発表資料: 高村幸平, 益池功, 玉木徹, 金田和文: 「光ビームを用いた二層構造物質の表面下散乱シミュレーション」, 画像電子学会 第237回研究会講演予稿, 07-05-22, pp.133-140, 広島大学, 広島 (2008 03).

光ビームを用いた2層構造物質の 表面下散乱シミュレーション

高村 幸平† 益池 功‡ 玉木 徹‡ 金田 和文‡ †広島大学工学部 ‡広島大学大学院工学研究科

○ はじめに

- 背景
- 関連研究
- 本研究の目標
- 単層での表面下散乱シミュレーション
 - シミュレーションモデル
 - 定式化(単散乱、2次散乱)
 - 離散化
 - 数値シミュレーション
- 2層に拡張した表面下散乱シミュレーション
 - シミュレーションモデル
 - 定式化
 - 数値シミュレーション

○ はじめに

- 背景
- 関連研究
- 本研究の目標
- o 単層での表面下散乱シミュレーション
 - シミュレーションモデル
 - 定式化(単散乱、2次散乱)
 - 離散化
 - 数値シミュレーション
- o 2層に拡張した表面下散乱シミュレーション
 - シミュレーションモデル
 - 定式化
 - 数値シミュレーション

- 光の表面下散乱とは 物質に入射した光が、さまざまな場所から 出射していく前に物質内部で起きる散乱のこと

表面下散乱が起きる物質 ・大理石 ・人間の肌 ・植物の葉 ・すべての非金属

・表面下散乱する物質を物質上の反射のみで フォトリアリスティックに表現することはできない

・画像表示の高精細化や大画面化

双極子点光源 [Jensen et al 2001]

表面下散乱を 双極子点光源により近似

実際に起こる現象 <♪最も明るくなる位置の移動 ↓♪分布形状の変化

表現できない

・多層に拡張(第一段階として2層)

0 はじめに

- 背景
- 関連研究
- 本研究の目標

○ 単層での表面下散乱シミュレーション

- シミュレーションモデル
- 定式化(単散乱、2次散乱)
- 離散化
- 数値シミュレーション
- o 2層に拡張した表面下散乱シミュレーション
 - シミュレーションモデル
 - 定式化
 - 数値シミュレーション

$$L'_{1} = \int \sigma'_{i} e^{-\sigma'_{i}l'_{2}} \int_{\Omega} p(\theta'_{1}) L_{in} F(\phi_{in}) e^{-\sigma'_{i}l'_{1}} d\omega'_{1} dl'_{2}$$
$$E'_{1} = \int_{\Omega/2} L'_{1} \cos \phi'_{out} d\omega'_{2} \quad \nabla \nu \wedge \nu \sigma \mathcal{B} @a^{1}_{1}$$

$$L_2' = \int \sigma_s' e^{-\sigma_t' l_3'} \int_{\Omega} p(\theta_2') L_1' d\omega_2' dl_3'$$
$$E_2' = \int_{\Omega/2} L_2' \cos \phi_3' d\omega_3'$$

結果 単散乱(入射角0° and 60°)

0 はじめに

- 背景
- 関連研究
- 本研究の目標
- o 単層での表面下散乱シミュレーション
 - シミュレーションモデル
 - 定式化(単散乱、2次散乱)
 - 離散化
 - 数値シミュレーション
- 2層に拡張した表面下散乱シミュレーション
 - シミュレーションモデル
 - 定式化
 - 数値シミュレーション

$$E = E'_{1} + E''_{1}$$

$$E'_{1} = \int_{\Omega/2} L'_{1} \cos \phi'_{out} d\omega_{out}$$

$$E''_{1} = \int_{\Omega/2} L''_{1} \cos \phi'_{out} d\omega_{out}$$
出射点
$$L'_{1} \phi'_{out}$$
1層目で散乱
2層目で散乱

2層数値シミュレーション 厚さ変化

層	1	2
散乱係数[1/mm]	1.0×10 ⁻³	2.1900
消散係数[1/mm]	1.1×10 ⁻³	2.1921
位相関数のパラメータ	0.8	0.8
屈折率	1.3	1.5 ₂₆

RGBの散乱・消散係数が同じ Rのみ散乱・消散係数が小さい

RGBの散乱・消散係数が同じ Rのみ散乱・消散係数が小さい

まとめ

・光の散乱理論に基づく シミュレーションモデルの構築

- ・2層モデルへ拡張
 - ・数値シミュレーション
 - ·画像生成

- ・2層モデルでの多重散乱光の考慮
- •3層以上の多層モデルへの拡張