イメージスキャン画像分割アーキテクチャの LSI 設計

粟根 和俊 岡崎 啓太 永岡 奈緒美 菅原 達也 小出 哲士 Hans Juergen Mattausch
広島大学 ナノデバイスシステム研究センター 〒739-8527 東広島市鏡山 1-4-2

1. まえがき

近年,知的情報処理技術の実現に向けて,画像認 識処理技術の需要が高まってきている.特にリアル タイムでの動物体検出には,膨大な視覚情報を処理 する必要がある.画像分割処理は画像中に存在する 物体を抽出する処理で,オブジェクトベースの画像 認識などには欠かせない前処理である.

我々の研究室は,領域成長に基づくイメージスキャン画像分割アーキテクチャを提案している[1].同ア ーキテクチャは処理回路(以下 ISE)のサイズとメ モリの構成を変えることで,アプリケーションに応 じて処理速度と処理回路サイズの最適化が可能な柔 軟性を有する.本研究では,同アーキテクチャを ASIC 設計し,評価することを目的とする.

2. 領域成長型画像分割アルゴリズム

本研究では、領域成長型のデジタル画像分割アル ゴリズム[2]を用いて画像分割処理を行なう.図1に 3×3 画素の画像分割のフローを示す.まず入力され た画像で隣り合う各画素間の輝度の類似度である結 合重みを計算する.次に、すべての画素に対して 8 近傍の画素との結合重みの和を計算し、その和が閾 値以上の画素を領域成長の起点となるリーダセルに 設定する.その後、リーダセルの1つが発火し、発 火画素と隣接した結合重みの大きいセル(画素)に引 火していくことで領域が成長し、新たに引火するセ ルが存在しなくなったら、発火領域へラベルを付け ることで一領域の分割を行う.

3. イメージスキャン画像分割アーキテクチャ

提案アーキテクチャでは,画素2行分の画像分割 処理回路で画像分割を行う.画像分割処理はこれら の回路を用いて,画像の上部から2行ごとに発火な どの判定を行なう(図1).画素並列処理回路にメモリ から画像2行分の分割に必要な結合重みなどの各信 号を読み出し,引火などを判定し,その結果をメモ リへ書き込むというものである.

提案アーキテクチャを用いて画像分割は初期化(結 合重み計算,リーダセル検索),自己発火,引火,鎮 火の4つのステートで行われる.また,それぞれの 画像ブロックで,それぞれの画素に対応する画像分 割エレメント(ISE)でこれらの処理を行う.

4. リーダセル検索の非同期制御による動作周波数向 上

図 2:イメージスキャン画像分割アーキテクチャ

リーダセル検索は、ISE 間を繋いだトークンパス によって行われる.この方式を用いて,これまでは 1 クロックサイクルでリーダセル検索を完了する制 御になっていた.この場合,スキャンブロック数だ けのリーダセルを検索するパスが全体のクリティカ ルパスとなる.しかしながら,リーダセル検索は, 領域成長処理や結合重み計算処理などの他ステート に比べ,処理サイクル数が非常に少ない.このため, リーダセル検索を非同期制御化することで,動作周 波数を向上させる.非同期制御の処理フローを図 3 に示す.変更後では,外部クロックから生成した内 部クロックで全体を制御する.処理ステートがリー ダセル検索の場合,内部クロックを停止するが,他 ステートの場合,外部クロックと同一とする.

5. ASIC 設計

設計回路の画像サイズは 80×60 画素,スキャンブ ロックサイズは 80×2 画素とした.また,テクノロ ジーは 180 nm CMOS,メモリは IP[3]を利用した. 図 5 に設計回路のフロアプランを示す.イメージス キャン画像分割アーキテクチャでは,図2に示すよ うに,ISE と各メモリとの間で高バンド幅のデータ 転送を行っている.特に転送データが多いConnecti-

図 3:リーダセル非同期制御処理フロー (int_clk:内部クロック,glo_clk=外部クロック)

on Weight memory (以下 CW-MEM) は,特定の ISE とデータ転送を行う.よって,ISE と CW-MEM を並 べて配置することで,結合重みの配線をローカルに 処理し配線遅延を抑えた.各フラグメモリは,CW-MEM と同時に領域成長処理の際に使用される.そ のため,これらのメモリは ISE に近接して,両端に 配置する.一方,Label buffering memory は Excitation flag を用いた分割領域のラベル付けと,1 フレーム の分割が終了した後のラベル番号を外部に出力する 際に使用する.このため,Label buffering memory は 領域成長フラグの右側に配置し,外部にラベルを出 力する.制御回路は,メモリの制御回路と画像分割 処理ユニット全体へステート信号を転送するため, 中心に配置する.

作成したレイアウトを図4に,諸元を表1に示す. リーダセル検索非同期化制御により,最高動作周波 数が16.1 MHzから80.6 MHzに向上した.更にクリ ティカルパスの改良を行うことで最高動作周波数が 123MHzに向上した.回路面積の約8割をメモリが 占めるため,小面積化のためにメモリの最適化が必 要である.

6. まとめ

本稿では,イメージスキャン画像分割アーキテク チャにおけるリーダセル検索の非同期制御を提案し, 180 um CMOS テクノロジーで同アーキテクチャを 設計した.提案方法により最高動作周波数が 16.1 MHz から 123 MHz に向上した.

謝辞

本研究は東京大学大規模集積システム設計教育研 究センターを通し,シノプシス株式会社および日本 ケイデンス株式会社の協力で行われたものである.

本研究は,文部科学省先端融合領域イノベーション創出拠点の形成『半導体・バイオ融合集積化技術

の構築プロジェクト』により行われた.

参考文献

[1] H. Adachi, "Image-scan architecture for efficient FPGA/ASIC implementation of video segmentation by region growing, "Proc. of the Int. SoC Design Conf. (ISOCC), pp. 301–304, 2005

[2] T. Morimoto, "Efficient video-picture segmentation algorithm for cell-network-based digital CMOS implementation, "IEICE Trans. on Information & Systems, vol. E87-D (2), pp. 500–503, 2004.

[3] K. Jouguchi, "Combined Data/Instruction Cache with Bank-Based Multi-Port Architecture, "Solid State Devices and Materials(SSDM2003), pp. 152-153, 2003.

(b): レイアウト 図 4: 設計したイメージスキャン画像分割回路

表1:layout 諸元

, , ,	
Technology	180nm CMOS
配線層数	5 層配線
電源電圧	1.8V
画像 size	80×60
処理回路数	80×2 ISEs
Size	6.5mm×5mm
動作周波数	123MHz