see (5.3)), by
putting Yp = £ into the equality in Lemma 20 (1), we easily have (A, B) =
(, {1+ (u, 1)/C}. Since C = (A, B) — (u, u), it immediately follows
that C% = (u, p)%. Since C' > 0, we get C' = (u, ) and hence (A, B) =
2(u, p). This, together with Proposition 16 (1), proves that A and B are
linearly independent. O

These being prepared, we show Theorem 11.

Proof of Theorem 11. First we show that u is singular with respect to
any element ¥ € G,(IN). Suppose that there is an element ¥ € G,(N)
such that p is non-singular with respect to Wo. Then, Ker((®y),) is a
singular subspace with respect to Wq and it satisfies dim Ker((®g),) = 6
and Ker((¥y),) C my (see Proposition 12 and Proposition 14).

Now, set ¥ = ¥y and U = Ker((¥y),) in Proposition 16. Let A,
B be the vectors of IN satisfying (1)—(4) of Proposition 16. Let £ €
U = Ker((¥y),) with £ # 0. First, we show B € (¥p)e(m). In fact,
there is a non-zero element Y € my satisfying Wo(u, YY) #0and N =
RUo(u, YY) + (¥o)e(m) (orthogonal direct sum) (see Proposition 14). By
Lemma 20 (1) and by the relation

Wolu, Y9) = 5 (Wolta 9, -+ ¥5) = Wolu, 1) - %o, ¥9) ),
we easily have (¥o(u, Y7), B) = 0, which proves B € (¥y)s(m). Since
(®o)¢(m) = RA+(To)e(my) (orthogonal direct sum) and (B, (¥g)e(my)) =
0 (see Proposition 16 (2), (4)), we have B € RA. This contradicts Lemma
21. Accordingly, we can conclude that u is singular with respect to any
element ¥ € G,(IN).

Now we show that any element of m is singular with respect to any
¥ € G,(IN). Let Y be a non-zero element of m. Take an element k € K
such that Ad(k)u € RY and define &' € S?m* ® N by
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(Y, Y") = W(Ad(k)Y’, Ad(k)Y"), Y, Y"em.

Then, it is easily seen that ¥’ € G,(IN). Applying the arguments devel-
oped above, we know that u is also singular with respect to ¥’. Note that
T, (m) = @ pq(0),(Ad(k)m) = Uy (m). Then, since W), (m) # N, we have
Py (m) # N, implying that Y is singular with respect to W.

Accordingly, in Proposition 16 and in the discussion after it, we may
allow to put U = a +my and V = my. Therefore, by Proposition 16 and
Lemma 21, we get (1) of Theorem 11. Further, putting Yy = Y5 € my,
€% = p and = Y1 into (5.6), we get (2) of Theorem 11. The assertion (3)
of Theorem 11 follows from Lemma 17 (2) and Lemma 21. This completes
the proof of the theorem. O

6. Proof of Theorem 10

Let {E; (1 < ¢ < 8)} be an orthonormal basis of m;. (Note that
dimm; = 8.) Let ¥ € G,(IV) and let A, B be the vectors of N stated in
Theorem 11. We define vectors {F; (1 < ¢ < 10)} of N by setting F; =
(p, Bg)/(p, p) (1 <6 <8), Fg = (A+B)/2v/3|u and F1o = (A-B)/2|p|.
We now show that {F; (1 <4 < 10)} forms an orthonormal basis of IN. By
Theorem 11 (3) we have (F;, F;) = 6;; (1 <4, j < 8), where &;; denotes
Kronecker’s delta. Moreover, since (A, F;) = (B, F;) =0 (1 <4 < 8) (see
Theorem 11 (1d)), we have (Fg, F;) = (F109, F;) = 0 (1 <4 < 8). The
equalities (Fg, Fg) = (F19, F19) = 1 and (Fy, F19) = 0 immediately follow
from Theorem 11 (1a).

Now let ¥’ be another element of G,(IV). Let A’ and B’ be the vectors
stated in Theorem 11 for ¥’. As in the case of ¥ we can also define an
orthonormal basis {F; (1 < i < 10)} of N. Then, there is an element A €
O(10) satisfying F;, = hF; (1 <14 < 10). Here we note that A’ = hA, B’ =
hB and ¥'(u, E;) = h®(u, E;) (1 <i<8). Set ® = &' —h¥ € $?m*® N.
Then, by Theorem 11 (1) we have

®(a+mg, a+mp) = ®(my, my) = P(a, my) = 0.
By the fact [[u, mq], my] C my and Theorem 11 (2), we have
@(m‘?? ml) - @(u‘? [[N’? ml]a m2]) - @(aa ml) = 07

which proves that ®(mg, m;) = 0. Therefore, we have ® = 0, i.e., ¥ = AW
This implies that the Gaussian variety G,(IN) is EOS. This completes the
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proof of Theorem 10. O
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Rigidity of the canonical isometric imbedding
of the quaternion projective plane P2(H)

Yoshio AGAOKA and Eiji KANEDA
(Received April 12, 2004)

Abstract. In this paper, we investigate isometric immersions of P2(H) into R and
prove that the canonical isometric imbedding fy of P2(H) into R, which is defined
in Kobayashi [11], is rigid in the following strongest sense: Any isometric immersion f;
of a connected open set U (C P2(H)) into R coincides with f; up to a euclidean
transformation of R, i.e., there is a euclidean transformation a of R satisfying f; =
afgon U.

Key words: Curvature invariant, isometric immersion, quaternion projective plane, rigid-
ity, root space decomposition.

1. Introduction

In our previous paper [8], we proved the rigidity of the canonical isomet-
ric imbedding of the Cayley projective plane P?(Cay). The purpose of this
paper is to investigate a similar problem for (local) isometric immersions of
the quaternion projective plane P2(H). As we have proved in [7], any open
set of the quaternion projective plane P2(H) cannot be isometrically im-
mersed into R'®. On the other hand, there is an isometric immersion foof
P2(H) into the euclidean space R, which is called the canonical isometric
imbedding of P?(H) (see Kobayashi [11]). Therefore, it follows that R
is the least dimensional euclidean space into which P?(H) can be (locally)
isometrically immersed.

In the present paper, we will show that the canonical isometric imbed-
ding fq is rigid in the following strongest sense:

Theorem 1 Let fq be the canonical isometric imbedding of P?(H) into
the euclidean space R*. Then, for any isometric immersion f1 defined
on a connected open set U of P?(H) into R, there exists a euclidean
transformation a of R* satisfying fi=afy onU.

The proof of this theorem will be given by solving the Gauss equation

2000 Mathematics Subject Classification : 17B20, 53B25, 53C24, 53C35.

89



120 Y. Agaoka and E. Kaneda

associated with the isometric imbeddings (immersions) of P?(H) into R
in the same line of [8] (see Theorem 7). We use the same notations and
terminology as those of the previous papers [6], [7] and [8].

2. . The quaternion projective plane P?(H)

In this section we review the structure of the quaternion projective plane
P2(H) and prepare several formulas concerning the bracket operation.

As is well-known, P?(H) can be represented by P?(H) = G/K, where
G = Sp(3) and K = Sp(2) x Sp(1). Let g (resp. £) be the Lie algebra
of G (resp. K) and let g = £ + m be the canonical decomposition of g
associated with the symmetric pair (G, K). We denote by (, ) the inner
product of g given by the (—1)-multiple of the Killing form of g. As usual,
we can identify m with the tangent space T,(G/K) at the origin o = {K}.
We assume that the G-invariant Riemannian metric g of G/K satisfies

gO(X’Y)z(X,Y)a X,YEm.
Then, it is well-known that at the origin o the Riemannian curvature ten-
sor R of type (1, 3) is given by

RO(X,Y)Zz—[[X,Y],Z}, VX,Y, Z €em.

We now take a maximal abelian subspace a of m and fix it in the follow-
ing discussions. We note that since rank(P?(H)) = 1, we have dima = 1.

For each element A € a we define two subspaces £()\) (C €) and m(}\)
(Cm) by

¢ ={X et|[8,[A,X]] =-(\ B’X, VHea,
m(\) = {Y em | [ [B,Y]] =—(\ B, VHeca}.

Let X be the set of all non-zero restricted roots. (An element \ € a is called
a restricted root if m(A) # 0.) As is known, there is a restricted root u such
that © = {#£pu,+2u}. We take and fix such a restricted root . For each
integer 1 we set & = £(||un), m; = m(|ip) (7] < 2), & =m; =0 (7] > 2).
Then, we have mg = a = Ru and

t=1¥8+ ¥ + £ (orthogonal direct sum),

m=mg-+m; +myg (orthogonal direct sum).
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The dimensions of the factors are given by dim€y = 6, dim#; = dimm; = 4
and dim¥; = dimmg = 3 (precisely, see [7]).

We now show several formulas concerning the bracket operation of g.
By the definition of the subspaces ¢, and m; we easily have

[fi,éj} Céi-}-j—l—éi—j, [mi,mj} Cfi+j+éi_j, [Ei,mj} Cmiy+m;_;.
(2.1)
Moreover, we have

Proposition 2 Let Yy, Yy € a+mg, Y1, Y] € my. Then:

Y5, [Yi, Y]] = = (14 36:5) (1, )){ (Y2, YO) Y] — (Y2, ;) Y3},
(2'7.7‘:0’ 1)7 (22>

Y, [V, Y]+ Y, [V, Y5 )] = —2( ) (Y3, Y)Y, (4,5=0,1, z‘(#j)i
2.3

[.Y;) [Kaxl:’}:_(”a“)(}/;)yb)){la v‘Xrl egl (7’:07 1)’ (24)
where 6;; denotes the Kronecker delta.

Proof. We first prove (2.2). Assume that ¢ =jand ¥; #0. Set Y =Y, -
(Y!,Y:)/(Y:,Y;) - Y;. Then, we know that (Y;,Y)”) = 0 and that Y/” € a+my
if i =0and Y € m if i = 1. Hence, by Proposition 10 of [7], we have
[v;, [¥5, Y]] = —4(u, 0) (Y3, Y2)Y;". Therefore, we can easily obtain (2.2) in
the case ¢ = j. In the case i # j, (2.2) directly follows from Proposition 10
of [7].

We next prove (2.3). Since i # j, it follows that (Y;,Y;) = (Y/,Y;) =0.
Hence, by (2.2) we have [Y;+Y/, [Yi+Y/,Y;]] = —(u, p)(Yi+Y/, Y; +Y])Y;.
This, together with [V}, [¥;, Y]] = —(u, 1)(¥;, Y2)Y; and [Y7, [Y/,Y;]] =
=, ) (Y], Y{)Yj, proves (2.3).

We finally prove (2.4). We note that [Y1, a4+ mg] = ¥ holds for any
Y1 € my (# 0). In fact, it is easy to see [Yi,a+my] C & (see (2.1)).
Moreover, the map & + mg > Y — [¥3,Y]] € & is bijective, because
[Y1,Y)] # 0if Y] € a+my (Y] # 0) (recall that rank(P2(H)) = 1) and
because dim(a + my) = dim #;. Let X7 € £;. Then, by [Yl, a+ mg] = £ we
can take an element Y € a -+ mg such that [Yl,YD’] = X1. Now, applying
ad Y1 to the equality [Y1, [V1,Y]]] = —(u, u) (Y1, Y1)Y] (see (2.2)), we have
(Y1, [Y1,X1]] = —(u, #)(Y1, Y1) X1, proving (2.4) for the case ¢ = 1. Simi-
larly, we can prove (2.4) for the case ¢ = 0. U

91



122 Y. Agaoka and E. Kaneda

Let Yp, Yj € a + my. Define a linear mapping L(Yy, YY) of my to m by
L(Ybaybl)yl = [Yb) [3/0,7}/1]]7 Yl €mg.
Then, we have

Proposition 3 Let Yy, Yy € a4+ my. Then:
(1) L(Yo,Yy)m1 C my. The transpose of L(Yy, YY) with respect to (,) is
given by L(VE, Ys), ive., *L(Ye, YY) = L(¥{, o).
(2) Let 1, be the identity map of my. Then:
(26) L(Yo, Y3) + L(Yg, Yo) = ~2(ur 1) (Y5, ¥2) Lo
(26) L(Yo, Y3) LY o) = (1t )2 (¥o, Vo) (Y4, ¥3) Loy

Proof. The assertion (1) is clear from (2.1) and the ad g-invariance of
(, ) Let Y3 € my. Since [¥p,Y1] € &1, we have [Y{, [Y], [Yo,V1]]] =
—(p, ) (Y3, Y3) [Yo, Y1] (see (2.4)). Hence, by applying ad Yp to this equal-
ity, we easily have (2b). The equality (2a) directly follows from (2.3). O

Here, we recall the notion of pseudo-abelian subspace of m. Let @ be
a subspace of m. @ is called pseudo-abelian if it satisfies [Q, Q} C ¥ (see [6]).

Proposition 4 (1) Any subspace @ of ms is pseudo-abelian.
(2) Let Q be a pseudo-abelian subspace satisfying Q ¢ mo. Then, dim Q <
2.

Accordingly, the inequality dim Q < 3 holds for any pseudo-abelian sub-
space @), and the equality holds when and only when @ = ma.

Proof. Since [mg, mg] C ¥ (see (2.1)), it follows that any subspace of my
is pseudo-abelian. On the contrary, we already proved in Lemma 5.4 of [6]
that for a pseudo-abelian subspace @) with @ ¢ mg it holds dim@Q < 1 +
n(w), where n(u) means the local pseudo-nullity of the restricted root pu.
(For the definition of the local pseudo-nullity, see §3 of [6].) In the case
G/K = P%(H), we have n(u) = 1 (see Theorem 3.2 and Table 3 of [6]).
Hence, we have dim @ < 2. O

For later use, we obtain the normal form of a 2-dimensional pseudo-
abelian subspace @ with @ ¢ ms.

Proposition 5 Let & andmn; be elements of my satisfying (€1,&1) =2(u, 1),
m # 0 and (&1,m) = 0. Then, the 2-dimensional subspace @ (C m) defined

by
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Q= R(M+51)+R<m+m (1, [61,971]]> (2.5)

is pseudo-abelian and Q ¢ ma.
Conversely, if Q is a pseudo-abelian subspace of m with @ ¢ ms and
dim Q = 2, then Q can be written in the form (2.5) by utilizing suitable ele-

ments §&1 and m € my satisfying (€1,&1) = 2(p, 1), m # 0 and (&1,m) = 0.

Proof. Let &1 and 71 be elements of m; satisfying (£1,&1) = 2(u, p), m # 0
and (€1,m) = 0. Then, the subspace @ defined by (2.5) satisfies @ ¢ my and
dim Q = 2. Set mz = (1/4(u, 1)?) [, [€1,m1]]. Then, it is easily verified that
12 € mo. We now show that @) is pseudo-abelian. By (2.3) and (&1,m1) = 0,
we have [¢1, [m, p]] = —[m, [€1,1]]. Hence, by the Jacobi identity we have

[, [61,m]] = [[w, &), m]+ [, [wm]] = —2[&, [m, 6]

Consequently, we have 79 = —(1/2(u, 1)?) [51, [m, /J:H Note that [771, /.L:I €
£;. Then, by the formula (2.4) and the assumption (&1,&1) = 2(u, 1) we
have

1
2(p, p)?

Moreover, since [%772] + [51, 771] € £ and since

[,U., [/’l’7 772} + [517 771” = —4(:“'7 ,Ll,)2772+ [,U;, [517 771]] = 0,

it follows that [,u, 772] + [51, 771] € ¥. (Note that an element X € £ belongs
to o if and only if {4, X| = 0.) By these relations we have

[:U’+ 617771 +772:l = [#’7 771:| + [517772} + [IU‘? 772] + [51)771]
=0+ [/'1’7772:[ + [617771] € {o.

Since @ = R(u + &1) + R(m + n2), this implies that @ is a pseudo-abelian
subspace.

We next prove the converse. Let () be a pseudo-abelian subspace with
@ ¢ my and dim @ = 2. Then, viewing the proof of Lemma 5.4 of [6], we
know that @ Nmz = 0 and dim(Q N (my3 +m2)) < n(u) = 1. Consequently,
we have Q) ¢ mj +my, because dim @ = 2. Therefore, there is a basis {£,n}
of ) written in the form & = u + &1 + &, 7 = 11 + 12, where &1, M € my,
€2, M2 € my. Here, we note that n; # 0, because @ Nmy = 0. Subtracting
a constant multiple of n from & if necessary, we may assume that (£1,7:) = 0.

(sl,&i (11, ] = =[]

[&1,m2] = — €1, [&, [m,p]]] =
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Since

I:ga 77:' = [tu’+£2a 771] + [617 772] + [/’L—}_Sz: 772] + [617 'r/l] € E0

and since [u + &2,m] + [£1,7m2) € H1, [+ &,m2) + [é1,m] € o+t and
[52, 772} € %o, it follows that

[+ Eo,m) + [€1,m2] =0, (2.6)

[, m2] + [€1,m] € %o (2.7)

Applying ad p to (2.7), we have my = (1/4(u, u)?)[p, [1,m]]. By this
equality and the assumption (§1,71) = 0, we can deduce [51,772] =

((1,&1)/2(p, 1)) (71, 1] (see the arguments stated above). Putting this into
(2.6), we have

Kl_ ;g(f;i)#%z,m} =0.

Since 71 # 0 and rank(P2(H)) = 1, we have (1 — (&,&1)/2(u, 1)1 +
€ = 0. This proves (£1,€1) = 2(p, 1) and & = 0, completing the proof of
the converse. O

3. The Gauss equation

Let N be a euclidean vector space, i.e., IN is a vector space over R
endowed with an inner product (, ). Let S?m*® N be the space of N-valued
symmetric bilinear forms on m. We call the following equation on ¥ €
S?m* @ N the Gauss equation associated with IV

([[x,Y), 2], W) = (®(X, 2), 0 (Y, W))~(¥(X, W), ¥(Y, 2)),
(3.1)
where X, Y, Z, W € m. We denote by G(P?(H), N) the set of all solutions
of (3.1), which is called the Gaussian variety associated with IN.
As in the case of P?(Cay) (Theorem 11 of [8]), we can prove the
following

Theorem 6 Let N be a euclidean vector space with dim N = 6. Let ¥ €
S2m*®@N be a solution of the Gauss equation (3.1), i.e., ¥ € G(P*(H), N).
Then:

(1) There are linearly independent vectors A and B € N satisfying
(i) (A A) = (B,B) =4(u, ) and (A, B) = 2(u, p);
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(i) ®,Yy) = (Y0,Y5)A, VYp, Yy € a+my;
(i) (Y] =(M,Y)B, W, Y] em;
(lV) <A'7 III(,U,,ml)> = <B7 ‘II(ILLa ml)> = 0.

1
(2) \I’(YLYZ) = - QT(M)L(:U‘aYVQ)le); VYi € my, v}fQ € my.

(1, 1)
(3) (W(p, Y1), ¥ (1, YY) = (, w)(Y1,Y]), V¥, Y] €emy.

Let O(IN) be the orthogonal transformation group of N. We define an
action of O(IV) on S?m* ® N by

(PE)(X,Y) = h(¥(X,Y)),

where ¥ € S?m* @ N, h € O(N). It is easily seen that G(P?(H), N) is
invariant tinder this action, i.e., hG(P%(H),N) = G(P?(H),N) for any
h € O(N). We say that the Gaussian variety G(P?(H), N) is EOS if
G(P?(H),N) # 0 and if G(P%(H), IN) is consisting of essentially one solu-
tion, i.e., for any solutions ¥ and W’ € G(P?(H), N), there is an element
h € O(N) satisfying ¥’ = h¥ (see [8]).

By Theorem 6 we can show

Theorem 7 Let N be a euclidean vector space with dim N = 6. Then,
G(P%(H),N) is EOS.

Proof. The proof of this theorem is quite similar to that of Theorem 10
in [8].

First we note that G(P?(H), N) # 0, because the second fundamental
form of the canonical isometric imbedding f, at the origin 0o € P%(H)
satisfies (3.1).

Let {E; (1 < i < 4)} be an orthonormal basis of m;. (Note that
dimm; = 4.) Let ¥ € G(P?(H), N) and let A, B be the vectors of IV stated
in Theorem 6. We define vectors {F; (1 < i < 6)} of N by setting F; =
(1, B5) /(o) (1 < i < 4), Fs = (A+B)/2v/3 |uf and Fg = (A — B)/2ul.
By Theorem 6 we can show that {F; (1 < ¢ < 6)} forms an orthonormal
basis of N. Now let ¥’ be another element of G(P?(H), N). Let A’ and
B’ be the vectors stated in Theorem 6 for ¥’. As in the case of ¥ we can
also define an orthonormal basis {F; (1 < ¢ < 6)} of IN. Then, there is
an element h € O(6) satisfying F, = hF; (1 < i < 6). Here, we note that
A’ = hA, B = AB and ¥'(u, E;) = h¥(u, E;) (1 < i < 4). Set ® =
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U’ — h¥ € $?m* ® N. Then, by Theorem 6 (1) we have
®(a+my, a+mg) = ®(my,my) = ®(a,m;) = 0.

By Theorem 6 (2) and by the fact L(u, mo)m; C my we have
®(mg,m1) C ®(u, L(p, mo)my) C B(a,my) =0,

which proves ®(mg,m;) = 0. Therefore, we have ® =0, i.e., ¥ = AT,
completing the proof of Theorem 7. O

By Theorem 7 we know that P?(H) is formally rigid in codimension 6
in the sense of Agaoka-Kaneda [8]. Therefore, Theorem 1 can be obtained
by Theorem 7 and the rigidity theorem (Theorem 5 of [8]).

Before proceeding to the proof of Theorem 6, we make several prepa-
rations.

Let N be a euclidean vector space. In what follows we assume dim N =
6. Let S?m* ® IN be the space of N-valued symmetric bilinear forms on m.
Let ¥ € $?m* @ N and Y € m. We define a linear map Py of m to N by

Ty:m3Y — ¥(Y,Y') €N,

and denote by Ker(Wy ) the kernel of ¥y. We call an element Y € m singu-
lar (resp. non-singular) with respect to ¥ if ¥y (m) # N (resp. ¥y (m) =

Let ¥ € G(P?(H),N) and let Y € m (Y # 0). Take an element k € K
such that Ad(k)u € RY. Then, as shown in the proof of Proposition 5
of [7], the subspace Qy = Ad(k)~! Ker(¥y) is a pseudo-abelian subspace
of m.

Proposition 8 Let ¥ € G(P?(H),N) and let Y € m (Y #0). Then:

(1) dimKer(¥y) = 2 or 3. Moreover, Y is non-singular (resp. singular)
with respect to W if and only if dim Ker(Wy) = 2 (resp. dim Ker(¥y) = 3).
(2) Let k € K satisfy Ad(k)p € RY. Then, Ker(¥y) C Ad(k)my. Conse-
quently, Y is non-singular (resp. singular) with respect to W if and only if
Ker(¥y) C Ad(k)my (resp. Ker(¥y) = Ad(k)ms).

Remark 1 Recall that in the case of the Cayley projective plane P?(Cay)
the inclusion Ker(¥y) C Ad(k)my in Proposition 8 (2) can be proved by
a simple discussion. There, the inclusion automatically follows from the
fact that any high-dimensional pseudo-abelian subspace must be contained
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in my (see Propositions 8 and 12 of [8]). In contrast, it is not a simple task
to show the inclusion Ker(¥y) C Ad(k)m; in our case P2(H). We will
prove this inclusion by making use of the normal form of the pseudo-abelian
subspaces not contained in my (see Proposition 5).

Proof of Proposition 8. Let Y €m (Y # 0). Set Qy =Ad(k)"! Ker(¥y),
where k € K is an element satisfying Ad(k)u € RY. Since Qy is pseudo-
abelian, it follows that dim@Qy <3 (see Proposition 4). Hence,
dim Ker(¥y) < 3. On the other hand, since dim N = 6 and dimm = 8, it
follows that dim Ker(®y) > 2. Therefore, Y is non-singular (resp. singular)
with respect to W if and only if dim Ker(¥y) = 2 (resp. dim Ker(¥y) = 3).
This proves (1).

To show the first statement of (2) it suffices to prove Qy C my. N oW,
let us suppose the contrary, i.e., Qy ¢ my. Then, we have dim QRQy = 2
(see (1) and Proposition 4 (2)). Hence, there is a basis {¢,7} of Qy written
in the form & = p+ &, n = m + (1/4(u, 1)?)[p, [&1,m]], where £ and
n1 are elements of my satisfying (£1,€1) = 2(u, 1), m # 0, (€1,71) = 0 (see
Proposition 5). Let {¢{,(?} be a basis of the orthogonal complement of
RE + Ry inmy. Set ¢* = ¢+ (1/4(u, p1)?) [u, [51,Cfﬂ (t =1, 2). Since
[u, [51, C{H € mg (i =1, 2), we know that the vectors ¢! and ¢? are linearly
independent. More strongly, they are linearly independent modulo Qy,
ie, Qv N (R¢ + R¢?) = 0. Moreover, by Proposition 5 we know that
the subspace @* = R¢ + R(? (¢ = 1, 2) is also pseudo-abelian, because
(€1,¢t) = 0. Consequently, we have [[& ¢ u]=0(G=1,2).

Set X =Ad(k)¢, Z*=Ad(k)¢* (i=1, 2). Then, we have X € Ker(¥y)
(X #0), Ker(¥y) N (RZ' + RZ?) = 0 and [[X,Z],Y] =0 (i = 1, 2).
By the Gauss equation (3.1) we have

0= ([[x.27,v],w)
=(¥(X,Y), ¥(Z",W)) — (¥(X, W), ®(Z.Y)), (i=1,2),

where W is an arbitrary element of m. Since ¥y (X) = 0, we obtain by this
equality (P x (W), ¥(Z5,Y)) = 0, ie., (Ox(m), T(Z,Y)) =0 (i=1,2).
We note that the vectors ¥(Z1,Y) and ¥(Z2,Y) are linearly independent,
because Ker(®y) N (RZ! + RZ?) = 0. Hence, we have dim Px(m) <
dim N — 2 = 4, implying dim Ker(¥x) > 4. This contradicts the asser-
tion (1). Thus, we have Qy C my, proving the first statement of (2). The
last statement of (2) is now clear. 3
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As a corollary of Proposition 8 we obtain

Proposition 9 Let ¥ € G(P?(H),N). Then:

(1) Let Yo € a+my (Yy # 0). Then, Ker(Ty,) C {£ € a+my]|(§,Y0) =
0}. If Yo is singular with respect to ¥, then Ker(Wy,) = {£ € a + my]|
(£, Ys) = 0}.

(2) Let Y1 € my (Y1 # 0). Then, Ker(®y;) C {n € my|(n,Y1) = 0}. If
Yy is singular with respect to W, then Ker(¥y,) = {n € my | (n,Y1) = 0}.

Proof. Let Yy € a+mg (Yo # 0). Then, we can take an element ky € K
such that Ad(ko)u € RYp and Ad(ko)(me) = {€ € a+my|(£,Y0) = 0} (see
Proposition 7 of [7]). This proves (1). Similarly, for Y7 € my (Y1 # 0), we
can easily show (2). O

Let ¥ €°5%m* @ N. We call a subspace U of m singular with respect
to W if each element of U is singular with respect to W.

Proposition 10 Let ¥ € G(P%(H),N). Assume that Y € m (Y # 0) is
non-singular with respect to W. Then, there is a non-zero vector E € N
such that

N = RE+W¥¢(m) (orthogonal direct sum) (3.2)

holds for any § € Ker(Wy) (£ # 0). Consequently, Ker(¥y) is a singular
subspace with respect to W.

Proof. Take an element k£ € K such that Ad(k)y € RY. Then, since
Y is non-singular, we have Ker(¥y) C Ad(k)ms. Take a non-zero element
satisfying Y’ € Ad(k)my and YV’ ¢ Ker(¥y) and set E = ¥(Y,Y’) (£ 0).
Let £ € Ker(¥y) (£ #0). Then, by the Gauss equation (3.1) we have

([[6, Y], Y], W) = (&, Y), B(Y,W))—(T(, W), ¥ (Y',Y)),

where W is an arbitrary element of m. Here, we note that H{ , Y’] , Y] =0,
because [[E, Y’],Y] € Ad(k) [[mg,mz} ) ,u] = 0. Since ¥(£,Y) = 0, we
obtain by the above equality (E, ® (£, W)) = 0. This shows (E, ®¢(m)) = 0
and hence W¢(m) # IN. Consequently, ¢ is singular with respect to ¥. Since
dim Ker(¥,) = 3 (see Proposition 8), we have dim ¥¢(m) = 5, which proves
the decomposition (3.2). O
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4. Proof of Theorem 6

In this section, with the preparations in the previous sections, we will
prove Theorem 6. We first show

Proposition 11 Let ¥ € G(P?(H),N). Then, there are singular sub-
spaces U (C a+my) and V (C my) with respect to ¥ satisfying dimU > 2
and dimV > 2.

Proof. If a+ msg contains no non-singular element with respect to ¥, then
set U = a+mg. On the contrary, if there is a non-singular element Yy € a+
mg, then set U = Ker(Py;,). In this case we know that dimU =2, U C a+
mg and that U is a singular subspace with respect to ¥ (see Proposition 8,
Proposition 9 and Proposition 10).

Similarly, we can show that there is a singular subspace V' of m; with
respect to W satisfying the desired properties. O

Proposition 12 Let ¥ € G(P?(H),N). Let U (C a+mg) and V (C my)
be singular subspaces with respect to W satisfying dimU > 2 and dimV > 2.
Then, there are vectors A, B € N such that:
(1) (A, A) = (B, B) = 4(y, ).
(2) Let £ €U andn € V. Then:
(2(1,) ‘P(&,Yb) = (f,Yb)A, Yy € a+my;
(26) III('U)}II) = (7771/1)B> VYl € my.
(3) Let Yo € a+mg and Y1 € my. Then:
(3a) (A, ¥y, (m)) = (B, ¥y, (m1)) =0;
(3b) (A, Ty (a+mg)) = (B, ¥y (a+mp))=0.
(4) Let £ € U (£#0) andn eV (n#0). Then:
(4a) We(m) = RA + ®¢(m;) (orthogonal direct sum);
(4b) ¥,(m)=RB+ ¥, (a+my) (orthogonal direct sum,).
(5) Let Yo € a+mg and Y1 € my. Then:
(5a) (¥(Yo,Yo),A) = 4(u, u)(Yo, Yo);
(50) (®(Y1,Y1),B) = 4(p, p)(¥1, Y1).
(6) Let E €U, n eV, Yy a+mg and Y1 € my. Assume that (£,Yp) =
(n,Y1) =0. Then:
(62) (T(Yp,Ys), e(m)) =0;
(65) (W(¥i,Y), Wy(a+ma) = 0.

Proof. The assertions (1), (2) and (3) can be proved in the same manner
as in the proof of Proposition 16 of [8]. Hence, we omit their proofs.
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Let £ €U (£ #0). By (2a) we easily get ¥¢(a +ms) = RA and hence
Ye(m) = RA + We(my). Since (A, ¥e(m1)) = 0 (see (3a)), we have the
decomposition (4a). Similarly, we can show (4b).

The assertions (5a) and (6a) are proved as follows: Let Yy € a + my.
Take £ € U (£ # 0) such that (£,Yp) = 0. Then, we have [[Yo,ﬁ],l’b] =
4(p, 1) (Y0, Y0)€ (see (2.2)) and ¥(,Y)) = 0 (see (2a)). By the Gauss
equation (3.1) we have

([[¥o, €], %0],€) = (B (¥, %0), (£, €)) — (¥ (¥o,8), T(£, Vo)),
([[¥o,€], ¥0], YY) = (¥ (Y0, Y0), ¥ (£, 7)) — (¥ (Yo, YY), ®(£, Vo)),

where Y] is an arbitrary element of m;. By these equalities we have
(®(Y0,Y0), A) = 4(, 4)(Yo, Yo) and (¥ (¥, o), ¥ (&, 7)) = 0. Therefore,
we obtain (5a) and (6a). The assertions (5b) and (6b) can be proved in
a similar way. O

Remark 2 As seen in the proof of Proposition 11, singular subspaces U
and V may not be uniquely determined. However, the vectors A and B in
Proposition 8 do not depend on the choice of singular subspaces U and V,
which will be clarified at the last part of this section (see Lemma 20).

In the following argument, we take and fix an element ¥ € G(P?(H), N).
We denote by U and V singular subspaces with respect to ¥ satisfying U
(Ca+mg), V (Cmy), dmU > 2 and dimV > 2. We also denote by A, B
the vectors of IV obtained by applying Proposition 12 to the pair of singular
subspaces U and V.

Lemma 13 (1) Let Yp € a+mgy. Then:

<‘IIY0(Y—1)>‘IIYO(YY)>
= (¥ (Y0, %), (Y1, Y7)) — (1, 1) (Yo, Y0) (Y1, YY), VY3, Y] € my.

(2) Let Yy € a+my and € € U satisfy (€,Yy) = 0. Then:
(Ty, (Y1), e(Y])) = (L(Y0, )1, YY), WY1, ¥ €my.

Proof. Putting X =Y, Y =Y1, Z =Yy, W =Y/ into (3.1), we have
([[¥o, 1], Y], 1) = (¥ (o, Yo), ® (Y1, Y1)~ (¥ (Yo, ¥7), ¥ (V3, Vo))

Since [Yp, [Y0,Y1]] = —(u, 1) (Yo, Y0)Y1 (see (2.2)), we easily get (1).
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Similarly, putting X =¢§, Y =Y1, Z =Yy and W = Y] into (3.1), we
have
([[&:11], 0], YY) = < (6, Y0), ®(Y1,Y7)) — (¥(£, YY), ¥(¥1,Y0))
Since (£,Yp) = 0, we have
(Te(¥7), Ty, (1)) = —([[¢, 1], V0], Y1) = (L(Y5, )3, YY),
proving (2). O

Let £ € U (£ # 0). Since dimKer(¥,) = 3 (see Proposition 8) and
since dimm = 8, we have dim W¢(m) = 5. Let us denote by E, the one
dimensional orthogonal complement of W¢(m) in N.

Proposition 14 Set C = (A,B) — (u, u). Then:
(1) Let £ € U. Then:

(2) The inequality 0 < C < 3(u, 1) holds. The vectors A and B are linearly
independent if C # 3(u, ) and A =B if C = 3(u, 1).

(3) Let E € U (£ #0). Then, ®y,(my1) C Eg+ ¥e(my), VY € a+mo.
(4) If C # 3(p, 1), then:

Wy, (my) = We(my), VYo €a+my (Yo #0), VEeU (£#0);

(4.2)
W(Yy,Ys) € RA+RB, VY € a+my; (4.3)
¥(Y1,Y1) € RA+RB, VYiem. (4.4)

Proof. Put Yy = & and Y] = 7 into Lemma 13 (1). Then, since W(£,€) =
(€,6)A and ¥(Y7,n) = (Y1,7)B, we get (4.1).

In view of Proposition 12 (1), we easily have (A,B) < 4(u,u) and
hence C' < 3(u, u). Further, by putting Y1 = 71 (3 0) into (4.1) we know
C > 0, because W¢(n) # 0 (see Proposition 9). This shows (A, B) > (u, ).
Therefore, A and B are linearly independent if (A, B) 5 4(u, u), i.e., C #

3(u, 1). It is easy to see that if C' = 3(u,u), ie., (A,B) = 4(u, u), then
A =B.

We next prove (3). Let £ € U (£ # 0). By Proposition 12 (4a) we know

that the orthogonal complement of RA in IN is given by E¢ + We(my).

101



132 Y. Agaoka and E. Kaneda

Hence, by Proposition 12 (3a), we have Wy, (m1) C E¢ + ®¢(my) for any
Yp € a4 mo.

Finally, we prove (4). Since C' # 3(u, i), the subspace RA + RB forms
a 2-dimensional subspace of N. Let Yy € a+ mg (Yp # 0). Then, by
Proposition 12 (3a) we know that Wy, (m;) coincides with the orthogonal
complement of RA+RB in N. (Recall that dim ¥y, (m;) =4 and dim N =
6.) Let £ € U (£ # 0). Since W¢(m1) is also an orthogonal complement of
RA + RB, it follows that We(my) = Wy (my). If we take £ € U (£ # 0)
satisfying (§,Yp) = 0, then by Proposition 12 (6a) we obtain ¥(Yy,Yy) €
RA + RB. Similarly, we can prove ¥(Y1,Y;) € RA+ RB for any Y1 € m;,
completing the proof of (4). ]

Let Yo € a4+ mg and £ € U (£ # 0). Define a linear mapping Oy, ¢:
m; — N by"

Oy (V1) = Ty, (Y1)+ We(L(E,Yo)Y1), Yiemy.  (4.5)

C(¢,¢)

Then, we have

Proposition 15 LetYp € a+mg, £ €U (€ #0) and Y1 € my. Assume
that (€,Yo) = 0 and L(€,Yo)Y: € V. Then:

(1) Oy, (Y1) € E¢. More strongly, if C # 3(p, 1), then Oy, (Y1) = 0.

(2) [®yy ¢ (Y1)|*= (T (Yo, Y0), ¥ (Y1, Y1)~ (, m){ 1+ (1, 1) / C} (Y0, ¥0) (Y1, 1)
Proof. By Proposition 14 (3) we know that Oy, (Y1) € E¢ + We(my).
Here, we note that (E¢, W¢(my)) = 0, because E¢ is orthogonal to W¢(m).

Let Y{ € my. Then, by Lemma 13 (2), Proposition 14 (1) and Proposi-
tion 3 (2) we have

<@YO,E(Y1), ‘I’é(yll»
1

= (Py, (Y1), e (V7)) + m@h@(&%)ﬁ% W (7))
= (L(Y0,£)Y1, Y1) + (L(£, Yo)Y1, YY)

=0,
proving (Oy, ¢(¥1), ¥e(m1)) = 0. This implies that Oy, ¢(V1) € E¢. In the
case where C' # 3(u, i), we have @y, (Y1) € Wy, (m1) + We(my) = Pe(my)

(see (4.2)), which proves @y, ¢(¥7) = 0.
Next, we show (2). By Lemma 13 and by the equality (@y;,¢(Y1), ¥e(m1))
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= 0, we have

(@yp,¢(Y1), By e (Y1)
= (BOy,¢(V1), Ty, (1))

= (Ty,(V2), Ty (V) + C—(g:g—)(‘l’g(L(ﬁ;%)lﬁ), Ty, (V3))

= (¥(Yo,Y0), ¥ (Y1,Y1)) — (u, 1) (Yo, Yo) (Y1, Y1)

1
n m(L(é,Yb)Yi,L(%’g)Y)

On the other hand, by Proposition 3 we have

( ) (§, Y0)¥1, Y1)
= (1, 1)*(€,€) (Y0, Yo) (Y1, Y1).

Therefore, we get the assertion (2). O

With these preparations we begin with the proof Theorem 6. First, we
consider the case dimV = 2.

Lemma 16 Assume that dimV = 2. Then, C # 3(u, ). Accordingly, the
vectors A and B € N are linearly independent.

Proof. Take non-zero elements &, & € U satisfying (£,€') = 0. Then,
by Proposition 3 (2) it follows that L(¢,&") = —L(&',£) and L(&,£) gives
an isomorphism of m; onto itself. Let Y7 € L(£,&)V. Then, by Proposi-
tion 3 (2b) we have L(£,£')Y: € V. Hence, by Proposition 15 (1) we have
O ¢(Y1) € E¢. Since dimL(£,£')V = dimV = 2 and dim E, = 1, it is
possible to take a non-zero element Y; € L(£, )V satisfying @g (Y1) = 0.
Therefore, by Proposition 15 (2) and Proposition 12 (2a) we have

0=[0g¢(11)
= [(B(Y1, Y1), A) — ({1 + (1, 1) /CH(Y1, Y1) (€, €).
Since (£',&) # 0, we have
(WY, Y1), A) = (1, {1+ (1, )/CH(YA, V1) (46)

Now, we suppose the case C =3(u,u). Then, by (4.6) we have
(®(Y1,Y1),A) = £(u, 1) (Y2, Y1). On the other hand, by Proposition 12 (5b)
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we have (¥(Y1,Y1),A) = 4(u,u)(Y1,Y1), because A = B in case C =
3(u, 1) (see Proposition 14 (2)). Hence, we have (Y1,Y1) = 0, which con-
tradicts the assumption Y7 # 0. Therefore, we have C # 3(u, 1) and hence
A and B are linearly independent. [

Lemma 17 Assume that dimV =2. Then, V can be extended to a
3- dzmenszonal singular subspace contamed i mi, ie., there is a singular
subspace v (C mi) such that V C V and dimV = 3.

Proof. Let F € RA 4+ RB be a unit vector which is orthogonal to B.
Then, for any 7 € V we have (F,®¥,(m)) = 0, because (F, ¥, (m)) =
(F,RB + W, (a+my)) =0 (see Proposition 12 (4b) and (3b)).

Now, define a symmetric bilinear form x on m; by setting

(}/i7}/1) <1I’(Y17}/1 F> Ylaweml-
Since ¥(Y1,Y{) € RB + RF (see Proposition 14 (4)) and (¥(Y1,Y/),B) =
(B,B)(Y1,Y{) for Y1, Y{ € m; (see Proposition 12 (5)), we have
(Y1, YY) = (Y1, Y))B+x(Y,Y))F, Y1, ¥ emy. (4.7)

Let V+ be the orthogonal complement of V in m;. Then, we have dim V+ =
2. (Recall that dimm; = 4 and dim V' = 2.) Let {Y1,Y{} be an orthonormal
basis of V4. Then, putting X =Z =Y, and Y = W = Y] into the Gauss
equation (3.1), we have
(M, 1], 1], 77) = (B, B) (1, Y1)(¥], Y))
+ X(Yla }G)X(lelv Y.ll) - X(Y’h Y’].’)X(le/7 Y.l)

Since ([[Y1,Y{],Y1],Y{) = (B,B)(Y1,Y1)(Y7,Y7) (see (2.2)), we have

This implies that x is degenerate on V+. Therefore, there is a non-zero
vector ¢ € V< such that x(¢,V+) =0, e, (F, @ (V1)) =o0.

Let us show that the subspace V = R( +V (C my) is singular with
respect to W. Note that (F,¥¢(a + mg)) = 0 (see Proposition 12 (3b)).
Then, since m = a+mg + V + V= and ¥,(V) C RB, it follows that

(F,¥c(m)) = (F,Ce(a+mg) + Te(V) + T (V)
C 0+ (F,RB)+0=0.
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Hence, we have <F, Wocin (m)> = (0 for any a € R and n € V. Consequently,
Wocn(m) # N, which implies that a{+n € V is singular with respect to W.
O

Now, we assume that dimV = 2 and denote by V be the singular
subspace stated in the above lemma. Let A and B be the vectors obtamed
by applying Proposition 12 to the pair of singular subspaces Uand V. Then,
by Proposition 12 (2) we can easily see that A = A and B = B. Therefore,
we know that all the statements in Proposition 12 and hence the arguments
developed after Proposition 12 are also true if we simply replace V' by V.
Accordingly, without loss of generality we can assume that dim V' > 3.

Lemma 18 (¥ (Yo, Y0), B)= (u, u){1+ (1, #)/C}(Y,Y0), VYp € a+my.

Proof. As in the proof of Lemma 16, we can prove that C' # 3(u,u). Let
Yo € a+my (Yo # 0). Take £ € U (£ # 0) such that (£,Y;) = 0, which
is possible because dimU > 2. Then, by Proposition 3 (2) it follows that
L(¢,Y) = —L(Yy, &) and that the map L(€,Ys) gives an isomorphism of my
onto itself. Now, take n € V (n # 0) such that L(§,Yy)n € V. This is also
possible because dim L(£,Yp)V = dimV > 3 and dim(V N L(£,Yp)V) > 2.
(Note that dimm; = 4.) Then, by Proposition 15 and Proposition 12 (2b)
we have

0= |Oyye(m)f?
= [(®(¥5,Y0), B) = (tt, i) {1 + (4, )/ C}(Yo, Y0)] (n, ).
Since (n,n) # 0, we get the lemma. O

Lemma 19 C = (u,p), i.e., (A, B) = 2(u, ).

Proof. Take £ € U (£ # 0). Then, by Lemma 18 and ¥(£,€) = (£,£)A
(see Proposition 12 (2a)), we have (A, B) = (u, u){1 + (u,u)/C}. Since
C = (A,B) — (u, ), we easily have C? = (u, /,4)2 Moreover, since C' > 0
(see Proposition 14 (2)), it follows that C = (u, p), i.e., (A, B) = 2(u, p).
O

Now, we show

Lemma 20 (1) ¥(Yp,Yy) = (Yo,Yg)A, VYo, Yy € a+ms.
(2) ©(V1,Y]) = (V1,Y{)B, VY1, Y! €m;.

Proof. On account of an elementary fact concerning symmetric bilinear
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forms, we have only to show ¥(Yp,Y) = (¥p,Yp)A and ¥(V1,Y;) =
(Y1,Y1)B for any Yy € a +mg and Y7 € my.

Let Yo € a 4+ mg. Then, by Lemma 18 and Lemma 19 we have
(¥ (Yp,%)),B) = (A, B)(Y0,Ys). Moreover, by Proposition 12 (1) and (5a)
we have (¥(Y0,Yp),A) = (A, A)(Yp,Yp). Since ¥(Y;,Y;) € RA + RB
(see (4.3)), it follows that W (Yp,Ys) = (Yo, Yo)A, which proves (1).

We next prove (2). Let Y1 € my (Y1 # 0). Take elements £ € U (£ # 0)
and n € V (n # 0) such that (n,Y1) = 0. Set Yo = [V1, [£,n]]. Then, it is
easy to see that [5,77] € ¥ and Yp € a+my (see (2.1)). Further, we have
(€,Yp) =0 and L(£,Yp)Y: € V, because

(& Y0) = (& [, [¢,7]])= ~([&, [&,m]], Y1)
= (u, 1) (€,6)(n, Y1) = 0,
L(§, Yo)Y1 = [§, [[Y1, [&,n] ], Y1]] = (. ) (Y1, Y1) [€, [£, m]]

—( p) (€M, Yin eV

(see (2.2) and (2.4)). Thus, by Proposition 15 (2), Lemma 19 and
T (Y5, Yo) = (¥, Yo)A (see (1)), we have

0= Oye(Y1)]* = [(A, T(¥1,Y1))—2(u, 1) (Y1, Y1)] (Yo, Yo).

Here, we note that Yy # 0, because L(§,Yy)Y; # 0. Hence, by the above
equality and Lemma 19, we have (¥(¥7,Y1),A) = (B,A)(Y1,Y;). On
the other hand, by Proposition 12 (1) and (5b) we have (¥(Y1,Y1),B) =
(B,B)(Y1,Y1). Consequently, it follows that ¥ (Y1, Y1) = (Y1,Y1)B, because
¥(Y1,Y1) € RA + RB (see (4.4)). This proves (2). O

We are now in a final position of the proof of Theorem 6. Let Yy €
a+mg (Yo # 0). Then, by Lemma 20 (1) we have Ker(¥y,) D {Y§ €
a +my|(Yy,Yy) = 0}. This shows dimKer(¥y,) > 3 and hence Y} is
singular with respect to ¥ (see Proposition 9 (1)). Accordingly, a + my is
a singular subspace. Similarly, by Lemma 20 (2) we can show that m; is
also a singular subspace.

Now, let us put into Proposition 12 U = a + my and V = m;. Then,
by Lemma 20 we know that the vectors A and B are not altered by this
change of singular subspaces. Therefore, all the statements in Proposition 12
and the arguments developed after Proposition 12 are also true under.our
setting U = a + mp and V = m;. Consequently, by Proposition 12 (1),
(2), (3) and Lemma 19 we get the assertion (1) of Theorem 6. We also
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obtain by Proposition 14 and C = (u, u) (see Lemma 19) the assertion (3)
of Theorem 6.

Finally, we prove the assertion (2) of Theorem 6. Let Y5 € mg and
Y1 € my. Then, since C # 3(p, 1) and (u,Ys) = 0, we have

@Y2,#(Y1) = ‘I’Yz (Yl)"' ‘I’M(L(M: Y2)Y1) =0

1
(1, )2
(see Proposition 15). Here we note that the conditions p € U and
L(u,Y2)Y: € V in Proposition 15 have no significance, because U = a + my

and V = m;. Accordingly, we obtain the assertion (2). This completes the
proof of Theorem 6. O
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Rigidity of the canonical isometric imbedding
of the symplectic group Sp(n)

Yoshio AGAOKA and Eiji KANEDA
(Received August 5, 2005)

Abstract. In this paper, we discuss the rigidity of Sp(n) as a Riemannian submanifold
of M (n, n;H). We prove that the inclusion map fo, which is called the canonical isometric
imbedding of Sp(n), is rigid in the following strongest sense: Any isometric immersion
f1 of a connected open set U(C S’pgn)) into R4* (&2 M(n, n;H)) coincides with fo up
to a euclidean transformation of R4"" | i.e., there is a euclidean transformation a of R4n*
satisfying f1 = afo on U.

Key words: curvature invariant, isometric imbedding, rigidity, symplectic group.

Introduction

The subject of this paper is to prove the rigidity of the symplectic group
Sp(n) as a Riemannian submanifold of the space of matrices over the field
of quaternion numbers.

Let M(n, n; H) be the space of n x n-matrices over the field H of quater-
nion numbers. Considering M (n, n;H) as a real vector space, we define a
bilinear form v on M (n, n;H) by setting

v(X,Y) = Re(Trace((XY)), X,Y € M(n, n;H).

It is easily seen that v defines an inner product on M (n, n;H). With this
inner product v we can regard M (n, n;H) as the euclidean space R4’ The
symplectic group Sp(n) is given by a submanifold of M (n, n;H) consisting
of all matrices g € M(n, n;H) satisfying ¢'g = ‘gg = I,, where I, is
the identity matrix of degree n. The induced metric on Sp(n), which is
denoted by the same symbol v, is bicinvariant on Sp(n). The inclusion
map fo: Sp(n) — M(n, n;H) = R4 gives an isometric imbedding of
the Riemannian manifold (Sp(n), v) into R*" and is called the canonical
isometric imbedding of Sp(n) into R4 (cf. Kobayashi [17]). In this paper
we will discuss the rigidity of the canonical isometric imbedding fo.

Let M be a Riemannian manifold and let f be an isometric imbedding of

2000 Mathematics Subject Classification : 53B25, 53C35, 17B20, 20G20.
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M into the euclidean space RY. By definition f is called strongly rigid when
f is rigid even if we restrict f to any connected open set of M, i.e., for any
isometric immersion f’ of a connected open set U(C M) into RY there exists

a euclidean transformation a of R satisfying f' = af on U. In [8] and [9] we

showed that the canonical isometric imbeddings of the quaternion projective

plane P?(H) and the Cayley projective plane P?(CAY) are strongly rigid.
Concerning the canonical isometric imbedding fo of Sp(n) into ]R‘l”z,
the following results are known:

(1) In the case where n = 1, fg is just the standard isometric imbedding
of S3(= Sp(1)) into R* with radius 1, which is a typical example of
isometric imbeddings with type number 3. Accordingly, by Allendoer-
fer [12] fo is known to be strongly rigid.

(2) By investigating the Gauss equation of Sp(2) in codimension 6 (for the
definition, see §2 below), Agaoka [1] showed that the set of solutions
of the Gauss equation is composed of essentially one solution, i.e., any
solution is equivalent to the second fundamental form of fy. Utilizing
this fact, Agaoka proved that fo is strongly rigid when n = 2.

(3) Kaneda [15] proved that fo(n > 1) is globally rigid in the sense of
Tanaka [19], i.e., if two differentiable maps f;(i = 1, 2) of Sp(n) into
R4 lie both near to fo with respect to C3-topology, and if they
induce the same Riemannian metric on Sp(n), then there is a euclidean
transformation a of R4 such that fo = af;.

(4) By determining the pseudo-nullity of Sp(n)(n > 1), Agaoka-Kaneda [4]
proved that R4 is the least dimensional euclidean space into which
Sp(n) can be locally isometrically immersed. (For the definition of
the pseudo-nullity, see §1.) In other words, Sp(n)(n > 1) cannot be
isometrically immersed into R4"*=1 even locally.

In this paper, we will extend these results (1) ~ (4) in the following
strongest sense:

Theorem 1 Let fo be the canonical isometric imbedding of the symplectic
group Sp(n) into the euclidean space R¥. Then fo is strongly rigid, i.e.,
for any isometric immersion f of a connected open set U(C Sp(n)) into
R4 there is a euclidean transformation a of R4n’ satisfying f = afo on U.

It should be noted that Sp(n)(n > 1) are the first examples such that
the canonical isometric imbeddings of a series of Riemannian symmetric
spaces parametrized by rank are strongly rigid. We note that Theorem 1
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for the cases n > 2 cannot be proved by applying the theory of type number
n [12]. In fact, the type number of the canonical isometric imbedding fo
of Sp(n) is less than 2 in case n > 2 (precisely, see Remark 11 in §2).
The method of our proof is quite similar to the methods adopted in [§]
and [9]. We first make a preparatory study on pseudo-abelian subspaces of
sp(n), which is the Lie algebra of Sp(n). Utilizing the knowledge about the
pseudo-abelian subspaces of maximum dimension, we determine the set of
all solutions of the Gauss equation of Sp(n) in codimension 2n? —n(= 4n?—
dim Sp(n)). Under this situation, it will be shown that the set of solutions
is composed of essentially one solution, i.e., any solution is equivalent to the
second fundamental form of fy. Therefore by the theorem of coincidence
(Theorem 5 of [8, pp. 335-336]) we can establish our rigidity theorem of
Sp(n) (Theorem 1).

Throughout this paper we will assume the differentiability of class C°.
For the notations of Lie algebras and Riemannian symmetric spaces, see
Helgason [14]. For the quaternion numbers and the symplectic group Sp(n),
see Chevalley [13].

1. The pseudo-nullity of Sp(n)

In this section we study the pseudo-nullity of Sp(n). We first recall
the notion of a pseudo-abelian subspace (precisely, see [3]). Let G be a
compact simple Lie group. Let g be the Lie algebra of G and b be a Cartan
subalgebra of g. A subspace W C g is called pseudo-abelian with respect
to b (or simply, pseudo-abelian) if it satisfies [W, W] C §. The maximum
dimension of pseudo-abelian subspaces, which does not depend on the choice
of a Cartan subalgebra b, is called the pseudo-nullity of G and is denoted
by pe. The pseudo-nullity of the symplectic group Sp(n) has been already

determined:

Theorem 2 (see [4]) For the symplectic group G = Sp(n)(n > 1), the
pseudo-nullity is equal to 2n, i.e., PSp(n) = 2.

In what follows we determine the pseudo-abelian subspace W of sp(n)
which attains the maximum dimension, i.e., dimW = PSp(n) = 2n. First
recall the field of quaternion numbers: Let R be the field of real numbers.
The field H of quaternion numbers is an algebra over R generated by the
elements €%, ¢!, €? and e satisfying
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(1) elef=¢€le® =¢e (=0, 1,2, 3);

(2) (ez')2 = —ef (7’ =1,2 3)7

(3) TFor each permutation {3, j, k} of {1, 2, 3} it holds e'e’ = e(ijk)e¥,
where (ijk) = 1 (resp. e(ijk) = —1) if {3, 7, k} is an even (resp. odd)
permutation.

From (1) we can see that €° is a unit element of H. Let us simply express

the element ae’ (a € R) as a. In this meaning R is contained in H and

forms a subfield of H.

Let f € H. Then f may be written in the form f = fy + E?=1 fiet,
where fo, f1, f2, f3 € R. As usual we define the real part and the conjugate
of f as follows: Re(f) = fo; f = fo — ?:1 fie*. Then we have Re(f) =
Re(f), ff=ff= Z?:o f?. Moreover:

Re(fh) =Re(hf), Fh=hf, f hel

Let i = 1, 2 or 3. Define a subset C* of H by C* = R + Ref. It is
easily seen that C’ forms a subfield of H and is isomorphic to the field C
of complex numbers. We also define a subset D of H by D! = Re/ + ReF,
where j and k are so chosen that {i, j, k} is a permutation of {1, 2, 3}.
Then it is clear that

C'D! = D'C! = D% D'D* = C.

In the following we denote by M (p, g;H) the space of p x g-matrices
over H. As stated in Introduction, the symplectic group Sp(n) is considered
as a submanifold of M (n, n; H) & R4* . As usual, we identify the tangent
space of Sp(n) at the identity I, € Sp(n) with the Lie algebra sp(n), which
is consisting of all matrices X € M(n, n;H) satisfying X = —X. Let us
denote by Egs (1 < s, t < n) the matrix of M(n, n;H) such that the (s, t)-
component is 1 and the others are 0. We define subspaces h(n)* and p(n)?
of sp(n) by

h(n)' =Y Re'Ees; p(n)' = D'E.
s=1 s=1

As is well-known, h(n)® is a Cartan subalgebra of sp(n). Moreover:

Proposition 3 Let i = 1, 2 or 3. Then, p(n)® is pseudo-abelian with
respect to h(n)* with dimp(n)’ = DSp(n)-
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Proof It is clear that dim p(n)? = 2n. Let X = YsUsEss, Y =3 vEg €
p(n)’, where ug, vs € D', Then, since B, Ess = Ess and EsEgy =0 (s #
s'), we have [X, Y] = 3, (usvs — vsus)Ess. Since u,, v € DY, it follows
that usvs, vsus € C* and uzvs — vsus € Ret. Hence [X, Y] € h(n)t, proving
[p(n)", p(n)’] C h(n)", O
Further, the space p(n)? is the only pseudo-abelian subspace with re-
spect to §(n)* of dimension Psp(n)- 1n fact, we have

Theorem 4 Leti=1, 2 or3. Let W be a pseudo-abelian subspace with
respect to h(n)? satisfying dim W = Psp(n)- Then W = p(n)".

In the rest of this section we prove this theorem. Let X = dostbstEst €
M(n, n;H). We denote by z, = (&1, ..., &m) € M(1, n;H) the p-th row
of X and by 2% = (&1, ..., &ng) € M(n, 1;H) the g-th column of X. Then
we may write

T1

As is easily seen, X € sp(n) if and only if
'ZTp+2P =0 (1<p<n). (1.1)

Let X = (z*,...,2"), Y = (4%, ..., ¥") € sp(n). Then [X, Y] € h(n) if
and only if the following conditions are satisfied:

(2%, %) = (", 2%) (1<p<g<n) (1.2)
(", y) eC (1<r<n), (1.3

where (, ) denotes the inner product of M(n, 1;H) defined by (&, n) =tn
for £, 7 € M(n, 1;H). Then we note the following formula.:

&n)=¢, EfHn)=F&n), &nf)=(Enf fel

(1.4)

Now we start the proof of Theorem 4 by induction on n. First consider

the case n = 1. In a natural Way we identify M (1, 1;H) with H. Then by
(1.1) we know that w = ag + Z 1 a;€) € H belongs to sp(1) if and only
if ag = 0. Let W be a pseudo- abehan subspace of sp(1) with respect to
b(1)* with dim W = 2. Suppose that W s D?. Take a basis {w, w'} of W
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such that w & D%, i.e., w is an element written in the form w = Z?:l ajej ,
where a; # 0. By subtracting a scalar multiple of w from w’ if necessary,
we may assume that w’ € D*. Then we have ww' = (X1 0567w + azeln,
(32 a5¢')w’ € C* and a;e'w’ € D*. On the other hand, by (1.3) we have
ww' = —ww € C!. This is impossible because a;eiw’ # 0. Hence we have
W = D! = p(1)%, showing that Theorem 4 is true when n = 1.

We now assume that n > 2 and Theorem 4 is true for any n’ (1 <n' <
n). For simplicity, we regard sp(s) (1 < s < n) as a subalgebra of sp(n) in

the following manner:

sp(s) 2 X — (i){ 8) € sp(n).

Let W be a pseudo-abelian subspace of sp(n) with respect to h(n)!. As in
[4] we define an ascending chain of subspaces

O=WocCcWiCWeC---CW,=W

by setting W, = sp(r)NW (1 <r < n). (Note that the numbering of the
above chain is the reverse order of that in [4, p. 79].) It is obvious that W,
is a pseudo-abelian subspace of sp(r) with respect to h(r)t. Put

n—r
e N,
Cr={a" € M(n, H)| (z',...,2",0,...,0) e W, }

(r=1,...,n).
Then it is clear that C, & W,,/W,_; (1 <r <n)and dimW =c;+---+cy,
where we set ¢, = dimC, (1 < r < n). Moreover, by (1.2) and (1.3) we
have
(Co, Cg) =0 (L<p<g<nm), (1.5)
(Cr, Cr) CC* (1< <), (1.6)
The above equalities (1.5) and (1.6) will play decisive roles in the proof of
Theorem 4.
By CE (1 < r < n) we denote the right H-subspace of M (n, 1;H)

generated by Cr. Set k, = dimg CH (1 < 7 < n). Then, in view of (1.5)
and (1.4) we have

(C’EI, C’gﬂ) =0 (I1<p<g<n). (1.7)
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Utilizing (1.6) and (1.7), we have proved in [4] the following

Lemma 5 (see [4]) Under the setting stated above the following (1) and
(2) hold:

(1) b+ 4k <n.

(2) <2 (1<r<n).

In particular, if dm W = pgp) (= 2n), then ki + -+ kp = n and ¢, =
2k, (1 <r<n).

In what follows we assume that W is a pseudo-abelian subspace with
respect to h(n)? satisfying dimW = pgy(n). Let us define an R-linear en-

domorphism £ —— § of M(n, 1;H) by setting £ = b, ..., €n-1, 0) for
E=1¢&, ..., &) € M(n, 1;H). Let C,, be the i image of C, by this endo-
morphism: We first prove

~H
Lemma 6 k&, >1 anddimygC,, <k, —1.

Proof. Suppose that k, = 0. Then we have C,, = 0 and hence W = W,,_1.
Therefore, in a natural way W may be regarded as a pseudo-abelian sub-
space of sp(n—1) with respect to (n—1)*. This implies dim W < pgp(n—1) =
2(n—1), contradicting the assumption dim W = 2n. Consequently, we have
kn > 1 Let £ € C, and 7 € C1+ -+ Cp1. Since 7 is written as n =
“(m, .., M-1, 0), we have (£, n) = (5, n) = (see (1.5)). Hence we have
(5’;, Ci+---+C, _1) = 0. Viewing (1.4), we have (C’n , CE ---—!—C’H ) =
~H
0. Since both C,, and CH + + CH . may be regarded as subspaces of
M(n—1, 1;H), we have dimyg Cn <n—1—(ki4+--+kn1) (see (1.7)).
~—H
Therefore by Lemma 5 we obtain dimg C,, < k, — 1. O

Let C}, be the subset of C,, consisting of all ({1, ..., &) € C, such
that the n-th component &, € D, ie., C) = {*(&y, ..., &) € Cn | & € D).
Clearly, C! is a subspace of Cy,. We denote by CI, the image of CJ, by the
endomorphism £ —— § Then we can show

Lemma 7 dimC/, > 2kn — 1 and dim C’;L < 2(k, —1).

Proof. First we note that &, € Re® + D® holds for any ¢ = (&1, ..., &) €
Cr- Indeed, &, is the (n, n)-component of a certain matrix X € sp(n) (recall
the definition of Cp,). Consequently, we have dim C}, > dimC,, — 1 = ¢, ~
1=2k, - 1.
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We next prove the second inequality. Let { = Yéy, ..., &) € O and
n="n, ..., M) € Cp. Then we easily have (¢, 7]) = (&, n) — &7n. Since
(&, m) € C* (see (1.6)) and &upn € D'DF = C, it follows that ({N, n) € C~
This proves (577” EZL) C C*. By this fact we can deduce that éz N agej =0
for any j (f 1, 2, 3’) such that j # 4. In fact, if there is an element fN € 6',,71
such that e/ € CJ, then we have C' 3 (¢, ¢e¥) = (¢, £)el € Clel = D,
Since C* N D' = 0, it follows that (E, E) =0, i.e.,, £ = 0. Thus, we know
that 5,’; + 6’7’163' (C E’;H) is a direct sum if j # i. Consequently, we have
2 dimazz < 4dimpy aLH < 4(kp—-1),ie., dimaz < 2(kp—1) (see Lemma 6).
This completes the proof of the lemma. O

With the basis of Lemma 7 we can show

Lemma 8 Let Dy be the kernel of the linear mapping Cyp, > £ — E e Cy.
Then:

(1) Dp={X0,...,0,w) € M(n, 1;H) | w € D*}.

(2) CnCCn. .

(3) Cn = Dn+ Cy, (direct sum); dimCy, = ¢, — 2.

Proof. By Lemma 7 we have dim C/, — dim C!, > 2kn, — 1 — 2(kn — 1) > 0.
This implies that D, N C], # 0. Let £ be a non-trivial element of D, N CY,.
Then, by the definitions of D, and CJ,, we know that £ may be written
as £ = %0, ..., 0, w), where w € D* (w # 0). Let n = (n1, ..., n,) be
an arbitrary element of C,. Then by (1.6) we have (¢, n) = @wn, € C
Hence we can easily show that 7, € D' (see the proof for the case n = 1).
Accordingly, n € CJ, and hence C!, = C,,. Therefore, we have

dim D,, = dim Cp,—dim C,, = dim C’n—dima’; > cn—2(kp,~1) =2.

On the other hand, since D, C C, = C},, we have D, C {¢(0, ..., 0, w) |
w € D} and hence dim D,, < dimID* = 2. This, together with the above
inequality, proves dim D,, = 2 and D,, = {#(0, ..., 0, w) | w € D!}. Thus
we obtain (1).

Let ¢ = ¥(¢1y ..., Cn) € M(n, 1;H) be an arbitrary element of C,.
Since C,, = CJ, we have ¢, € D* and hence ¢’ = ¥(0, ..., 0, ¢n) € Dy, C
Cr. Consequently, ¢ = *((1, ..., (n-1, 0) = ( — {’ € Cy,, showing (2). The
assertion (3) immediately follows from (1) and (2). O

116



Rigidity of the canonical isometric ¥mbedding of the symplectic group 87

With these preparations we can show
Lemma 9 5’; = 0. Accordingly, Cp = D,.
Proof. We ﬁrst prove
CrNCreét = 0. (1.8)

Suppose that there is an element E = (&, ..., &-1,0) € C,, such that
¢et € Cp. Note that C,, C Cy, (see Lemma 8 (2)). By the definition of C,
we know that there are matrices X and Y € W written in the form

_ XI 5/ _ Y/ é-/ei
X“(_tg/ 0)’ Y_<eitg/ 0 ),

where X',.)Y' € sp(n— 1) and & =¥(&, ..., €n-1) € M(n — 1, 1;H). Take
an integer j (= 1, 2, 3) such that j # 4. Since ¥(0, ..., 0, &) € D, C Cy,
we know that there is an element Z € W of the form

Z' 0
Z—_<O ej)’

where Z' € sp(n —1). Since W is a pseudo-abelian with respect to h(n)?,
we have [X, Z] € h(n)! and [Y, Z] € h(n)t. Hence by a direct calculation
we can show

Z'¢ =¢e; Z'(fe) = ()¢ (1.9)

By the second equality of (1.9) we have (Z'¢')e! = ¢'(ele’) = —¢€/(elel) =
—(¢'e7)e* and hence Z'¢' = —¢'el. This, together with the first equality
of (1.9), proves Z'¢' = ¢'e/ = 0. Hence we have & = 0, i.e., £ = 0. This

implies (1.8). As a result of (1.8), the subspace Cp + Crét (C @H) is a
direct sum. Since dimCy, = ¢, — 2 = 2(k, — 1) (see Lemma 8 (3) and

Lemma 5), it follows that dimpg a;H > 2dim5; = 4(k, — 1). Hence we
have dimpg @H = (1/4) dimg EZ’;H > ky ~ 1. On the other hand, we have
dimpy a‘;H < kp—1 (see Lemma 6). Therefore, we obtain dimy ’C\;H =k,—1
and @H = 6; -+ a;ei. More strongly, we can prove 6’\;:' 0. In fact, since
aH = 5; + a;ei, it follows that

(Ga', Can') C (G, Co)+(Ciné, Cr)+(Cry Cne')+(Crné, Trné).

——

~— ~H
If Cn, # 0, then it is easy to see that (C, , Cp, ) = H. However, the
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right side of the above inclusion is contained in C?, because (6’;, 6’;) C
(Cn, Cr) C C! (see Lemma 8 (2) and (1.6)), (Cné?, C,) C €iCi = C,
(Cn, Cré?) € Clet = C' and (Crét, a;ei) C e!Cle’* = C! (see (1.4)). This is
a contradiction. Hence we have a,: = 0. The equality C,, = D,, now follows
immediately. [

Proof of Theorem 4. By Lemma 9 and Lemma 8 (3) we have ¢, = 2k, = 2.
Hence, Wy—1, which is a pseudo-abelian subspace of sp(n — 1) with respect
to h(n — 1)°, satisfies dim W1 = ¢1 + -+ +cp1 = 2(n — 1) = DSp(n—1)-
Therefore, by the hypothesis of our induction we know that W,,_1 = p(n —
1)*. From this fact we can deduce W = p(n)’. In fact, let X be an arbitrary
element of W. Then X may be written as X = (X' 9 ), where X’ € sp(n —
1), w € D* (see Lemma 9 and Lemma 8 (1)). Since [X, W,-1] C b(n)?, it
follows that [X’, p(n — 1)Y] C h(n — 1)*. Hence we have X' € p(n — 1)},
because p(n — 1) is a maximal pseudo-abelian subspace of sp(n — 1) with
respect to h(n — 1)*. Consequently, we have X € p(n)! and W = p(n)?,
which completes the proof of Theorem 4. [

2. The Gauss equation of Sp(n)

Let M be a Riemannian manifold. We denote by g the Riemannian
metric of M and by R the Riemannian curvature tensor of type (1, 3) with
respect to g. Let z € M and let T, (M) (resp. T (M)) be the tangent (resp.
cotangent) vector space of M at z. Let » be a non-negative integer. We
define a quadratic equation with respect to an unknown ¥ € S?T;(M)®R"
by

—g(R(X> Y)Z> W)
= (X, 2), B(¥, W) - (¥(X, W), ©(¥, 2)), (21)
where X, Y, Z, W € T;,(M) and < , > is the standard inner product of R".

We call (2.1) the Gauss equation in codimension 7 at 2. The set of solutions
of (2.1) is called the Gaussian variety in codimension r at = and is denoted
by Gz (M, R").

Let O(r) be the orthogonal group of R". We define an action of O(r)
on S?T}(M) ® R" by

(PE)(X,Y) =p(¥(X,Y)), X,Y €Ta(M), peO(r). (2.2)
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As is easily seen, if W is a solution of (2.1), then p¥ is also a solution of (2.1)
for any p € O(r). We say that G,(M, R") is EOS if G,(M, R") # 0 and if
G (M, R") is composed of essentially one solution, i.e., for any solutions ¥
and ¥y € Gy(M, R") there is an element p € O(r) such that ¥y = p¥,.

In the following we consider the case where M is the symplectic group
Sp(n) endowed with the bi-invariant metric v, which is induced from the
inclusion Sp(n) C M(n, n;H). As usual we identify the tangent space of
Sp(n) at the identity I, with the Lie algebra sp(n). We denote by (,)
the inner product of sp(n) induced from v at I,. The curvature transfor-
mation Ro(X,Y) (X, Y € sp(n)) of Sp(n) at I, is given by Ro(X,Y) =
—(1/4) ad([X, Y1) (see [14]). Hence at I, the Gauss equation (2.1) is written
as

([Ix, Y], 2], W)
= (¥(X, Z), ¥(Y, W)) — (¥(X, W), ¥(Y, 2)), (2.3)

where ¥ € $%(sp(n)*) @ R" and X, Y, Z, W € sp(n). We simply denote by
G(Sp(n), R™) the Gaussian variety in codimension 7 at I,. The main aim
of this and the subsequent sections is to prove

o

Theorem 10 For any positive integer n the Gaussian variety
G(Sp(n), R2"*~") in codimension 2n2 — n is EOS.

By homogeneity, we know that the Gaussian variety G,(Sp(n), R2n? -
in codimension 2n®—n is EOS at each z € Sp(n). By this result we conclude
that Sp(n) is formally rigid in codimension 2n? — n. (For the definition of
formal rigidness, see [8].) Accordingly, by Theorem 5 of [8] we can establish
the rigidity theorem of Sp(n) (Theorem 1).

In the following we will prove Theorem 10 by induction on m. As we
have stated in the introduction, if n = 1, then Sp(1) = S and the canonical
isometric imbedding fo is the inclusion map of the standard sphere S® with
radius 1 into R%. The second fundamental form ¥, of foatx € S3is given
by ¥y = —vz. Hence fg is a typical example of an isometric imbedding
with type number 3. By applying the theory of type number in [12] or by
a direct calculation we know that any solution ¥ of the Gauss equation of
S?% in codimension 1 can be represented by W = +W,. Therefore we get
Theorem 10 for the case n = 1. For this reason we may assume n > 2 in
the following discussion.
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Remark 11 It should be noted that in case n > 2 the theory of type
number in [12] is not applicable to the canonical isometric imbedding fo
of Sp(n). In fact, for an isometric imbedding f of a Riemannian manifold
M into the euclidean space R™, the type number k of f must satisfy the
inequality k < dim M /(m — dim M) (see [18] or [16]). Consequently, in the
case of fo we can easily show that k£ < 2 when n > 2.

Now let 9(n) be the subspace of M(n, n;H) composed of all X €
M (n, n; H) satisfying *X = X. Clearly, we have dim 9(n) = 2n? — n and

M(n, n; H) = sp(n)+9(n) (orthogonal direct sum).

As is easily seen, 91(n) is the normal vector space of the canonical isometric
imbedding fo at I,. The second fundamental form g of fg at I, is an
element of S%(sp(n)*) ® 9(n) given by

1
2

(see [15, p. 370]). Under a natural identification (9t(n), v) & (R~ (, D)
as euclidean vector spaces we can regard the unknown ¥ in the Gauss
equation (2.3) in codimension 2n? — n as an element of S?(sp(n)*) @ N(n).
(In what follows, the inner product v of 9%(n) will be denoted by ( , ).)
Therefore the Gaussian variety G(Sp(n), R2"*~") may be considered as a
subset of S%(sp(n)*) ®(n). In this meaning we write G(Sp(n), R2"*~") as
G(Sp(n),9n)). Then ¥y may be considered as an element of G(Sp(n),M(n)),
which is called the canonical solution of the Gauss equation (2.3) in codi-
mension 2n? — n. Now Theorem 10 may be stated in the following way:
Any solution ¥ € G(Sp(n), N(n)) of the Gauss equation (2.3) is equivalent
to W, i.e., there is an element p € O(M(n)) such that ¥ = pWj, where
O(9(n)) stands for the orthogonal group of N(n).

Uo(X,Y)=-(XY+YX), X,Y €sp(n) (2.4)

3. The space Ky (X)

In this section we assume that n > 2. Let ¥ € S%(sp(n)*) ® M(n)
and let X € sp(n). We define a linear mapping ¥x: sp(n) — MN(n) by
setting x(Y) = ¥(X,Y) (Y € sp(n)). By Kg(X) (C sp(n)) we denote
the kernel of Wx. In this section we investigate the kernel K¢ (X) for a
solution ¥ of the Gauss equation (2.3), i.e., ¥ € G(Sp(n), N(n)). Asin
the case of P?(H) or P?(CAY), the knowledge about K¢ (X) will play an
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important role to determine the solutions of the Gauss equation (2.3) (cf.
[8] and [9]).

Let X € sp(n). By C(X) we denote the centralizer of X in sp(n). Then
we have

Lemma 12 Let ¥ € $?(sp(n)*) ® N(n) and X € sp(n). Then:
(1) dimKg(X) > 2n.
(2) If ¥ € G(Sp(n), N(n)), then [K¢(X), Ke(X)] C C(X).

Proof. Since
dim K¢ (X) > dim Sp(n)—dim N(n) = (2n%4+n)—(2n?—n) = 2n,

we get (1). Assume that ¥ € G(Sp(n), N(n)). Then by (2.3) for each Y €
sp(n) we have

([Ke(X), Ke (X)), X], Y]) C (¥(Kg(X), X), T(Ke(X),Y))
= (.

Consequently, we have [[K¢(X), Kg(X)], X] = 0. The assertion (2) im-
mediately follows from this equality (cf. [10, Lemma 3]). O

Let X € sp(n). Since sp(n) is a compact simple Lie algebra, we know
that dim C(X) > rank(sp(n)) = n. We recall that an element X € sp(n) is
called regular (resp. singular) if dim C(X) = n (resp. dim C(X) > n).

Lemma 13 Let ¥ € G(Sp(n), N(n)) and H € h(n)* (i =1, 2, 3). Then
Ky (H) D p(n)'. If H is regular; then the equality K¢ (H) = p(n)* holds.

Proof. Let H € h(n)®. Then by Lemma 12 (2) we have [Kg (H), K¢ (H)] C
C(H). Assume that H is regular. Then, since C(H) = h(n)’, we have
[Ke(H), Kg(H)] C h(n)". This implies that Kg(H) is a pseudo-abelian
subspace with respect to h(n)’. Therefore we have dim K¢ (H) < DSp(n) =
2n (see Theorem 2). On the other hand, since dimKg(H) > 2n (see
Lemma 12 (1)), it follows that dim K¢ (H) = 2n. Hence K¢ (H) = p(n)
(see Theorem 4). Let H' € h(n)* be an arbitrary element. Note that regular
elements are dense in h(n)* and, as we have shown, ¥(H, p(n)¢) = 0 holds

for any regular element H € h(n)’. Because of the continuity of ¥ we have
W (H', p(n)*) = 0. This shows that Kg(H') D p(n)t. O

Let ¥ € S%(sp(n)*) ® N(n) and let g € Sp(n). We define an element
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U9 € S?(sp(n)*) ® N(n) by
(T9)(X,Y) = T(Ad(g™)X, Ad(g™))Y), X,Y €sp(n). (3.1)
Then we can easily see the following

Lemma 14 Let ¥ € S%(sp(n)*) ® M(n) and let g € Sp(n). Then:
(1) Kgo(X)=Ad(g)Ke(Ad(g™")X), X €sp(n).
(2) W9 € G(Sp(n), N(n)) if and only if € € G(Sp(n), N(n)).

Combining Lemma 13 with Lemma 14, we have

Proposition 15 Let ¥ € G(Sp(n), N(n)), X € sp(n) and g € Sp(n).
Assume that Ad(g)X € b(n)® for-some i (= 1,2, 3) Then Kg(X) D
Ad(g~Y)p(n)". Further, if X is reqular, then Kg(X) = Ad(g~1)p(n)t.

Proof. Note that W9 € G(Sp(n), 9(n)) (see Lemma 14 (2)). Apply-
ing Lemma 13 to ¥ we have Kgs(Ad(g)X) D p(n)’. Therefore by
Lemma, 14 (1) we have p(n)! C Kgs(Ad(9)X) = Ad(9)Kw(X). Conse-
quently, K¢ (X) D Ad(¢71)p(n)’. If X is regular, then Ad(g)X is also
regular. Accordingly, we have K g¢(Ad(g)X) = p(n)* and hence K¢ (X) =
Ad(g)p(n)". O

Remark 16 Let ¥ € G(Sp(n), DN(n)). It is well-known that any element
of sp(n) is conjugate to an element of a Cartan subalgebra h(n)?. Therefore,
for a regular element X € sp(n) the space K (X) is determined by Propo-
sition 15. Here we note that if X is regular, then K g(X) does not depend
on the choice of the solution ¥ € G(Sp(n), N(n)), i.e., Kg(X) = K¢/ (X)
holds for any ¥, ¥’ € G(Sp(n), N(n)).

In the following discussion, we will determine K g (X) for singular ele-
ments X € sp(n) of special type. By Proposition 15 we immediately obtain

Proposition 17 Let ¥ € G(Sp(n), N(n)). Leti =1, 2 or 3 and X €
sp(n). Denote by G% the subset of Sp(n) consisting of all g € Sp(n) such
that Ad(g)X € b(n)t. Then:

Kg(X)> Y Ad(g™H)p(n)'. (3:2)
gEGz

Let a, b and 4 are integers satisfying 1 < a # b <n, 1 <i < 3. Define
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elements H:, P,; and Q. € M(n, n;H) by
Hciz = Eaaei; Py = —Fpq = Egp—Epg; Qib = an = (Eab'i‘Eba)ei-

Then it is easily seen that HE, Py, sz € sp(n) and
(HS, H]) = 6abi;  (H2, Pea) = (Hy, Q1) = 0;
(Paba Pcd) = 2<5ac5bd - 5ad5bc); (Pab) ch) = 0; (3-3)
(nga Qid) = 2(6ac6bd =+ 5ad5bc)6ij-

Therefore the set {H: (1 < a < n)} forms an orthonormal basis of h(n)? (1 <
i< 3)and theset {H: (1<a<n 1<i<3), (1/V2)Pyp 1<a<b<
n), (1/v2)@%, (1<a<b<mn,1<i<3)} forms an orthonormal basis of
sp(n).

Let a, b and ¢ are integers satisfying 1 < a# b <n,1 <7< 3. Define a
subspace st, by s, = R(H. — H}) + RP, + RQ?,. By an easy calculation
we have

[H: — Hf, Pyp) = 2Q%; [H:— H}, Q4] = —2Pu;
[Pab, Qupl = 2(H, — Hy).

This indicates that s, forms a three-dimensional subalgebra of sp(n) and is
not abelian. Now we note the following lemma, which holds for any compact
Lie algebra:

Lemma 18 Let s be a three-dimensional subalgebra of a compact Lie al-
gebra g. Assume that s is not abelian. Then, for aﬂy linearly independent
elements Z, Z' € s, there is an element g € exp(R[Z, Z']) (C exp(g)) such
that Ad(g)Z € RZ'.

Proof. Since g is compact, 5 is also a compact Lie algebra. Hence s may
be represented by a direct sum of its center and its semi-simple part. Note
that any simple Lie algebra is of dimension > 3. Under the assumption that
5 is not abelian and dims = 3, we know that the center of s is trivial and
that s is simple. Hence, s is isomorphic to the simple Lie algebra su(2).
Let B be an ad(g)-invariant inner product of g. Let Z, Z' € 5. If Z
and Z' are linearly independent, then it follows that [Z, Z'] # 0, because
rank(s) = 1. Set 8 = RZ + RZ’. Then we have B(s', R[Z, Z']) =0, i.e.,
R[Z, Z'] is the orthogonal complement of s’ in s with respect to B. Indeed,
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we have

B(Z, (2, 2)) = -B(2, 2, Z) =0.

Similarly, we can prove B(ad[Z, Z'|(Z), |Z, Z']) = B(ad|Z, Z'|(Z"), |2, Z'])
= 0. This means that s’ is invariant by ad[Z, Z']. Moreover, we have
ad([Z, Z'])Z" # 0 for any Z" € s’ with Z" # 0. Therefore, Ad(exp(R[Z, Z']))
forms a non-trivial subgroup of rotations of s’ with respect to B. From this
fact the lemma follows immediately. O

In the following, we say a subalgebra s of sp(n) is NAT if s is non-
abelian and dim s = 3. As we have seen, s%, = R(H. — H}) + RP,;, + RQ,
is NAT. For-non-zero elements X and Y € sp(n) we write X ~ Y if there
is an element g € Sp(n) such that Ad(g)X € RY. Apparently, ~ defines
an equivalence relation in sp(n) \ {0}. According to Lemma 18 if 5 is NAT,
then Z ~ Z' for any Z, Z' € 5\ {0}. For example, we have (H{ — H}) ~
FPop ~ QZ};'

For simplicity in the following discussion we set Ko(X) = Kg,(X). As
in the previous section we regard sp(s) (0 < s < n) as a subalgebra of sp(n).
Then by easy calculations we have

Ko(Hy)=sp(n—1)+ Y RHJ;
J#i
Ko(Hp i+ Hy)=sp(n—2)+ > RH)_; (3.4)
J#i
+> RHI+> RQ) ..
g G
Let ¥ be an arbitrary solution of the Gauss equation (2.3). By Re-

mark 16 we know that K¢ (X) = K(X) holds for a regular element X &
sp(n). We now extend this relation to singular elements:

Proposition 19 Let ¥ € G(Sp(n), N(n)). Then for each i (=1, 2, 3) it
holds:

(1) Ke(H)=KoH).

(2) Ke(H,_+H})=Ko(H._|+ H}).

Proof. Let Sp(n — 1) be the analytic subgroup of Sp(n) corresponding
to the subalgebra sp(n — 1). Let g € Sp(n — 1). Then it is easy to
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see that Ad(g)H: = H:. Hence by Proposition 17 we have K¢ (H.) D
> geSp(n—1) Ad(g7)p(n)?. Since h(n—1)7 (j # i) is a Cartan subalgebra of
sp(n — 1), any element of sp(n — 1) is conjugate to an element of h(n — 1)7
under the action of Sp(n — .1). Hence we have Uée Sp(n—1) Ad(g7Y)h(n —
1) = sp(n — 1). Since p(n)* O h(n — 1)?, we have Ky (H}) D sp(n — 1).
This, together with K¢ (HL) D p(n)¢, shows K¢ (H:) D sp(n—1)+p(n)t =
K(HL). We now show the equality K¢ (H:) = Ko(H:). Take an element
X € Kg(HE) N Ko(HL)*, where Ko(HL )" is the orthogonal complement
of Ko(H:) in sp(n). Then X can be expressed as

(0 ¢ :
X = (-tg ce‘) , £€M(n-1, ;H), ceR.
Take j, k(= 1, 2, 3) so that {4, j, k} is an even permutation of {1, 2, 3}.
Then since X € Ky (H}) and H}, € Kg(H:), we obtain by Lemma 12 the
following

; ; 0 —¢ek

0=I[X, Hj], Hy] = (_ekté 4§6j) .
Hence we have £ = 0 and ¢ = 0, i.e., X = 0. This proves Kg(H:) N
Next we prove Kg(H! | + H:) = Ko(H:_, + H.). As in the case
of Ky (H), we can easily show that Kg(H{ ; + H.) D sp(n — 2) +
i RHL | + 3. RHY,. Take an element Y € Kg(H_; + H}) such
that (Y, sp(n —2) + 3, RH) ) + 3, ,;RH3) = 0. Then Y can be ex-
pressed as

0 & 17
Y = <-tg o4 ﬁ) ) 5,”7€M(n—2, 1;H)7 a77€Rei7 /BEH

= =B v
Take 7, k (= 1, 2, 3) so that {4, j, k} is an even permutation of {1, 2, 3}.
Then by a direct calculation have

| o | 0  —gF  FpeF

Y, Hy_ £H], Hy +Hy] = | —e*%¢ —dae® " |,
Feh' B Fdye

where 8 = £Be’ — €73, B" = B'e' — e'3'. (Note that e/a = —ae’, ely =
—vel, ela = aet, ey = ve!, because o, v € Re'.) Since Y € Kg(H._| +
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Hi)and H] |+ Hj € Kg(H:_, + H.), we have [[Y, H. , + HJ], Hi | +
H}] =0 (see Lemma 12). Hence we conclude that { =n=0anda=~=0
and 0" = 0. From the equality " = 0, we immediately have 8’ € C*.
Further, from f' € C! we can easily conclude that 8 € D% Thus we have
Ve, ,RQ, ;, and hence Kg(H._; + H.) C Ko(H}_; + HL).

To complete the proof of (2) we have to show Kg(H: , + H) D
Z#iRQi_l,n. Take j (1 < j < 3) such that j # 4. Since 5%—1,71 =

R(ng—l — HTJL) + RP 1 + RQj is NAT, there is an element g €

n—~1,n

exp(RPn-1,n) such that Ad(9)@;,_, ,, € R(Hf;_l—H%') (C p(n)?) (see Lemma

18). Moreover, since [Py_1pn, H:_,+H:] = 0, we have Ad(g)(H:_,+H:) =

Hi |+ H: €p(n),ie, ge GéH;;_l-kH;;)‘ Therefore, by Proposition 17 we

have ¢’ 1€ K o(H! _; + H.). Accordingly, it follows that K g (HE |+
H) > Dt RQ,J;_LTL, completing the proof of (2). N

By & we denote the subset of sp(n) consisting of all non-zero elements
X € sp(n) such that X ~ HE or X ~ H: |+ HE for some i (=1, 2, 3). We
note that each element X € S is a singular element of sp(n), because HY
and H!_, + H_ are singular elements of sp(n).

By use of Proposition 19 we can prove

Proposition 20 Let ¥ € G(Sp(n), N(n)). Assume X € S. Then K¢ (X)
= Ky(X).

Proof. Let g € Sp(n). Then we have ¥9 and ¥§ € G(Sp(n), N(n)) (see
Lemma 14 (2)). By applying Proposition 19 to ®9 and ¥, we have

Kws(Hy) = Ko(H,) = Kgg(Hy,);
Kyo(Hy 1+ HY) =Ko(H, |+ H}) = Kgs (Hy_y + Hy,)

for any ¢ (= 1, 2, 3). Now assume that X € S and that g is an element
of Sp(n) such that Ad(g)X € RH}, or Ad(g)X € R(H!_; + H:). Then by
the above equalities we have Kg¢(Ad(g)X) = K w¢(Ad(g)X). (Note that
Kyg(cZ) = Kg(Z) holds for any ¥ € S%(sp(n)*) ® N(n), Z € sp(n) and
c € R (c# 0).) On account of Lemma 14 (1) we have Kgs(Ad(g9)X) =
Ad()K g (X) and K gp(Ad(9)X) = Ad(g)K w,(X) = Ad(g)Ko(X). There-
fore K (X) = Ky(X) follows immediately. O

As a consequence of Proposition 20 we can show
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Proposition 21 Leti=1, 2 or 3. Then

(1) HieS (1<a<n);

(2) HixHeS (1<a<b<n);

(8) PpelS, @Q,eS (1<a<b<n).

Consequently, for any ¥ € G(Sp(n), N(n)) the following equalities hold:

Ky(H) = Ko(H); Ky(H,+H})=Ko(H, + H});
Kg(Py) =Ko(Py); Ke(Q)=Ko(Qk).

Proof. Leti=1,2or 3. It is easily shown that under the action of Sp(n),
H: (1 < a <n-—1)is conjugate to Hi. This implies that H: € S (1 <
a < n). It is also known that H. + Hf (1 < a < b < n) (resp. H! —
H} (1 < a < b < n)) is conjugate to H._; + H} (resp. H:_; — H:). Let
{4, j, k} be a permutation of {1, 2, 3}. Then we easily have [Ht, HJ] =
2¢(ijk)HE. This proves that s = ?:1 RH: is NAT. In view of the proof
of Lemma 18 exp(RHY) acts on s’ = RH? +RHJ as a non-trivial subgroup
of rotations of s’. Hence, we can find an element h € exp(RHF) such that
Ad(h)HE: = —H. Since [HF, Hi_;] =0, we have Ad(h)H:_, = H:_, and
hence Ad(h)(H:_, — H.) = Hi_, + H:. Therefore, we have H! + H}
S (1 <a<b<n). Aswe have pointed out, Py ~ Q% ~ (HE — HE). Since
H! — H! € S, it follows that P, € S and ng € S. This completes the
proof. [

(3.5)

Remark 22 In the next section, after the proof of Theorem 10 we will
know that K (X) = Ko(X) holds for any X € sp(n) (see Remark 36).

4. Solutions of the Gauss equation

In this section we will prove Theorem 10. We assume that n > 2 and
that the Gaussian variety G(Sp(n'), M(n')) is EOS for any n' such that
n < mn.

We now regard 91(n — 1) as a subspace of 91(n) by the assignment

N(n—1) 2 Z — (g 8) € N(n).

Let 9 be the orthogonal complement of 9t(n — 1) in M(n). Then we easily
have dim 91 = 4n — 3 and
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n—1 3
M = REp, + Z{R(Ecm + Epa) + Y _R(Ean — Eng)é’ }
a=1 j=1

(orthogonal direct sum).

As in the previous section, we denote by ¥q the canonical solution (2.4).
By a simple calculation we can easily verify that ¥o(sp(n—1), sp(n—1)) =
M(n —1) and MM = (Po)yi (sp(n)) (¢ =1, 2, 3). In a natural manner, the
restriction Wo| sp(n—1) of o to sp(n — 1) may be regarded as an element
G(Sp(n — 1), 9t(n — 1)). Therefore, by the hypothesis of our induction we
have:

Lemma 23 For any ¥’ € G(Sp(n — 1), N(n — 1)) there is an element
p' € OM(n —1)) such that o' ¥’ = Wo|gp(n—1).

Let ¥ € G(Sp(n), 91(n)). By Ve (X) (C N(n)) we denote the image of
sp(n) by the map Wx. We call ¥ a normal solution if ¥ satisfies:
(1) Ve(H)=mM(i=1,23)
(2) ‘Illsp(n—l) = ‘IIOIEp(n-—l)a
where W|g(,—1) means the restriction of ¥ to sp(n—1). By G°(Sp(n), MN(n))
we mean the subset of G(Sp(n), 91(n)) consisting of all normal solutions.

Proposition 24 Let ¥ € G(Sp(n), N(n)). Then there is an element p €
O(M(n)) such that p® € G°(Sp(n), N(n)).

Proof. Since dim K¢ (H}) = dimKo(H}) (see Proposition 19), we have
dimVg(H:) = dimVg,(HE). Hence we have dim Vg (H:) = dim 0t for
any 1 (=1, 2, 3). Let X, Y € sp(n —1). Then by the Gauss equation (2.3)
we get

(Ix, By, Y1, 2)
= (9(X,Y), O(H:, 2)) — (¥(X, Z), O(H, Y))

] =

for any Z € sp(n) and i (= 1, 2, 3). Since [X, H:] = 0 and K¢ (H!) =
Ko(H:) D sp(n—1) (see (3.4) and Proposition 19), we have ¥(H:, Y) = 0.
Consequently, we have <III(X ,Y), ®(H, Z)) =0, which proves

(B(sp(n—1), sp(n—1)), Vg (H})) = 0. (4.1)

Take an element p1 € O(M(n)) such that p1(Ve(HL)) = M. Then by
(4.1) we have (p1®)(sp(n — 1), sp(n — 1)) = p1(¥(sp(n — 1), sp(n — 1))) C
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9(n—1). Hence, in a natural manner, (o ¥)] sp(n—1) May be regarded as an
element of G(Sp(n—1), 9(n—1)). Hence there is an element g, € O(N(n -
1)) such that p5((01%¥)lsp(n—1)) = Polep(n—1) (see Lemma 23). Take py €
O(9(n)) such that palsy = lon and pa|mp—1) = p5. Put p = pgp1. Then
we have Vg (Hy) = p(Ve(Hy)) = I and (0%)|gpn—1) = Polsp(n-1). We
finally prove V o (H}) =9 (i = 2, 3). As is easily seen, we have ¥(sp(n —
1), sp(n—1)) = p~(M(n—1)). Hence by (4.1) we have Vg (H:) C p~1 ().
Therefore, V pu (H:) = p(Ve(HE)) C M. Since dim V ¢ (H?) = dim 90, we
have Vg (H.) = 9N, implying p® € G°(Sp(n), 9(n)). This completes the
proof. O

By virtue of Proposition 24 to show Theorem 10 it suffices to prove that
any element of G%(Sp(n), M(n)) is equivalent to Wy.

By m we denote the orthogonal complement of sp(n — 1) in sp(n). For
simplicity, we set P, = Py, QF = Q%,, and H® = H} for integers a (1 < a <
n—1)and i (1 <i<3). Set

3 3
my =RP+Y RQ,(1<a<n-1), mp=)» RH
; =1

i=1

Since (mq, mp) =0 (a # b), we have

n—1
m= Zma +m, (orthogonal direct sum).
a=1
Lemma 25 Let ¥ € G%(Sp(n), M(n)) and let i =1, 2 or 3. Then:
n—l . . .
M = Z W(H', mg)+R¥(H", H*) (direct sum).
a=1
Proof. Since Ky (H") = sp(n—1)+),,;RHI and Vg (H') = ¥(H', m) =
M, we have the lemma. O

In what follows we will observe the value (X, Y) (X, Y € sp(n)) for
the following four cases:
(I) XemandY €sp(n—1);

(II) X emy, andY € my;
(III) XemgandY em, 1 <a<n—1)
(IV) XempandY emg (1 <a<n-1).

We first observe Case (I):
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Proposition 26 Let ¥ € G°(Sp(n), N(n)). Then:
(1) T(m,sp(n—1)) C M.
(2) Let X,Y emand Z € sp(n—1). Then:

(®(X, Z), Y)) = = (X, 2], HY], Y). (4.2)

»J>.l*--l

Proof. We first note that W(H?, sp(n — 1)) = 0 (1 < i < 3), because
Ky (H') D sp(n —1). This proves W(my, sp(n — 1)) = 0. We now prove
W(mg, sp(n—1)) C M for any a (1 < a <n—1). To show this we prove

W(P,, sp(n—1)) cO;  ®(Q, sp(n—1)) CcM (i=1,23).
(4.3)
Define an element Z§ € sp(n—1) (1 <i < 3) by Z} = (377 sEqs)e’. Then
it is well-known that Z{ is a regular element of sp(n — 1). Moreover, since
U|epin—-1) = Polsp(n-1), it follows that W(Z§, sp(n—1)) C N(n —1). Here
we note that the equality ¥(Z}, sp(n — 1)) = N(n—1) holds. Indeed, since
dim Ker((\Ilo)Zé |sp(n—1)) = 2(n — 1) (see Proposition 15), we have

dim W(Z}, sp(n — 1)) =dimsp(n — 1) — dim Ker((II'g)Zé|5p(n_1))
=dimN(n — 1).

Now let us set W! = Z§ — aH® € sp(n) (1 < a < n—1). By a direct
calculation we can verify Wo(P,, Wi) = ¥o(Q%, W¢) = 0. Hence by (3.5)
we have W (P,, W}) = ®(Q%, W¢) = 0. Moreover, since ¥(H®, sp(n—1)) =
0, we have W(W{, sp(n—1)) = ¥ (Z§, sp(n—1)) =N(n—1). Let Z, Z’ €
sp(n — 1). Then by the Gauss equation (2.3) we have

2173, 21, 2, R)
= (W(W}, Z), ®(Z, P.)) — (B(Wi, B), ®(Z, 7)),  (4.4)
2w, 21, 20, Q3)
= (®(W}, 2'), ®(Z, Q))) — (¥ (W,, Qb), ¥(Z, Z2')).  (4.5)
Since [H!, Z] = 0, we have [[W{, Z], Z'] = [[Z, Z), Z'] € sp(n — 1).

Hence, the left sides of (4.4) and (4.5) vanish. Further, since ¥ (P,, W?) =
U(Qi, Wi) =0, wehave (¥(W;, Z'), ®(Z, Fa)) =(¥(W;, Z'), ®(Z, QL))
= 0. Since Z and Z’ are arbitrary elements of sp(n — 1) and since

130



Rigidity of the canonical isometric imbedding of the symplectic group 101

(W}, sp(n—1)) = N(n — 1), we have

(M(n—1), T(sp(n—1), Po)) = (N(n—1), T(sp(n—1), Q%)) =0,

showing (4.3). Consequently, we have ¥(m,, sp(n — 1)) C 9, which com-
pletes the proof of (1).

Next we show (2). Let X, Y € m and Z € sp(n — 1). Then by the
Gauss equation (2.3) we have

%([[X, HY,2),Y)=(¥(X, 2), ¥(H, Y))—(¥(X,Y), ¥(H', Z)).

Note that W(H?, Z) = 0 and [Z, H'] = 0. The latter equality, together
with the Jacobi identity, shows [[X, H?], Z] = [[X, Z], H?]. Thus we obtain
(4.2). O

Remark 27 Here we state a remark on the value ¥(X, Z) (X €m, Z €
sp(n —1)). Note that the right side of (4.2) is an intrinsic quantity. Since
W (H', m) = M, we know that ¥(X, Z) € M is uniquely determined if the
values W(H", Y) (Y € m) are given. Therefore, if ¥(H?, Y) = Wo(H?, Y)
holds for any Y € m, then we may conclude that (X, Z) = ¥o(X, Z) (X €
m, Z € sp(n — 1)). See Case (c) below in the proof of Theorem 10.

We next observe Case (II):

Proposition 28 Let ¥ € G°(Sp(n), N(n)). Then:

(1) ®(H, HY) =P (H? H?) = ©(H3, H®).

(2) W(HY, H?) = W(H?, H®) = W(H®, H') =0.

(3) (W(H?, HY), W(H, H))=1 (1<i<3).

(4) (R(H, HY), ¥(H',mg))=0 (1<i<3,1<a<n-—-1).

2
3
4

To prove the proposition we prepare

Lemma 29 Let ¥ € G(Sp(n), N(n)). Let X and Y € sp(n). Assume:
(1) Wo(X, X)=T(Y, 7). |
(i) X+Y eS.

Then ¥ (X, X) = ®(Y, Y).

Proof. By (i) we easily have (X +Y, X -Y) =0, ie, X ~Y € Ko(X +
Y). Since X +Y € S, we have Ko(X +Y) = Kg(X +7Y) (see Proposi-
tion 20). Consequently, it follows that X —Y € Kg(X +Y), ie., ¥(X +
Y, X —Y) =0. This implies ¥(X, X)=¥(Y,Y). O
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Proof of Proposition 28. Let {3, j, k} be a permutation of {1, 2, 3}. As
shown in the proof of Proposition 21, s = f=1 RH®is NAT. Consequently,
H'+ H’ € 8, because (H' + HY) ~ H’. On the other hand, it is easily
checked that Wo(H*, H') = Wo(H’, H’) = —Ep,. Hence by Lemma 29 we
have ¥ (H*, H*)=W(H7, HY). Similarly, we have @ (H/, H) = W(H, H*),
proving (1). The assertion (2) is clear from Lemma 13. Finally we prove
(3) and (4). Let k be an integer such that 1 < k& < 3, k #iand X € sp(n).
Then by the Gauss equation (2.3) we have

([(#*, H#Y, HY, X)
= (U(H', H"), @(H*, X)) - (®(H', X), O (H* gk,

]

By a simple calculation we have [[H*, H¥], H*] = —4H*. Moreover, by the
results obtained in (1) and (2) we have W(H*, H*) = 0 and ¥ (H* HF) =
U (Ht, H*). Consequently, we have

(T(HY, X), O(H', HY)) = (H', X).

Therefore, we obtain (3) and (4), because (H?, H?) = 1 and (Hf,my) =0
(see (3.3)). O

In Case (III) the value ¥(X,Y) (X, Y € my) (1 <a < n— 1) are
determined by

Proposition 30 Let ¥ € G°(Sp(n), M(n)) and let a be an integer such
that1 <a <n—1. Then

(1) (P, QL)=0 (1<i<3).

(2) ¥(Q, Qa)=0 (1<i#j<3).

(3) C(Fa, Fo) = W(Q4, Qi) = (H', H") + W(HS, HY) (1<i<3).

Proof.  Since Wo(F,, Q) = 0 and Wo(Q%, Q%) = 0 (i # j), we obtain (1)
and (2) (see (3.5)). We now prove (3). Since st,, = R(H*~ H:)+RP, +RQ:
is NAT, it follows that Q° + (H'~ H?) € S. Indeed, QL+ (H —H) ~ (H—
H;). By Lemma 29 we have ¥(Q%, Qi) = W(H' — H:, H — HY), because
Wo(Q%, Q4) = Wo(H' — H, H' — Hi) = —(Eyq + Epy). Since Hi € sp(n —
1), we have W(H', H.) = 0. Consequently, ¥(Q%, Qi) = W(H, H') +
U(H;, H.). Similarly, we can prove W(P,, P,) = U(H!, HY)+W(H:, HY).

|

Before proceeding to Case (IV) we extend Lemma 29 to the following
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form:

Lemma 31 Let ¥ € G(Sp(n), N(n)). Let X, X', YV and Y' € sp(n).
Assume:

(1) To(X, Y") = To(Y, X) = 0.

(ii) Wo(X, X') =Ty, Y").

(i) X8, YeSandX+Y eS.

Then ®(X, X') = ¥(Y, Y").

Proof. By (i) and (ii) we have Y’ € Ko(X), X’ € Ko(Y) and ¥o(X +
Y, X' —=Y') = 0. The last equality implies that X' — Y’ € Ko(X +Y).
Hence by (iii) we have Y’ € Kg(X), X' € Kg(Y) and X' - Y’ € Kg(X +
Y). Consequently, we have ¥(Y', X)=¥(X"|Y)=¥(X +Y, X' -V =

0. Hence ¥(X, X') =¥ (Y, Y"). O
With this preparation we observe Case (IV).

Proposition 32 Let ¥ € G°(Sp(n), N(n)). Let a be an integer such that

1<a<n-1. Then:

(1) ‘II<H13 Qi) = \I’(H2a QZ,) = III(H3, Qg)

(2) W(HY, Q) = —e(ijk)U(H*, P,), where {3, j, k} is a permutation of
{1, 2, 3}.

(3) W(H, m,)=T(H? m,) = T(H3 m,).

(4) For eachi (1 < i< 3) the set {v2U(H?, P,), V2¥(H!, Q%) (1< j <
3)} forms an orthonormal basis of W(H?, my).

Proof. Let {1, j, k} be a permutation of {1, 2, 3}. We note that the sub-
space 5§ = R(H! + H*) + RQ} + RQ¥ forms a subalgebra of sp(n) and is
NAT. In fact, by simple calculations we have

[, + H', Q) = 2¢(ik)Qe;  [HL + HY, QF) = —2¢(35k) Q%

(Q3, QE] = 2¢(isk) (HL + HY).
Hence we have H} + H* + Qies and H: + H' + QF € S, because H +
H+Ql~H. +H +QF~H: + H € S.
Now we prove (1). By direct calculations we can show ®o(HL+H?, Q1)
= ‘I,’O(Hg + H?, Q3) = Uo(H2 + H3, Q3) = —(Eapn + Eng). Moreover we

have Wo(H}, + H*, H} + H7) = Wo(Q%, Q%) = 0if i # j (see Lemma 13 and
Proposition 30). Therefore by Lemma 31 we have

U(H,+H', Q)) = W(HZ+H?, Q%) = W(H3+H?, Q). (4.6)
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Here we show W(H}, Q) = W(HZ, Q) = ¥(H3, Q3). Leti=1, 2 or 3.
Since H! € sp(n — 1) and Q% € m, it follows from Proposition 26 ( ) that
W(H:, QL) € M. Moreover, by Proposition 26 (2) we have

(@S, HY), W', V) = 3 (1QL, Hil, H#',¥)

forany Y € m. Since [Q%, H:] = P,, the right side of the above equality does
not depend on the choice of 7. This implies that ¥ (H}, QL) = W(H2?, Q2) =
W(H2, Q3), because W(H?, m) = M. This, together with (4.6), proves (1).

We next prove (2). Let {i, 5, k} be a permutation of {1, 2, 3}. Then by
direct calculations we have o(H: — H*, Q) = 5(25]{:)\1!0(}]’“ + H P,) =
£(15k)(Ean — Eng)e®. Moreover, ®o(H: — H?, HE + H*) = ©4(QJ, P,) =0
(see Lemma-13 and Proposition 30). Since HX + H* + Q) € S, we obtain
by Lemma 31 the following

U(H.~H*, Q) = e(ijk)®(H+H* P,). (4.7)
Note that H, HF € sp(n—1), @}, P, € m and [Q%, HY] = e(ijk) [Py, HY] =
—e(ijk)Q%. As in the proof of (1) we have W(HE, Q) =elijk)T(HE, B,).
Accordingly, from (4.7) we have W(H*, Q) = —e(ijk)¥(H*, P,). This
completes the proof of (2).
‘By (1) and (2) we have
Y(H, P.) =-¥(H? QF) = ¥(H?, Q2);
(HjL Qa) = (H? Q) = ¥ (H?, Q);
V(H, QF) =~V (H?, Q;) = —¥(H’, P.);
C(H, Q) =U(H?, P) = —U(H’, Q).

1!

By these equalities we clearly obtain (3). .
Finally, we prove (4). Let X and Y are one of P, and @} (1 <j <3),
ie, X,Y € {F,, Q4 (1 <j <3)}. By the Gauss equation (2.3) we have

(1%, X, HY, Y)
= (¥(H', HY), ®(X,Y)) - ((HY), ¥(X, H)).

By direct calculations we can verify [[H?, X], H']'= X. Hence the left
side of the above equality becomes (1/4)(X, Y). First assume that X =Y.
Then we have W (X, X) = U(H', H')+ P (H:, HE) (see Proposition 30 (3)).
Since (W (H*, H*), ¥(H?, H")) = 1 (see Proposition 28), W(H?, H*) € M

]
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and ¥(H:, Hi) € M(n — 1), we have
(O(H', H), ¥(X, X)) =(U(H', HY), U(H', H") + ©(H., HY))
=1.

Since (X, X) = 2 (see (3.3)), we have (¥(H, X), ¥(H*, X)) = 1/2.
We next consider the case X # Y. Then we have (X, Y) = 0 and
W(X,Y) = 0 (see (3.3) and Proposition 30 (1), (2)). Hence it follows
that (¥ (H*, X), W(H' Y)) = 0. This completes the proof of (4). O

We are now in a position to prove Theorem 10.

Proof of Theorem 10. Let ¥ € G°(Sp(n), M(n)). Set H = W(H', HY),
P,=V2¥(H P) (1<a<n-1),Q,=V2¥(H, Q) 1<a<n-
1,1 <4< 3). Then we have

Lemma 33 ThesetO={H,P, (1<a<n-1),Q  (1<a<n—-1,1<
i < 3)} forms an orthonormal basis of M.

Proof. By virtue of Proposition 28 (3), (4) and Proposition 32 (4) we have
only to prove

(B(H', mg), (H, mp)) =0 (1<a#b<n-1). (4.9)

Let X € my and Y € m;. By the Gauss equation (2.3) we have

(17, X), H?, )
= (U(H', H?), ¥(X,Y)) - (®(H", Y), ¥(X, H?)).

1
4

As is easily seen, [[H!, X], H?] € m,. Hence the left side of the above
equality vanishes. On the other hand, since ¥(H*, H?) = 0 (see Propo-
sition 28), it follows that (¥ (H?', Y), ®(X, H?)) = 0. This proves that
(®(H', mp), ¥(H?, m,)) = 0. Therefore, we obtain (4.9), because

W(H? m,) = U(H', m,) (see Proposition 32 (3)). This completés the
proof. [J

Let Do = {Hop, (Pg)o (1<a<n-1), (@) (1<a<n-1,1<i<3)}
be the orthonormal basis of 90T corresponding to Wy, i.e., Hy = ¥o(H, H'),
(Po)o = v2%o(HY, B,) and (Q)o = v2Wo(H?', Q). Then, there is an
orthogonal transformation p’ of 9 such that Hy = p/(H), (Py)o = p'(Py)
and (Q%)o = p'(Q%). Extend p’ to the orthogonal transformation p of 9(n)
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satisfying. plon = p’ and Plon—1) = lon—1)- Then, it is easy to see that
p® € G%(Sp(n), N(n)). For simplicity, set W1 = p¥. In the following we
will prove W; = ¥. In view of Lemma 25 and the decomposition sp(n) =
m+sp(n — 1), we may conclude ¥; = ¥q if ¥1(X,Y) = Wy(X, V) holds
for any pairs X and Y listed in the following (a) ~ (e):

Xesp(n—1)and Y € sp(n—1);

(a)

(b) XempandY em;

(c) XemandY €sp(n—1);

d XemgandY em, (1<a<n—1);
() XemgandY emp (1 <a#b<n-1).

Case (a): Let X,Y € sp(n—1). Since ¥(X,Y) = ¥o(X,Y) € N(n—1)
and Plotn—1y= ln-1), we have ¥1(X,Y) = p(¥(X, Y)) = p(¥,(X, Y))
= Ty(X, V).

Case (b): By the very definition of p we have ¥1(H,Y) = Wo(H!, Y)
forY € Za_l m, + RH!. Applying Proposition 32 to both ¥; and ¥y, we
have W1 (H, Y) = Wo(H, Y) fori=2,3,Y € S img (see (1), (2) and
(4.8)). Further, since ¥ (H', H!) = ¥ (Hl H'), we have W (H¢, HY) =
Wo(H', H7) (1 <4, j < 3) (see Proposition 28 (1), (2)) Thus we obtain
U1 (X,Y)=(X,Y) forany X €mp and Y € 371 mg +m, = m.

Case (c): By Case (b) we have W1(H*, Y) = Wo(H!,Y) (i=1,2,3;Y €
m). As we have remarked (see Remark 27), we obtain ¥4 (X, V) = Wy(X, Y)
for X em,Y esp(n—1).

Case (d): As seen in Case (b), we have 1 (H?, H') = Wo(H*, H'). More-
over, since H}, € sp(n—1), we have @1 (H:, HL) = Wo(H:, HE) (i =1, 2, 3).
Hence by applying Proposition 30 to ¥ and ¥y, we easily have ¥ (X, V) =
o(X,Y) for X, Y € m,.

Case (e): We note that this case occurs when n > 3. We first show

Lemma 34 Assume that n > 3. Let a and ¢ be integers such that 1 <
a#Fc<n—1 Then P+ P € $;QL Q% €S (i=1,2,3).

Proof. By easy calculations we have
[He ~ H', Pot Po] = QL F Qs
[Hé - H’L, Qza :F Qa,c] - _(Pa -_-t Pac);
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[Py £ Pue, Q% F Q] = 2(H: — HY).

Consequently, both the subspaces 54 = R(H:— H*) +R(P, + Py) + R(Q% —

oe) and 5 = R(H]~ H*)+R(Ps ~ Puc) +R(Q}, + Q%) are NAT. Therefore,
we have Py Py ~ H— H* ~ Q% +Q" .. Since H.— H* € S, it follows that
PotP,eSand Q +Q . €S. ' O

First assume n > 4. Let us consider the case X = P, and Y = B,.
Take an integer ¢ (1 < ¢ < n —1) such that ¢ # a and ¢ # b. By easy
calculations we have Wo(P,, Py) = Wo(Ppc, Poc) = —(1/2)(Egp + Epg) and
Wo(Pa, Poc) = Wo(Pae, By) = 0. Since P,, Py and P, + P, € S, it follows
that W1(P,, Py) = W1(Pse, Pse) (see Lemma 31). Since Py, Py € sp(n —
1), we have W1 (Fye, Poc) = Wo(Pyc, Poc) (see the Case (a)). Hence we have
W1 (P, Fy) = Wo(Py, ). In a similar manner we can prove W1 (P, Q) =
To(Py, @)) (i =1, 2, 3) and W1 (Q, Q) = Wo(Q%, Q) (5,7 =1, 2, 3). By
these facts we obtain the equality ¥1(X,Y) = ¥p(X,Y) (X € ma, Y €
mp) when n > 4. :

Next we assume n = 3. Apparently, the method used in the case n > 4
cannot be applied to this case. We prove

Lemma 35 Assume that n = 3. Then ¥1(my, mg) C N(2).

Proof. Set B, = {P,, Q, @2, Q%} (a=1,2). Let X € B; and Y € Bo.
We first show

<\111(Xa Y)a ‘Ill(Hla H1)> = <‘I’1(X7 Y), q’l(Hla m1+m2)> = 0.
(4.10)
If this is true, then we have ¥1(X, Y) € 9M(2), because M = R¥, (H?, H')
+W1(H, m; + my) (see Lemma 25) and because 91(2) is the orthogonal
complement of M in N(3).
By the Gauss equation (2.3) we have

1
Z([[H:L) X]: Hl]v Y)
= (U1 (HY, HY), ¥1(X, V) — (¥ (H', V), T1(X, HY)).
As observed in the proof of Proposition 32, we have [[H!, X], H!] = X.
Since (X , Y) = 0, the left side of the above equality vanishes. Moreover,
in view of (4.9) we have (¥;(H',Y), ¥1(X, H*)) = 0. Consequently, we
have (¥1(X,Y), ¥1(H*, H')) = 0. Let Z be an arbitrary element of 9.
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Then by the Gauss equation (2.3) we have

([x, #Y, Y], 2)
=(¥(X, Y), T1(H?, Z)) - (¥1(X, Z), U1(H', Y)).

]

Here we can easily verify that [[X, H?], Y] € sp(2) and hence the left side of
the above equality vanishes. By Proposition 30 (1), (2) we have ¥, (X, Z) =
0if X # Z. Hence <‘Ill(X, Y), ¥, (H?, Z)> = 0. On the other hand, if X =
Z, then we have W1(X, Z) = (X, X) = ©U1(H', H)+ U, (H}, HD) (see
Proposition 30). Hence by Proposition 28 (4) and the fact ¥;(Hj, H}) €
N(2) we have (¥1(X, Z), T1(H, Y)) = 0. Therefore, in this case, we
also obtain (¥(X,Y), ¥1(H?, Z)) = 0. Since Z is an arbitrary element
of 9By, we have <1Ifl(X, Y), ¥, (HY, m1)> = 0. In a similar way we can
prove <\I’1(X, Y), U1(H?, m2)> = 0, showing (4.10). Accordingly, we get
¥, (X,Y) € 91(2) and hence ¥1(my, ma) C MN(2). O

Now let X € my, Y € mp. Take arbitrary elements Z1, Zs € sp(2).
Then by the Gauss equation (2.3) we have
([[Xy Zl]7 Y:Ia Z2)
=(01(X,Y), ©1(Z1, Z2)) — (1(X, Z3), ¥1(Z1, V).

By the results of Case (a) and Case (c) we have W1(Z1, Z2) = ¥o(Z1, Z3),
W1(X, Z2) = Wo(X, Z3) and ¥1(Y, Z;) = ©u(Y, Z1). Therefore we have

]

(B1(X, Y), ®o(Z1, Z2))
= 21X, 211, Y), Z0) + (Ro(X, Z2), Wo(Z, V)

Since Wy is a solution of the Gauss equation (2.3), we have

<‘II0(X7 Y)a \I’O(Zla Z2)>
1

= (1%, 211, Y), Z2) + (Ro(X, Z2), ¥o(Z1, V).

Hence, by subtraction, we have (¥1(X,Y) — ¥o(X,Y), ¥o(Zy, Z3)) =
0. Here we note that W1(X,Y) — ¥,(X,Y) € 9(2). Indeed, we have
Pi(X,Y) € N2) (see Lemma 35) and have ¥o(X, Y) € N(2) by a simple
calculation. Since Wq(sp(2), sp(2)) = N(2), the above equality implies that
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Ui(X,Y)-¥(X,Y) =0, ie, ¥1(X,Y) = ¥o(X, Y). This completes
the proof of (e) in the case where n = 3.

Thus by the above case studies (a) ~ (e) we get ¥; = Wy, ie., p¥ =
Wq. This completes the proof of Theorem 10. O

Remark 36 As seen in the above discussion, we have proved Theorem 10
by utilizing the equality Kw(X) = K(X) for regular elements X or for
elements X € S. After we have established Theorem 10, we easily conclude
that K¢ (X) = Ko(X) holds for any element X € sp(n).
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RIGIDITY OF THE CANONICAL ISOMETRIC IMBEDDING OF THE
HERMITIAN SYMMETRIC SPACE Sp(n)/U(n)

YOSHIO AGAOKA AND EILJI KANEDA

ABSTRACT. In this paper we discuss the rigidity of the canonical isometric imbedding
fo of the Hermitian symmetric space Sp(n)/U(n) into the Lie algebra sp(n). We will
show that if n > 2, then fo is strongly rigid, i.e., for any isometric immersion fiofa
connected open set U of Sp(n)/U(n) into sp(n) there is a euclidean transformation a of

sp(n) satisfying f1 = afo on U.

1. INTRODUCTION .

In a series of our work [4], [5] and [7] we showed the strong rigidity of the canonical
isometric imbeddings of the projective planes P?(CAY), P?(H) and the symplectic group
Sp(n). In this paper we will investigate the canonical isometric imbedding fo of the
* Hermitian symmetric space Sp(n)/U(n) (n > 2) and establish the strong rigidity theorem
for fo. _

As is known, any Hermitian symmetric space M of compact type is isometrically imbed-
ded into the Lie algebra g of the holomorphic isometry group of M (see Lichnérowicz [15]).
Thus, Sp(n)/U(n) can be isometrically imbedded into sp(n), which is the Lie algebra of
the symplectic group Sp(n). Identifying sp(n) with the euclidean space R2V+1 we obtain
an isometric imbedding fo of Sp(n)/U(n) into R2"*", which is called the canonical iso-
metric imbedding of Sp(n)/U(n). In [2] we proved that any open set of Sp(n)/U(n) cannot
be isometrically immersed into the euclidean space RY with N < dimsp(n) — 1. Accord-
ingly, the canonical isometric imbedding fq gives the least dimensional (local) isometric
imbedding of Sp(n)/U(n) into the euclidean space (see Corollary 2.5 of [2]).

In this paper we will prove

Theorem 1. Let fo be the canonical isometric imbedding of Sp(n)/U(n) (n > 2) into
the euclidean space sp(n) (= ]R2”2+”). Then fo is strongly rigid, i.e., for any isometric
immersion f1 of a connected open set U of Sp(n)/U(n) into sp(n) there is a euclidean

transformation a of sp(n) satisfying f1 = afo on U.
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Key words and phrases. Curvature invariant, isometric imbedding, rigidity, symplectic group, Hermitian

symmetric space.
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As for the rigidity on the canonical isometric imbeddings of connected irreducible Her-
mitian symmetric spaces M of compact type, the following results are known:

(1) fo is globally rigid in the following sense: Let f1 be an isometric imbedding of M
into g. If f; is sufficiently close to fo with respect to C3-topology, then there is a
euclidean transformation a of g such that f1 = afo (see Tanaka [17)).

(2) If M is not isomorphic to any complex projective space P*(C), then fq is locally

-rigid in the following sense: Let U be a connected open set of M and let f1 be
an isometric imbedding of U into g. If f; is sufficiently close to fy with respect
to C?-topology on U, then there is a euclidean transformation a of g such that
f1=afo holds on U (see Kaneda-Tanaka [12]). |

We note that the tdpological condition on the mappings are removed in the statement of
Theorem 1. In this sense Theorem 1 strengthens the rigidity theorem in [17] and [12] for
the Hermitian symmetric space Sp(n)/U(n) (n > 2).

The method of our proof is quite similar to the methods adopted in [4], [5] and
[7]. We will solve the Gauss equation on Sp(n)/U(n) in codimension n?(= dimsp(n) —
dim Sp(n)/U(n)) and prove that any solution W of the Gauss equation is Hermitian, i.e.,
U(IX,IY) = ¥(X,Y). This fact, together with the criterion on the isometric imbeddings
of almost Hermitian manifolds (Theorem 5), indicates that any solution of the Gauss
equation is equivalent to the second fundamental form of fo. Therefore by the congruence
theorem obtained in [4] (see Theorem 3 below) we can establish Theorem 1.

Throughout this paper we will assume the differentiability of class C®. For the notations
of Lie algebras and Riemannian symmetric spaces, see Helgason [11]. For the quaternion
numbers and the symplectic group Sp(n), see Chevalley [9].

2. THE GAUSS EQUATION AND RIGIDITY OF ISOMETRIC IMBEDDINGS

Let M be a Riemannian manifold and let T'(M) be the tangent bundle of M. We denote
by v the Riemannian metric of M and by R the Riemannian curvature tensor of type (1, 3)
with respect to . We also denote by C' the Riemannian curvature tensor of type (0,4),
which is, at each point p € M, given by

C(z,y,z,w) = —V(R(a:,y)z,w), z,y, z,w € Tp(M).

Let N be a euclidean vector space, i.e., N is a vector space over R endowed with an inner
product <, > Let SQT;(M ) ® N be the space of N-valued symmetric bilinear forms on
Tp(M). We call the following equation on ¥ € SQT;(M )®N the Gauss equation at p € M
modeled on N:

C’(x,y,z,w) = <‘I‘(:L‘,Z), ‘Il(va» - (W(w,w),\P(y, Z)>7 (2'1)
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where z, y, 2, w € Tp(M). We denote by G,(M,N) the set of all solutions of (2.1), which
is called the Gaussian variety at p € M modeled on N. Let O(N) be the orthogonal
transformation group of N. We define an action of O(N) on S2T;(M )® N by

(h®)(z,y) = h(¥(z,1)),

where ¥ € SzT;(M) ®N, h € ON), z, y € T,(M). We say that two elements ¥ and
' € S?°T3(M)® N are equivalent if there is an element h € O(N) such that ¥’ = h¥. It
is easily seen that if ¥ and @' € SgT;(M ) ® N are equivalent and ¥ € G,(M,N), then
U’ € G,(M,N). We say that the Gaussian variety G,(M,N) is EOS if G,(M,N) # 0 and
if it consists of essentially one solution, i.e., any solutions of the Gauss equation (2.1) are
equivalent to each other under the action of O(N). We proved

Proposition 2 ([4], p. 334)..Let M be a Riemannian manifold and p € M. Let N be a
euclidean vector space such that Gp(M,N) is EOS. Then:
(1) Let ¥ be an arbitrary element of Go(M,N). Then, the vectors ¥(z,y) (z,y €
Tp(M)) span the whole space N.
(2) Let N1 be a euclidean vector space. Then:
(2a) Gp(M,N;) =0 if dimN; < dim Nj;
(2b) Go(M,Ny) is EOS if dim Ny = dim N;
(2¢) Gp(M,N1) is not EOS if dimN; > dim N.

We say that a Riemannian manifold M is formally rigid in codimension r if there is
a euclidean vector space N with dimN = r such that the Gaussian variety G,(M,N)
modeled on N is EOS at each p € M. In [4] we have obtained the following rigidity

theorem for formally rigid Riemannian manifolds:

Theorem 3 ([4], pp. 335-336). Let M be an m-dimensional Riemannian manifold and
let fo be an isometric immersion of M into the euclidean space RY. Assume:

(1) M is connected;

(2) M is formally rigid in codimension r = N —m.
Then, any isometric immersion f1 of M into the euclidean space RN coincides with fo

up to a euclidean transformation of RY, i.e., there exists a euclidean transformation a of
RN such that f1 = afo. ‘

In the subsequent sections we will prove

Theorem 4. The Hermitian symmetric space Sp(n)/U(n)(n > 2) is formally rigid in

codimension n? (= dimu(n)).

If Theorem 4 is true, then it is easily seen that Theorem 1 immediately follows from
Theorem 3.
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Remark 1. We note that, in the case n = 1, Theorem 4 is not true. In this case we have
Sp(1)/U(1) & S? and the canonical isometric imbedding fo coincides with the standard
isometric imbedding of S2 into R3. Consequently, fo is globally rigid (remember the
rigidity theorem for ovaloids by Cohn-Vossen[10]). However, it is not locally rigid, i.e.,
there are infinitely many non-equivalent surfaces of revolution possessing constant positive
curvature. Therefore, the Gauss equation in codimension 1 admits infinitely many non-
equivalent solutions corresponding to the second fundamental forms of these surfaces. For

details, see Spivak [16].

3. THE GAUSS EQUATION ON ALMOST HERMITIAN MANIFOLDS

For the proof of Theorem 4 we start from a general setting. Let M be an even dimen-
sional Riemannian manifold with Riemannian metric v. Assume that there is an almost
complex structure I on M such that v(Iz,Ty) = v(z,y) (z,y € Tp(M)) at each p € M.
Then M is called an almost Hermitian manifold.

Let M be an almost Hermitian manifold and p € M. Let N be a euclidean vector space.
An element ¥ € SQTI’,k ® N is called Hermitian if $(IX,1Y) = ¥(X,Y) holds for any
X,Y € T,(M). In what follows we will consider the case where the Gauss equation (2.1)
admits a Hermitian solution. We will prove

Theorem 5. Let M be an almost Hermitian manifold and N a euclidean vector space.

Let G,(M,N) be the Gaussian variety ot p € M modeled on N. Assume:
(2) Any solution ¥ € G,(M,N) is Hermitian.
Then, G,(M,N) is EOS.

Let M be a 2m-dimensional almost Hermitian manifold and let p € M. For simplicity,
we set T = T,(M). Let TC = T + /=IT be the complexification of T'. By X we denote
the complex conjugate of X € TC with respect to T'. The almost complex structure I is

extended to a C-linear endomorphism of T'C, which is also denoted by I. Set
TW={zeTC12=v/=12}, T'={z2eT®1z=-v-12}.

Then, as is known, TC = T50 4+ 70! (direct sum) and T%! = T10; T10 = TOI, Take a
basis {Z1, -+, Zm} of T*Y and put Z; = Z; (1 < i < m). Then the set {Z;, Z; (1 <i < m)}
forms a basis of TC. In the following we will fix such a basis {Z;, Z; (1 < ¢ < m)} and

rewrite the Gauss equation (2.1).
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As usual, the Riemannian curvature is extended to a tensor of type (0,4) on T'C. Define
Cabed € C by setting
Cabed = C(Zay Zvy Zey Za)s
where the suffices a, b, ¢, d run through the range 1,...,m,1,...,7. We also extend an
element ¥ € S%T* ® N to an element of $2TC" @ NC, where NC = N +4/=IN denotes
the complexification of a euclidean vector space N. Define vectors Wo, € NC by setting

W = U (Zy, Zp), a,b=1,...,m,1,...,m.

Then we easily have

W = Wy, a,b=1,...,m,1,...,m,

where for an element v € N© we mean by ¥ the complex conjugate of v with respect to N
and we promise i =i fori = 1,...,m.
By use of Cypca and ¥4y, we can rewrite the Gauss equation (2.1) as follows:

Cabcd = <‘Ila0a ‘I’bd> - <\I}ad"I’bc>’ a, b’ C,d= 17"'7m71a'~'7m7 (31)

where < , > means the symmetric bilinear form on NC which is a natural extension of the

inner product of N. We now prove

Lemma 6. Let ¥ € G,(M,N). Assume that ¥ is Hermitian. Then

2

Cipn = (¥, T), 1<ijkI<m, (3.2)

Proof. Let 4, j, k and [ be integers such that 1 < i,5,k,l < m. Putting a =i, b =k,
c=jand d =1 into (3.1), we have

Citnr = (%5, Ogy) — (Par, T;5)-
Since ¥ is Hermitian, we have ¥; = ¥z = 0. Hence we get (3.2). O
Let us define a Hermitian inner product (, ) of NC by setting
v, Y') =(v,Y"), VY, Y eNC.

Then NC is considered as a Hermitian vector space.
We now define a quadratic form C(p) on T*® @ T1.0 by

Cp)(XRY,ZeW)=C(X,Z,7,W), XY, Z0WcTHQT.

By C(p) we denote the matrix corresponding to C(p) with respect to the basis {Z;®Z; (1 <
i,j <m)} of TH0 @ T1O. As is easily seen, C(p) = (C(p)qp) is a complex square matrix of
degree m?, where Greek letters a, 3, ... run over the pairs of indices {17} (4,7 = 1,...,m)

and
CD)ap = Cigzry, o= {ij}, B={kl}.
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It is easily checked that C(p) is a Hermitian matrix, i.e., ?C(p) = C(p). Moreover, the rank
of C(p) and the cardinal number of positive or negative eignevalues of C(p) do not depend
on the choice of the basis {Z;} of T%0.

Now, let ¥ € G,(M,N). Assume that ¥ is Hermitian. Then by (3.2) we have

C(Pap = (Yo, ¥p), & B={11},...,{ij},..., {mm}, (3-3)

where we write Uy = ¥,z when o = {ij}. The equality (3.3) indicates that C(p) is nothing
but the Gram matrix of the vectors {¥}o with respect to (, ). Therefore, C(p) must be
positive semi-definite and rank(C(p)) = dim¢ (3, C¥,), where a runs through the indices
{11},...,{mm}. Let N be the subspace of N spanned by the vectors ¥(X,Y), where
X,Y € T. Then we easily have N§ = Y}, C¥,. Hence dimNg = dimg(Y, C¥,).
Therefore, we get '

Lemma 7. Let ¥ € G,(M,N). Assume that ¥ is Hermitian. Then C(p) is positive

semi-definite and
dim Ng = rank(C(p)).

Consequently, Go(M,N) does not contain any Hermitian element if one of the following

conditions are satisfied:

(1) C(p) has at least one negative eigenvalue;
(2) dimN < rank(C(p)).

Example 1. Let M be a Kahler manifold of constant holomorphic sectional curvature
c(#0) and p € M. Let (21,...,2m) be a complex local coordinate system of M around p.
Put Z; = 0/02; (1 < i < m). Then we get a basis {Zi}1<icm of T*°. By use of the basis
{Z;,Z; (1 <i < m)} the curvature tensor C of M can be written as '

1 ..
Cirn = ¢ Wit + Vi), 1<4,5,k1<m,
2

where we set v;; = v(Z;, Z) (1 < i,k < m) (see Kobayashi-Nomizu [14]). By a suitable
change of the coordinate (z1,...,2n) we may assume that vz = 6 (1 < 4,k < m) at p,
where § means the Kronecker delta. Consequently, the component C(p)ss of the matrix

C(p) is given by
1 = = -
C(p)ap = 50(6aﬂ -+ 6aaéﬂﬂ-), a,B={11},...,{ig},...,{mm},

where {ij} = {ki} means i = k and j = ; {i7} = {ji}, {kl} = {lk}. Therefore, we have
rank(C(p)) = m?, because c # 0. Further, if ¢ < 0 (resp. ¢ > 0), then C(p) is negative
(resp. positive) definite. Accordingly, G,(M,N) does not contain any Hermitian element

in case ¢ < 0 or dim N < m?2.
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With these preparations we prove Theorem 5.

Proof of Theorem 5. First suppose that dim N > rank(C(p)). Let ¥ be an arbitrary
element of G,(M,N). Then by Lemma 7 we have dimNg < dimN. Take a non-zero
vector n € N such that (Ng,n) = 0 and take a non-zero covector £ € T*. Set ¥} = ¥ +
£2 ®@n. Then it is easily verified that 1 € G,(M,N) and that ¥y is not Hermitian. This
contradicts the assumption (2). Consequently, we have dim N = rank(C(p)). Moreover,
we have Ny = N for any ¥ € G,(M,N).

We now prove that G,(M, N) is EOS. Let ¥ and ¥’ € G,(M,N). Since ¥ and ¥’ are
Hermitian, they satisfy the equality (3.3). Hence we have

(0o, Op) = (P, Tp), o, B={11},....{ig},...,{mm}.

Since Ng = N, the vectors {W¥,}, span the whole N C. By an elementary linear algebra
we know that there is a unitary transformation h of NC satisfying ¥/, = h(¥,) (o =
{11},...,{i7}, ..., {m,m}). Let @ = {ij}. Then we have

W(Ta) = h(y3) = Ujy = U], = h(T,).

Consequently, we have h(N) C N. Hence h is an orthogonal transformation of N and A
satisfles @' = h®. This shows that §,(M,N) is EOS. O

Remark 2. Let N be a euclidean vector space. Assume that G,(M,N) satisfles the
conditions (1) and (2) in Theorem 5. Let N’ be another euclidean vector space such that
dim N' = dimN. Then, G,(M,N') also satisfies the conditions (1) and (2) in Theorem 5.
To observe this, take an isometric isomorphism ¢: N — N’ and define a linear mapping
S?T*@N > ¥ — U € S?TF @N' by U(X,Y) = p(¥(X,Y)) (X,Y € Tp(M)). Then the
following assertions can be easily verified:

(1) ¥ is Hermitian if and only if ¥ is Hermitian;

(2) ¥ € Gp(M,N') if and only if & € G,(M,N).
Thus, we note that the conditions (1) and (2) in Theorem 5 are the conditions only related
to the dimension of the eulidean space N. As seen in the proof of Theorem 5, dim N equals
rank(C(p)), which is uniquely determined by the curvature of M at p.

4. THE CANONICAL ISOMETRIC IMBEDDINGS OF HERMITIAN SYMMETRIC SPACES OF
COMPACT TYPE

We now review the canonical isometric imbeddings of Hermitian symmetric spaces of
compact type defined by Lichnérowicz [15]., Let M be an almost Hermitian manifold.
A mapping g of M into itself is called holomorphic if g satisfies g, ol = I o g,. A

connected almost Hermitian manifold M is called a Hermitian symmetric space if each
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p € M is an isolated fixed point of an involutive holomorphic isometry of M. Utilizing the
identity component G of the holomorphic isometry group of M, we can represent M as a
Riemannian symmetric space G/K, where K is an isotropy group at a suitable point o €
M; usually o is called the origin of G/ K (see Helgason [11]). We say a Hermitian symmetric
space G/K is of compact type if the Lie algebra g of G is compact and semisimple.

Let M = G/K be a Hermitian symmetric space of compact type. Let ¢ be the Lie algebra
of K and g = ¥ +m be the canonical decomposition of g with respect to the Riemannian
symmetric pair (G, K). As usual, we identify m with the tangent space T,(M). It is
known that there is an element Iy € ¢ such that: (i) Iy belongs to the center of &; (ii)
ad (Io)|m coincides with the almost complex structure I at o (see [14], [11]). Consider the
Ad(G)-orbit in g passing through Iy, i.e., Ad(G)Iy C g. Since Ad(K)Ip = Iy, we get a
differential mapping

fo: G/K 3 gK — Ad(g)y € g.

We may regard g as a euclidean vector space with a suitable Ad(G)-invarianf inner product.
The induced Riemannian metric v of G/K via fq is easily understood to be G-invariant.
The mapping fo is called the canonical isometric imbedding of M = G/K.

Let V be the Riemannian connection on M = G/K associated with v. By V£ (resp.
VV o) we denote the first order (resp. second order) covariant derivative of the canonical
isometric imbedding fg. The second order covariant derivative VV fq is called the sec-
ond fundamental form of the canonical isometric imbedding fo. In view of Tanaka [17],
Kaneda-Tanaka [12] we know that at the origin o, Vfo and VVfq are given as follows:

fo():[X,Ig]=—IX, X em; (4.1)
VxVyfo=[X [V, )] = -[X,I¥Y], X,Y em. (4.2)

Let T (resp. N) be the tangent (resp. normal) vector space of fo(G/K) at Ip (= fo(o) € g).
By (4.1) we know that the tangent space T, which is generated by the first order covariant
derivatives of fo at o, coincides with m. Consequently, the normal vector space N at o is
given by N = €. Similarly, by (4.2) we know that the value of the second order covariant
derivative VxVy fo (X,Y € m) belongs to the normal vector space N = &. As for the

second fundamental form we have

Proposition 8 ([17], [12]). Let G/K be a Hermitian symmetric space of compact type and
let fo be the canonical isometric imbedding of G/K into g. Then the second fundamental
form ¥ € S?m* ® ¥ of fo at the origin o satisfies the following

(1) o € Go(G/K,¥);

(2) The vectors ®o(X,Y) (X,Y € m) span the whole &;

(3) W is Hermitian, i.e., ¥o(IX,IY) = ¥o(X,Y) for X,Y € m.
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By this proposition we have

Proposition 9. Let G/K be a Hermitian symmetric space of compact type. Then for
each p € G/K the following assertions hold:
(1) rank(C(p)) = dim#¥;
(2) Let N be a euclidean vector space with dim N = dim¢. Then, G,(G/K,N) is EOS
if and only if any element ¥ € G,(G/K,¥) is Hermitian.

Proof. By Proposition 8 and Lemma 7 we immediately know that rank(C(0)) = dim¢.
Then, by homogeneity of G/K, we have (1). Also, by homogeneity, we easily see that’
G,(G/K,N) is EOS if and only if Go(G/K,¥) is EOS. Note that G,(G/K,¥) contains a -
Hermitian element ¥y. Hence, if §,(G/K,¥) is EOS, then any element ¥ € G,(G/ K, ¥) is
Hermitian. The converse part follows from Theorem 5. O

Remark 3. Let G/K be a Hermitian symmetric space of compact type and let p € G/K.
Then, the equality rank(C(p)) = dim# in Proposition 9 indicates that dim € is the least
dimension of a euclidean vector space N such that G,(G/K,N) contains a Hermitian
element. In fact, if N1 is a euclidean vector space with- dim N; < dim ¥, then G,(G/K,N;)
does not contain any Hermitian element (see Lemma 7). However, we note that this fact
does not imply G,(G/K,N1) = 0. Agaoka [1] proved that for the complex projective space
P7(C) (n > 2), Go(P™(C),N1) # 0 when dim N; = n? — 1. We note that in this case we
have dim¥ = dimu(n) = n? and hence G,(P"(C),¥) is not EOS. It seems to the authors
that this is a special case. For the other irreducible Hermitian symmetric space G/K
except P*(C) (n > 1), such as the complex Grassmann manifold G*9(C) (p > g > 2), the
complex quadric @*(C) (n > 4), etc., we conjecture that the Gaussian variety G,(G/K,¥)
is EOS. As will be seen in the following sections, our conjecture is true for the Hermitian
symmetric space Sp(n)/U(n)(n > 2). In TABLE 1 we show all irreducible Hermitian
symmetric spaces G/K of compact type and related data:

TABLE 1. Irreducible Hermitian symmetric spaces of compact type

G/K rank(G/K) | dimG/K dimg dim ¢
P*C)(n>1) 1 2n n® +2n n?
GPIC)(p2g22) g 2pg p+9?-1 | PP+ -1
Q™(C) (n>5) 2 on fn+1)(n+2)| tn(n—-1)+1
SO(2n)/U(n)(n > 5) [n/2] n?—n 2n® —n 2
Sp(n)/U(n) (n>1) n n®+n 2n? +n n?
Eq/Spin(10) - SO(2) 2 32 78 46
E7/Es - SO(2) 3 54 133 79
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5. THE HERMITIAN SYMMETRIC SPACE Sp(n)/U(n)

Let H be the field of quaternion numbers. As is well-known, H is an associative algebra
over the field R of real numbers generated by 1 (€ R) and three elements 4, j, k satisfying
the following multiplication rule:

(1) li=il=4i, lj=jl=j, lk=kl=k;

(2) 2 =2 =k = -1,

B)ij=~ji=k, jk=-kj=1i, ki=-—ik=3j.
Let ¢ € H. Then ¢ is written as ¢ = gl + ¢12 + goj + g3k, where qo,q1,492,93 € R. We
define the norm |g|, the real part Re(g) and the conjugate § by

3
a*=> "%  Re(@)=q;  T=aol ~ qii — g2 — gsk-

1=0

Then we easily have |g| = |g|, Re(q) = Re(q), § = ¢ and ¢g = gq = |q|®. Further, we have
la¢'| =lalld'l;  Re(ed') =Re(ds); ed'=q7 Vg,d €l
By the identification a € R with al € H the field R is canonically considered as a subfield
of H. By the identification a + byv/—1 = a + bi (a,b € R) we may regard the field C of
complex numbers as the subfield R + Ré of H. In this meaning we will write C = R + Ri.
The real part and the conjugate of a quaternion number defined above are compatible
with the usual one defined on C.
For later convenience we set D = Rj + Rk. Then we easily have

H=C+D (direct sum); CC=DD=C, CD=DC=D.

We now define a bracket in H by [g,q'] = g¢’ — ¢'q. Then it is known that H endowed
with [, ] is a Lie algebra over R. Moreover, it is easily verified

1) [,q=lg,1]=0, geH;
(2) [, =1[4,5] = [k, k] = 0;
(3) [Za]] = _[j)i] = 2k7 [Jak] = '—[kh?] = 21.) [k?z] = _[7:71‘7] = 2j

Consequently, we have
[C,C]=0, [D,D]=Ri, [C,D]=[D,C]=D.

Let n be a positive integer. By M (n;H) we denote the space of square matrices of
degree n over the field H. We will regard M (n; H) as a 4n?-dimensional vector space over
R. Define a bracket in M(n; H) by [X,Y] = XY ~YX (X,Y € M(n;H)). Then M (n; H)
endowed with [, ], which is a natural extension of the bracket [, | defined in H = M (1; H),
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forms a Lie algebra over R. For an element X = (X7 ) <ij<n € M(n;H) we mean by X

the conjugate matrix X = (Ez) . Then we have X = X and

1<i,j<n

XY =% X, X,Y e M(nH).
Now define a real bilinear form (, ) of M(n;H) by
(X,Y) = Re(Trace(X'Y)), X,Y € M(n;H).

It can be easily verified that (, ) is symmetric and positive definite on M(n; H), ie., {, )
is an inner product of M (n; H). With this inner product (, ) we may regard M (n; H) as
the euclidean space R4%".

Let Sp(n) denote the symplectic group of degree n, i.e., Sp(n) is the subset of M (n;H)
consisting of all g € M(n;H) such that

where 1, is the identity matrix of order n. Let sp(n) be.the Lie algebra of Sp(n). As is
known, sp(n) is a real subspace of M (n;H) consisting of all X € M (n;H) such that

X+X =0.

As is easily seen, dimsp(n) = 2n? + n and the inner product <, ) is invariant under the
actions of Ad(Sp(n)) and ad (sp(n)):

(Ad(9)X,Ad(9)Y) = (X,Y), g€ Sp(n), X,Y € M(n;H);

(ad (2)X,Y) + (X,ad (2)Y) =0, Zesp(n),X,Y € M(n; H).
In the following we regard sp(n) with the inner product (, ) as the euclidean space R?%"+7,
By M (n;C) (resp. M(n;D)) we denote the subspace of M (n;H) consisting of all matrices
X € M(n;H) whose components are all contained in C (resp. D). Then the unitary group

U(n) of degree n and its Lie algebra u(n) are represented by U(n) = Sp(n) N M (n;C) and
u(n) = sp(n) N M(n;C).

Lemma 10. Let m(n) be the space of symmetric matrices of degree n whose components
are all contained in . Then the sum sp(n) = w(n) + m(n) s an orthogonal direct sum

with respect to (, ) and
[u(n), u(n)] C u(n); [m(n), m(n)] C u(n); [w(n),m(n)] C m(n).

In other words, sp(n) = u(n)+m(n) gives the canonical decomposition of sp(n) associated

with the symmetric pair (Sp(n),U(n)).
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Hereafter, we consider the symmetric space M = Sp(n)/U(n). Identifying m(n) with
the tangent space T,(Sp(n)/U(n)) at the origin o, we define an Sp(n)-invariant metric v
on Sp(n)/U(n) by

v(X,Y) =<X,Y>, X,Y € m(n).
As is known, the Riemannian curvature R of type (1,3) associated with v is given as
follows (see [14, Ch. XI]):
R(X,Y)Z = ~[[X,Y], Z], X,Y,Z € m(n).

Set Iy = (1/2)il, (€ M(n;C)). Then Iy is included in the center of u(n) and satisfies

ad (I)X =iX; ad(lp)’X =-X, X € m(n);

(ad (In)X,ad (I))Y) = (X, Y), X, Y € m(n);

Ad(a) - ad (Io)|m(n) = ad (Io)|m(n) - Ad(a),  a € U(n).
Thus, it is easy to see that ad (Ip)|m(n) can be extended to an Sp(n)-invariant almost
complex structure I. Thus the symmetric space Sp(n)/U(n) endowed with the Riemannian

metric v and the almost complex structure I becomes a Hermitian symmetric space of

compact type.

6. THE GAUSS EQUATION ON Sp(n)/U(n)

In this section, we consider the Gauss equation (2.1) at o modeled on the space u(n),

which i1s written in the form
(IX,Y],2),W) = (¥(X,2), ¥(Y,W)) - (¥ (X, W), ¥(Y, Z)), (6.1)

where ¥ € $?m(n)* @ u(n) and X,Y, Z, W € m(n). The inner product of u(n) is taken to
be the restriction of (, ) to the subspace u(n) (C M (n; H)). Notations are the same in the
previous sections. For simplicity, we set G(n) = Go(Sp(n)/U(n),u(n)). In the following

we will prove

Theorem 11. Assume that n > 2. Then any solution ¥ € G(n) is Hermitian, i.e.,
T(IX,IV)=¥(X,Y), X,Y cm(n)

If Theorem 11 is true, then by Proposition 9 we conclude that at each p € Sp(n)/U(n),
Gp(Sp(n)/U(n),N) is EOS whenn > 2 and dim N = n?. This shows that Sp(n)/U(n) (n >
2) is formally rigid in codimension n?, proving Theorem 4.

For the proof of Theorem 11 we make several preparations. Let ¥ € G(n). For each
X € m(n) we define a linear map ¥x of m(n) to u(n) by Tx(¥) = T(X,Y) (Y € m(n)).
By K (X) we denote the kernel of ¥ x. Then we have
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Proposition 12. Let ¥ € G(n) and X € m(n). Then
(1) dmKg(X) > n.
(2) [Ke(X),Ke(X)),X]=0.

Proof. (1) is clear from dim K (X) > dimm(n) — dimu(n) =n. Let Y, Z € Kg(X)
and let W be an arbitrary element of m(n). Then by the Gauss equation (6.1) we have

([lv,2), X1, W) = (2(Y,X),¥(Z,W)) - (T(Y, W), ¥(Z,X)) = 0.
Since W is an arbitrary element, we have [[Y, Z], X] = 0, proving (2). O

Let X € m(n). We define a subspace C(X) C m(n) by C(X) = {Y € m(n) | [X,Y] = 0}.
Then we have dim C(X) > rank(Sp(n)/U(n)) = n. We say an element X € m(n) is regular
if dim C(X) = n. It is obvious that for a regular element X € m(n), C(X) is a unique
maximal abelian subspace of m(n) containing X. More strongly, since rank(Sp(n)) = n,
C(X) is a unique maximal abelian subalgebra of sp(n) containing X. We note that the
set of regular elements forms an open dense subset of m(n) and that any maximal abelian
subspace a contains regular elements as an open dense subset with respect to the induced

topology of a.

Proposition 13. Let ¥ € G(n) and X € m(n).
(1) If X #0, then X ¢ Kg(X).
(2) If X is regular, then Kg(X) is a mazimal abelian subspace of m(n). Moreover,
¥ (Ky(X),C(X)) =0. (6.2)
(3) If X is not regular, then dimKg(X) > dim C(X) (> n).
Proof. Let X € m(n). Putting Y = W = IX and Z = X into (6.1), we have
(X, IX],X),IX) = (¥(X,X), ¥(IX,IX)) - (¥(X,IX),¥(IX,X)).

Assume that X € Kg(X), i.e., ¥(X,X) = 0. Then the right side of the above equality
becomes —|¥(X,IX)[*> < 0, where | - | means the norm determined by (, ). On the
other hand, since Sp(n)/U(n) has positive holomorphic sectional curvature, the left side
of the above equality becomes > 0 when X # 0. This is a contradiction. Hence we have
X¢Kg(X)ifX #0.

Next we show (2). Assume that X € m(n) is regular. Since [m(n),m(n)] C u(n)
and [u(n), m(n)] C m(n), it follows that [Ke(X),Ke(X)],C(X)] € m(n). In view of
(2) of Proposition 12, we easily get [X, [Kw(X), K% (X)],C(X)]] = 0. Consequently,
[Ke(X),Ke(X)],C(X)] C C(X). Since C(X) is an abelian subspace, we have

([K¢(X),Kg(X)],C(X)],C(X)) = ([Kg(X),Kg(X)),[C(X),C(X)]) = 0.
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This implies that [[Kg(X),K¢(X)],C(X)] =0. Let W € [Kg(X),Kg(X)]. Then the
sum C(X) + RW forms an abelian subalgebra of sp(n). Since C(X) is a unique maximal
abelian subalgebra of sp(n) containing X, we have C(X) = C(X) + RW. Therefore
W € C(X). However, since W € u(n) and C(X) C m(n), we have W = 0. This proves
[Ke(X),Kg(X)] =0,ie., Kg(X) is an abelian subspace of m(n). Since dim Kg(X)>mn,
it follows that dim K¢ (X) = n and hence K¢ (X) is a maximal abelian subspace of m(n).

Now take a regular element ¥ € Kg(X). Then it follows that ¥(Y,C(X)) = 0.
In fact, as we have shown, K¢ (Y) is a maximal abelian subspace of m(n) and satisfies
Ty(X) = ¥(X,Y) = ¥x(Y) =0, ie, X € Kg(Y). Since C(X) is a unique maximal
abelian subspace containing X, we have K¢ (Y) = C(X), which proves ¥ (Y, C(X)) = 0.
Note that regular elements of K¢ (X) form an open dense subset of Ky (X). Therefore by
continuity of ¥ we have ¥(Y', C(X)) = 0 for any Y’ € Kg(X), i.e,, T(K¢(X),C(X)) =
0, completing the proof of (2).

Finally, assume that X € m(n) is not regular. Let a be a maximal abelian subspace
containing X. Since X is not regular, we have C(X) 2 a. Take a regular element H € a.
Then, since Ky (H) is a maximal abelian subspace of m(n) (see (2)), we can take a regular
element Z € K¢ (H). We now show that the image of C(X) via the map ¥ is isomorphic
to the quotient C'(X)/a, ie., ¥z(C(X)) = C(X)/a. In fact, since C(H) = a, it follows
that

‘I’Z(a) = ‘I’(Z) 0.) - ‘IJ(K‘I’(H),C(H)) =0,

Le., Kg(Z) D o (see (6.2)). Since K¢ (Z) is a maximal abelian subspace of m(n) (see (2)),
we have K¢ (Z) = g, proving our assertion.
Now let Y € C(X). Then by the Gauss equation (6.1) we have

([X,Y), 2, W) = (¥(X, 2), (Y, W)) - (B(X, W), (Y, Z)), W €m(n).
Since [X,Y] = 0 and ¥(X, Z) = U z(X) = 0, we have
(T(X, W), ¥(Y, 2)) = (x (W), ®5(Y)) = 0.
Consequently, the subspace ® x (m(n)) of 1(n) is perpendicular to the subspace ¥z (C(X)).

Hence we have dim ¥x(m(n)) < dimu(n) — dim ®z(C(X)). On the other hand, since
Uz(C(X)) = C(X)/a, it follows that dim ¥ z(C (X)) = dim C(X) — n. Therefore,

dim K¢ (X) = dimm(n) — dim ¥ x (m(n))
> dimm(n) — (dimu(n) ~ dim ¥z (C(X)))
= (dimm(n) ~ dimu(n)) + dim ¥z (C(X))
=n+ (dimC(X) —n)
= dim C(X),
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completing the proof of (3). O

Proposition 14. Let ¥ € G(n). Let a be a mazimal abelian subspace of m(n). Then:

(1) There ezists a unique mazimal abelian subspace o' of m(n) such that
T(a,a') =0. (6.3)

(2) Let {Hy, - ,Hp} be a basis of a. Then the mazimal abelian subspace o' stated in

(1) can be written as

o = ﬁKq,(Hi).
=1

Proof. First we prove the existence of ¢ satisfying (6.3). Take a regular element X € a
and set ¢/ = Kg(X). Then, we know that o’ is a maximal abelian subspace of m(n) (see
Proposition 13 (2)). Since C(X) = a, by (6.2) we obtain ¥(a,d’) = ¥(C(X),Ke (X)) =0.
Next, we prove the uniqueness of a’. Let o’ be a maximal abelian subspace satisfying
(6.3). Take an arbitrary regular element X contained in a. Then by (6.3) it is clear that
K¢ (X) D d. Since Kg(X) is a maximal abelian subspace of m(n), we have K¢ (X) = d'.
This proves the uniqueness of o’

Let {Hy,--+,Hp} be a basis of a. Then by (6.3) we have W(H;,d') = 0 and hence
Kg(H;) D o. Therefore, o' C (\; Kw(H;). On the other hand, by linearity of ¥, we
have K¢ (X) D Niw; K (H;) for any X € a. In pa,rticﬁla,r, if X is regular, then we have

= Kg(X) and hence o' D ()i_; K¢ (H;). This completes the proof of (2). O

Let ¥ € S$?m(n)* @ u(n) and a € U(n). Define an element ¥% € S?m(n)* ® u(n) by

TY(X,Y) = ¥(Ad(c™ )X, Ad(c))Y), X,Y em(n).

Then, since Ad(a™!) preserves the curvature, we have ¥® € G(n) if and only if ¥ € G(n).
We can easily show the following

Lemma 15. Let ¥ € G(n) and a € U(n). Then
Kg:(Ad(a)X) = Ad(a)(Ke(X)), X em(n).
Proof. The proof is obtained by the following
Y € Kge(Ad(a)X) <= T%(Ad(a)X,Y) =0
= ¥(X,Ad(a"1)Y) =0
= Ad(a™ V)Y € Kg(X)
<Y € Ad(a)(Kg(X)).
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Finally, we state Theorem 11 in a different form, which is somewhat easy to prove. Let
Ei; (1 <14,j < n) denote the matrix (5is5jt)1<s t<n € M (n;H). Then it is easily seen that
the sum ap = Y5 ; RjEj; forms a maximal abelian subspace of m(n). Now consider the

following:

Proposition 16. Assume that n > 2. Let ¥ € G(n). Then

¥(ag, lag) = 0.

We now show that Proposition 16 implies Theorem 11. Assume that Proposition 16 is
true. Under this setting we will show that any element ¥ € G(n) is Hermitian. Let X
be an arbitrary element of m(n). As is known, there is an element a € U(n) such that
H = Ad(a)X € ag. By Proposition 16 we have W%(H,IH) = 0, because ¥* € G(n).
Noticing the relation Ad(a™)7 = IAd(a™!), we have

0=W%H,IH) = U(Ad(c™ ) H,Ad(a" ) IH) = ¥(X,IX).

Consequently, for any X € m(n) we have ¥ (X, IX) = 0, which means that ¥ is Hermitian.
Thus we get Theorem 11.

7. PROOF OF PROPOSITION 16

In this section we will prove Proposition 16. Let n’ be a non-negative integer such that

n' < n. By the assignment
: X 0
m(n') 3 X — <O O) € m(n)

we may regard m(n’) as a subspace of m(n). In the special case n’ = n — 1 we have the

direct sum
n—1

m(n) = m(n — 1) + DEpn + »_ D(Ein + Eni). (7.1)
=1
For simplicity we set H; = jE; (1 = 1,...,n). Then we have IH; = iH; = kFE;;. Conse-
quently, we have
CH{ZRHi—!—RIHZ‘:DEﬁ, 1=1,...,n.

As in the previous section we set ag = ), ; RH;. In the following we will prove ¥ (ag, Iag) =
0 for any ¥ € G(n). First we show

Lemma 17. Let W € G(n). Then there exists a real number a € R such that
Kg(H,) =m(n—1)+R(IH, — aH,) (direct sum). (7.2)

Accordingly, dim K (Hy) = dimm(n — 1) + 1.
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Proof. First assume that the following inclusion holds:

Then, since H, ¢ Kg(H,), we have dim K¢ (H,) < dimm(n—1)+1. On the other hand,
by a simple calculation we can verify that C(Hy) = m(n — 1) + RH,. On account of the
relation dim Ky (Hp) > dim C(H,) we have dim Ky (Hy) = dimm(n — 1) + 1. Moreover,

we have

Ky (Hy,) + RH, = m(n — 1) + CH,. (7.4)

Now we show m(n—1) C Kg(H,). By (7.4) it is known that there is a real number a such
that TH, —aH, € Kg(H,). Similarly, for any X € m(n—1), there is a real number b € R
such that X — bH, € Kg(Hy). Consider the equality [[[H, — aHpn, X — bHy], Hp] = 0.
By a direct calculation we have [Hy, X| = [[Hp,X] = 0 and [[[Hy, Hy,), Hy) = —41H,.
Consequently, [[IHp — aHn,i — bHy,), Hy) = 4bIHy, = 0, implying b = 0. Hence we have
X € Kg(Hy), ie., m(n—1) C Kg(Hy). Thus if (7.3) is true, then we obtain the lemma.

Now we suppose that (7.3) is not true, i.e., Kw(Hy) ¢ m(n — 1) + CHp. Let 7 and s
be non-negative integers. By M (r, s; D) we denote the space of D-valued r x s-matrices.

As is easily seen, each element X € m(n) can be written in the form

XI
X=<t§ 5), X' emn-1),6€ M(n-1,1;D),z €D.
z
Under our assumption Kg(Hp) ¢ m(n — 1) + CH,, we know that there is an element
X = ()t(g’ i) € Kg(Hpy) such that £ # 0. Let ¢: m(n) — M(n — 1,1; D) be the natural
projection defined by (p(({; i) = ¢. By o(Kg(Hy,)) we denote the image of Ky (H,)
by ¢. Then we have o(Kw(H,)) # 0. As is easily seen, from the right multiplication
¢ —> écof c € C, M(n — 1,1;D) may be regarded as a complex vector space with
dimg¢ M(n —1,1;D) = n — 1. By o(K ¢ (H,))® we mean the complex subspace of M (n —
1,1;D) generated by o(Kw(Hy)), ie., p(Ke(Hn))® = o(Kw(Hy)) + o(Kw(Hy))i. Set

s = dimg ¢(K ¢ (Hy))C. Then, clearly we have 1 < s <n — 1, dim (K ¢(H,)) < 25 and
dim K ¢ (Hy,) = dim((m(n — 1) + CH,) N K g (Hy)) + dim (K g (Hy)). (7.5)
Now, let us show
dim(m(n - 1)NKg(Hy)) < (n—s-1)(n—s). (7.6)

Let m(n ~ 1)’ be the subspace of m(n — 1) consisting of all Y’ € m(n — 1) satisfying
Y =(¥3) e mn-1)NnKg(H,). To show (7.6) it suffices to prove dimm(n — 1)’ <

00
(n — s —1)(n — s). For the proof we prepare the following formula:
0 (Cy - Y'E)j
X, Y], Ha]={ > 7.7
oY) (—a (v -ve) [l ) )
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18 Y. AGAOKA AND E. KANEDA

tt g 0y
easily obtained by a simple calculation. Utilizing (7.7), we show (7.6). Let X = (ifgl 5) €
Kg(Hy,)andY = (%' 9) e m(n—-1)NKg(H,). Since [[X,Y], Hn] = 0, by (7.7) it follows
that Y'¢ = 0. We note that this equality holds for any £ € p(Kg(Hy)) and Y’ € m(n—1)".
Since Y’(&1) = (Y'¢)i, we have

where X = (X, 5) € mn) and Y = (%' 9) € m(n — 1) + CH,. This formula can be

YiE=0, VY em(n—1), V€ o(Kg(H,))C. (7.8)

Select a basis {71, +* , Mn—s—1,&1,"*+ ,&s} of the complex vector space M(n —1,1;D) such
that {&1,---,&s} forms a basis of p(Kg(H,))C. Define a matrix U € M(n — 1;H) by
U= (M, ,Mn—s=1,1,",&). Let Y € m{n —1). Since Y’ = --- = Y'§s =0
and &Y' = .. = %Y = 0, we have 'U - Y’ - U € m(n — s — 1). This means that
{U-m(n—-1)-U C m('n s—1). Since U is a non-singular matrix, we have dimg m(n—-1)" <
dimgm(n —s—1) = (n—s—1)(n — s), proving the desired inequality (7.6).

Next we consider the intersection (m(n — 1) + CH,) N K¢ (Hy). Since (m(n — 1) +
CH,)NKg(H,) Dm(n - 1) N Kg(H,), the following two cases are possible:

@) (m(n - 1) + CH,) NKg(Hy) =m(n — 1) N Kg(Hy).
(i) (m(n— 1)+ CHy,) N Kg(Hy) D mn — 1) N Kg(Hy).

In the case (i), we have dim((m(n — 1) + CH,) N K (Hy)) < (n ~s—1)(n—s). Since
dim (K¢ (Hp,)) < 2s, by (7.5) we have

dimKyg(H,) < (n—s—=1)(n—s)+2s

\ (7.9)
=35 - (2n — 3)s +n(n - 1).

Since 1 < s < n—1, the right side of (7.9) attains its maximum when s = 1. Consequently,
we have dim K ¢ (H,) < 4-2n+n(n—1) < 1+dimm(n—1), because dimm(n—1) = n(n—1)
and n > 2. This contradicts the fact dim K¢ (H,) > 1+ dimm(n — 1). Therefore we know
that the case (i) is impossible.

Next we show the case (ii) is also impossible. Let Y’ ) be an element of (m(n —

1) + CHy) N K (Hy) satisfying y # 0. Let X = (X
Kg(Hp). Then, since [[X,Y], Hy] = 0, we obtain by (7

(
¢

' 0
y
b

)

[z,9],5]=0; ¢&y-Y'¢=0. (7.10)

e an arbitrary element of

From the first equality in (7.10) we have £ € Ry. In fact, since z, y € D, we have
[z,y] € Ri. However, since [i,j] = 2k # 0, we have [z,y] = 0, implying £ € Ry. This fact
means that for any element X 3 (m(n—1)+CH,)NKg(H,) there is a real number ¢ such
that X —cY € m{(n—1)NKg(H,). Consequently, we have (m(n—1)+CH,)NKg(H,) C
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RY + (m(n — 1) N Kg(H,)) and hence
dim{((m(n - 1)+ CH,) NKg(Hy)) <14+ (n—s-1)(n-s). (7.11)
Moreover, in this case we have dim (K¢ (Hy,)) = s. In fact, we have
(K (Hp))® = o(Ke(Hn)) + p(Kw(Hy))i (direct sum). (7.12)

It is easily seen that to show (7.12) it suffices to prove (K¢ (Hy)) N ¢(Kw(Hy))i = 0.
Assume that £ € p(K g (Hy)) satisfies {i € p(K g (Hy)). Take elements X, X; € K¢ (Hy)
such that o(X) = &, o(X1) = &. Then, since [X,Y], Hy] = [[X1,Y], Hy] = 0, by the
second equality in (7.10) we have &y — Y€ = 0 and (£2)y — Y/(¢4) = 0. Since iy = —yi,
the last equality becomes (£3)y —Y'(&1) = —(Ey+Y'€)i = 0. Consequently, Ey+Y'¢e =0,
showing £y = 0. Hence we get £ = 0, because y # 0.
Thus by (7.5) we have

dimKg(Hp) <1+ (n—-s-1)(n—38)+s ,

=32 - 2(n— 1)s+dimm(n¥ 1)+ 1. (7.13)

The right side of (7.13) attains its maximum when s = 1 and therefore dim K¢ (H,) <
4 - 2n+dimm(n — 1) <1+ dimm(n — 1), which is also a contradiction.

Thus, assuming Kg(Hy,) ¢ m(n — 1) + CH,,, we meet a confradiction. Hence we have
Kg(H,) C m(n - 1) + CH,, completing the proof of the lemma. O

In a similar manner we can prove the following lemma:

Lemma 18. Let ¥ € G(n). Then
dimKy(H;) =dimKyg(IH;) =dimm(n—-1)+1, i=1,...,n.
Moreover there ezist real numbers a' and b € R such that

Kg(IH,) =m(n—1) +R(H, — d'IH,) (direct sum);
n—2
Kg(Hp 1) =m(n—2)+ Y D(Eipn + Ens) + CH,
i=1

+R(IHp—1 — bHp—1) (direct sum):
With the aid of Lemma 18 we can prove the refinement of Lemma 17.
Lemma 19. Let ¥ € G(n). Then Kg(H,) = m(n — 1) + RI H, (direct sum).

Proof. Let ¥ € G(n). Take real numbers a, a’ and b € R stated in Lemma 17 and
Lemma 18 and set Y = IH, —aH,, Z = IH,_1 — bH,_1 and W = H, — a'IH,. Then

clearly we have

Y =(k—aj)Bnn, Z=(k—bj)Br-1pn-1, W=(] - a'k) Enp.
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In the following we will show that a = a’ = b = 0. If this can be done, the lemma follows
immediately.

First we prove a = b. For this purpose we consider the space K¢ (H,_; + H,). By
an easy calculation we can verify that C(Hp-1 + Hp) = m(n — 2) + RH,_; + RH, +
Rj(En-1n + Epp-1). Therefore we have dim K¢ (Hp—1 + Hy) > dim C(H,_; + Hy,) =
dimm(n — 2) 4+ 3. Since Kg(Hy-1) N Kg(H,) = m(n — 2) + RY + RZ, it follows that
dim(K g (Hp-1) N K¢ (Hy)) = dimm(n — 2) + 2. Consequently, we can take an element
X € Kg(Hy1+ Hy) such that X ¢ Kg(Hp—1) N Kg(H,). Write

XII ,,7 5
X=|%m gy 2{, (7.14)
¢ 2z x

where X" € m(n—-2),¢,n€ M(n—-2,1,D),2,y,z€D. Since X, Y, Z € Kg(H,_1+H,),
we have [[X,Y],Hy-1 + Hp] = [[X,Z], Hp—1 + Hy] = 0. Set h =k — aj and b’ = k — bj.
Then we have

¢hj = nh'j = 0; (7.15)
[lz,h], 4] = [ly, '), 4] = O; (7.16)
[z, 5] = [zh', 5] = 0. (7.17)

By (7.15) and (7.16) we easily have £ =7 = 0, z € Rh, and y € Rh'. Thus, if z = 0,
then we have X € m(n — 2) + RY + RZ = Ky (H,-1) N K¢ (H,). This contradicts the
assumption X ¢ Kg(Hp-1) N Ky (Hy). Hence z # 0. Now consider (7.17). First note
that zh, zh' € C = R+ Ri. Since [,5] # 0, [2h,j] = [zh/,5] = 0 holds if and only if
zh, zh' € R. Since z # 0, we have h € Rz7! and A’ € Rz~1. Consequently, we have
Rh = Rz and hence b’ € Rh = R(k — aj). Therefore we have a = b, because k' = k — bj.

Next we prove a’ = —a. For this purpose we consider the space K g (Hp_1 + I H,). We
can easily see that C'(Hp—1+IHy) = m(n—2)+RHp_1 +RIH, +R(j+k)(En-1n +Epnn—1)-
Hence dim K (Hyp—1+1Hy) > dimm(n—2)+3. Since K (H,—1)NKg(IH,) = m(n—2)+
RZ +RW, it follows that dim(K ¢ (Hp—1) N K¢ (IH,)) = dimm(n — 2) +2. Consequently,
we can take an element X € K g(H;—1+IHy) such that X ¢ Kg(H,—1)NKg(IH,). Since
X,Z,W € Kg(Hp-1+ IHy), we have [[X, Z], Ho_y + I Hp) = [[X, W], H,_1 + IH,] = 0.
Writing X in the form (7.14), we have

¢h"k = nhj = 0; (7.18)
llz, k"), k] = [y, h), 5] = O; (7.19)
zh"k — jzh" = hzk — jhz = 0, (7.20)
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where we set h = k—aj and h” = j—a'k. By (7.18) and (7.19) we have ¢ =n =0, z € Rh"
and y € Rh. Hence if z = 0, then X € m(n — 2) + RZ + RW = Ky (Hp-1) N Kg (I Hy).
This contradicts the assumption X ¢ K¢ (H,—1)NKg(IH,). Hence z # 0. Now consider
(7.20). 1t is easily verified that zh"k — jzh" = hzk — jhz = 0 holds when and only when
zh" € R(1—-i) and hz € R(1—4). Since z # 0, we have h” € Rz7(1—i) and h € R(1—-4)z*.
Therefore, (1 +4)h(1 — i) € Rz~1(1 —4). Consequently, R(1 +4)h(l — i) = Rz71(1 — 1)
and hence h" € R(1 +¢)h(1 — %) = R(j + ak). Accordingly, we have o’ = —a, because
b =3 —dk.

Finally, we prove a = 0. By the definition we have Y = IH, — aH, € Kg(Hy).
Moreover, by the above discussion we know W = H,, + ol H,, € Kw(IH,). Hence

U (Hp, [Hn — aHy) = Y(IHp, Hy + alHyp) = 0.

Consequently, we have W (H,,IH,) = a ¥(Hy, H,) and ©(H,,[H),) = —a ¥ (IH,,IHy,).
If a # 0, then we have W(IH,,IH,) = —V(H,,Hy,). Putting X = Z = H, and Y =
W = IH, into (6.1), we have

([(Hn, IHp), Ho], IHn) = (¥ (Hn, Hy), ©(IHp, IHp)) — (¥ (Hn, IHy), © (1 Hp, Hn))
= (1 + a*)(¥ (Hn, Hr), ¥ (Hn, Hy))

<0.

On the other hand, the left side is > 0, which is a contradiction. Thus we have a = 0,
completing the proof of the lemma. g

We now complete the proof of Proposition 16.
Proof of Proposition 16. Assume that n > 2. Let ¥ € G(n). We will prove
K\Il(qu) D Iag, 1=1,...,n. (7.21)

Let 7 be an integer such that 1 <7 < n. If i = n, then (7.21) follows from Lemma 19.
Now assume that 7 < n. Set a = Ep; — By + Z?;ll,j# E;;. Then it is easy to see that
a € SO(n)(C U(n)), Ad(a)H; = Hy and Ad(a)ag = ag. Consequently, by Lemma 15
we have Kyga(H,) = Ad(a)(Kg(H;)). On the other hand, since ¥ € G(n), we have
Kge(H,) D Iag. Thisshows Ad(a)(K g (H;)) D ITag and hence K¢ (H;) D Ad(a™!)(Iag) =
Tap. Consequently, we get (7.21), which implies (-, Kw(H;) D Iag. Therefore, in view
of Proposition 14, we have ¥(ag, Iag) = 0, proving the proposition. a
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A lower bound for the class number of P*(C) and P™(H)

Yoshio AGAOKA and Eiji KANEDA
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Abstract. We obtain new lower bounds on the codimension of local isometric imbed-
dings of complex and quaternion projective spaces. We show that any open set of the
complex projective space P™(C) (resp. quaternion projective space P™(H)) cannot be
locally isometrically imbedded into the euclidean space of dimension 4n— 3 (resp. 8n—4).
These estimates improve the previously known results obtained in [2] and [7].

Key words: curvature invariant, isometric imbedding, complex projective space,
quaternion projective space, root space decomposition.

1. Introduction

Let M be a Riemannian manifold. As'is known, M can be locally or
globally isometrically imbedded into a euclidean space of sufficiently large
dimension (see Janet [19], Cartan [14], Nash [24], Greene-Jacobowitz [16],
Gromov-Rokhlin [17]). It is a natural and interesting question to ask the
least dimension of euclidean spaces into which M can be locally or globally
isometrically imbedded. In this paper we will investigate the problem of
local isometric imbeddings of the projective spaces P*(C) and P*(H) and
give a new estimate on the least dimension of the ambient euclidean spaces.

Let z € M. Assume that there is a neighborhood U of  in M such that
U is isometrically imbedded into a euclidean space R”. If any neighborhood
of z cannot be isometrically imbedded into RP~!, then the codimension
D—dim M is called the class number of M at x and is denoted by class(M),.

Let G/K be a Riemannian symmetric space. By homogeneity, the
class number of G/K is constant everywhere on G/K, which is denoted by
class(G/K). In Agaoka-Kaneda [4], [5], [7], [8], [9] and [10] we have tried to
estimate class(G/K) from below. In doing this we mainly used the following
inequality

class(G/K) > dim G/K — p(G/K),
where p(G/K) is the pseudo-nullity of G/K (see §2 below or [4]). For

2000 Mathematics Subject Classification : 53B25, 53C35, 17B20.
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the following Riemannian symmetric spaces G/K our estimates just hit
class(G/K), i.e., class(G/K) = dim G/K — p(G/K):

a) The sphere S™ (n > 2);

b) CI: Sp(n)/U(n) (n > 1) (see [4]);

¢) The symplectic group Sp(n) (n > 1) (see [5]).

As for the class numbers of the projective spaces such as the complex
projective space P™(C'), the quaternion projective space P"(H) and the
Cayley projective plane P?(Cay), the following are known:

(1) class(P™(C)) > max{n+1, [gn]} (n > 2) (see [2] and [7]);

(2) class(P™(H)) > min{dn —3,3n+ 1} (n > 3) (see [7]);

(3) class(P™(C)) < n? (n > 2); class(P™(H)) < 2n?—n (n > 2) (see [22]);
(4) class(P%(H)) = 6; class(P?(Cay)) = 10 (see [8] and [22]).

It should be-noted that any local isometric imbedding of P2(H) (resp.
P2(Cay)) into the euclidean space R** (resp. R?®) is rigid in the strongest
sense (see [9] and [10]).

In this paper we will propose a new type of estimate and by applying
it we will prove

Theorem 1 Let G/K dencte the complexr projective space P"(C)
(n > 3) or the quaternion projective space P*(H) (n > 3). Define an
integer ¢(G/K) by

dn -2, if G/K = P™*(C) (n>3);

o(C/K) = o =rmo) 2y
8n -3, if G/K =P"(H) (n2>3).

Then, any open set of G/K cannot be isometrically imbedded into the

euclidean space RP with D < q(G/K) — 1. In other words,

class(P*(C)) >2n—2 (n > 3);
class(P"(H)) > 4n—3 (n > 3).

It is clearly seen that Theorem 1 improves the estimates (1) and (2)
stated above. However, we have to recognize a large gap between our esti-
mate and the upper bound stated in (3), which cannot be filled at present.

Throughout this paper we will assume the differentiability of class C°.
For the notations of Lie algebras and Riemannian symmetric spaces, see
Helgason [18].
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2. The Gauss equation

Let M be a Riemannian manifold and ¢ be the Riemannian metric
of M. We denote by R the Riemannian curvature tensor of type (1, 3) with
respect to g.

For each = € M we denote by T (M) (resp. T, (M)) the tangent (resp.
cotangent) vector space of M at z € M. Let r be a non-negative integer. We
define a quadratic equation with respect to an unknown ¥ € 2T} (M)Q R"
by

~g(R(X,Y)2,W) = (¥(X, Z), ¥(Y,W)) — (¥(X, W), ¥ (Y, Z)),
(2.1)

where X, Y, Z, W € T,(M) and (, ) is the standard inner product of R".
We call (2.1) the Gauss equation in codimension r at z. It is well-known
that for a sufficiently large r the Gauss equation (2.1) in codimension r
admits a solution (see Berger [12], Berger-Bryant-Griffiths [13]). On the
other hand, in general, for a small r (2.1) does not admit any solution. By
Crank(M), we denote the least value of r with which (2.1) admits a solution
and call it the curvature rank of M at z. It should be noted that Crank (M),
is a curvature invariant, i.e., it can be determined only by the curvature R
of M at z.

As is well-known, if there is an isometric immersion f of M into RP,
then the second fundamental form of f at x satisfies the Gauss equation in
codimension r = D — dim M. Therefore, we have

Lemma 2 class(M), > Crank(M), holds for any z € M.

In the following, we assume that ¥ € S?T7(M) ® R’ is a solution of
the Gauss equation in codimension 7. Let X € T,(M). We define a linear
mapping ¥x: Tp;(M) — R™ by ¥x(Y) = ¥(X,Y) (Y € Tp(M)). The
kernel of this map Wy is denoted by Ker(¥x). Then we can easily show
the following

Lemma 3 Let X € Tp,(M). Then R(Ker(¥x), Ker(¥x))X = 0.

For the proof, see [4]. By this lemma we can get the following estimate
for Crank(M)g: Let X € Tp(M). By d(X) we denote the maximum value
of the dimensions of those subspaces V C T, (M) such that R(V,V)X = 0.
Then by Lemma 3 it is easily seen that d(X) > dim Ker(¥x) > dim M —r.
Set py(z) = min{d(X)|X € Tp(M)}. Then py(z) > dimM —r, ie.,
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r > dim M — pp(z). The number pps(z) thus defined is also a curvature
invariant, which is called the pseudo-nullity of M at z. By the above dis-
cussion we have

Lemma 4 Crank(M), > dim M — py(x).

In the case where M is a Riemannian homogeneous space G/ K, the class
number, the curvature rank and the pseudo-nullity of G/K are constant
everywhere on G/ K, which are denoted by class(G/K), Crank(G/K) and
p(G/K), respectively. Combining Lemma 4 with Lemma 2, we obtain

Proposition 5 Let G/K be a Riemannian homogeneous space. Then:
class(G/K) > dimG/K — p(G/K).

This is a fundamental tool in our works [5] and [7] to estimate the class
numbers of Riemannian symmetric spaces from below.
Now, we show a new type of estimate:

Theorem 6 Let ¥ € S2T (M) ® R be a solution of the Gauss equation
in codimension r. Assume that there are tangent vectors X,Y € Tp(M)
and a subspace U of Tp(M) satisfying
1) ¥XY)=0
(2) U > Ker(¥x) and R{U,Y)X =0.
Then the following inequality holds:

r2dimM +dimU — dimKer(¥x) — dim Ker(¥y). (2.2)

Proof. Let Z be an arbitrary element of T,.(M). Then by the Gauss equa-
tion (2.1) it follows that

0=—g(R(U,Y)X, Z)

=(¥(U,X),¥(Y,2)) - (¥(U, 2), ¥(¥, X))

= (Ox(U),¥y(Z)) - 0.
Hence, we have (¥x(U),¥y(Z)) = 0. This implies that the image of
T (M) via the map Wy is included in the orthogonal complement of W x (U).
Since dim ¥x (U) = dimU — dimKer(¥x), we have dim ¥y (T,(M)) <
r —dimU + dim Ker(¥x). Moreover, since dim Wy (T, (M)) = dim M —
dim Ker(¥y ), we immediately obtain the inequality (2.2). N

As is easily seen, the right side of the inequality (2.2) heavily depends
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on tangent vectors X, Y and W. Accordingly, only by (2.2) we cannot
obtain an estimate for Crank(M),. In the following sections, by applying
Theorem 6 to the complex and quaternion projective spaces we will show
Theorem 1.

3. Projective spaces P"(C) and P"(H)

In this section we make several preparations that are needed in the
succeeding sections. Hereafter, G/K denotes one of the following projective
spaces:

(1) The complex projective spaces P*(C) = SU(n+1)/S(U(n) x U(1))
(n > 2).
(2) The quaternion projective spaces P*(H) = Sp(n + 1)/Sp(n) x Sp(1)

Let g (resp. ) be the Lie algebra of G (resp. K) and let g = £+ m be
the canonical decomposition of g associated with the Riemannian symmetric
pair (G, K). Let (, ) be the inner product of g given by the (—1)-multiple of
the Killing form of g. We define a G-invariant Riemannian metric g of G/K
by g(X,Y) = (X,Y) (X,Y € m), where we identify m with the tangent
space T,(G/K) at the origin o = {K} € G/K. Since the curvature at o is
given by R(X,Y)Z = ——[[X, Y] , Z} (X, Y, Z € m) (see Helgason [18]), the
Gauss equation (2.1) in codimension r at o can be written as follows:

([x,Y],2],W) = (®(X, 2),®(Y,W)) - (¥(X, W), ¥(Y, Z(>>, |
3.1

where ¥ € S?m*Q R, X, Y, Z and W € m.

Let us take and fix a maximal abelian subspace a of m. Then, since
rank(G/K) = 1, we have dima = 1. We call an element )\ € a a restricted
root when the subspaces £(A) (C €) and m()\) (C m) defined below are not
non-trivial: :

t(\) = {Xet|[H [HX]|]=-()\H)?X, VHEa},
m(\) ={Y em|[H, [HY]] =—-(\H)?, VHEa}.
As is known, by use of a non-zero restricted root u the set of non-zero

restricted roots X' can be written as X' = {+u, £2u}. Further, we have the
following orthogonal decompositions:

t=12(0) + ¥(u) + €(2u) (orthogonal direct sum),
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m = m(0) + m(u) + m(2u) (orthogonal direct sum),

where m(0) = a = Ry (see §5 of [7]).

For convenience, in the following we set & = &(|i|u), m; = m(]i|w)
(]9] <2) and ¥ = m; = 0 (J¢| > 2) for any integer 4. Then for i, j =0, 1, 2
we have a formula:

[8,85] Clivy+ iy, [me,my) Cligy+8y, [B,my] Cmpsy+myy.

We summarize in the following table the basic data for the spaces P"(C)
and P™(H) (see [18], [7]):

G/K dimm; (=dimé#;) dimmy(= dim#¥)
P™(C) (n > 2) 2(n—1) 1
P"(H) (n > 2) 4(n~1) 3

As is known, each non-zero element of m is conjugate to a scalar multiple
of p under the action of the isotropy group Ad(K), because rank(P™(C)) =
rank(P™(H)) = 1. More precisely we can show the following

Proposition 7 LetY; em; (i =0, 1, 2). Assume thatY; # 0. Then there
is an element k; € K such that Ad(kF')u € RY;.

Proof. In the case i = 0 we have only to set kg = e, where e is the identity
element of K.

Now assume ¢ = 1 or 2. Set X; = [u, Y;] Then we have X; € .
Further, we have [X;, [X;,u]] € a, because [X;, [X;,u]] € m and
s (X (X )] = [, X2, o] + [, [y (X, ]] = 0. Since

(o [ X, [X, ]]) = ([ Xa], [Xo ) = ([ [, X:]], X0)
=~ (u, 1) (X, X2),

we have [Xj, [X;, pu]] = —%(u, ) (Xs, Xi)u. By this equality and the fact
[Xi, u] = [[1,Yi], ] =*(u, p)?Y; we have
Ad(exp(tX;))p = cos(i|ul | Xilt)u
1
+ ———=—sin(z|p| | X;|T) | Xi, |, Vte R.
Define t; € R by 4|u||Xi|t; = 7/2. Then, by setting k; = exp(t;X;) € K, we
easily get Ad(ki)u € RY;. O
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4. Pseudo-abelian subspaces

Let G/K = P™(C) or P"(H). We say that a subspace V of m is pseudo-
abelian if [V, V} C 8. It is easily seen that a subspace V of m is pseudo-
abelian if and only if HV, V],u] = 0, because rank(G/K) = 1. We note
that the pseudo-nullity p(G/K) coincides with the maximum dimension of
pseudo-abelian subspaces in m (see [4]). In [7] we have determined the
pseudo-nullities for P*(C) and P*(H): p(P™(C)) = max{n — 1,2} (n >
2); p(P™"(H)) = max{n — 1,3} (n > 2) (see Theorem 5.1 of [7]).

For later use, we here study more detailed facts about pseudo-abelian
subspaces in m for P"*(C) and P"(H ). We first prove

Lemma 8 Let V C m be a pseudo-abelian subspace of m. If V Nm; £ 0
for somem; (i=0, 1, 2), then V C m;.

Proof. Assume that V N'my s 0. Take a non-zero element Ylo eV Nm.
Let Y = Yy + Y1 be an arbitrary element of V', where Yy € a+mg; Y1 € my.
Then we have [Y?,Yp + V3] = [Ylo,Yb} + [Y?,Y1] € . However, since
[Ylo,Yo} € ¥; and {Ylo,Yl] € €y + &2, we have [Ylo,Yo] = (0. Therefore we
have Yy = 0, because rank(G/K) = 1. This proves V C my. The other
cases VNa# 0 and V Nmy # 0 are similarly dealt with. O

We say that a pseudo-abelian subspace V is categorical if it can be
decomposed into a direct sum V =V Na+V Nm; + V Nmy. By Lemma 8
we immediately have

Proposition 9 Let V C m be a pseudo-abelian subspace of m. IfV is
categorical and V # 0, then V is contained in one of a, m; and ma.

By this proposition, we can easily estimate dimV for a categorical
pseudo—abelian subspace V in m: dimV < 1iV C a; dimV < dimmp
if V C mg. In the case V C my we proved in [7] dimV < n — 1 (see
Theorem 3.2 of [7]). For completeness, we review this proof and show an
additional property of V' C m;.

Let F(m;) denote the space of all linear endomorphisms of m;. Let
X € . We define an element X € E(m;) by

xX'(Y)=[X,Y], Yem.

(Note that [{%2, ml] C my.) It is easy to see that X is skew-symmetric with
respect to the inner product (, ). We denote by ’Eg the subspace of E(m;)
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consisting of all XT (X € ). Set ' = Rl + E; (C E(my)), where 1m,
denotes the identity mapping of m;. We have proved in [7] (Theorem 3.5)
the following

Proposition 10 Let G/K = PY(C) or P*(H). Then, I’ forms a sub-
algebra of E(m1), i.e., ' is closed under addition and multiplication of
E(my). Further, in the case G/K = P*(C) (n > 2), §' is isomorphic to
the field C of complez numbers and in the case G/K = P"(H) (n > 2), !
is isomorphic to the field H of quaternion numbers.

We now set f = dimg 31, e, f =2if G/K = P*(C); f =4if G/K =
P"(H). By the definition we have dimmy = f — 1, dimm; = (n — 1)f and
dimG/K = dimm = nf. As seen in Proposition 10, m; can be regarded

as a vector space over the field F'. For an element Y; € m; we denote by
F1(Y1) the subspace of m; spanned by Y1 over 1. Then we easily have

F(31(¥1) = §'(11) and dimp 31 (Y1) = f if V1 # 0.

Lemma 11 Let Y1, Y/ € my.  Then [Yl,Yf] € b if and only if

(Eg (Y1),Y7]) = 0. Accordingly, a subspace V C m; is pseudo-abelian if and

only if (8)(V),V)=0.

Proof. Since [Y1,Y]] € & + f2, [V4,Y{] € & holds if and only if

([¥1,Y{],%2) =0. Clearly, the last equality is equivalent to (E; 11),Y{)=0.
O

Utilizing the above lemma, we can show the following

Proposition 12 Let V be a pseudo-abelian subspace of m. Assume that

V Ccmy. Then:

(1) dimFN(V) = fdimV. Accordingly, dimV <n — 1.

(2) Let§ €V (£#£0). Then there is a subspace U of my satisfying U DV,
€, U] C¥ and dimU = (n—2)f + 1.

Proof. Let {Y{,...,Y} (s = dim V) be an orthonormal basis of V. Let

i, j be integers such that 1 < i # j < s. Then, since (EL(Y{), YY) =

(Y7, €L(Y7)) = 0 (see Lemma 11) and since (e)2 c 31, we have

B0, 5'()) = (RY! + 8(¥7), R + 8(Y7))
c (¥, @)*(v])) = 0.
This proves (V) = D 1<i<s F1(Y$) (orthogonal direct sum) and hence
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dimp §T(V) = sf. Therefore we have s < n—1, because dimm; = (n—1)f.

Next we prove (2). Since V is pseudo-abelian and & € V, we have
(’E; (€),V) = 0. Let U be the orthogonal complement of E;(g) in my. Then
U satisfies U D V and [£,U] C ¥ (see Lemma 11). Moreover, since
dim{%(f) = f—1and dimmy = (n — 1)f, we immediately obtain the
equality dimU = (n - 2)f + 1. O

Finally, we refer to non-categorical pseudo-abelian subspaces. Let V be
a pseudo-abelian subspace of m. Assume that V is not categorical, i.e.,
V' cannot be represented by a direct sum of subspaces V Na, V Nmy and
V' Nmg. Then it is clear that V ¢ a, V ¢ mj and V ¢ my. In view of
Lemma 8, we know that V Na =V Nm; =V Nmy =0. Apparently, this
condition. is sufficient for a pseudo-abelian subspace V' to be non-categorical.
Hence we have

Proposition 13 LetV be a pseudo-abelian subspace of m such that V = 0.
(1) V is non-categorical if and only if VNa=V Nm =V Nmy = 0.
(2) If V is non-categorical, then dimV < 2.

For the proof of (2), see Proposition 5.2 (1) of [7].

5. Proof of Theorem 1

Let G/K = P*(C) (n > 2) or P*(H) (n > 2). In the following we
assume that the Gauss equation in codimension r admits a solution ¥ €
S?m* ® R". We first prove

Lemma 14 Let X € m (X # 0) and let k be an element of K satisfying
Ad(k)p € RX. Then Ad(k™') Ker(¥x) is a pseudo-abelian subspace of m.

Proof. By Lemma 3 we have [[Ker(\I'X),Ker(\IIX)],X] = 0. Applying
Ad(k™?) to this equality, we have [[Ad(k™") Ker(¥x), Ad(k~!) Ker(¥x)],
,LL] = 0. This proves that_Ad(k"l) Ker(¥x) is a pseudo-abelian subspace
of m. U

Let X € m (X #0). If Ker(¥x) = 0, then we say X is of type Py
Now assume Ker(¥x) # 0. Let k € K be an element satisfying Ad(k)u €
RX. As is shown in Lemma 14, Ad(k™!)Ker(¥x) is a pseudo-abelian
subspace of m. If Ad(k™!) Ker(W¥x) is categorical and is contained in m;
(¢=0,1, 2), then we say X is of type P; (i =0, 1, 2). We also say X is of
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type Pron if Ad(k~1) Ker(¥x) is non-categorical, i.e., Ad(k ) Ker(¥x)N
m; =0 (?::0, 1, 2).

The following lemma asserts that the type of X does not depend on the
choice of k € K satisfying Ad(k)u € RX.

Lemma 15 Let X e m (X #0). Leti=0,1 or2 and let k; (j =1, 2)
be elements of K satisfying Ad(k;)p € RX. Then:

(1) Ad(kr')Ker(¥x) Cm; if and only if Ad(k; ') Ker(¥x) C m;.

(2) Ad(ky')Ker(¥x)Nm; = 0 if and only if Ad(k; ") Ker(¥x)Nm; = 0.

Proof. Set k' = k{'ky € K. By the assumption we have Ad(Ku = +pu.
Therefore it is easily seen that Ad(k")m; = m; for any ¢ = 0, 1, 2. Since
Ad(k') Ad(ky') = Ad(kT1), the lemma follows immediately. O

Let us denote by p; (i =0, 1, 2, non, inj) the subset of m consisting of
all elements of type P;. Then it is clear that

m\ {0} = po Up1 Upa Uppon Upin;  (disjoint union). (5.1)

Proposition 16 Let X, Y em (X #0,Y #0). Assume that ¥(X,Y)=0.
Then X € p; if and only if Y € p; (i =0, 1, 2, non).

Proof.  We note that under the assumption ¥(X,Y) = 0 we have X ¢ Ping
and Y ¢ pinj, because Y € Ker(¥x) and X € Ker(¥y).

First consider the case X € p; (1 =0,1,2). Let k € K be an el-
ement such that Ad(k)u € RX. Then we have Ad(k~))Y € m;, be-
cause Ad(k™')Y € Ad(k™') Ker(¥x) C m;. Take an element &' € K sat-
isfying Ad(kK*)y € RAd(k™1)Y and set k" = kk' (see Proposition 7).
Then we have Ad(K")u = Ad(k) Ad(k')u € Ad(k)RAd(k™1)Y = RY and
Ad(R" X = Ad(K1) Ad(k")X € RAA(KVu = RAA(E-DY C m,.
Since X € Ker(Py), it follows that Ad(k"~1)Ker(¥y) N m; # 0.
Hence Ad(k"~')Ker(®y) is categorical (see Proposition 13) and
Ad(k""')Ker(¥y) C m; (see Proposition 9). This means Y € p;. The
converse can be proved in the same manner.

By these arguments we know that X € p,oy, if and only if Y € Pron.-

U

Lemma 17 Let G/K = P*(C) (n > 2) or P*(H) (n >2). Then:

(1) po=0.
(2) Let X em (X #0). Then:
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dimKer(Tx) <{ f—1, ifX € pg; (5.2)
2, ’LfX € Pnon.

Proof. Suppose that pg # 0. Let X € pg and let k € K be an element such
that Ad(k)u € RX. Then we have Ad(k™!) Ker(¥x) C a = Ru. Hence
we have Ker(¥x) = RAd(k)u = RX, ie, (X, X)=0. Let Y € m such
that Y ¢ RX. By (3.1) we have

([X,Y],X],Y) = (¥(X, X), ®(V,Y)) - (T(X,Y), (Y, X))
= —(Tx(¥), Tx(Y)).

Since G/ K is of positive curvature, the left side of the above equality is > 0.
Therefore we have Wx(Y) = 0, which contradicts Y ¢ RX. Thus we have,
po = 0.

The assertion (2) follows from Propositions 12, Proposition 13,
dimmgy = f — 1 and the discussions in the previous section. O

Proposition 18 Let G/K = P*"(C) (n > 2) or P"(H) (n > 2). Then:
(1) pim=0ifr<nf-1,

2) pr=01ifr<2(n-1)(f-1);

(3) p2=0ifr<(n-1)f;

(4) pnon=® ifTSnf—?’-

Proof. We first note that dimKer(¥x) > dimG/K —r = nf — r holds
for any X € m. By this fact we can easily prove (1), (3) and (4). In fact, if
r < nf —1, then it is clear that Ker(®x) # 0 for any X € m. Hence X ¢
Dinj, which implies psn; = 0. Similarly, if r < (n —1)f (resp. r < nf — 3),
then dim Ker(¥x) > f (resp. dim Ker(¥x) > 3) holds for any X € m and
hence py = @ (resp. Ppon = 0) (see Lemma 17).

Next we prove (2). Suppose that p; # 0. Let X € p;. Take k € K such
that Ad(k)p € RX and set V = Ad(k™!) Ker(®x). Then V is a pseudo-
abelian subspace such that V' C m;. Consequently, by Lemma 17 we have
dimV <n-—1.

Now let us take a non-zero element £ € V and a subspace U C m; satis-
fying U DV, [£,U] C ¥ and dimU = (n—2)f +1 (see Proposition 12 (2)).
Put Y = Ad(k)¢ (€ Ker(¥x)) and U = Ad(k)U (C m). Then we have
P(X,Y) = 0and U D Ker(¥x). Moreover, we have HU,Y},X] = 0,
because [[U,Y],X] = Ad(k)[[U, €], u] = 0. Therefore, by Theorem 6 we
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have the following inequality:
r>nf+(n—-2)f+1-dimKer(Px)— dimKer(¥y).

Since X and Y € p; (see Proposition 16), it follows that dim Ker(¥y) <
n — 1 and dimKer(¥y) < n — 1 (see Lemma 17). Consequently, we have
r > 2(n—1)(f — 1)+ 1, which proves (2). O

We are now in a position to prove Theorem 1. If there is a solution ¥ of
the Gauss equation in codimension 7, then at least one of the sets psy;, po, 1,
p2 and Pnon is not empty (see (5.1)). Therefore, in view of Lemma 17 (1) and
Proposition 18, we have r > 1+min{nf—1,2(n—1)(f-1), (n—1)f,nf~-3}.
Accordingly, we have r > 2n—2if G/K = P*(C) and r > 4n—3if G/K =
P"(H). Hence, Crank(P™(C)) > 2n — 2 and Crank(P"(H)) > 4n — 3.
This, together with Lemma 2, shows Theorem 1. O

Remark 1 The proof of Theorem 1 stated above is effective in the case
n = 2. We thereby have Crank(P%(C)) > 2 and Crank(P?(H)) > 5.
However, for the spaces P?(C) and P?(H), we have already known the best
results: Crank(P?(C)) = 3 (see [1]) and class(P?(H)) = Crank(P2(H)) =
6 (see [8]).

As for the class number of P2(C) we have class(P%(C)) = 3 or 4
(see Lemma 2 and Introduction). It is still an open question whether
class(P?(C)) = 3 or not (cf. [20]).

Remark 2 Consider the following two cases:

(1) G/K=P"(C)(n>3)andr=2n-2;

(2) G/K=P"(H)(n>3)andr=4n— 3.

If there is a solution W of the Gauss equation in codimension r, then it
is shown by Lemma 17 (1) and Proposition 18 that ¥ must satisfy the
following condition:

Case (1) po=p1=p2= Pinj = 0,ie,m \ {O} = Pnon;

Case (2) Po=P1 = Pnon = Piny =0, L.e., m\ {0} = po.

We conjecture that in both cases (1) and (2) there are no such solutions ¥.
In other words:

Crank(P™*(C)) >2n—1 (n > 3);
Crank(P"(H)) > 4n—2 (n > 3).
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If this is true, then we obtain an improvement of Theorem 1:

class(P*(C)) 2 2n—1 (n > 3);
class(P"(H)) >4n—-2 (n > 3).
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Obstructions in local isometric imbeddings
of Riemannian manifolds

Yoshio AGAOKA

July 1, 2004 (Sapporo)

# =

It is well known that any Riemannian manifold M can be isometrically imbedded
into a sufficiently high dimensional Euclidean space. If M can be realized in a rel-
atively low dimensional Euclidean space (for example, as a hypersurface), then the
curvature of M must satisfy several conditions. These restrictions on curvature are
the consequence of the integrability condition of a system of differential equations
expressing local isometric imbeddings. And these conditions may be regarded as
obstructions to the existence of (local) isometric imbeddings of M into a low di-
mensional Euclidean space. To find such conditions on the curvature in an explicit
form is one important problem in considering isometric imbeddings of Riemannian
manifolds. In this talk, I will review several obstructions obtained in collaboration
with Professor E. Kaneda, and gave some explicit applications mainly when M is a
Riemannian symmetric space.

§ 0. Introduction

Let (M™, g) be an n-dimensional Riemannian manifold. It is well known that M can be
locally or globally isometrically imbedded into a sufficiently high dimensional Euclidean
space R”.

For example, M™ can be locally isometrically imbedded into Rz +1) in the real analytic
category. This is a result of Janet-Cartan (1926, 1927). And in the global case, M™ can be
realized in Rz if n > 5 (Giinther, 1990). This result is the best (least dimensional)
result known at present. Several mathematicians tried to improve the dimension of the
ambient space R¥. (Nash first proved the global existence theorem. And after Nash,
Greene, Gromov, Giinther successively improved the dimension of the ambient space R¥.)

In the C*°-category local existence theorem was also established. It is known that every
n-dimensional Riemannian manifold of class C*° admits a C*-local isometric imbedding
into Rz™™+1+7_ And it is one fundamental problem whether the dimension of the ambient
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2 Y. Agaoka

space can be reduced to +n(n + 1). Especially 2 and 3 dimensional cases were studied
deeply by several mathematicians; and perhaps these are the themes of Professor Maeda
and Professor Han’s talk.

But E. Kaneda and I continued to work on this problem from different viewpoint. In
particular, we tried to find obstructions to the existence of local isometric imbeddings
and its application to the explicit Riemannian manifolds from algebraic or representation
theoretic viewpoint. In this talk, I will briefly review some results on this subject.

The CONTENT of this talk

§ 1 Differential equation of local isometric imbeddings
§ 2 Gauss equation and curvature

§ 3 Pseudo-nullity: An ebstruction

§ 4 Example of isometric imbeddings

§ 5 Complex projective plane: Higher order obstruction
§ 6 Remaining problems

§ 1. Differential equation of local isometric imbeddings

In terms of local coordinate (zy,-:- ,%,) of M, the differential equation of isometric
imbedding can be expressed as

N

ofeofe .
(#) gij:;aii aij ,7=1,---,n,

where f = (f1,---, f¥) : M — RY is a differential mapping from M to R".

Problem. For given {g;;} and N, determine whether there is a family of functions
F=(f--, V) such that (#) holds.

There are several equivalent formulation of isometric imbeddings. And for our purpose,
it is convenient to express this differential equation in terms of the language “covariant
derivative” V associated with the Riemannian metric. (Covariant derivative is a quite use-
ful language in describing the differential equation of isometric imbeddings of Riemannian
manifolds.)

First we define the covariant derivative acting on the space of tensor field of type (0, k)
on M. We denote by X(M) the set of vector fields on M and C*(M) be the set of C*
functions on M. Since there is given a Riemannian metric g on M, it is well known that
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Obstructions in local isometric imbeddings 3

there exists uniquely a differential operator V : £(M) x (M) — X(M) (VxY € X(M)
for X,Y € X(M)) such that

# #) X(9(Y,2)) =9(VxY,2) +9(Y,Vx2), X,Y,Z e X(M),
VxY - VyX =[X,Y], X,Y € X(M),

where [X, Y] is the bracket of two vector fields. (Vector field is considered as a differential
operator acting on C®(M). [X,Y] is defined by [X,Y]f = X(Yf) — Y(Xf) for f €
e (M).)

>

Now let T be a tensor field on M of type (0,k), i.e., T : X(M) x --- x X(M) —
C>(M), which is C°°(M )-multilinear. We define a new tensor field VT of type (0,k + 1)
by

k
VT(X, X1, , Xe) = X(T(X1, -+, Xp) = 3 T(X, -+, VxXi, o, X).
In case k = 0, i.e., T is a function f, we put Vf = df, i.e., (Vf)(X) X f. Note that

the condition (##) can be expressed as Vg = 0. We define V--- VT inductively by
VVT =V(VT), VVVT =V(VVT), ---

Since V---VT is a tensor field, we can substitute tangent vector z, y, --- € T,(M)
instead of tangent vector fields X, Y, ---. And in the following we express V,V,V,T =
(VVVT)(z,y,2) € R, etc.

When the tensor field T is a function f, the covariant derivatives satisfy the following
integrability conditions:

vmVyf = vyvzfa
VxVszf - vmvzvyfa
Vszsz = Vyvazf - VR(m,y)zfa

where z,y,z € T,(M). It should be remarked that the operator V is not commutative.
The difference can be expressed in terms of the curvature R. The last equality is usually
called the Ricci formula. In terms of the Christoffel symbol I’”, we have

2
Vx.Vx, f = f ZI"“?L
k

0z;0; Y Oxy’
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4 Y. Agaoka

where X; = g_m,-' Note that we have

(VVAXY)=X(Yf) - (VxY)F,
(VWVAX,Y,2) = X(Y(Z2f) - X(V¥2)}) - Y((Vx2)f)
— (VYN Zf)+ (Vvxy 2)f + (V¥ (VxZ)),

where X, Y, Z € X(M).
The covariant derivative of the map f = (--- , f2, .. *) : M — RY is defined by
k k

o N—— o N

Ver Vg, f = (- ,Vxl“'mGf“,“') eRY, . PEM, z1,--- 2, € T,(M).
If f is an imbedding, then the vectors V,f span the vector space (f,)pTp(M) C RY,
where (f,), : T,(M) — RY is the differential of S atp € M. In terms of this language,
the differential equation of isometric imbeddings (#) is equivalent to

(Vof ,Vouf) = g(z,y).

Here ( , ) implies the inner product of the ambient vector space RY. The sequence
(2, F(2), (VF)ps (VV F)p,+ -+ ) may be considered as the jet of f. And this sequence must
satisfy some conditions. By using the property Vg = 0 and the Ricci formula, we obtain
successively the following formulas:

(1) (szv Vyf) = g(may)a
(2) (V.Vof,Vyf) =0 — (V,V.f, Vuf)=0
(3) (VeVyVaf, Viuf) + (Vy Vo f, V.Vuf) =0,
(4) <Vyvfl7f7 Vszf> - (Vzvzf, Vvaf> = “g(R(ya Z)LL', ’(I)),
(5) <V’vavw-f? vsz.f> + <vyvm.fa v’vvszf>
VoV Vo f, VyVuf) = (V, V. f, VoVyVuf) = —g(V,R(y, 2)z, w).

If f is an isometric imbedding, Vf, VVf, --. must satisfy these conditions. The con-
dition (2) implies that the vector V2V, f belongs to the normal space T,(M)+. From
the integrability condition, we know that this is symmetric with respect to z and y. We
call VV f the second fundamental form of f at the point p. The second fundamental
form satisfies the equality (4). We call this equation the Gauss equation. Thus the
Gauss equation naturally appears as a part of the integrability condition of the original
differential equation (#). (This formulation is due to N. Tanaka.)
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Obstructions in local isometric imbeddings 5

§ 2. Gauss equation and curvature

Now we turn to the obstruction to the existence of local isometric imbeddings.

In the following, we express VV f simply as & € S*(Ty(M))®R", where we put N = n+r
(n = dimM). The number 7 is called the codimension of the imbedding f. And we express
the normal space T,(M )~ simply as R™. We recall the Gauss equation

(4) (a(z’ $)7 Oz(’l), y)) - (a(v, x)’ O!(Z, y)) = —g(R(Z, 'U)'Ts y)'

The right hand side of the equality is expressed by the curvature of M, which is an intrinsic
quantity of the Riemannian manifold. This mean that the curvature R can be expressed
in the above form for some R"-valued symmetric bilinear form «, if M can be (locally)
isometrically imbedded into-R™*".

Of course, not all curvature type tensors R can be expressed in this form, if the value
of codimension r is sufficiently small. And this is our start point of study.

We denote by K, (M) the set of curvature like tensors of Tp(M):

K,(M) = {R € NT; (M) ® T, (M) ® T,(M) | 9(R(z, y)z,w) + g(R(z, y)w, z) = 0,
6 R(m, y)z = 0}.

(The last condition is called the first Bianchi identity.) And we denote by K (M) the set
of curvature like tensors R which can be expressed as

_g(R($7 y)z) ’lU) = (O!(iL‘, Z), a(ya w)) - (a(:z:, w): a(y, z))

for some R"-valued symmetric bilinear form a. We clearly have the following increasing
sequence of the set K (M).

{0} = KJ(M) Cc K}(M) C KX(M) C------ C K,(M),

and we know that there is a positive integer ry depending on n such that the equality
Kp°(M) = Kp(M) holds. (It is known that it suffices to put ro = +(n — 1)(n — 2) + 2.
But this value is not in general the least value.) This means that any curvature like tensor
admits a solution of the Gauss equation in codimension ry.

If we can show that R ¢ K (M) by some method, we know that any open neighborhood
of p € M cannot isometrically imbedded into R™*". And so, it is a fundamental problem
whether a given curvature like tensor R belongs to K’ A (M) or not. Especially it is important
to determined the least positive integer r such that B € Kj(M). (If we express the
curvature R as a linear endomorphism A?7,(M) — A?T,(M), then the Gauss equation
is expressed in the form R =" , L; A L;, where the linear map L; : T,(M) — T,(M)
is defined by ¢g(L;(X),Y) = (a(X,Y),&). (& is an orthonormal basis of T,(M)*.) By
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6 Y. Agaoka

this formulation the least integer 7y such that R = Y ;°. L; A L; may be considered as a
sort of “rank” of the curvature.) But in general this is a quite difficult algebraic problem,
and unfortunately we only know a partial result on this question at present. Explicit
characterization of the image of algebraic map is in general a quite difficult algebraic
problem.

Example.

¢ R": Re Kg(M),

o S": RﬁKg(M) a,ndREK;(M),

e H": R¢K;?*M)andRe K7~1(M).

The last example follows from the classical theorem of Otsuki (J. Math. Soc. Japan 6
(1954)).

Theorem 1 (f)tsuki). If M is an n-dimensional space of negative curvature, then
R¢ K;}"z (M).

Note that the curvature of the space of constant curvature k s given by

R(z,y)z = k(9(y, 2)z — g(z, 2)y).
In the following, we mainly talk on this subject.

§ 3. Pseudo-nullity: An obstruction
We found several types of necessary conditions in order that R € K7 (M).

Agaoka-Kaneda (T6hoku Math. J. 36 (1984)),

Agaoka (Hokkaido Math. J. 14 (1985), obstruction for the case M* c RS),
Agaoka-Kaneda (Hiroshima Math. J. 24 (1994)),

H.J Rivertz (Thesis, (1999), obstruction for the case M3 C R*, M® c RY).

We here explain one obstruction “pseudo-nullity”, which is perhaps the strongest con-
dition known at present. This obstruction was first appeared in Hiroshima Math. J. 24
(1994).

Let a be a solution of the Gauss equation of M in codimension r:

o T,(M) x T,(M) — R’

We express the normal space T,(M)* simply as R". For z € T,(M) we define a linear
map a; : Tp(M) — R” by a,(y) = a(z,y). For convenience, we assume n > r for some
time. Then the space Ker o, C T,,(M) possesses the following property:
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(x) Ify,z € Keray, then R(y,z)z = 0.

This fact follows immediately from the Gauss equation

—9(B(y, 2)z, w) = {a(z,9), (2, w)) — (s, 2), oy, ).

Existence of such subspace imposes a strong condition on the curvature R. Holding this
fact in mind, we introduce the following concept: Let z € T,(M), and set

d(z) = max dim W,
We

where W, moves in the set of subspaces of T,(M) satisfying the condition

(%) Ify,z € Wy, then R(y,z)z = 0.
If R € K admits a solution of the Gauss equation in codimension r, we have clearly the
inequality d(z) > n — r for any z € T,(M), ie,, 7 > n — d(z) (because we may put

W, = Ker ay).
We define a function Py on M by

Py(p)= min  d(z).
z € T,(M)

Then we have the following theorem.

Theorem 2. If M™ can be isometrically imbedded into R™", then the inequality r >
n— Pu(p) holds at any point p € M. Hence any open Riemannian submanifold containing
P € M cannot be locally isometrically imbedded into the Euclidean space with codimension

n— Py(p) — L.

The proof is obvious from the above arguments. We remark that the valued Py (p) is
determined by the curvature of M at p, and hence it is an intrinsic quantity of (M, g).

Theorem 2 implies that the function Py may be considered as one obstruction to the
existence of local isometric imbedding of M which is useful for the case r < n. But to
determine the value Pys(p) is in general a difficult problem.

If M is a homogeneous Riemannian manifold, i.e., the group of isometries of M acts
transitively on M, then the function Pj(p) takes a constant value. In this case we simply
express it as P(M) € Z*.

Example. S" (n > 2): P(S") =n— 1.

183



8 Y. Agaoka

The curvature of S™ is given by

R(y, 2)z = g(z,2)y — g(z, ).

Hence the subspace (z)1 C T,(S"™) satisfies the condition on W,. If z = 0, the space
W, cannot be equal to the whole space T,,(S™). And hence d(z) =n—1. If z = 0, we
have clearly d(z) = n because we may put W, = T,(S"™). By these results, it follows that
P(S")=n—1. '

Thus by Theorem 2, the codimension of local isometric imbedding of S™ must satisfy
the inequality 7 > n— P(S™) = 1. But this is a trivial result because S™ is not flat in case
n 2> 2.

§ 4. Example of isometric imbeddings

Among Riemannian manifolds there exist a special class of manifolds, called Riemannian
symmetric spaces. This class contains the spaces of constant curvature, and they are locally
characterized by the property VR = 0, i.e.,

(VxR)(Y,Z)W = Vx(R(Y,Z)W) - R(VxY, Z)W — R(Y,VxZ)W — R(Y, Z)VxW =0
for X, Y, Z € X(M).

For these spaces Kobayashi (T6hoku Math. J. 20 (1968)) constructed global isometric
imbeddings of many Riemannian symmetric space. And these imbeddings give relatively
low dimensional realization in Euclidean spaces even in the local standpoint. We call
these imbeddings as canonical isometric imbeddings of Riemannian symmetric spaces.
(Actually they should be called as symmetric R-spaces.) We give here some examples.

Example.

(1) P*(C) c Rr{»+2)

Homogeneous coordinate : [wy, w1, - ,w,] € P*(C).
Inhomogeneous coordinate : z; = w;/w; € C (i =1,--- ,n).

The Fubini-Study metric:

g= 157 |22dzzdz_z+ (1—I-| BE (Ezzdzz) (sz zj)

Equivariant isometric imbedding f : P?(C) — R™®*2) ;

0is w; W;
1 (. ) R A
g n-+1 |w? 0<i,j<n
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or by inhomogeneous coordinate

O:s %7
f(zh"',zn):‘/-"l( % _ Z; Zj ) ’
0<i,j<n

n+1 14|22

where we put 29 = 1. Actually P"(C) is expressed as SU(n + 1)/S(U(n) x U(1)), and g
is SU(n + 1)-homogeneous and the map f is SU(n + 1)-equivariant.

(2) SO(p +q)/SO(p) x SO(g) C R P+P+e+)~1 (rea] Grassmann manifold)

We put G = SO(p+ ¢) and K = SO(p) x SO(q). And we denote by g = ¢t @& m
the canonical decomposition of the symmetric space G/K. The space m = the space of
(p, g)-matrices can be naturally identified with the tangent space at the origin of SO(p +
q)/SO(p) x SO(g). The Riemannian metric on this space is given by

9(X,Y) = trace (X'Y), X,Y €m.

And g is extended to the whole space by the left action of SO(p + g).

Elements of SO(p + ¢)/SO(p) x SO(q) is a p-dimensional subspace of R?*9. And let
{#(#15, - - - Tprgu) € RPT}1 <5<, be an orthonormal basis of this subspace V2 C RP*4. Here
we put

O I Tip 31

Tptgl °° Tptgp €p+q

Then the isometric imbedding is given by
f(VP) = (—L b3 — (&> ﬁj)) :
p+q 1<i,j<p+e

where (, ) is a positive definite inner product of the space of row vectors R?. Note that
the matrix f(V?) is symmetric and traceless.

Similarly we have the global isometric imbedding for two remaining Grassmann mani-
folds:

SU(p+ q)/S(U(p) x U(g)) c R@P+9*-1,
Sp(p + q)/Sp(p) x Sp(g) C R2P+I*~(+a-1

Note that dim SU(p+ ¢)/S(U(p) x U(g)) = 2pq and dim Sp(p + q)/Sp(p) x Sp(q) = 4pqg.
The complex projective space P™(C) is a special case of the complex Grassmann manifold.

(3) SO(n) C R™, U(n) c R*, Sp(n) Cc R*’

185
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These are the natural inclusion of groups into the space of matrices.

SO(n) = {A € GL(n,R) |'AA = I,} C M(n,R) = R",
U(n) ={A € GL(n,C) |*AA = I,} C M(n,C) = R>",
Sp(n) = {A € GL(n,H) |*AA = I} C M(n,H) = R*",

where H is the set of quaternion numbers. It consists of numbers of type a + bi + cj + dk
(a,b,c,d € R) and a + bi + cj + dk = a — bi — ¢cj — dk.

The Riemannian metric is given as follows: In the case of SO(n) the tangent space at
the identity element is expressed as {X € g(n,R) |*X + X = 0}. And the metric of this
space is given by g(X,Y") =trace (X*Y) = — trace(XY). This metric is extended to the
whole SO(n) by the left action of SO(n).

For the cases U(n) and Sp(n) we put g(X,Y) =trace (X'Y).

Note that these compact Lie groups G' are globally isometrically imbedded into the
Euclidean space with dimension about 2 dimG. And these are relatively low codimensional
global isometric imbeddings.

(4) Sp(n)/U(n) C R™®+1)| P?(Cay) & Fy/Spin(9) C R
Among these spaces we have the following result.

Theorem 3. The canonical isometric imbeddings of the followings spaces give the least
dimensional isometric imbeddings into the Euclidean space even in the local standpoint :

Sp(n) c R*,
Sp(n)/U(n) C R+,
P%(H) c R,

P*(Cay) C R?.

Note that the quaternion projective plane P?(H) = Sp(3)/Sp(2) x Sp(1) is a 8-dimensional
space and the Cayley projective plane P?(Cay) = Fy/ Spin(9) is a 16-dimensional space.

For the remaining Riemannian symmetric space (except spaces of constant curvature
S™ and H™) we cannot yet determine the least codimension of the Euclidean space into
which M = G/K can be locally isometrically imbedded.

But the order of the dimension of the ambient space is determined for most Riemannian
symmetric space. We here show the list of known result:
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TABLE : Local isometric imbedding of Riemannian symmetric spaces

M dim M M ¢ RY MCRY
Al SU(n)/SO(n) (n>3) Ln-1)(n+2) n? -2 n(n+1)
AIT SU(2n)/Sp(n) (n>3) n-1)2n+1) 3n2—-2n-2 2n(2n — 1)
AIIT | P2(C) 4 6 8
P3(C) 6 9 15
P4(C) 8 12 24
P*(C) (n>5) 2n [38n] -1 n(n + 2)
12(p=2)
SUG+2)/SUE) xU@) | 4p e -+ D(p+3)
(p22) T (p > 5)
4pgp ~2¢—-1 )
SU®+9)/SU®) x Ulg 2pq =it (+q)?-1
p2g23) ! ’ sy
BDI | #Q3(C) ~ Sp(2)/U(2) 6 9 10
Q™(C) (n>4) 2n [£(16n — 3)] Ln+1)(n+2)
22 —p-1
SO(p+q)/S0(p) x SO(q) g qu(_pi;q) Fp+ap+g+1)-1
(p=g>3) (p>q+1)
BDII | *S™ (n>2) n n n+1
*H" (n>2) n 2n — 2 2n—1
CI *Sp(n)/U(n) (n2>1) n(n +1) 2n?+n-1 n(2n + 1)
CII | %5p(3)/Sp(2) x Sp(1) 8 13 14
8p—4
Sp(p+1)/5p(p) x Sp(1) 4p { ’ 3<p<9) p(2p+3)
(p>3) 7p (p=5)
16p—-7
Sp(p+2)/Sp(p) x 5p(2) 8 stV | ernee+s)
(r22) > 6)
8pg—4g—1
Sp(p+4)/Sp(r) x Sp(0) 4pg ol SPSITY e - e -
(p>g2>3) (p>g+4)
DIII | SO(8)/U(4) =~ Q5(C) 12 18 28
S0(2n)/U(n) (n>5) n(n—1) nn-1)-1 n(2n — 1)
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TABLE (continued) :

Y. Agaoka

Local isometric imbedding of Riemannian symmetric spaces

| M dmM | M¢ R | MCRY
EI Es/Sp(4) 42 7 702
EII Es/SU(2) - SU(6) 40 59 650
EIII | Es/Spin(10)-SO(2) | 32 a7 78
EIV | Eg¢/F, 26 37 54
EV E,/SU(8) 70 132 1463
EVI | E;/Spin(12)-SU(2) | 64 95 1539
EVII | E;/Es-SO(2) 54 80 133
EVIII | Es/Spin(16) 128 247 ?
EIX Es/Er- SU(2) 112 167 3875
FI F;/Sp(3) - SU(2) 28 51 324
FII *Fy /Spin(9) 16 25 26
G G,/SO(4) 8 13 27
[Ap-1] SU(n) (n>6) n*—1 |2n2-2n-2 2n?
[Bn) S0(2n+1) (n>5) | n@2rn+1) | 4n? 202 | (2n+1)2
[Cyl *Sp(n) (n21) | n@2n+1)| 4m2-1 4n?
[Dy) SO(2n) (n>5) | n(2n—-1) | 4n®>—6n 4n?
SU(3) 8 12 18
SU(4) ~ SO(6) 15 24 32
SU(5) 24 41 50
*SO(5) =~ Sp(2) 10 15 16
S0(5,C)/SO(5) 10 16 ?
S0(7) 21 35 49
SO(8) 28 47 64
50(9) 36 63 81
Eg 78 139 1458
Ey; 133 238 3136
Eg 248 459 ?
F, 52 94 676
Go 14 23 49

=~ implies a local isomorphism of Riemannian symmetric spaces.
The symbol * before M implies that the least dimension of the Euclidean space is

determined.

Unfortunately there still remains between two columns even if the value P(M) is deter-

mined.
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Obstructions in local isometric imbeddings

13

For most cases the results in this table are obtained by determining the value of the
invariant P(M). But the determination of the value P(M) is a difficult problem in repre-
sentation theory, and there still remains some spaces whose value P(M) is undetermined.
We here give the value P(M) for known spaces.

7 B
Al SU(n)/S0(n) n-—1
1 (=1
AIIT | SU@+1)/S(U@) x UQ)) { 2 (p=2)
p—1 (»p=3)
3 (p =2, 3)
SU(p+2)/S(U(p) x U(2)) 4 (p=4)
p-1 (p>5)
BDLII | S0(p+9)/S0() x S0@) | { %, g N g) 1)
CcI Sp(n)/U(n) n
CII | Sp(p+1)/Sp(p) x Sp(1) o 8 SEF 4
Spo+2/5p0) x5 || { 0, 258
BI Es/Sp(4) 6
BV Eq/SU@) 7
EVIII | Ey/Spin(16) 8
FI F./Sp(3) - SU(2) 4
FII | Fy/Spin(9) 7
ei G,/50(4) 2
Sp(n) 2n
SU(2) = SO(3) = Sp(1) 2
SU(3) 3
SU(4) ~ SO(6) 5
SU(5) 6
SO(5) = Sp(2) 4
S0(7) 6
S0(8) 8
S0(9) 8
Gs 4

Example. In the case Sp(n) we can prove that the value P(Sp(n)) = 2n. Hence the
value dim Sp(n) — P(Sp(n)) —1=n(2n+1) — 2n—1 = 2n?> — n— 1. From Theorem 2 it

follows that the space Sp(n) cannot be locally isometrically imbedded into the Euclidean

space with codimension 2n? —n — 1. On the other hand, the codimension of the canonical
isometric imbedding of Sp(n) is 2n? —n. Hence this imbeddings gives the least dimensional
isometric imbeddings even in the local standpoint.

We can obtain the same best result for the space Sp(n)/U(n).
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14 Y. Agaoka

The exact value of P(M) for two groups SU(n) and SO(n) is still undetermined for
large n. At present we have the following estimates:

SU(n): [3n/2] — 1 < P(SU(n)) < 2n — 1,
SO(2n+1):2n < P(SO(2n+1)) < 4n+1,
S80(2n) : n+2[n/2] < P(SO(2n)) < 4n — 1.

We conjecture that the left values give the exact value of P(G). But in Theorem 2 we
may substitute a larger value in P(M), and from this we obtain the following theorem.

Theorem 4. The Lie groups SU(n) and SO(n) cannot be isometrically imbedded into
R*"*=20=2 R™~% eyen in the local standpoint.

Unfortunately there still remains some gap between the imbedding dimension of Kobayashi
2n? and n?, respectively.

For general compact simple Lie group G we conjecture that the following equality holds:

2rank G G # SU(n), SO(2n), Es,
n—1+[n/2] SU(n),

n+ 2[n/2] S50(2n),

10 Eg.

P(@)=

For two projective plane P?(H) and P*(Cay) we have the following data:

dim P*(H) =8, P(P*H)) =3,
dim P*(Cay) = 16, P(P?(Cay)) =7.

Hence by Theorem 2 we know that these spaces cannot isometrically imbedded into R'?
and R?* even locally. On the other hand the canonical isometric imbedding is

P*(H) c R", P?(Cay) Cc R®.

For both spaces there remains 1-dimensional gap. But by analyzing the space Ker a, :
T,(M) — R for both spaces, we can prove that the canonical isometric imbeddings give
the least dimensional isometric imbeddings in the local standpoint for both spaces. (For
details see our preprints available from: http:// www.mis.hiroshima-u.ac.jp).
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Obstructions in local isometric imbeddings 15

§ 5. Complex projective plane: Higher order obstruction

Perhaps one interesting and difficult problem is to determine whether there exists a
local isometric imbeddings of the complex projective plane P2{C) into the 3-codimensional
Euclidean space R’.

This is still an open problem. (For remaining three projective planes P?(R) ~ 52,
P?(H) and P?(Cay) the problem is completely solved, including “rigidity”.)

We explain the present situation concerning this problem. Our present knowledge is
summarized in the following form:

Theorem 5. (1) P?(C) cannot be locally isometrically imbedded into RE.

(2) P%(C) can be globally isometrically imbedded into R® (Canonical isometric imbed-
ding).

(3) The Gauss equation of P%(C) in codimension 3 admits a solution. The set of solu-
tions forms a 10-dimensional algebraic subset of S*(T¥(P?(C))) ® R? = R™.

(4) “Generic” solutions of the Gauss equation in codimension 3 cannot be the second
fundamental form of an actual isometric imbedding of P?(C) into R'.

(1) and (3) are results of Agaoka (Hokkaido Math. J. 14 (1985)). (2) is a result of
Kobayashi (1968) which we explained before. (4) is a result of Kaneda (Hokkaido Math.
J. 19 (1990)).

In the following we explain the results (1), (3) and (4).

Obstruction for the case M* C RS.
We express the curvature of 4-dimensional Riemannian manifold as

R 1 N*T,(M) — N*T,(M).

Actually this map is defined by (R(z A y),2 A w) = —g(R(z,y)z,w) in terms of the
Riemannian metric g. (, ) is the metric of A2T,(M) naturally induced from g. We once
fix an orientation of M (precisely an orientation of the tangent space T,(M)). Then in
the 4-dimensional case there exists a x-operator

* 1 NT,(M) — N'T,(M).
In terms of an orthonormal basis {e,- - ,es} * is given by

* (61 A 62) = e3 A ey, *(61 A 63) = —e N\ ey,
x(e1 Neg) =eyNes, *(exAeg)=e; ey,

* (62 A\ 64) = —e1 N es, *(63 A 64) =e; A es.
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16 Y. Agaoka

Then we have

Theorem 6. If M* can be locally isometrically imbedded into RS, then the eigenvalues
of the map R o : NPT, (M) — N'T,(M) are ezpressed as i, +ap, +a3 at each point
of M*.

If we change the orientation of 7,(M), then the map * is changed to —*. And hence the
result of this theorem 6 is unaltered. '
In the case of the complex projective plane P?(C) the curvature of P%(C) is given by

R(zy Ay1) = 4x1 A yy + 229 A 4o,
R(zg A yg) = 221 A yy + 429 A 1o,
R(zcl AZo) =2y ATy +y1 Ay,
Ry Ayp) = 21 Ay + 41 A 4o,
R(zi Aya) =21 Aya + T2 Ay,
R(zo Ay1) = o1 Aya + 29 A gy,

where {z1,y1, %2, %2} is an oriented orthonormal basis of T,(P?(C)). Then we can easily
check that the eigenvalues of R o * is given by {6,~2,—2,~2,0,0}. And hence we know -
that P?(C). cannot be locally isometrically imbedded into RE.

If we change the value 4 in the above curvature to 0 (in two places), then the eigenvalues
become {+2,+2,0,0, } and the condition in Theorem 6 is satisfied. And we can show that
in this case the Gauss equation admits a solution in codimension 2 if we complexify all
variables. In the real category we can show that the Gauss equation does not admit a real
solution.

Next we explain the result (4). We put

J(M,RY) = {jp(f) = (v, f )},
T(M,RY) = {7,() = (0. F 0), (VF)p)},
(M, BRY) = {35(f) = (0, £ (0), (V) (VI))},

and we denote by @ the set of elements of J?(M,R") which satisfy the conditions (1),
(2) and (4) in § 1. Similarly we denote by Q™ the set of elements of J3(M, RY) which
satisfy the conditions (1) ~ (5). The space Q@ C J4(M,RN), Q® c J5(M,R¥), --- can
be similarly defined by using the integrability conditions and the differential of the Gauss
equation. (Precisely, we must restrict them to an open dense subset because Q, QW etc.
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Obstructions in local isometric imbeddings 17

are not in general manifolds.) Symbolically we express the jet Vf as w and VVVf as
ete.
Then there is a sequence of natural projections induced from = : J*(M,RY) —
JE(M,RV) :
...... — QW — QB® — Q¥ — W — (.

If o is a second fundamental form of some local isometric imbedding of f : P?(C) —s R,
then there exists a sequence of elements of Q) which projects to the given o = VVJ.
These elements are of course obtained by differentiating f several times.

In this situation Kaneda showed the following result: Let o be a “generic” solution
of the Gauss equation of P"(C) at the point p in codimension 3. Then any element
(p,w,, B) € Q1) is not contained in the image of the projection Q@ — QW. The
assertion (4) follows immediately from this fact.

This fact implies that if a local isometric imbedding from P2(C) into R exists, its second
fundamental form must be “singular”, i.e., & must satisfies some additional conditions in
addition to the Gauss equation. This condition may be considered as a higher order
obstruction to the existence of local isometric imbeddings. And thus the problem of local
isometric imbedding P?(C) C R7 is a delicate and difficult problem because we must
consider higher obstruction in addition to the Gauss equation. (Compared with the case
of Sp(n) or Sp(n)/U(n), where the least dimension of the ambient Euclidean space is
determined by only considering the Gauss equation.)

§ 6. Remaining problems

e Find new obstruction which is useful for higher codimensional case.

At present we only know the obstruction which is useful only for the range r < n.
But this is a quite unsatisfactory situation, because generic n-dimensional Riemannian
manifolds cannot be locally isometrically imbedded into R¥™™+)-1 and hence there must
be some obstruction for this case r = Zn(n — 1) — 1.

For the complex projective space P"(C) we know that

Pn(C) ¢ R[lﬁn/s]—l’ Pn(C) C Rn(n+2).

And the gap of these two dimensions is quite large. If we find new obstruction which is
useful for codimension r ~ —%—nz , we can apply it to P*(C), and it may be possible to show

that the canonical imbedding gives almost the least dimensional isometric imbedding.

Concerning this problem, Rivertz (1999) found the obstruction for the case M® C R*
and M® C R7, which involves the curvature R and its covariant derivative VR. It is an
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18 Y. Agaoka,

interesting problem to find a similar obstruction for the case M*® ¢ R?, because in this case
the Gauss equation always admits a solution and hence the obstruction must necessary
involves the covariant derivative VR or its higher order covariant derivative. (Find higher
order obstructions involving R, VR, VVR, ---.)

e Inequality for the case M™ c R™+!
The curvature of a hypersurface M™ C R™"! satisfies the following inequality at each
point of p € M:
Riji; Ry Rijjx
Ririj Rikix Rugjx | = 0.
Rjki; Rjkik  Rjkje
Our next problem is to find a similar inequality for higher codimensional case. These
inequalities also serve as an obstruction to the existence of local isometric imbeddings.
For example in the case M* C RS there exists an example such that the Gauss equation
does not admit a solution, but the complexified Gauss equation admits a complex solution.
In this situation by only polynomial relation of R, VR, VVR , etc. we cannot show the
non-existence of local isometric imbeddings.

e M?®=SU(3)/S0O(3)
For the 5-dimensional Riemannian symmetric space SU(3)/SO(3) (type AI) the follow-
ing results are known:

Re K3(M), ReKiM), RgK(M),

where K7(M) is the Zariski closure of K*(M) and R is the curvature of SU(3)/SO(3).
But the least dimension where the Gauss equation admits a solution is not yet determined.
The space SU(3)/S0(3) is globally isometrically imbedded into the Euclidean space with
codimension 7.

e P?(C), P*"(C) and P*(H)
Determine the least dimensional Euclidean space into which the complex projective
plane P?(C) can be locally isometrically imbedded. It is R7 or RE.

For general n P*(C) admits a solution of the Gauss equation in codimension = n2 — 1.
Hence it is a problem whether P*(C) can be locally isometrically imbedded into the
Euclidean space with codimension n? — 1 or not, i.e., we can decrease the dimension of the
ambient space of the canonical isometric imbedding to R™»+2)-1,

As for the quaternion projective space P3(H) it is known that

P(H) ¢ R®, P¥H)cC RY.
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Obstructions in local isometric imbeddings 19

We must fill this gap by using a new obstruction. We conjecture that the canonical
isometric imbedding P"(H) C R™?**3) gives the least dimensional isometric imbedding
even in the local stand point.

* P(G/K) |
Determine the value P(M) for all Riemannian symmetric space M = G/K.

e Non-compact Riemannian symmetric space

Find or construct an example of local (or global) isometric imbedding of Riemannian
symmetric space of non-compact type. Such example is known only for the case H® C
R? 1 which is the space of constant negative curvature. This is almost unbelievable
situation compared with the long history of isometric imbeddings of Riemannian manifolds
in differential geometry. And perhaps this means that to find such an example is a difficult
problem.
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A Historical View on the Theory of Isometric Imbeddings
of Riemannian Manifolds — unofficial version

B E

We present principal events appeared in the theory of isometric imbeddings of Rie-
mannian. manifolds in chronological order, mainly concerning with the existence or
non-existence of isometric imbeddings into low dimensional Euclidean spaces.

HMRELTIT “HBEROEEEDAL" L WIEETEELE L. L LBz
BT D ERRBERIT, FEEFEFEEOFRBE_SALEET EHY ORIITED = I1TH
DRDT, ZZTRFAMMEEZ, FIBIZBEL LY —< L 2EEOBFHH 5T
KRB RERBOIALOFE - EFEECETIETELRER 2B OIEICERTH B 2 LI
LELZ. ZOREIZEL, BEMADL - TR THWARNOD, ZHIZL 0 F0
MEEEMEL TV Lo TWET.

TERRRCEVHBREIZOWTIE, FERBAFRARTH 7Y, HAVEAFETETYH
FATITENBREDRNE VD Z L%, TOBEITES TRESHRTTIC, £EBES
ETH LRZVDOTT MO H ORI & THERETLEWE L. CEkic & v 25k
WCFBEDETDHIEBER(17) Ho T, BRIBRIMEERTIT IV ONEBFOM & 2
RDEZLbEAHVELE. EEREDERTH-TY, BROSRETHEDE S LT
BET(TET), MXDEREZOEEELELITOEEREL HY 4. FLOFHRIZE
D,%%X@:%memﬁbwﬁ%ﬁiufmiﬁb,mtﬁ%%mﬁﬂkﬁ%@ym
TEREDALOERICEFICED TLESTb0LH 0 ET. ZHLBEES /N, H
DUNESE & LTZEREL T, FAORBEY - #EV, 55 WITERENZE I DWW TAIME
TG E, TRV bRmICEWICELE T

Y= VSR OERE DAL BRI BT D ERIC OV TR OEEICH L < S
NTVET. AXEBCheoT, ThbOBEEEBEICSETEEEE Lk,
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Once we know that every Riemannian manifold can be isometrically imbedded in a Eu-
clidean space of sufficiently large dimension, we naturally seek for a Euclidean space of
smallest possible dimension in which a Riemannian manifold can be isometrically imbed-
ded.

RSN TVET. RBICZOBBICETIRAEFORSEZO0BALT, T/ (4
BYEZBLAZ EITLEL XD,

However, if we pose the question of the greatest possible lowering of the codimension N —p,
then even in the local formulation the problem is far from completely solved, and in the
global formulation presented above we are only at the first steps of the development. ” The
problem of immersing a Riemannian metric in Euclidean space”, said A. D. Aleksandrov in
one of his public lectures (Moscow State University, May 1970), "is a tangle of non-linear
problems”. (From p.101 of E. R. Rozendorn, Surfaces of negative curvature, Geometry
III, Encyclopaedia of Math. Sci. Vol.48, (eds. Y. D. Burago, V. A. Zalgaller), Springer,
1992.)

In the past we have had some very special results about the non-existence of isometric
imbeddings of certain Riemannian manifolds in other Riemannian manifolds. For example,
a compact surface of everywhere negative curvature cannot be isometrically imbedded,
or even immersed in R3 nor can a complete surface of constant negative curvature be
isometrically immersed in R3. Ideally, differential geometry should be replete with such
results, so that we could have a reasonable chance of finding the smallest dimensional
Euclidean space into which a given Riemannian manifold can be isometrically imbedded.
But at present only quite isolated facts are known, and a general theory can hardly be
said to exist. (From p.192 of M. Spivak, A Comprehensive Introduction to Differential
Geometry Vol.V, Publish or Perish, 1975.)
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- AIT SU(2n)/Sp(n) (n>3) (n—-1)2n+1) nn—1)~n2n—-1)+1
AIIT | P2(C) 4 3~ 4
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SU(p+2)/S(U(p) x U(2)) 4p min{[—%—(7p—-3)] ,3p+1} ~p?+3
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(b2923) mrred
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Q™"(C) (n>4) 2n [$(6n+2)] ~ Inn—-1)+1
pg — p + min {p — g, 1}
BDII | *5™ (n>2) n 1
*H" (n>?2) n n—1
CcI *Sp(n)/U(m) (n>1) n(n+1) n?
CIT | +P%(H) 8 6
P*(H) (n >3) 4dn dn -3 ~n(2n~1)
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Sp(p + Q)/Sépg :fﬁ;()q) 4pq ~p@2p—1)+q(2¢—1) ~1
DIIT | 50(8)/U(4) ~ Q%(C) 12 7~ 16
S0(2n)/U(n) (n>5) " n(n —1) +n(n — 1) ~ n?
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EV E;/SU(8) 70 63 ~ 1393
EVI E,/Spin(12) - SU(2) 64 32 ~ 1475
EVII | E;/Es-SO(2) 54 27 ~ 79
EVIIT | Eg/Spin(16) 128 120 2L E
EIX Eg/E; - SU(2) 112 56 ~ 3763
FI F,/Sp(3) - SU(2) 28 24 ~ 296
FII | %F4/Spin(9) = P?(Cay) 16 10
e G2/50(4) 8 6~ 19
s0() tn- | { gan D E e D ST
U(n) n? { Zz _ g%n} N ZZ EZ ; 234’ 5)
x*Sp(n) (n>1) n(2n + 1) n(2n — 1)
Eq 78 62 ~ 1380
E; 133 106 ~ 3003
Eg 248 212 LAk
Fy 52 43 ~ 624
e 14 10 ~ 35

o 7 F A¥ class (G/K) I¥, XFY —~ 28 G/K # RN I[ZRFTERICEDIALTEE
L RBBRNRRTTETRT.
e G/K DHID * 1%, 7T A% class (G/K) BHEELTWDHZ L&RT. ZhbDZER
DHH, §%2=S8p(1)/U1), H* (n > 2) LSMHZIOWTIE, RAKRTDFEETERBEDIAA
RItEZ &2 Z & RHE T
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