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ABSTRACT
We propose a method for extracting a rotating

limb region and estimating its motion parameters,
which is based on the curl of optical flow. Regard-
ing the optical flow as a vector field, the proposed
method computes the curl of the optical flow to ex-
tract a rotating region. The method assumes that
one angular velocity varies in a short time period.
By using the EM algorithm, the center of rotation a-
long with rotation angles for each frame is estimated,
and simultaneously the rotating region is segmented.
Since the proposed method doesn’t require a simplic-
ity of background, and can discriminate translational
movements produced by other moving objects in the
background, it is applicable to a practical situation
in which conventional methods don’t work well. Ex-
perimental results with real image sequences demon-
strate that the limb extraction can be performed well
from noisy optical flow which are obtained from real
images.

Keywords: curl, optical flow, pose estimation,
motion segmentation, EM algorithm

1. INTRODUCTION
It is important to extract human regions from a

movie as a part of human activity recognition system,
such as gesture recognition for human interface, mo-
tion reconstruction in virtual reality, and surveillance
for security system. So far, methods using markers
or instruments that are attached to a subject have
been studied[1]. Although they can accurately mea-
sure motions of the subject, the problems are that
they work under a limited or controlled environment
in which the system can be installed, and that they
may disturb an action of the subject. On the oth-
er hand, an image-based recognition system without
any attachments has the advantages that the subject
can freely move around without restriction of move-
ments, and that a camera setting is relatively simple
even if more than one cameras are used. Hence, it is
required to extract a human region from a scene for
recognizing his/her actions and postures.

Many studies on recognition of human activities
use parameterized human body models because the
models enable us to reconstruct the actual human
posture, while non-model based methods [2, 3] classi-
fy human actions into several patterns and recognize
what kind of motion occurs. Some models represent-
ing a human body are made of jointed links [4, 5], and
some are 2D rectangles[6, 7], volumetric 3D cylinders
or polyhedra [8, 9, 10, 11, 12]. Using these model-
s, there are the following two types of model based
recognition method. One is that a posed model is
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projected onto the image plane, and a difference be-
tween the projected model and a region of a subject
extracted by background subtraction or moving ob-
ject detection, is evaluated [8, 9, 5, 12]. This method
can recognize the posture of the subject from param-
eters of the model whose silhouette is most similar to
the extracted region. However, the region extraction
assumes that a background is known or at least u-
niform color to make the subtraction easy, otherwise
there is no moving object except the subject. The
other type is a human motion tracking using kine-
matics of the model [4, 6, 10, 11]. Since the tracking
uses optical flow as the information of motion, it is-
n’t affected by the complex static background. But
it doesn’t extract the region of the subject nor deter-
mine the posture at the beginning of tracking, then
an interactive tool are required to fit the model on
the subject manually.

Therefore, it is significant to extract humans on
condition that other moving objects exist and the
background is complex and unknown. But, for the d-
ifficulties against which the studies mentioned above
struggle, it is not easy to accomplish the extraction of
whole human body immediately. Therefore, as a first
step to the extraction under such a real environment,
it is reasonable to detect and extract a human arm
in a scene because it is a good key/cue [13] to know
where the subject is and what he/she acts, especially
for recognition of gesture which is determined by the
arm movements.

In this paper, we propose a method to extract a re-
gion of a rotating human limb represented by a stick
model and estimate its motion parameters. Since the
proposed method is based on curl of optical flow, the
extraction of rotating limb can be achieved against
any background and remove other moving objects.
We describe the extraction based on the curl of opti-
cal flow in section 2 and the estimation of the model
parameters in section 3. We give an algorithm of the
segmentation and the estimation using the EM algo-
rithm in section 4, and provide experimental results
of real images in section 5.

2. LIMB EXTRACTION
BASED ON CURL

In this section, we will explain the property of
curl for a vector field produced by rotation, and de-
scribe examples of curl for simple and general rota-
tion showing that limb segmentation can be achieved
with the curl of optical flow.

2.1 Property of curl
Let ṗ(x) = (u, v, w) be the velocity of a point

x = (x, y, z) in a three-dimensional space, and these



velocity vectors construct a vector field. The curl1

of the vector field is given by:

∇× ṗ(x) ≡ (wy − vz, uz − wx, vx − uy)
T
, (1)

where wy is ∂w
∂y

, and so on.

The curl has the following property when the vec-
tor field corresponds to rotation as discussed later.

∇× {ṗ(x− c) + t} = ∇× ṗ(x) , (2)

where c is an arbitrary vector and t is a constant
vector field not depending on position. The optical
flow in a two-dimensional image plane is regarded as
a vector field with z = w = 0. From a viewpoint of
the optical flow produced by a rotating object, the
arbitrary vector c is a center of the rotation, and
the constant vector field t is caused by a translation
velocity of the object. t is also regarded as velocity
caused by translation of a camera or moving objects
in a background, and these effects are removed by
the property of curl.

2.2 Examples of curl
At first, we consider a simple case as shown in

Fig.1(a). This figure is an orthographic projection
of a stick rotating on a plane parallel to the image
plane. Let p be a point on the limb at a distance
r (0 ≤ r ≤ r1) from the center of rotation (the origin)
at an angle of θ (= ωt). The velocity ṗ at the point
p and the curl ∇× ṗ are represented as

p = (x, y, 0)T = (r cos θ, r sin θ, 0)T (3)

ṗ = (−ωr sin θ, ωr cos θ, 0)T

= (−ωy, ωx, 0)T (4)

∇× ṗ = (0, 0, 2ω)
T

(5)

Seeing Eq.(5), the z component of the curl of the
optical flow is 2ω (twice of the angular velocity), and
doesn’t depend on neither θ nor r, that is, small ve-
locity around the center of the rotation and large
velocity on the top of the arm have the same feature
value.

In general, the rotation center isn’t necessarily
the coordinate origin, and we don’t need to know
a priori the position of rotation center. Let a point
c = (cx, cy)T be the center of the rotation of the
stick. Then, the velocity ṗ = (u, v)T at a point
p = (x, y)T on the image is represented as follows.

ṗ =

(

u
v
0

)

=

(−ω(y − cy)
ω(x− cx)

0

)

(6)

∇× ṗ = (0, 0, vx− uy)
T

= (0, 0, 2ω)
T

(7)

The z component of the curl Eq.(7) is identical with
Eq.(5).

In the discussion above, the limb is rotating on a
plane parallel to the image plane. As the first exten-
sion of the method to deal with 3D limb movements,
we consider the case that the limb rotates on a plane
not parallel to the image plane.

As shown in Fig.1(b), the limb rotates on the
plane which is the one after rotating the image plane
(O-xy) by an angle of φ around the y axis. The ve-
locity ṗ of a point p on the limb is represented as;

1 Though the term “rotation”or “rot” also means∇×ṗ(x),
we don’t use them because it is confusing with a physical
rotation of an object around an axis.
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Figure 1: The stick model moving on a plane parallel
to the image plane (a), and the plane (O-xy) rotates
around (b) the y axis and (c) the x axis.

p = (x, y, z)T

= (r cosφ cos θ, r sin θ, r sinφ cos θ)T (8)

ṗ = (−ωr cosφ sin θ, ωr cos θ,−ωr sinφ sin θ)

= (−ω cosφ y,
ωx

cos φ
,−ω sinφ y), φ 6= π

2
(9)

When the rotation center is c = (cx, cy, cz)
T , the

velocity ṗ = (u, v, w)T at a point p = (x, y, z)T is
represented as follows.

ṗ =

(

u
v
w

)

=









−ω cosφ(y − cy)
ω(x− cx)

cosφ
−ω sinφ(y − cy)









(10)

The z component of the curl is;

vx − uy = ω
1 + cos2φ

cos φ
(11)

Assuming that φ is constant in a short time period
(like frame rate) even if φ varies in the actual limb
movement, we consider that Eq.(11) also depends on
only ω.

When the limb rotates on the plane at an angle
of ψ around the X axis shown in Fig.1(c), a similar
result is obtained as follows.

(

u
v
w

)

=









−ω(y − cy)

cosψ
ω cosψ(x − cx)
ω sinψ(x− cx)









(12)

vx − uy = ω
1 + cos2ψ

cosψ
(13)

In general, the angles of the plane on which the limb
rotates are φ 6= 0 and ψ 6= 0. The velocity becomes
a little complicated, but the curl is still simple.

vx − uy = ω
cos2 ψ + cos2 ψ + sinφ sinψ

cos φ cosψ
(14)

In the following discussions, we will focus mainly
on the case of φ.

2.3 Segmentation with curl
As mentioned above, the z components of curl

shown in Eqs.(11), (13) and (14) depend on ω on the
condition that φ and ψ are constant for an instant.
Under orthographic projection, (u, v) of the velocity
ṗ is regarded as optical flow, and Eqs.(11), (13) and
(14) can be calculated from optical flow. Therefore,
using the z component of curl, we can segment re-
gion corresponding to rotating limb with the angular
velocity ω. Even if several objects rotate in a scene,
the regions of the objects can be segmented as long
as the angular velocities of the objects are different
from one another.



2.4 Under perspective projection
The discussions above assume the orthographic

projection because of the simplification, and it is
reasonable when the motion along the optical axis
of a camera is small as compared with the distance
between the camera and the object. Note that, how-
ever, the z component of curl under a perspective
projection is the same with that of the orthogonal
projection as long as the rotation plane is parallel to
the image plane.

3. ESTIMATING
MOTION PARAMETERS

In the previous section, we mentioned the method
to extract the region of the rotating limb on the slant
plane based on the curl of optical flow. In this section
we discuss how to estimate the motion parameters;
the center of rotation (cx, cy), the angular velocity
ω, the slant angle φ, and the limb angle θ.

Since optical flow computed from real images in-
volves inevitable noise, we should use the least square
method to estimate the parameters from the optical
flow within an extracted region. We make simulta-
neous equations from Eq.(10) in which the velocity
ṗj =(uj, vj)

T of a point pj =(xj , yj)
T in the region

is represented by the parameters ω, φ, cx, cy of the
region.

However, it is not easy to solve the simultane-
ous equations directly because of the non-linearity.
Hence, we transform Eq.(10) as follows.

(

uj

vj

)

=
(

αyj + β
γxj + δ

)

(15)

α=−ω cosφ, β=ωcy cosφ, γ=
ω

cos φ
, δ=

−ωcx
cos φ

(16)

This is rewritten as;

ṗj = Ajq (17)

Aj =
(

yj 1 0 0
0 0 xj 1

)

, q = (α, β, γ, δ)T (18)

Eq.(17) shows that the optical flow is represented
by the linear functions of the parameters α, β, γ, and
δ. Therefore, we construct the following simultane-
ous linear equations.





ṗ1
ṗ2
...



 =





A1
A2
...



q (19)

We solve this over-determined equations with sin-
gular value decomposition (SVD) [14] as a least
square problem. SVD divides a m×n (m>n) matrix
A into UWV T , where U is a m×n column orthogonal
matrix, W is a n×n diagonal matrix whose elements
are positive, and V is a n×n orthogonal matrix. Rep-
resenting Eq.(19) as ṗ=Aq, the solution is obtained
as q=V W−1UT ṗ, and the parameters are calculated
from α, β, γ, δ as follows.

cx =
−δ
γ
, cy =

−β
α
, |ω|=√−αγ, cosφ=

√

−α
γ

(20)

For ω, the rotation movement should subject to
−αγ≥ 0. Of course, 0≤ −α

γ
≤ 1 (first for the square

root and second for cosine) also should be satisfied
for φ. We will discuss about these constraints later
along with the sign of ω.

This method can estimate the parameters except
the angle of the limb θ because Eq.(19) doesn’t have
any information about θ. Therefore, we estimate θ
by finding the principal axis of the extracted limb,
but this must be replaced by a more sophisticated
way; model fitting and the like.

4. SEGMENTATION
WITH THE EM ALGORITHM

In section 3, we have presented the method to es-
timate the parameters of the limb using optical flow
of the region which is extracted in advance by the
segmentation with the z component of curl of opti-
cal flow.

The estimation of the motion parameters can be
done when a region is determined, while the limb seg-
mentation requires an accurate computation of the
curl. However, it is difficult to compute the curl ac-
curately at each point in real images because curl is a
differential operation and sensitive to noise. Seeing
Eq.(15), we find that optical flow can be estimat-
ed by using the obtained parameters α, β, γ, and δ.
Then we use the gradients of the estimated optical
flow instead of the values calculated by the differen-
tial operation.

The problem here is that the estimation and the
segmentation depend on each other; the parameter
estimation needs accurate segmentation, while the
region segmentation requires accurate parameter val-
ues. To overcome this problem, we use the expecta-
tion and maximization (EM) algorithm [15], which is
applicable to the maximum likelihood estimation of
mixture distributions involving unobserved variables.
When several distributions compose a mixture distri-
bution, we don’t know a distribution to which each
data belongs. The unobserved variable determines
a distribution and makes data belong to it, and the
segmentation of the data is performed.

4.1 The algorithm for segmentation
We assume that the distribution of the error be-

tween ṗj and Ajq is subject to a two-dimensional
Gaussian. Hence, we define the following condition-
al probability of ṗj at pj with q = (α, β, γ, δ)T .

P (ṗj | pj , q,Σ) =

1

2π|Σ| 12
exp

{−1

2

(

ṗj −Aq

)T

Σ−1
(

ṗj − Aq

)

}

(21)

where Σ =
(

σ2

x

0
0

σ2
y

)

is a covariance matrix. Here we
assume that the errors for u (= αy+β) and v (= γx+
δ) are independent of each other because α, β and γ, δ
are estimated separately, and Eq.(21) is transformed
into the product of two probabilities.

P (pj| ṗj, q, σ
2
x, σ

2
y) =

1
√

2πσ2
x

exp

{−(uj − αyj − β)2

2σ2
x

}

· 1
√

2πσ2
y

exp

{−(vj − γxj − δ)2
2σ2

y

}

(22)

We show below the algorithm to segment the limb
region and estimate its parameters using the proba-
bility defined by Eq.(22).

1. Compute optical flow ṗj = (uj, vj)
T at each

point pj = (xj, yj)
T (j = 1, . . . , N).

2. Classify the optical flow based on the direction
of velocity to obtain cluster Ri (i = 1, . . . ,M).



Table 1: The estimation result at different φ (ω = 1).
φ (cos φ) 0 (1) 10 (0.9848) 20 (0.9397) 30 (0.8660) [deg]

estimates of φ (cos φ) 7.18 (0.9923) 7.97 (0.9903) 15.8 (0.9624) 25.2 (0.9048) [deg]
estimates of ω 0.913 0.939 0.936 0.948 [deg/frame]

3. Let weight wij represent a probability that a
point pj belongs to a cluster Ri with parameters
of qi = (αi, βi, γi, δi). Set the initial values of
wij as follows.

wij =

{

1 (pj ∈ Ri)
0 (pj 6∈ Ri)

(23)

4. Normalize wij so that the sum of them for the
cluster Ri is 1.

wij ←
wij

ξi
, where ξi =

1

N

∑

j

wij (24)

5. Find the parameters qi = (αi, βi, γi, δi) of each
cluster Ri minimizing the following weighted
square errors :

∑

j wij ||ṗj − Ajqi||2 =
∑

j ||(
√
wijṗj) − (

√
wijAj)qi||2

We solve the following simultaneous equations
by SVD to obtain the parameters qi.





√
wi1 ṗ1√
wi2 ṗ2

...



 =





√
wi1A1√
wi2A2

...



qi (25)

6. Compute the weighted variances σ2
xi, σ

2
yi

of each
cluster Ri.

σ2
xi =

1

N

∑

j

wij(uj − αiy − βi)
2 (26)

σ2
yi

=
1

N

∑

j

wij(vj − γiy − δi)2 (27)

7. Update wij with the equation (28) by using qi,
σ2

xi, and σ2
yi

obtained from Eqs.(25)∼(27);

wij =
ξiP (ṗj| pj , qi, σ

2
xi, σ

2
yi

)
∑

k

ξkP (ṗj | pj , qk, σ
2
xk, σ

2
yk

)
(28)

8. If
∑

i ||qnew

i − qold

i ||2 > ε, that is, the difference
between the estimated parameter values of this
iteration qnew

i and that of the previous iteration
qold

i is larger than a threshold ε, go to step 4.
Otherwise, go to step 9.

9. Obtain region segmentation by making each
point pj belong to the cluster Ri with the largest
weight wij .

4.2 Removing non-rotational movement
By the segmentation mentioned in 4.1, the param-

eters q are obtained, and cx, cy, ω and φ are calcu-
lated by Eq.(20). For rotation movement, −αγ ≥ 0
should be satisfied so that ω has a real value solution.
However, α and γ are estimated separately without
checking whether the movement is rotation or not,
and as a result, there may exist some regions not
satisfying the constraint. Such regions correspond to
non-rotational movement; translation and expansion
/ contraction due to zoom in/out.

Table 2: Motion classification with the signs of the
parameters.

constraint gradients corresponding
motion−αγ > 0 α > 0 γ < 0 rotation (ω < 0)

α < 0 γ > 0 rotation (ω > 0)
−αγ = 0 α = 0 γ = 0 translation
−αγ ≤ 0 α ≥ 0 γ ≥ 0 expansion

α ≤ 0 γ ≤ 0 contraction

Table 3: which axis does the rotation plane slant.
around criteria parameters

Y axis |α| ≤ |γ| cos φ =
√

−α
γ

, ψ = 0

X axis |α| ≥ |γ| φ = 0, cosψ =
√

−γ
α

Table 2 shows the classification of motion based
on the sign of −αγ (i.e. α and γ). When α and
γ have different signs, i.e. −αγ is larger than 0,
then the corresponding motion is rotation, and the
direction of rotation is determined by the sign of α (=
−ω cosφ) because cosφ ≥ 0. If both of α and γ are
0, the optical flow of the region is constant. This
means the region translates or doesn’t move. Finally
we consider the case of −αγ ≤ 0. When α and γ are
positive, the motion is expansion, and when both
are negative, the motion is contraction. Thus based
on the sign of α and γ, we can select the regions of
rotating object removing regions with non-rotational
movement.

4.3 Determination of rotation plane (rota-
tion axis)

We can select regions corresponding to rotating
objects by using the method described above. Here,
we explain how to determine the rotation plane (ro-
tation axis) : the angle between the rotation plane
and the image plane. In 2.2, we have investigated two
kinds of general rotation shown in Fig.1 and found
the following relations among the angle and the pa-
rameters α and γ : cosφ =

√

−α/γ for the rotation

in Fig.1(b), and cosψ =
√

−γ/α for the rotation in
Fig.1(c) (derived from Eq.(12) with the same manner
as Eq.(10)).

Then by using these relations, we can easily de-
termine the angle between the rotation plane and
the image plane, i.e., the rotation axis. Table 3
shows how to determine the angle. If |α| ≤ |γ|,
the rotation is on the plane which makes the an-
gle φ with the image plane, and the rotation axis is

(sinφ, 0, cosφ) =
(

√

1− (−α/γ), 0,
√

−α/γ
)

. Oth-

erwise the rotation axis is (0, sinψ, cosψ).

5. EXPERIMENTS AND RESULTS
The proposed method has been implemented on

a UNIX workstation with C++. The computation
of optical flow (step 1. of the algorithm) is per-
formed by the codes available from [16, 17], and the



initial clusters (step 2.) are made by a simple his-
togram clustering which divides the directions of ve-
locity vector into 24 sections and finds peaks in the
direction histogram as cluster centers.

5.1 Evaluating Estimation Accuracy using
Manipulator

At first to evaluate the estimation accuracy of the
proposed method, we used a manipulator whose an-
gles can be controlled precisely. For each fixed φ of 0,
10, 20 and 30[deg], the images are taken by rotating
the link at ω = 1[deg/frame].

The estimates are in Table 1. The angular veloci-
ty ω(=1) is estimated about 0.9∼0.95 and the error
is about 10%, and this could be improved by con-
sidering results of many frames. On the other hand,
the estimate of φ has a relatively large error (though
cosφ is good), so the method for estimating φ should
be improved.

5.2 Extraction of human limb
We show the results for a human arm movement.

The motion takes place at a distance (about 3m)
from the camera, and images are taken 10 frames
per second, then the size is reduced to 1/4 in order
to eliminate the effect of interlace.

Figure 2 shows the original image at 33th frame,
the optical flow and the time development of segmen-
tation. At the initial clustering, the arm is divided
into the upper and lower regions, but after several
iterations the whole arm is covered with one region
from the wrist to the shoulder. The drastic change
of the segmentation occurs only in early stage of the
iterations, and after 10 iterations the segmentation
results don’t change so much (Fig.2(g) and (h)).

Supposing that an arm region has a largest angle
velocity in the image, we extract the regions (see
Fig.3) from a sequence of 30th∼38th frames.

Although the estimated parameters involve the
error, we can find a tendency of the arm motion
through a change of the parameters. The trajecto-
ries of the estimated parameters from 30th through
39th frame are shown in Fig.4. We can find that ω
becomes smaller as the arm swings down, while ψ
doesn’t change abruptly.

The other results are shown in Fig.5. Two arms
move simultaneously in Fig.5(a), and the two regions
of the arms are separately extracted in Fig.5(b) in
which the regions satisfy the constraint in Table 2
and have angular velocities larger than a threshold
(about 3 deg/s). Fig.5(c) shows that the arm moves
in front of the man walking left. Both are moving,
but the man which is not rotation is rejected by the
constraint and only the arm region remains.

6. CONCLUSIONS
We have proposed the method to extract the ro-

tating limb region based on the curl of optical flow
and estimate the parameters of the limb. The pro-
posed method is composed of the segmentation based
on the gradients of optical flow, the estimation of
the motion parameters, and the EM algorithm which
performs the estimation and the segmentation simul-
taneously. The method separate rotational move-
ments from translation movements in a scene based
on the estimated parameters. The experimental re-
sults demonstrate that the proposed method can ex-
tract clearly the region of the rotating arm from
noisy optical flow in real images, though the esti-
mation contains some errors. We will examine the
method under conditions that a camera moves and
other moving objects exist.

Lastly we briefly describe some extensions of the
method. First, a general rotation movement of the
limb (φ6=0, ψ6=0) can be linearized by approximating
both u and v with general planes αx+βy+γ instead
of Eq.(15). Secondly, the effect of the constant vec-
tor field t in Eq.(2) can be compensated by two set
of parameters obtained in consecutive frames, on the
assumption that t doesn’t vary in a short time peri-
od. Finally, when the arm is modeled by two links
with an elbow joint, the angular velocity of the par-
ent link which is added to that of its child link will be
compensated by regarding the angular velocity as a
translation of the child link. These extensions listed
above are the future works.
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(a) original image (b) optical flow (superimposed)

(c) initial segmentation (d) after 1 iteration

(e) 2 iterations (f) 3 iterations

(g) 10 iterations (h) 20 iteratiaons

Figure 2: The experimental results using real images
(swing downward from horizontal). (a) The origi-
nal image at 33th frame (340× 223). (b) The opti-
cal flow. (c)∼(h) The segmentation results painted
with a different color for each cluster, and the in-
tensity becomes brighter in proportion to the weight
wij .

30 frame 31 32

33 34 35

36 37 38

Figure 3: The result of the extraction of the arm over
the sequence from 30th frame to 38th. The mark of
⊕ indicates a center of rotation.

0

20

40

60

80

100

340320300280260

y

x

30

39

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065

γ

α

ψ=30ψ=25ψ=20ψ=0 [deg]

ω=1.0
[deg/frame]

ω=1.5

ω=2.0

ω=2.5

ω=3.0

30th
frame

31

32
33

34
35 36

37

38

39

Figure 4: The Trajectory of the estimated values
ω and ψ via α and γ. This shows how the esti-
mates change over the frames. (top) The trajecto-
ry of rotation center is superimposed on the image
of 30th frame magnified around the shoulder. The
center comes down, and stays in the latter frames.
(bottom) ω becomes smaller as the arm swings
down, while ψ doesn’t change abruptly. The thin
lines represent curves of αγ = −ω2 and lines of
α = − cos2 φγ.

(a) two swing arms (b) extracted arm regions

(c) arm and moving object (d) extracted arm region

Figure 5: (a)(b) Other result where there are two
moving arms. (c)(d) Other result where moving ob-
ject exists behind moving arm.


