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KLEIN BOTTLE SURGERY AND GENERA OF KNOTS

Kazuhiro Ichihara and Masakazu Teragaito

In this paper, we study the creation of Klein bottles by
surgery on knots in the 3-sphere. For non-cabled knots, it
is known that the slope corresponding to such surgery is an
integer. We give an upper bound for the slopes yielding Klein
bottles in terms of the genera of knots.

1. Introduction.

In this paper, we will study the creation of Klein bottles by surgery on knots
in the 3-sphere S3. Let K be a knot in S3, and let E(K) be its exterior.
A slope on ∂E(K) is the isotopy class of an essential simple closed curve in
∂E(K). As usual, the slopes on ∂E(K) are parameterized by Q ∪ {1/0},
where 1/0 corresponds to a meridian slope (see [R]). For a slope r, K(r)
denotes the closed 3-manifold obtained by r-Dehn surgery on K. That is,
K(r) = E(K) ∪ V , where V is a solid torus glued to E(K) along their
boundaries in such a way that r bounds a meridian disk in V .
Suppose that K(r) contains a Klein bottle. Then K(r) is shown to be

reducible, toroidal or Seifert-fibered [L], and therefore it is non-hyperbolic.
Gordon and Luecke [GL] showed that such a slope r is integral when K is
hyperbolic. Furthermore, such a slope must be divisible by four in this case
[T1]. These results together with the bound on exceptional surgeries [A,
Theorem 8.1] imply that there are at most three surgeries creating Klein
bottles on a hyperbolic knot in S3.
However, unfortunately, there is no universal upper bound on the absolute

values of such slopes. That is, for any positive number N , there exists a
hyperbolic knot in S3 which admits r-surgery creating a Klein bottle for
r > N . See Section 5.
In [T1], we gave an upper bound on the absolute value of such a slope

r in terms of the genera of knots. That is, for a non-cabled knot K, |r| ≤
12g(K)−8, where g(K) is the genus ofK. Indeed, we had a better inequality
|r| ≤ 8g(K) − 4 if r is not the boundary slope of a once-punctured Klein
bottle spanned by K.
The main theorem of this paper greatly improves both estimations:
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Theorem 1.1. Let K be a non-cabled knot in S3. If K(r) contains a Klein
bottle, then |r| ≤ 4g(K) + 4. Moreover, if r is not the boundary slope of a
once-punctured Klein bottle spanned by K, then |r| ≤ 4g(K)− 4.
We remark that such a slope can be non-integral for a cable knot. In

fact, 16/3-surgery on the right-handed trefoil yields a prism manifold which
contains a Klein bottle. Also we remark that, as far as we know, there is no
example of the case that r is not the boundary slope of a once-punctured
Klein bottle spanned by K. (The knots of [BH, Propositions 18,19] are
strong candidates.)
The extremal case |r| = 4g(K) + 4 can be described completely in the

following:

Theorem 1.2. Let K be a non-cabled knot in S3. Suppose that K(r) con-
tains a Klein bottle. If |r| = 4g(K) + 4, then K is the connected sum of
the (2,m)-torus knot and the (2, n)-torus knot, and r = 2m + 2n, where
m,n (�= ±1) are odd integers with the same sign.
Corollary 1.3. Let K be a hyperbolic knot in S3. If K(r) contains a Klein
bottle, then |r| ≤ 4g(K). Moreover, if |r| = 4g(K), then K bounds a once-
punctured Klein bottle whose boundary slope is r.

For example, ±4-surgery on the figure eight knot yield Klein bottles.
Clearly, each slope bounds a once-punctured Klein bottle. (Consider a
checkerboard surface of its standard diagram.) Since it has genus one, the
above estimation is sharp. In Section 5, such a hyperbolic knot will be given
for each genus.
The authors are grateful to the referee for many useful comments. We

also thank Seungsang Oh for Lemma 3.6.

2. Preliminaries.

Throughout the paper, K is assumed to be a non-cabled knot. We denote by
g the genus of K. Suppose that K(r) contains a Klein bottle P̂ for a slope
r. In general, 0-surgery can yield a Klein bottle, but we may assume r �= 0
to prove Theorem 1.1. Thus we may assume r > 0. Let k be the core of the
attached solid torus V . We may assume that k intersects P̂ transversely,
and that P̂ is chosen to minimize p = |P̂ ∩ k| among all Klein bottles in
K(r). Then P = P̂ ∩E(K) is a punctured Klein bottle properly embedded
in E(K) with |∂P | = p. We note that p ≥ 1 and p is odd. Otherwise a
closed non-orientable surface can be obtained by attaching suitable annuli
along ∂P .

Lemma 2.1. P is incompressible and boundary incompressible in E(K).

Proof. See Lemmas 2.1 and 2.2 of [T1]. �
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Lemma 2.2. r is an integer divisible by four.

Proof. See Lemmas 2.3 and 2.4 of [T1]. �

Let Q ⊂ E(K) be a minimal genus Seifert surface of K. Then Q is
incompressible and boundary incompressible in E(K). Let Q̂ denote the
closed surface obtained by capping ∂Q off by a disk. We may assume that
P and Q intersect transversely, and that P ∩Q contains no circle component
which bounds a disk in P or Q by the incompressibility of these surfaces.
Also, we can assume that each component of ∂P intersects ∂Q in exactly r
points, since ∂Q has slope 0.
Let GQ be the graph in Q̂ obtained by taking as the fat vertex the disk

Q̂ − IntQ and as edges the arc components of P ∩ Q. Similarly, GP is the
graph in P̂ whose vertices are the p disks P̂ − IntP and whose edges are
the arc components of P ∩Q. Thus the edges of GP and GQ are in one-one
correspondence. When p > 1, number the components of ∂P , 1, 2, . . . , p in
sequence along ∂E(K). This induces a numbering of the vertices of GP .
Each endpoint of an edge in GQ has a label, namely the number of the
corresponding component of ∂P . Thus the labels 1, 2 . . . , p appear in order
around the vertex of GQ repeated r times. An edge with labels i and j at
its endpoints is called a (i, j)-edge. If an edge has a label i at least one
endpoint, it is called an i-edge. If both endpoints have label i, then it is
called a level i-edge, or simply a level edge. Since GQ has just one vertex,
the edges of GP have no labels. A trivial loop in a graph is a length one
cycle which bounds a disk face of the graph.

Lemma 2.3. Neither GP nor GQ contains trivial loops.

Proof. This is Lemma 3.1 in [T1]. �

Although P is non-orientable, we can establish a parity rule as a natural
generalization of the usual one [CGLS]. Here we use a restricted form,
because one graph has just one vertex. First orient all components of ∂P so
that they are mutually homologous on ∂E(K). Also consider an orientation
to ∂Q. Let e be an edge of GP (and GQ simultaneously). Let D be a regular
neighborhood of e on P . Then D is a disk, and ∂D = a ∪ b ∪ c ∪ d, where
a and c are arcs in ∂P with induced orientations from ∂P . If a and c have
the same direction along ∂D, then e is said to be positive in GP , negative
otherwise. See Figure 1. Similarly we define positive and negative edges in
GQ. Since ∂E(K) is a torus and E(K) is orientable, we have the following
expression of the parity rule:

Lemma 2.4 (Parity rule). Each edge of GQ (GP , resp.) is positive (nega-
tive, resp.).
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Figure 1.

3. Generic case.

Throughout this section, we assume p > 1. This means that r is not the
boundary slope of a once-punctured Klein bottle spanned by K.
A sequence of edges in GQ is called a cycle. Since GQ has a single vertex,

this is not a cycle in a sense of graph theory. Let D be a disk face of GQ.
Then ∂D is an alternating sequence of edges and corners (subarcs of ∂Q).
Thus we can regard that ∂D defines a cycle. If D is bounded by only i-
edges, and all the i-edges have the same pair of labels {i, i + 1} at their
endpoints, then the cycle defined by ∂D is called a Scharlemann cycle with
the label pair {i, i + 1}. The number of edges in a Scharlemann cycle σ is
defined to be the length of σ. In particular, a Scharlemann cycle of length
two is called an S-cycle. A triple of successive parallel edges {e−1, e0, e1} is
called a generalized S-cycle if e0 is a level i-edge and both e−1 and e1 are
(i− 1, i+ 1)-edges.
Lemma 3.1.
(i) GQ does not contain a Scharlemann cycle.
(ii) GQ does not contain a generalized S-cycle.

Proof. These are Lemmas 3.2 and 3.3 in [T1]. (In fact, [T1, Lemma 3.2]
treats only an S-cycle, but the argument works in general.) �
Lemma 3.2. At most two vertices of GP are incident to negative loops.

Proof. Let e be a negative loop at a vertex v in GP . Then N(v ∪ e) is a
Möbius band in P̂ . Since a Klein bottle contains at most two disjoint Möbius
bands, the result follows. �
By Lemma 3.2, there are at most two vertices u and v of GP which are

incident to negative loops. This means that GQ has at most two kinds of
level edges. These are called level u-edges and level v-edges.

Lemma 3.3. There are at most r/2 level u (v)-edges in GQ.



KLEIN BOTTLE SURGERY 321

Proof. Since u has degree r in GP , there are at most r/2 negative loops at
u. The result follows from the parity rule. �

Since p ≥ 3, we can choose a vertex x of GP which is not incident to a
negative loop by Lemma 3.2. We fix this x hereafter. Let Γx be the subgraph
consisting of all x-edges and the vertex of GQ. Since GQ does not contain
level x-edges, Γx has just r edges. A disk face of Γx is called an x-face.

Lemma 3.4. Any x-face contains at least one level edge of GQ in its inte-
rior.

Proof. Assume that an x-face D does not contain a level edge. Then D
contains a Scharlemann cycle by [HM, Lemma 5.2]. This contradicts Lem-
ma 3.1. �
Lemma 3.5. If r > 4g−4, then there are two x-faces Du and Dv such that
Du contains only level u-edges and Dv contains only level v-edges.

Proof. Let X be the number of x-faces. Then an Euler characteristic calcu-
lation for Γx gives

1− r +
∑

f : a face of Γx

χ(f) = 2− 2g.

Thus X ≥ ∑
χ(f) = 1 − 2g + r. Since r is divisible by four, r ≥ 4g. Then

X ≥ r/2 + 1. The result follows from Lemmas 3.3 and 3.4. �

We show that the existence of the x-faces Du, Dv gives a contradiction.
Let Dα = Du or Dv. Thus Dα contains only level α-edges.
Let D be a disk face of GQ. Recall that ∂D is an alternating sequence

of edges of GQ and corners. A corner with labels {i, i+ 1} at its endpoints
is denoted by (i, i+ 1). If ∂D contains only two kinds of corners (α, α+ 1)
and (α− 1, α), then D is called a two-cornered face. Such a notion was first
used in [H].

Lemma 3.6. Dα contains a pair of two-cornered faces sharing a level α-
edge on their boundaries, such that at least one of such two-cornered faces
contains only one level α-edge.

Proof. If Dα has no non-level diagonal edge (that is, each edge in Dα joining
non-adacent corners along ∂Dα is level), then set E = Dα. Suppose that
Dα contains a diagonal edge e which has distinct labels {a, b}. Note that
a �= x, b �= x. Without loss of generality, assume that the labels appear
in counterclockwise order around the corners of ∂Dα, and that a < b < x.
This means that these labels a, b, x appear in this order around the vertex
of GQ. (Thus three inequalities a < b < x, b < x < a and x < a < b are
equivalent.) Formally, we construct a new x-face D′ as follows: Consider
that e is oriented from the endpoint with label a to the other. Discard the
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half (disk) of Dα right to e. Insert additional edges to the right of e and
parallel to e until the label x first appear at one end of this parallel family of
edges. Possibly, the last edge has label x at its both endpoints. But, except
the last edge, there is no level edge among the additional edges. In fact,
the label sets I, J indicated in Figure 2 are disjoint, except the case where
the last edge is a level x-edge. Let D′ be the union of the left side of e and
the bigons among these parallel family. Then D′ is an x-face. See Figure 2.
There is no two-cornered face among the additional bigons. Repeat this
process for every diagonal edge in D′ which is not a level α-edge, then we
finally get a new x-face E.

Figure 2.

Thus all diagonal edges in E are level α-edges, and ∂E consists of x-edges.
As remarked before, there may be level x-edges in ∂E. If E does not contain
a level α-edge, then [HM, Lemma 5.2] says that there is a Scharlemann cycle
σ in E. By the construction of E, σ lies in Dα, and that is, σ lies in GQ.
But this is impossible by Lemma 3.1. Hence E contains a level α-edge.

Claim 3.7. Any face adjacent to a level α-edge in E is two-cornered.

Proof. Let e be a level α-edge in E, and let f be a face adjacent to e. Note
that ∂f may contain other level α-edges. Let (ai, ai+1) (i = 1, 2, . . . , n) be
the corners on ∂f between successive level α-edges (possibly, the same one)
on ∂f , which appear in order around f when we go around clockwise. Thus
a1 = α and an = α− 1. See Figure 3.
Let ei be the edge on ∂f connecting the points with labels ai+1 and ai+1

for i = 1, 2, . . . , n− 1. Note that ei is neither a level x-edge nor a diagonal
edge in E. Also, ei can be an x-edge, otherwise it is parallel to an x-edge
(which may be level) in ∂E.
First consider en−1. If en−1 is an x-edge, then x = an < an−1 + 1 or

an < an−1 + 1 = x (of course, for any two labels a, b, the inequalities a < b
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Figure 3.

and b < a are equivalent). Hence x ≤ an < an−1 + 1 ≤ x holds in any case.
More precisely, when we go around the vertex of GQ (in counterclockwise
direction), the two labels an, an−1 + 1 appear in this order between the
successive x’s. If en−1 is not an x-edge, then it is parallel to an x-edge e′
(possibly, a level x-edge) in ∂E by the construction of E. Let F be the
family of mutually parallel edges containing en−1 and e′. We refer to the
end of F containing the end point of en−1 with label an−1 + 1 as the left
end.
Assume that the label x appears at the left end of F (in fact, at the “left

end” of e′). By Lemma 3.1 and the construction of E, the label an cannot
appear at the left end of F . Hence three labels an−1+1, x, an appear in this
order, that is, an−1 + 1 < x < an, which is equivalent to an < an−1 + 1 <
x. If x appears at the right end of F , then we have the same inequality
similarly. Hence x ≤ an < an−1 + 1 ≤ x holds again. Thus we always have
x ≤ an ≤ an−1 < x.
Next, consider the edge en−2. By the same argument as above, we have

x ≤ an−1 ≤ an−2 < x. Continuing in this way, we eventually get x ≤ an ≤
an−1 ≤ · · · ≤ a1 < x. This means that the labels an, an−1, . . . , a2, a1 appear
in this order between the successive x’s. But recall that an = α − 1 and
a1 = α are successive. Hence a1 = · · · = aj = α and aj+1 = · · · = an = α−1
for some j. Thus we have proved that f is two-cornered face. �
Choose a level α-edge e in E, which is outermost among level α-edges

in E. That is, e cuts a disk E′ off from E which contains no level α-edge
except e. Let f and g be the faces adjacent to e. Then these are a desired
pair of two-cornered faces. Note that one of them can be a bigon, but then
the other has at least three sides, since GQ does not contain a generalized
S-cycle by Lemma 3.1. �

Let T̂ be the torus which is the boundary of a thin regular neighborhood
N(P̂ ) of P̂ , and let T be the intersection of T̂ with E(K). Then T ∩ Q
gives rise to a pair of graphs {GT , G

T
Q}, where GT is a “double cover” of

GP , and each edge of GQ corresponds to a bigon of GT
Q. Let i1, i2 be the

vertices of GT corresponding to i-th vertex of GP such that they appear in
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the same order as the vertices of GP . Thus 11, 12, 21, 22, . . . , p1, p2 appear
along ∂E(K) in this order. In particular, each level u-edge (v-edge, resp.)
of GQ yields an S-cycle in GT

Q with label-pair {u1, u2} ({v1, v2}, resp.).
By Lemma 3.6, Dα contains a pair of two-cornered faces sharing a level

α-edge. These give an S-cycle σα and two faces fα, gα adjacent to σα. Note
that fα and gα contain only (α2, (α + 1)1) and ((α − 1)2, α1) corners. By
Lemma 3.6, we may assume that fα contains only one (α1, α2)-edge, which
is an edge of σα. Also remark that fα contains only one ((α+1)1, (α−1)2)-
edge. By the construction of T̂ , there are disjoint annuli in T̂ , which contain
the edges of σu and σv respectively. Note that the centerlines of these annuli
are essential on T̂ .

Lemma 3.8. u and v are not adjacent on ∂E(K).

Proof. Assume that u and v are adjacent. For simplicity, let u = 2 and
v = 3.
Let X be the number of x-faces. As in the proof of Lemma 3.5, X ≥

r/2 + 1. Thus r ≤ 2X − 2.
Let X2, X3 denote the number of x-faces which contain only level 2 or

3-edges respectively, and let X1 be the number of x-faces containing both
kinds of level edges. By Lemma 3.4, X = X1+X2+X3. Count the number
of occurrence of label 3 in GQ. Each x-face containing only level 2-edges
contains at least two occurrences of label 3. The other x-faces contain level 3-
edges, which do not lie on the boundaries. Hence 2X1+2X2+2X3 ≤ r, since
each label appear r times around the vertex of GQ. Thus 2X1+2X2+2X3 ≤
r ≤ 2X − 2 = 2(X1 +X2 +X3)− 2, which is a contradiction. �

Let Λu (Λv, resp.) be the subgraph of GT consisting of four vertices
u1, u2, (u−1)2, (u+1)1 (v1, v2, (v−1)2, (v+1)1, resp.) and the edges of σu,
∂fu and ∂gu (σv, ∂fv, ∂gv, resp.). As noted in the proof of Lemma 3.6, gu
and gv have at least three sides, and hence Λu and Λv are connected. Hence
there is an annulus Au (Av, resp.) in T̂ which contains the edges of σu,
∂fu and ∂gu (σv, ∂fv, ∂gv, resp.). By Lemma 3.8, the vertices u1, u2, v1, v2,
(u−1)2, (u+1)1, (v−1)2, (v+1)1 are distinct. We may assume that Au and
Av are disjoint, and that one boundary component of Au (Av, resp.) is very
near to the edges of σu (σv, resp.). Moreover, these boundary components
bound Möbius bands Mu and Mv, respectively, in N(P̂ ) meeting the core
of the attached solid torus V in a single point. (Consider the union of the
bigon face of σα and the 1-handle H bounded by the vertices α1, α2. By
shrinking H radially to its core, we obtain a Möbius band, and then perturb
it to be transverse to the core of V .)
Let qu be the number of vertices contained in Au. Let H1 and H2 are

disjoint 1-handles on V bounded by the vertices of (u− 1)2 and u1, u2 and
(u+ 1)1. Consider Wu = N(Au ∪H1 ∪H2 ∪ fu ∪ gu) ⊂ K(r)− IntN(P̂ ).
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Lemma 3.9. ∂Wu consists of one or two tori.

Proof. Let W ′
u = N(Au ∪ H1 ∪ H2). Then W ′

u is a handlebody of genus
three. Since ∂fu is non-separating on ∂W ′

u, attaching a 2-handle N(fu)
gives a genus two surface from ∂W ′

u.
We claim that ∂fu and ∂gu are not parallel on ∂W ′

u. If ∂fu and ∂gu are
parallel on ∂W ′

u, then these represent the same element of π1(W ′
u). Taking

as a base “point” a subdisk of Au as shown in Figure 4, we have π1(W ′
u) =

〈x1, x2, y〉, where x1 (x2, resp.) is represented by a core of H1 (H2, resp.)
going from vertex (u− 1)2 (u2, resp.) to vertex u1 ((u+ 1)1, resp.), and y
is represented by the edge of σu not in the base “point” going from vertex
u1 to vertex u2. We may assume that the (u1, u2)-edge on ∂fu is contained
in the base “point”. Then ∂fu never contain x1yx2, although ∂gu contains
it (in the appropriate directions). This is because ∂fu contains just one
(u1, u2)-edge. Therefore ∂fu and ∂gu are not parallel on ∂W ′

u, and then
∂Wu cannot be a union of a 2-sphere and a genus two surface. Thus ∂Wu

is a torus or two tori according to whether the attaching sphere of N(gu) is
non-separating or separating on ∂(W ′

u ∪N(fu)). �

Figure 4.

Then ∂Wu contains a torus F containing Au, since Wu ∩ T̂ = Au. Note
that the core of Au is essential on F . If not, one component of ∂Au bounds
a disk D in K(r) − N(P̂ ). Then Mu ∪ D or Mu ∪ Au ∪ D is a projective
plane in K(r). Take a parallel copy D′ of D in K(r)−N(P̂ ), so that D′ is
disjoint from Au. Then the union of D′, Mv and the annulus on T̂ bounded
by ∂D′ and ∂Mv, which is disjoint from Au, forms another projective plane
in K(r). Thus K(r) contains two disjoint projective planes, but this is
impossible, because H1(K(r)) would be non-cyclic.
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Let A′
u be the remaining annulus of the torus. By the construction, A

′
u

meets the core of V in at most qu−4 points. Similarly, we obtain an annulus
A′

v by using fv, gv.
The edges of σu and σv separate T̂ into two annuli B1 and B2. Each IntBi

contains p − 2 vertices, since GT is a double cover of GP . We may assume
that the edges of ∂fu and ∂gu are contained in B1.
First assume that the edges of ∂fv, ∂gv are contained in B1. Let B′

1 ⊂ B1

be the annulus region bounded by ∂A′
u and ∂A

′
v. Then the unionMu∪A′

u∪
B′

1 ∪ A′
v ∪Mv gives a new Klein bottle in K(r), which meets the core of V

in at most p− 4 points. This contradicts the minimality of p.
Next assume that the edges of ∂fv, ∂gv are contained in B2. Let B′′

1 ⊂ B1

be the annulus region bounded by ∂A′
u and ∂Av. Then the unionMu∪A′

u∪
B′′

1 ∪Mv gives a new Klein bottle in K(r), which meets the core of V in at
most p− 2 points, a contradiction.
Thus we have proved Theorem 1.1 when p > 1.

4. Special case.

In this section, we consider the case where p = 1. Assign the points of
∂P ∩ ∂Q the labels 1, 2, . . . , r along ∂Q sequentially. Then the labels are
also sequential along ∂P , since r is integral.

Lemma 4.1. If GQ has parallel edges, then r = 4.

Proof. This is Lemma 4.2 in [T1]. �
Thus we may assume that GQ has no parallel edges hereafter.

Lemma 4.2. If two edges of GP are parallel, then their endpoints appear
alternately around the vertex of GP .

Proof. This follows from that all edges of GP are negative. �
Lemma 4.3. Suppose that GQ contains a separating edge e. Then one com-
ponent of Q− e contains no edge of GQ.

Proof. Assume that each component of Q − e contains an edge e1 and e2
respectively. Since GP consists of at most two parallel families of (negative)
edges (cf. [T1, Section 4]), some two of e, e1, e2 are parallel in GP . But this
is impossible by Lemma 4.2. �
Lemma 4.4. If GQ contains a separating edge, then r ≤ 4g.
Proof. Let e be a separating edge in GQ, and let Q1 and Q2 be the compo-
nents of Q − e. By Lemma 4.3, we may assume that Q2 contains no edge.
If Q1 contains a separating edge e1, then e and e1 are not parallel in GP by
Lemma 4.2. If r > 4, then GQ contains another edge e2, which is parallel to
e or e1 in GP . But Lemma 4.2 gives a contradiction. Hence we may assume
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that Q1 contains no separating edges. In fact, no edge in Q1 is parallel to e
in GP by Lemma 4.2. Thus GP consists of e and a parallel family of r/2−1
edges. By examining the labels of edges, we see that GQ has just three faces.
For Q̂, we have

1− r
2
+

∑
f : a face of GQ

χ(f) = 2− 2g.

Thus
∑
χ(f) = 1 − 2g + r/2. Here ∑

χ(f) =
∑

f �=Q2
χ(f) + χ(Q2) ≤∑

f �=Q2
χ(f)− 1. Thus 2− 2g + r/2 ≤ ∑

f �=Q2
χ(f). Since GQ has at most

two disk faces, 2− 2g + r/2 ≤ 2, and therefore r ≤ 4g. �

Lemma 4.5. If GQ contains no separating edges, then r ≤ 4g + 4.
Proof. Recall that GP consists of at most two families A and B of parallel
edges. Let |A|, |B| denote the number of edges in A and B respectively.
Since |A|+ |B| = r/2 is even, |A| and |B| have the same parity.
If |A| and |B| are even, then we see that GQ has just one face by examining

the labels of edges. See Figure 5.

Figure 5.

Then 1 − r/2 +∑
χ(f) = 2 − 2g, and thus 1 − 2g + r/2 = ∑

χ(f) ≤ 1.
Therefore r ≤ 4g.
If |A| and |B| are odd, then GQ has just three faces. Thus 1− 2g+ r/2 =∑
χ(f) ≤ 3, and then r ≤ 4g + 4. �
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Lemmas 4.4 and 4.5 give the proof of Theorem 1.1 when p = 1. In fact,
we can give the same upper bound 4g + 4 by a 4-dimensional technique.
We thank Seiichi Kamada for this suggestion. Consider S3 = ∂B4. The
knot K bounds P and Q. Then pushing P slightly into B4 gives a closed
non-orientable surface P ∪Q embedded in B4. Note χ(P ∪Q) = −2g, where
g is the genus of Q. By Whitney-Massey Theorem (cf. [K]), the Euler
number e(P ∪Q) can vary between 2χ(P ∪Q)− 4 and 4− 2χ(P ∪Q). Thus
|e(P ∪Q)| ≤ 4g + 4. But e(P ∪Q) is equal to the self-intersection number
of P ∪Q, which is exactly the boundary slope of P (see [K]).

5. Extremal case.

In this section, we examine the extremal case where r = 4g + 4, and prove
Theorem 1.2. Recall that the points of ∂P ∩ ∂Q are labeled 1, 2, . . . , r
sequentially along ∂P (and ∂Q) as in Section 4.
Assume r = 4g + 4. By the proof of Lemma 4.5, GP consists of two

parallel families A and B such that m = |A| and n = |B| are odd. In fact,
|A|, |B| > 1, otherwise GQ contains a trivial loop. Let a1, a2, . . . , am and
b1, b2, . . . , bn be the edges of A and B respectively, where they are numbered
successively. That is, ai has labels i and i + m, and bj has 2m + j and
2m + n + j. See Figure 6, where the two end circles of the cylinder are
identified with a suitable involution to form a Klein bottle P̂ .

Figure 6.

Lemma 5.1. K is fibered.

Proof. Let W = E(K) − IntN(Q). Then ∂W consists of two copies of Q,
Q0 and Q1 say, and an annulus δ. We show that W has a product structure
Q × [0, 1] such that Q × {0} = Q0 and Q × {1} = Q1. Then the result
immediately follows from this.
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We see that P ∩W consists of a 4-gon D4 and (m− 1) + (n− 1) bigons.
See Figure 6. For such a bigon D, ∂D∩Q0 and ∂D∩Q1 correspond to edges
of GQ and ∂D ∩ δ is two spanning arcs of δ. For example, if D corresponds
to the bigon face of GP between a1 and a2, then ∂D ∩ Q0 and ∂D ∩ Q1

correspond to a1 and a2, respectively. Cut W along these bigons. Let W ′
be the resulting manifold. That process cuts Qi into a disk for each i, since
Q0 is cut along arcs corresponding to a1, a2, . . . , am−1, b1, b2, . . . , bn−1, and
Q1 is cut along a2, a3, . . . , am, b2, b3, . . . , bn. By the irreducibility of E(K),
W ′ is a 3-ball. Thus W has a product structure as desired. �

ThusW is identified with Q×[0, 1], and E(K) is identified with a mapping
torus Q × [0, 1]/(x, 1) = (f(x), 0), where f is a homeomorphism of Q. Let
Qi denote Q×{i} in W = Q× [0, 1]. In fact, it is convenient to regard f as
the map from Q1 to Q0.
Let us keep using the notation in the proof of Lemma 5.1. To clarify

the argument, we regulate P in E(K) up to isotopy. In the same way as
[FH, Proposition 2.1], P can be isotoped to be monotone except for just
one saddle point in IntP with respect to the bundle structure of E(K).
Furthermore, we may assume that 2m+ 2n arcs on δ coming from ∂P and
m + n − 2 disks in W = Q × [0, 1] coming from the bigon faces of GP are
all saturated (that is, the unions of I-fibers) with respect to the product
structure of W . Finally, we isotope the 4-gon D4 of P ∩W such that π|D4

is an embedding except for four arcs on δ, where π : W = Q × [0, 1] → Q1

denotes the natural projection.
Hereafter, we regard the edges ai, bj of GQ as the arcs on Q0. This means

that each ai, 1 ≤ i ≤ m− 1, appears as the intersection of Q0 and the disk
which corresponds to a bigon face of GP between ai and ai+1, and the arc
am is one of the arcs of D4 ∩ Q0. Further, we set a′i = π(ai) on Q1. Then
ai+1 = f(a′i) holds for each i = 1, 2, . . . ,m− 1.
Lemma 5.2. K is composite.

Proof. Let us introduce two more arcs on Q0 as follows.
First, let am+1 = f(a′m). Recall that the endpoints of ai are labeled by i

and m+ i and those of bj are labeled by 2m+ j and 2m+ n+ j. Thus the
action of f is cyclic on the set of the endpoints of ai, bj , and so the labels of
the endpoints of am+1 are m+ 1 and 2m+ 1.

Claim 5.3. am+1 is disjoint from a2, a3, . . . , am and meets a1 in only the
endpoint with label m+ 1.

Proof. Clearly, am is disjoint from ai, and so a′m is disjoint from a′i, 1 ≤ i ≤
m − 1. This implies that am+1 = f(a′m) is disjoint from ai+1 = f(a′i) for
1 ≤ i ≤ m− 1. Furthermore, since D4 ∩Q0 = am ∪ bn, D4 ∩Q1 = f−1(a1)∪
f−1(b1) and π|D4 is embedding except for four arcs on δ, a

′
m meets f

−1(a1)
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in a single point. Hence am+1 = f(a′m) meets a1 in only the endpoint with
label m+ 1. �

Next, we give an orientation to each edge of GQ so that it runs from the
endpoint with smaller label to the other, and let e be the arc on Q0 obtained
as the product a1∗am+1. By the observations above, the endpoints of e have
the labels of 1 and 2m+ 1, and e is disjoint from a2, . . . , am.

Claim 5.4. e is separating and essential in Q0.

Proof. Recall that GQ has just three disk faces. One of the disk faces,
denoted by Da, is bounded by the edges a1, a2, . . . , am together with subarcs
of ∂Q0. Another one Db is bounded by the edges b1, b2, . . . , bn and the other
one Dab is bounded by the edges a1, a2, . . . , am, b1, b2, . . . , bn together with
subarcs of ∂Q0.
Since the labels of the endpoints of am+1 are m+ 1 and 2m+ 1, the arc

am+1 is contained in the disk face Dab. Thus e is also contained in Dab, and
so it is a diagonal arc which separates Dab. Moreover, since the labels of
the endpoints of e are 1 and 2m+ 1, the endpoints separate ∂Dab into two
parts one of which contains ai’s only and the other contains bj ’s only. This
indicates that e is separating and essential on Q0. �

Now, we consider the closed surface Qi which is obtained by shrinking
∂Qi to a single point yi for i = 0, 1. We abuse the notations for the arcs and
the faces on Qi corresponding to those on Qi. Let f be the homeomorphism
from Q1 to Q0 induced from f .

Claim 5.5. f(e′) is isotopic to e fixing y0, where e′ = π(e) in Q1.

Proof. Let [ai], [a′i], 1 ≤ i ≤ m+1, and [e], [e′] be the elements of π1(Q0, y0)
and π1(Q1, y1) represented by the corresponding ones.
Let R be the polygon bounded by e and a1, a2, . . . , am in Dab. Then,

under the above setting, ∂R is represented as

a1 ∗ a2−1 ∗ a3 ∗ a4−1 ∗ · · · ∗ am ∗ e−1.

Then, this gives the relation

[e] = [a1][a2]−1[a3][a4]−1 . . . [am],

and so we have
[e′] = [a′1][a

′
2]
−1[a′3][a

′
4]
−1 . . . [a′m].

Also ∂Da is represented as

a1 ∗ am ∗ am−1
−1 ∗ am−2 ∗ am−3

−1 ∗ · · · ∗ a2−1.

This gives
[a1] = [a2][a3]−1[a4][a5]−1 . . . [am]−1.
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Let f∗ : π1(Q1, y1) → π1(Q0, y0) be the homomorphism induced from f .
Then

f∗([e′]) = f∗([a′1][a
′
2]
−1[a′3][a

′
4]
−1 . . . [a′m])

= [a2][a3]−1[a4][a5]−1 . . . [am]−1[am+1]
= [a1][am+1] = [e].

Therefore two loops e and f(e′) are homotopic on Q0 fixing y0, and hence
isotopic. �
As a result, we can obtain an essential, separating annulus in E(K), each

of whose boundary circles meets the longitude of K in a single point, from
e × [0, 1] ⊂ W . By [BZ, Lemma 15.26], such an annulus comes from a
decomposing sphere or a cabling annulus for K. This concludes that K is
composite. �
Proof of Theorem 1.2. By Lemma 5.2, K is composite. Then by [T2], K
is the connected sum of two 2-cabled knots K1 and K2. Let Ki be the
(2,mi)-cable of a knot K̃i for i = 1, 2. Then r = 2m1 + 2m2 [T2]. Also,

g(K) =
|m1| − 1
2

+
|m2| − 1
2

+ 2g(K̃1) + 2g(K̃2)

by [S]. Since |r| = 4g(K) + 4,
2|m1 +m2| = 2|m1|+ 2|m2|+ 8g(K̃1) + 8g(K̃2).

Thus m1 and m2 have the same sign and g(K̃1) = g(K̃2) = 0, and hence Ki

is the (2,mi)-torus knot. This completes the Proof of Theorem 1.2. �
Finally, we give the examples of hyperbolic knots which show that the

estimation of Corollary 1.3 is sharp for each genus g.

Figure 7.

Example 5.6. For genus one case, the figure eight knot is such an example
as mentioned in Section 1. Let n ≥ 2 and let K be the (2, 3, 2n− 3)-pretzel
knot. (When n = 2, K is 2-bridge, and it is 62 in the knot table [R].) Then
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K is hyperbolic [Kw], and it obviously bounds a once-punctured Klein bottle
whose boundary has the slope 4n. Also, K has genus n, since the Seifert
surface shown in Figure 7 has minimal genus by [G1, G2].
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