エネルギー関数法を用いた過渡安定度解析に関する研究

餘利野直人 造賀芳文 藤原拓真 丸山翔

(広島大学)

1.はじめに

近年、電力系統は大規模・複雑化し、過渡安定性 解析の重要性が高まってきている。また、電力自由 化によりリアルタイムでの解析の必要性が生じ、高 精度で高速な手法が望まれている。これまで過渡安 定度解析の手法としては、シミュレーション法とエ ネルギー関数法があり、状況に応じて使い分けられ ている。前者は正確に安定度判別を行えるが、計算 負荷が大きいという欠点があり、後者はその逆の特 徴を持つ。これに対して筆者らは故障後の安定限界 に相当する発電機動揺を直接に算出することで安定 判別を行う手法を検討してきた^(1,2)。この発電機動揺 の解析は微分方程式の解(すなわち軌跡)を求める 問題であるので、本稿では安定限界に相当する軌跡 を臨界軌跡(臨界トラジェクトリー)と定義し、こ の検討に基づき、新しい過渡安定度解析手法を提案 している。

提案法は、過渡安定度解析モデルにおける臨界ト ラジェクトリーと臨界故障除去時間(CCT)を一括し て効率的に求める、従来にない新しい手法である。 この手法は非線形システムの安定限界を求める一般 的な手法であるが、ここでは電力システムモデルへ の応用に際して、エネルギー関数法の一種である BCU 法に適用し、検討を行う。

2.提案法

提案法は、臨界トラジェクトリーの始点と最終点 (不安定平衡点)の条件式を与え、その間を適当な 長さで分割することで、従来の時間積分を距離に関 する数値積分に変換し、不安定平衡点に至るまでの 軌跡を求める手法である。そして、得られた不安定 平衡点から臨界エネルギー、CCTを求めることによ り系統の過渡安定度を調べる。以下に不安定平衡点 までの臨界トラジェクトリーを求める定式化を示 す。

<2.1> 臨界トラジェクトリーの差分化

システム方程式が以下のように与えられているとする。

$$\dot{x} = f(x, t) \tag{1}$$

ここで,時刻 t^k での解を x^k とすると,台形公式より次式が成り立つ。

$$x^{k+1} - x^{k} = \frac{1}{2} \left(\dot{x}^{k+1} + \dot{x}^{k} \right) \left(t^{k+1} - t^{k} \right)$$
(2)

ここで, *k* は時間推移を表す。(2)式の両辺のノルムをとると以下のようになる。

$$\left\|x^{k+1} - x^{k}\right\| = \frac{1}{2} \left\|\dot{x}^{k+1} + \dot{x}^{k}\right\| \left(t^{k+1} - t^{k}\right)$$
(3)

(3)式において $\|x^{k+1} - x^k\|$ は 2 点間の距離を表してい

るので,これを ε とする。さらに(3)式を以下のよう に変形することで時間刻みを 2 点間の距離に置き換 えることができる。

$$t^{k+1} - t^{k} = \frac{2\varepsilon}{\left\| \dot{x}^{k+1} + \dot{x}^{k} \right\|}$$
(4)

(4)式を(2)式に代入することで次式を得る。

$$x^{k+1} - x^{k} - \frac{\dot{x}^{k+1} + \dot{x}^{k}}{\|\dot{x}^{k+1} + \dot{x}^{k}\|} \varepsilon = 0$$
(5)

この操作により,時間刻みでの積分が2点間の距離 に関する数値積分に変換された。(5)式を分割点の数 だけ連立して解けば、軌跡を一括して求めることが できる。

<2.2> BCU法(エネルギー関数法)への適用

いま、通常のBCU法の手順⁽³⁾に基づいてExit Point が得られているものとする。ここではExit Pointから 不安定平衡点までのPEBS上の臨界トラジェクトリ ーを得る手法を提案する。このため前節のシステム 方程式(1)式として、以下の勾配系(6)式を考える。

$$\dot{\delta} = \frac{\partial V_P(\delta)}{\partial \delta}$$

$$\dot{\delta}_i = P_{mi} - P_{ei}(\delta) - \frac{M_i}{M_\tau} P_{coa}(\delta)$$
(6)

ただし、V_Pはポテンシャルエネルギー δ_i :慣性中 心内部位相角 M_i :慣性定数 P_m :機械入力 P_e : 電気入力 $M_T = \sum M_i \quad P_{coa} = \sum (P_m - P_e)$

Exit Point から不安定平衡点までの軌跡を m+1 分割し、(6)式と(1)式より、軌跡上の全ての隣接する 2 点間の関係式を得る。

$$\begin{cases} G_{k+1} = \delta^{k+1} - \delta^k - \frac{\dot{\delta}^{k+1} + \dot{\delta}^k}{\left\|\dot{\delta}^{k+1} + \dot{\delta}^k\right\|} \varepsilon = 0, \quad k = 0 \sim m - 1 \\ G_{m+1} = \delta^u - \delta^m - \frac{\dot{\delta}^m}{\left\|\dot{\delta}^m\right\|} \varepsilon = 0 \end{cases}$$
(7)

ここで "は不安定平衡点であるので、 "=0 として 扱う。次にこの不安定平衡点の条件式として以下の 潮流方程式を追加する。

$$G_{m+1+i} = P_{m_i} - P_{e_i}(\delta^u) - \frac{M_i}{M_T} P coa = 0, \ i = 1 \sim n$$
 (8)

さらに各分割点は以下の位相中心制約を満たす。

$$\begin{cases} G_{m+n+1+k} = \sum M_i \delta_i^k = 0, \ k = 1 \sim m \\ G_{2m+n+2} = \sum M_i \delta^u = 0 \end{cases}$$
(9)

Table 1

(7),(8),(9)式を一括して次式のように表現する。

$$G(X) = 0 \tag{10}$$

 $X = (\delta^1, \dots, \delta^k, \dots, \delta^m, \delta^u, \varepsilon)$ (11) 提案法は(10)式に最小二乗法を適用し、NR 法を用い て臨界トラジェクトリーと不安定平衡点を一括して 求めるものである。ここで最小二乗法を適用する理 由は、(10)式に冗長な方程式が含まれるためである。 すなわち、通常微分方程式の軌跡を求める際は初期 値のみが必要であるが、ここでは終端点を(8)式とし て指定している。また、(9)式の慣性中心制約は、(6) 式より導かれるので本来であれば必要ないが、最小 二乗法により誤差を適切に分配する意味で数値的な 安定性に寄与している。

3.シミュレーション

提案法の性能を評価するためWEST30 機系統モデ ルを用いてシミュレーションを行った。故障条件と しては、無作為に選んだ系統内の様々な送電線の母 線至近端において3相地絡故障を発生させ、そのと きの安定性を調べる。ただし、第1波脱調のみを考 慮する。ここでは、シミュレーション法、Shadowing を適用したBCU法(BCU-Shadowing法)、提案法の3 つの手法を比較する。シミュレーション法において は、時間刻みを 0.01 秒として 4 次のルンゲクッタ法 により数値積分を行っており、故障除去時間を再設 定しながら小数点以下2桁の精度までシミュレーシ ョンに基づく安定判別を繰り返し、臨界状態を求め ている。また、BCU-Shadowing法では刻み幅を 0.01 としてシミュレーションを行っている。提案法につ いては、臨界トラジェクトリーの分割数を1、最大 反復回数を10とし、収束判定は修正量の最大値<10⁻⁵ としている。

表1にこれら3つの手法で求めたCCTを示す。こ れを見ると提案法の結果はほぼ正しいと言える。こ こで、エネルギー関数法(BCU-Shadowing法および 提案法)は理論的にシミュレーション法よりCCTが 控えめに出るという特徴を持っている。しかし、故 障点によってはシミュレーション法による値より大 きく出ている点が存在する。この誤差はC-UEPから エネルギー値を算出する際の誤差と考えられる。そ のため表1には、シミュレーション法の方が控えめ に出ている場合や誤差が大きい場合についてを記 している。

次に、表2にこれら3つの手法に必要となるCPU 時間を示す。表2を見ると、提案法はシミュレーション法・BCU-Shadowing法と比べても、短時間で解 析ができている。これより、提案法の高速性が示されたといえる。

4.おわりに

本稿では、過渡安定度解析を効率化するために、 従来法では求めることが難しかった臨界トラジェク トリーを用い、CCTを求める手法を提案した。そし て、提案法をエネルギー関数法の一種である BCU 法に適用し、WEST30 機系統で解析を行った結果、 その有効性を示した。

表1 CCTの比較 Comparison of Critical Clearing Time

fault point	simulation [s]	BCU-Shadowing [s]	proposed method [s]
A	0.21	0.2275	0.1727
В	0.33	0.3224	0.3257
С	0.32	0.2910	0.1599
D	0.32	0.2794	0.1606
Е	0.15	0.0255	0.1118
F	0.33	0.3232	0.3258
G	0.42	0.4533	0.4561
Н	0.27	0.2675	0.2467
Ι	0.21	0.1529	0.2075
J	0.39	0.2847	0.4089
К	0.32	0.3003	0.3127
L	0.20	0.1849	0.1858
М	0.18	0.1826	0.1715
Ν	0.35	0.3457	0.3500
0	0.38	0.3186	0.4017

表2 各手法の CPU 時間

fault point	simulation [s]	BCU-Shadowing [s]	proposed method [s]	
А	4.2	0.5	0.281	
В	4.2	0.34	0.280	
С	4.2	0.431	0.241	
D	4.2	0.35	0.240	
Е	4.2	0.341	0.230	
F	4.2	0.391	0.211	
G	4.2	0.201	0.201	
Н	4.2	0.425	0.218	
Ι	4.2	0.403	0.203	
J	4.2	0.391	0.180	
К	4.2	0.411	0.231	
L	4.2	0.531	0.171	
М	4.2	0.459	0.141	
Ν	4.2	0.447	0.188	
0	4.2	0.425	0.203	

参考文献

- [1] 餘利野 直人他,「臨界トラジェクトリーによる 過渡安定度判別」,電力エネルギー部門大会, No.156 (2000-8)
- [2] 藤井 誠一郎他「過渡安定度解析に用いる BCU 法の収束特性の改善に関する一考察」,電力技 術研究会, PE-00-83, PSE-00-88 (2001-9)
- [3] R.T.Treinen, V.Vittal, W,Kliemann: "An Improved Equilibrium Point in a Power System" IEEE Trans. Circuit and Systems, Vol.43, No.4, pp.313-323 (1996-4)