KLEIN BOTTLE SURGERY AND GENERA OF KNOTS

Kazuhiro Ichihara and Masakazu Teragaito

In this paper, we study the creation of Klein bottles by surgery on knots in the 3 -sphere. For non-cabled knots, it is known that the slope corresponding to such surgery is an integer. We give an upper bound for the slopes yielding Klein bottles in terms of the genera of knots.

1. Introduction.

In this paper, we will study the creation of Klein bottles by surgery on knots in the 3 -sphere S^{3}. Let K be a knot in S^{3}, and let $E(K)$ be its exterior. A slope on $\partial E(K)$ is the isotopy class of an essential simple closed curve in $\partial E(K)$. As usual, the slopes on $\partial E(K)$ are parameterized by $\mathbb{Q} \cup\{1 / 0\}$, where $1 / 0$ corresponds to a meridian slope (see $[\mathbf{R}])$. For a slope $r, K(r)$ denotes the closed 3 -manifold obtained by r-Dehn surgery on K. That is, $K(r)=E(K) \cup V$, where V is a solid torus glued to $E(K)$ along their boundaries in such a way that r bounds a meridian disk in V.

Suppose that $K(r)$ contains a Klein bottle. Then $K(r)$ is shown to be reducible, toroidal or Seifert-fibered [L], and therefore it is non-hyperbolic. Gordon and Luecke [GL] showed that such a slope r is integral when K is hyperbolic. Furthermore, such a slope must be divisible by four in this case [T1]. These results together with the bound on exceptional surgeries [A, Theorem 8.1] imply that there are at most three surgeries creating Klein bottles on a hyperbolic knot in S^{3}.

However, unfortunately, there is no universal upper bound on the absolute values of such slopes. That is, for any positive number N, there exists a hyperbolic knot in S^{3} which admits r-surgery creating a Klein bottle for $r>N$. See Section 5.

In [T1], we gave an upper bound on the absolute value of such a slope r in terms of the genera of knots. That is, for a non-cabled knot $K,|r| \leq$ $12 g(K)-8$, where $g(K)$ is the genus of K. Indeed, we had a better inequality $|r| \leq 8 g(K)-4$ if r is not the boundary slope of a once-punctured Klein bottle spanned by K.

The main theorem of this paper greatly improves both estimations:

Theorem 1.1. Let K be a non-cabled knot in S^{3}. If $K(r)$ contains a Klein bottle, then $|r| \leq 4 g(K)+4$. Moreover, if r is not the boundary slope of a once-punctured Klein bottle spanned by K, then $|r| \leq 4 g(K)-4$.

We remark that such a slope can be non-integral for a cable knot. In fact, $16 / 3$-surgery on the right-handed trefoil yields a prism manifold which contains a Klein bottle. Also we remark that, as far as we know, there is no example of the case that r is not the boundary slope of a once-punctured Klein bottle spanned by K. (The knots of [BH, Propositions 18,19] are strong candidates.)

The extremal case $|r|=4 g(K)+4$ can be described completely in the following:

Theorem 1.2. Let K be a non-cabled knot in S^{3}. Suppose that $K(r)$ contains a Klein bottle. If $|r|=4 g(K)+4$, then K is the connected sum of the $(2, m)$-torus knot and the $(2, n)$-torus knot, and $r=2 m+2 n$, where $m, n(\neq \pm 1)$ are odd integers with the same sign.
Corollary 1.3. Let K be a hyperbolic knot in S^{3}. If $K(r)$ contains a Klein bottle, then $|r| \leq 4 g(K)$. Moreover, if $|r|=4 g(K)$, then K bounds a oncepunctured Klein bottle whose boundary slope is r.

For example, ± 4-surgery on the figure eight knot yield Klein bottles. Clearly, each slope bounds a once-punctured Klein bottle. (Consider a checkerboard surface of its standard diagram.) Since it has genus one, the above estimation is sharp. In Section 5, such a hyperbolic knot will be given for each genus.

The authors are grateful to the referee for many useful comments. We also thank Seungsang Oh for Lemma 3.6.

2. Preliminaries.

Throughout the paper, K is assumed to be a non-cabled knot. We denote by g the genus of K. Suppose that $K(r)$ contains a Klein bottle \widehat{P} for a slope r. In general, 0 -surgery can yield a Klein bottle, but we may assume $r \neq 0$ to prove Theorem 1.1. Thus we may assume $r>0$. Let k be the core of the attached solid torus V. We may assume that k intersects \widehat{P} transversely, and that \widehat{P} is chosen to minimize $p=|\widehat{P} \cap k|$ among all Klein bottles in $K(r)$. Then $P=\widehat{P} \cap E(K)$ is a punctured Klein bottle properly embedded in $E(K)$ with $|\partial P|=p$. We note that $p \geq 1$ and p is odd. Otherwise a closed non-orientable surface can be obtained by attaching suitable annuli along ∂P.

Lemma 2.1. P is incompressible and boundary incompressible in $E(K)$.
Proof. See Lemmas 2.1 and 2.2 of [T1].

Lemma 2.2. r is an integer divisible by four.
Proof. See Lemmas 2.3 and 2.4 of [T1].
Let $Q \subset E(K)$ be a minimal genus Seifert surface of K. Then Q is incompressible and boundary incompressible in $E(K)$. Let \widehat{Q} denote the closed surface obtained by capping ∂Q off by a disk. We may assume that P and Q intersect transversely, and that $P \cap Q$ contains no circle component which bounds a disk in P or Q by the incompressibility of these surfaces. Also, we can assume that each component of ∂P intersects ∂Q in exactly r points, since ∂Q has slope 0 .

Let G_{Q} be the graph in \widehat{Q} obtained by taking as the fat vertex the disk $\widehat{Q}-\operatorname{Int} Q$ and as edges the arc components of $P \cap Q$. Similarly, G_{P} is the graph in \widehat{P} whose vertices are the p disks $\widehat{P}-\operatorname{Int} P$ and whose edges are the arc components of $P \cap Q$. Thus the edges of G_{P} and G_{Q} are in one-one correspondence. When $p>1$, number the components of $\partial P, 1,2, \ldots, p$ in sequence along $\partial E(K)$. This induces a numbering of the vertices of G_{P}. Each endpoint of an edge in G_{Q} has a label, namely the number of the corresponding component of ∂P. Thus the labels $1,2 \ldots, p$ appear in order around the vertex of G_{Q} repeated r times. An edge with labels i and j at its endpoints is called a (i, j)-edge. If an edge has a label i at least one endpoint, it is called an i-edge. If both endpoints have label i, then it is called a level i-edge, or simply a level edge. Since G_{Q} has just one vertex, the edges of G_{P} have no labels. A trivial loop in a graph is a length one cycle which bounds a disk face of the graph.

Lemma 2.3. Neither G_{P} nor G_{Q} contains trivial loops.
Proof. This is Lemma 3.1 in [T1].
Although P is non-orientable, we can establish a parity rule as a natural generalization of the usual one [CGLS]. Here we use a restricted form, because one graph has just one vertex. First orient all components of ∂P so that they are mutually homologous on $\partial E(K)$. Also consider an orientation to ∂Q. Let e be an edge of G_{P} (and G_{Q} simultaneously). Let D be a regular neighborhood of e on P. Then D is a disk, and $\partial D=a \cup b \cup c \cup d$, where a and c are arcs in ∂P with induced orientations from ∂P. If a and c have the same direction along ∂D, then e is said to be positive in G_{P}, negative otherwise. See Figure 1. Similarly we define positive and negative edges in G_{Q}. Since $\partial E(K)$ is a torus and $E(K)$ is orientable, we have the following expression of the parity rule:

Lemma 2.4 (Parity rule). Each edge of $G_{Q}\left(G_{P}\right.$, resp.) is positive (negative, resp.).

Figure 1.

3. Generic case.

Throughout this section, we assume $p>1$. This means that r is not the boundary slope of a once-punctured Klein bottle spanned by K.

A sequence of edges in G_{Q} is called a cycle. Since G_{Q} has a single vertex, this is not a cycle in a sense of graph theory. Let D be a disk face of G_{Q}. Then ∂D is an alternating sequence of edges and corners (subarcs of ∂Q). Thus we can regard that ∂D defines a cycle. If D is bounded by only i edges, and all the i-edges have the same pair of labels $\{i, i+1\}$ at their endpoints, then the cycle defined by ∂D is called a Scharlemann cycle with the label pair $\{i, i+1\}$. The number of edges in a Scharlemann cycle σ is defined to be the length of σ. In particular, a Scharlemann cycle of length two is called an S-cycle. A triple of successive parallel edges $\left\{e_{-1}, e_{0}, e_{1}\right\}$ is called a generalized S-cycle if e_{0} is a level i-edge and both e_{-1} and e_{1} are ($i-1, i+1$)-edges.

Lemma 3.1.

(i) G_{Q} does not contain a Scharlemann cycle.
(ii) G_{Q} does not contain a generalized S-cycle.

Proof. These are Lemmas 3.2 and 3.3 in [T1]. (In fact, [T1, Lemma 3.2] treats only an S-cycle, but the argument works in general.)

Lemma 3.2. At most two vertices of G_{P} are incident to negative loops.
Proof. Let e be a negative loop at a vertex v in G_{P}. Then $N(v \cup e)$ is a Möbius band in \widehat{P}. Since a Klein bottle contains at most two disjoint Möbius bands, the result follows.

By Lemma 3.2, there are at most two vertices u and v of G_{P} which are incident to negative loops. This means that G_{Q} has at most two kinds of level edges. These are called level u-edges and level v-edges.
Lemma 3.3. There are at most $r / 2$ level $u(v)$-edges in G_{Q}.

Proof. Since u has degree r in G_{P}, there are at most $r / 2$ negative loops at u. The result follows from the parity rule.

Since $p \geq 3$, we can choose a vertex x of G_{P} which is not incident to a negative loop by Lemma 3.2. We fix this x hereafter. Let Γ_{x} be the subgraph consisting of all x-edges and the vertex of G_{Q}. Since G_{Q} does not contain level x-edges, Γ_{x} has just r edges. A disk face of Γ_{x} is called an x-face.

Lemma 3.4. Any x-face contains at least one level edge of G_{Q} in its interior.

Proof. Assume that an x-face D does not contain a level edge. Then D contains a Scharlemann cycle by [HM, Lemma 5.2]. This contradicts Lemma 3.1.

Lemma 3.5. If $r>4 g-4$, then there are two x-faces D_{u} and D_{v} such that D_{u} contains only level u-edges and D_{v} contains only level v-edges.
Proof. Let X be the number of x-faces. Then an Euler characteristic calculation for Γ_{x} gives

$$
1-r+\sum_{f: \text { a face of } \Gamma_{x}} \chi(f)=2-2 g .
$$

Thus $X \geq \sum \chi(f)=1-2 g+r$. Since r is divisible by four, $r \geq 4 g$. Then $X \geq r / 2+1$. The result follows from Lemmas 3.3 and 3.4.

We show that the existence of the x-faces D_{u}, D_{v} gives a contradiction. Let $D_{\alpha}=D_{u}$ or D_{v}. Thus D_{α} contains only level α-edges.

Let D be a disk face of G_{Q}. Recall that ∂D is an alternating sequence of edges of G_{Q} and corners. A corner with labels $\{i, i+1\}$ at its endpoints is denoted by $(i, i+1)$. If ∂D contains only two kinds of corners $(\alpha, \alpha+1)$ and $(\alpha-1, \alpha)$, then D is called a two-cornered face. Such a notion was first used in $[\mathbf{H}]$.
Lemma 3.6. D_{α} contains a pair of two-cornered faces sharing a level α edge on their boundaries, such that at least one of such two-cornered faces contains only one level α-edge.

Proof. If D_{α} has no non-level diagonal edge (that is, each edge in D_{α} joining non-adacent corners along ∂D_{α} is level), then set $E=D_{\alpha}$. Suppose that D_{α} contains a diagonal edge e which has distinct labels $\{a, b\}$. Note that $a \neq x, b \neq x$. Without loss of generality, assume that the labels appear in counterclockwise order around the corners of ∂D_{α}, and that $a<b<x$. This means that these labels a, b, x appear in this order around the vertex of G_{Q}. (Thus three inequalities $a<b<x, b<x<a$ and $x<a<b$ are equivalent.) Formally, we construct a new x-face D^{\prime} as follows: Consider that e is oriented from the endpoint with label a to the other. Discard the
half (disk) of D_{α} right to e. Insert additional edges to the right of e and parallel to e until the label x first appear at one end of this parallel family of edges. Possibly, the last edge has label x at its both endpoints. But, except the last edge, there is no level edge among the additional edges. In fact, the label sets I, J indicated in Figure 2 are disjoint, except the case where the last edge is a level x-edge. Let D^{\prime} be the union of the left side of e and the bigons among these parallel family. Then D^{\prime} is an x-face. See Figure 2. There is no two-cornered face among the additional bigons. Repeat this process for every diagonal edge in D^{\prime} which is not a level α-edge, then we finally get a new x-face E.

Figure 2.
Thus all diagonal edges in E are level α-edges, and ∂E consists of x-edges. As remarked before, there may be level x-edges in ∂E. If E does not contain a level α-edge, then [HM, Lemma 5.2] says that there is a Scharlemann cycle σ in E. By the construction of E, σ lies in D_{α}, and that is, σ lies in G_{Q}. But this is impossible by Lemma 3.1. Hence E contains a level α-edge.

Claim 3.7. Any face adjacent to a level α-edge in E is two-cornered.
Proof. Let e be a level α-edge in E, and let f be a face adjacent to e. Note that ∂f may contain other level α-edges. Let $\left(a_{i}, a_{i}+1\right)(i=1,2, \ldots, n)$ be the corners on ∂f between successive level α-edges (possibly, the same one) on ∂f, which appear in order around f when we go around clockwise. Thus $a_{1}=\alpha$ and $a_{n}=\alpha-1$. See Figure 3.

Let e_{i} be the edge on ∂f connecting the points with labels $a_{i}+1$ and a_{i+1} for $i=1,2, \ldots, n-1$. Note that e_{i} is neither a level x-edge nor a diagonal edge in E. Also, e_{i} can be an x-edge, otherwise it is parallel to an x-edge (which may be level) in ∂E.

First consider e_{n-1}. If e_{n-1} is an x-edge, then $x=a_{n}<a_{n-1}+1$ or $a_{n}<a_{n-1}+1=x$ (of course, for any two labels a, b, the inequalities $a<b$

Figure 3.
and $b<a$ are equivalent). Hence $x \leq a_{n}<a_{n-1}+1 \leq x$ holds in any case. More precisely, when we go around the vertex of G_{Q} (in counterclockwise direction), the two labels $a_{n}, a_{n-1}+1$ appear in this order between the successive x 's. If e_{n-1} is not an x-edge, then it is parallel to an x-edge e^{\prime} (possibly, a level x-edge) in ∂E by the construction of E. Let F be the family of mutually parallel edges containing e_{n-1} and e^{\prime}. We refer to the end of F containing the end point of e_{n-1} with label $a_{n-1}+1$ as the left end.

Assume that the label x appears at the left end of F (in fact, at the "left end" of $\left.e^{\prime}\right)$. By Lemma 3.1 and the construction of E, the label a_{n} cannot appear at the left end of F. Hence three labels $a_{n-1}+1, x, a_{n}$ appear in this order, that is, $a_{n-1}+1<x<a_{n}$, which is equivalent to $a_{n}<a_{n-1}+1<$ x. If x appears at the right end of F, then we have the same inequality similarly. Hence $x \leq a_{n}<a_{n-1}+1 \leq x$ holds again. Thus we always have $x \leq a_{n} \leq a_{n-1}<x$.

Next, consider the edge e_{n-2}. By the same argument as above, we have $x \leq a_{n-1} \leq a_{n-2}<x$. Continuing in this way, we eventually get $x \leq a_{n} \leq$ $a_{n-1} \leq \cdots \leq a_{1}<x$. This means that the labels $a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}$ appear in this order between the successive x 's. But recall that $a_{n}=\alpha-1$ and $a_{1}=\alpha$ are successive. Hence $a_{1}=\cdots=a_{j}=\alpha$ and $a_{j+1}=\cdots=a_{n}=\alpha-1$ for some j. Thus we have proved that f is two-cornered face.

Choose a level α-edge e in E, which is outermost among level α-edges in E. That is, e cuts a disk E^{\prime} off from E which contains no level α-edge except e. Let f and g be the faces adjacent to e. Then these are a desired pair of two-cornered faces. Note that one of them can be a bigon, but then the other has at least three sides, since G_{Q} does not contain a generalized S-cycle by Lemma 3.1.

Let \widehat{T} be the torus which is the boundary of a thin regular neighborhood $N(\widehat{P})$ of \widehat{P}, and let T be the intersection of \widehat{T} with $E(K)$. Then $T \cap Q$ gives rise to a pair of graphs $\left\{G_{T}, G_{Q}^{T}\right\}$, where G_{T} is a "double cover" of G_{P}, and each edge of G_{Q} corresponds to a bigon of G_{Q}^{T}. Let $i 1, i 2$ be the vertices of G_{T} corresponding to i-th vertex of G_{P} such that they appear in
the same order as the vertices of G_{P}. Thus $11,12,21,22, \ldots, p 1, p 2$ appear along $\partial E(K)$ in this order. In particular, each level u-edge (v-edge, resp.) of G_{Q} yields an S-cycle in G_{Q}^{T} with label-pair $\{u 1, u 2\}$ ($\{v 1, v 2\}$, resp.).

By Lemma 3.6, D_{α} contains a pair of two-cornered faces sharing a level α-edge. These give an S-cycle σ_{α} and two faces f_{α}, g_{α} adjacent to σ_{α}. Note that f_{α} and g_{α} contain only $(\alpha 2,(\alpha+1) 1)$ and $((\alpha-1) 2, \alpha 1)$ corners. By Lemma 3.6 , we may assume that f_{α} contains only one ($\alpha 1, \alpha 2$)-edge, which is an edge of σ_{α}. Also remark that f_{α} contains only one $((\alpha+1) 1,(\alpha-1) 2)-$ edge. By the construction of \widehat{T}, there are disjoint annuli in \widehat{T}, which contain the edges of σ_{u} and σ_{v} respectively. Note that the centerlines of these annuli are essential on \widehat{T}.

Lemma 3.8. u and v are not adjacent on $\partial E(K)$.
Proof. Assume that u and v are adjacent. For simplicity, let $u=2$ and $v=3$.

Let X be the number of x-faces. As in the proof of Lemma 3.5, $X \geq$ $r / 2+1$. Thus $r \leq 2 X-2$.

Let X_{2}, X_{3} denote the number of x-faces which contain only level 2 or 3 -edges respectively, and let X_{1} be the number of x-faces containing both kinds of level edges. By Lemma 3.4, $X=X_{1}+X_{2}+X_{3}$. Count the number of occurrence of label 3 in G_{Q}. Each x-face containing only level 2-edges contains at least two occurrences of label 3 . The other x-faces contain level 3 edges, which do not lie on the boundaries. Hence $2 X_{1}+2 X_{2}+2 X_{3} \leq r$, since each label appear r times around the vertex of G_{Q}. Thus $2 X_{1}+2 X_{2}+2 X_{3} \leq$ $r \leq 2 X-2=2\left(X_{1}+X_{2}+X_{3}\right)-2$, which is a contradiction.

Let Λ_{u} (Λ_{v}, resp.) be the subgraph of G_{T} consisting of four vertices $u 1, u 2,(u-1) 2,(u+1) 1\left(v 1, v 2,(v-1) 2,(v+1) 1\right.$, resp.) and the edges of σ_{u}, ∂f_{u} and $\partial g_{u}\left(\sigma_{v}, \partial f_{v}, \partial g_{v}\right.$, resp.). As noted in the proof of Lemma 3.6, g_{u} and g_{v} have at least three sides, and hence Λ_{u} and Λ_{v} are connected. Hence there is an annulus A_{u} (A_{v}, resp.) in \widehat{T} which contains the edges of σ_{u}, ∂f_{u} and $\partial g_{u}\left(\sigma_{v}, \partial f_{v}, \partial g_{v}\right.$, resp.). By Lemma 3.8, the vertices $u 1, u 2, v 1, v 2$, $(u-1) 2,(u+1) 1,(v-1) 2,(v+1) 1$ are distinct. We may assume that A_{u} and A_{v} are disjoint, and that one boundary component of $A_{u}\left(A_{v}\right.$, resp.) is very near to the edges of $\sigma_{u}\left(\sigma_{v}\right.$, resp.). Moreover, these boundary components bound Möbius bands M_{u} and M_{v}, respectively, in $N(\widehat{P})$ meeting the core of the attached solid torus V in a single point. (Consider the union of the bigon face of σ_{α} and the 1 -handle H bounded by the vertices $\alpha 1, \alpha 2$. By shrinking H radially to its core, we obtain a Möbius band, and then perturb it to be transverse to the core of V.)

Let q_{u} be the number of vertices contained in A_{u}. Let H_{1} and H_{2} are disjoint 1-handles on V bounded by the vertices of $(u-1) 2$ and $u 1, u 2$ and $(u+1) 1$. Consider $W_{u}=N\left(A_{u} \cup H_{1} \cup H_{2} \cup f_{u} \cup g_{u}\right) \subset K(r)-\operatorname{Int} N(\widehat{P})$.

Lemma 3.9. ∂W_{u} consists of one or two tori.
Proof. Let $W_{u}^{\prime}=N\left(A_{u} \cup H_{1} \cup H_{2}\right)$. Then W_{u}^{\prime} is a handlebody of genus three. Since ∂f_{u} is non-separating on ∂W_{u}^{\prime}, attaching a 2-handle $N\left(f_{u}\right)$ gives a genus two surface from ∂W_{u}^{\prime}.

We claim that ∂f_{u} and ∂g_{u} are not parallel on ∂W_{u}^{\prime}. If ∂f_{u} and ∂g_{u} are parallel on ∂W_{u}^{\prime}, then these represent the same element of $\pi_{1}\left(W_{u}^{\prime}\right)$. Taking as a base "point" a subdisk of A_{u} as shown in Figure 4, we have $\pi_{1}\left(W_{u}^{\prime}\right)=$ $\left\langle x_{1}, x_{2}, y\right\rangle$, where $x_{1}\left(x_{2}\right.$, resp.) is represented by a core of $H_{1}\left(H_{2}\right.$, resp.) going from vertex ($u-1$) $2(u 2$, resp.) to vertex $u 1((u+1) 1$, resp.), and y is represented by the edge of σ_{u} not in the base "point" going from vertex $u 1$ to vertex $u 2$. We may assume that the ($u 1, u 2$)-edge on ∂f_{u} is contained in the base "point". Then ∂f_{u} never contain $x_{1} y x_{2}$, although ∂g_{u} contains it (in the appropriate directions). This is because ∂f_{u} contains just one $(u 1, u 2)$-edge. Therefore ∂f_{u} and ∂g_{u} are not parallel on ∂W_{u}^{\prime}, and then ∂W_{u} cannot be a union of a 2 -sphere and a genus two surface. Thus ∂W_{u} is a torus or two tori according to whether the attaching sphere of $N\left(g_{u}\right)$ is non-separating or separating on $\partial\left(W_{u}^{\prime} \cup N\left(f_{u}\right)\right)$.

Figure 4.
Then ∂W_{u} contains a torus F containing A_{u}, since $W_{u} \cap \widehat{T}=A_{u}$. Note that the core of A_{u} is essential on F. If not, one component of ∂A_{u} bounds a disk D in $K(r)-N(\widehat{P})$. Then $M_{u} \cup D$ or $M_{u} \cup A_{u} \cup D$ is a projective plane in $K(r)$. Take a parallel copy D^{\prime} of D in $K(r)-N(\widehat{P})$, so that D^{\prime} is disjoint from A_{u}. Then the union of D^{\prime}, M_{v} and the annulus on \widehat{T} bounded by ∂D^{\prime} and ∂M_{v}, which is disjoint from A_{u}, forms another projective plane in $K(r)$. Thus $K(r)$ contains two disjoint projective planes, but this is impossible, because $H_{1}(K(r))$ would be non-cyclic.

Let A_{u}^{\prime} be the remaining annulus of the torus. By the construction, A_{u}^{\prime} meets the core of V in at most $q_{u}-4$ points. Similarly, we obtain an annulus A_{v}^{\prime} by using f_{v}, g_{v}.

The edges of σ_{u} and σ_{v} separate \widehat{T} into two annuli B_{1} and B_{2}. Each $\operatorname{Int} B_{i}$ contains $p-2$ vertices, since G_{T} is a double cover of G_{P}. We may assume that the edges of ∂f_{u} and ∂g_{u} are contained in B_{1}.

First assume that the edges of $\partial f_{v}, \partial g_{v}$ are contained in B_{1}. Let $B_{1}^{\prime} \subset B_{1}$ be the annulus region bounded by ∂A_{u}^{\prime} and ∂A_{v}^{\prime}. Then the union $M_{u} \cup A_{u}^{\prime} \cup$ $B_{1}^{\prime} \cup A_{v}^{\prime} \cup M_{v}$ gives a new Klein bottle in $K(r)$, which meets the core of V in at most $p-4$ points. This contradicts the minimality of p.

Next assume that the edges of $\partial f_{v}, \partial g_{v}$ are contained in B_{2}. Let $B_{1}^{\prime \prime} \subset B_{1}$ be the annulus region bounded by ∂A_{u}^{\prime} and ∂A_{v}. Then the union $M_{u} \cup A_{u}^{\prime} \cup$ $B_{1}^{\prime \prime} \cup M_{v}$ gives a new Klein bottle in $K(r)$, which meets the core of V in at most $p-2$ points, a contradiction.

Thus we have proved Theorem 1.1 when $p>1$.

4. Special case.

In this section, we consider the case where $p=1$. Assign the points of $\partial P \cap \partial Q$ the labels $1,2, \ldots, r$ along ∂Q sequentially. Then the labels are also sequential along ∂P, since r is integral.

Lemma 4.1. If G_{Q} has parallel edges, then $r=4$.
Proof. This is Lemma 4.2 in [T1].
Thus we may assume that G_{Q} has no parallel edges hereafter.
Lemma 4.2. If two edges of G_{P} are parallel, then their endpoints appear alternately around the vertex of G_{P}.

Proof. This follows from that all edges of G_{P} are negative.
Lemma 4.3. Suppose that G_{Q} contains a separating edge e. Then one component of $Q-e$ contains no edge of G_{Q}.

Proof. Assume that each component of $Q-e$ contains an edge e_{1} and e_{2} respectively. Since G_{P} consists of at most two parallel families of (negative) edges (cf. [T1, Section 4]), some two of e, e_{1}, e_{2} are parallel in G_{P}. But this is impossible by Lemma 4.2.

Lemma 4.4. If G_{Q} contains a separating edge, then $r \leq 4 g$.
Proof. Let e be a separating edge in G_{Q}, and let Q_{1} and Q_{2} be the components of $Q-e$. By Lemma 4.3, we may assume that Q_{2} contains no edge. If Q_{1} contains a separating edge e_{1}, then e and e_{1} are not parallel in G_{P} by Lemma 4.2. If $r>4$, then G_{Q} contains another edge e_{2}, which is parallel to e or e_{1} in G_{P}. But Lemma 4.2 gives a contradiction. Hence we may assume
that Q_{1} contains no separating edges. In fact, no edge in Q_{1} is parallel to e in G_{P} by Lemma 4.2. Thus G_{P} consists of e and a parallel family of $r / 2-1$ edges. By examining the labels of edges, we see that G_{Q} has just three faces.

For \widehat{Q}, we have

$$
1-\frac{r}{2}+\sum_{f: \text { a face of } G_{Q}} \chi(f)=2-2 g
$$

Thus $\sum \chi(f)=1-2 g+r / 2$. Here $\sum \chi(f)=\sum_{f \neq Q_{2}} \chi(f)+\chi\left(Q_{2}\right) \leq$ $\sum_{f \neq Q_{2}} \chi(f)-1$. Thus $2-2 g+r / 2 \leq \sum_{f \neq Q_{2}} \chi(f)$. Since G_{Q} has at most two disk faces, $2-2 g+r / 2 \leq 2$, and therefore $r \leq 4 g$.

Lemma 4.5. If G_{Q} contains no separating edges, then $r \leq 4 g+4$.
Proof. Recall that G_{P} consists of at most two families A and B of parallel edges. Let $|A|,|B|$ denote the number of edges in A and B respectively. Since $|A|+|B|=r / 2$ is even, $|A|$ and $|B|$ have the same parity.

If $|A|$ and $|B|$ are even, then we see that G_{Q} has just one face by examining the labels of edges. See Figure 5.

Figure 5.

Then $1-r / 2+\sum \chi(f)=2-2 g$, and thus $1-2 g+r / 2=\sum \chi(f) \leq 1$. Therefore $r \leq 4 g$.

If $|A|$ and $|B|$ are odd, then G_{Q} has just three faces. Thus $1-2 g+r / 2=$ $\sum \chi(f) \leq 3$, and then $r \leq 4 g+4$.

Lemmas 4.4 and 4.5 give the proof of Theorem 1.1 when $p=1$. In fact, we can give the same upper bound $4 g+4$ by a 4 -dimensional technique. We thank Seiichi Kamada for this suggestion. Consider $S^{3}=\partial B^{4}$. The knot K bounds P and Q. Then pushing P slightly into B^{4} gives a closed non-orientable surface $P \cup Q$ embedded in B^{4}. Note $\chi(P \cup Q)=-2 g$, where g is the genus of Q. By Whitney-Massey Theorem (cf. [K]), the Euler number $e(P \cup Q)$ can vary between $2 \chi(P \cup Q)-4$ and $4-2 \chi(P \cup Q)$. Thus $|e(P \cup Q)| \leq 4 g+4$. But $e(P \cup Q)$ is equal to the self-intersection number of $P \cup Q$, which is exactly the boundary slope of P (see $[\mathbf{K}]$).

5. Extremal case.

In this section, we examine the extremal case where $r=4 g+4$, and prove Theorem 1.2. Recall that the points of $\partial P \cap \partial Q$ are labeled $1,2, \ldots, r$ sequentially along ∂P (and ∂Q) as in Section 4.

Assume $r=4 g+4$. By the proof of Lemma 4.5, G_{P} consists of two parallel families A and B such that $m=|A|$ and $n=|B|$ are odd. In fact, $|A|,|B|>1$, otherwise G_{Q} contains a trivial loop. Let $a_{1}, a_{2}, \ldots, a_{m}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be the edges of A and B respectively, where they are numbered successively. That is, a_{i} has labels i and $i+m$, and b_{j} has $2 m+j$ and $2 m+n+j$. See Figure 6, where the two end circles of the cylinder are identified with a suitable involution to form a Klein bottle \widehat{P}.

Figure 6.

Lemma 5.1. K is fibered.
Proof. Let $W=E(K)-\operatorname{Int} N(Q)$. Then ∂W consists of two copies of Q, Q_{0} and Q_{1} say, and an annulus δ. We show that W has a product structure $Q \times[0,1]$ such that $Q \times\{0\}=Q_{0}$ and $Q \times\{1\}=Q_{1}$. Then the result immediately follows from this.

We see that $P \cap W$ consists of a 4 -gon D_{4} and $(m-1)+(n-1)$ bigons. See Figure 6. For such a bigon $D, \partial D \cap Q_{0}$ and $\partial D \cap Q_{1}$ correspond to edges of G_{Q} and $\partial D \cap \delta$ is two spanning arcs of δ. For example, if D corresponds to the bigon face of G_{P} between a_{1} and a_{2}, then $\partial D \cap Q_{0}$ and $\partial D \cap Q_{1}$ correspond to a_{1} and a_{2}, respectively. Cut W along these bigons. Let W^{\prime} be the resulting manifold. That process cuts Q_{i} into a disk for each i, since Q_{0} is cut along arcs corresponding to $a_{1}, a_{2}, \ldots, a_{m-1}, b_{1}, b_{2}, \ldots, b_{n-1}$, and Q_{1} is cut along $a_{2}, a_{3}, \ldots, a_{m}, b_{2}, b_{3}, \ldots, b_{n}$. By the irreducibility of $E(K)$, W^{\prime} is a 3 -ball. Thus W has a product structure as desired.

Thus W is identified with $Q \times[0,1]$, and $E(K)$ is identified with a mapping torus $Q \times[0,1] /(x, 1)=(f(x), 0)$, where f is a homeomorphism of Q. Let Q_{i} denote $Q \times\{i\}$ in $W=Q \times[0,1]$. In fact, it is convenient to regard f as the map from Q_{1} to Q_{0}.

Let us keep using the notation in the proof of Lemma 5.1. To clarify the argument, we regulate P in $E(K)$ up to isotopy. In the same way as [FH, Proposition 2.1], P can be isotoped to be monotone except for just one saddle point in $\operatorname{Int} P$ with respect to the bundle structure of $E(K)$. Furthermore, we may assume that $2 m+2 n$ arcs on δ coming from ∂P and $m+n-2$ disks in $W=Q \times[0,1]$ coming from the bigon faces of G_{P} are all saturated (that is, the unions of I-fibers) with respect to the product structure of W. Finally, we isotope the 4 -gon D_{4} of $P \cap W$ such that $\left.\pi\right|_{D_{4}}$ is an embedding except for four arcs on δ, where $\pi: W=Q \times[0,1] \rightarrow Q_{1}$ denotes the natural projection.

Hereafter, we regard the edges a_{i}, b_{j} of G_{Q} as the arcs on Q_{0}. This means that each $a_{i}, 1 \leq i \leq m-1$, appears as the intersection of Q_{0} and the disk which corresponds to a bigon face of G_{P} between a_{i} and a_{i+1}, and the arc a_{m} is one of the arcs of $D_{4} \cap Q_{0}$. Further, we set $a_{i}^{\prime}=\pi\left(a_{i}\right)$ on Q_{1}. Then $a_{i+1}=f\left(a_{i}^{\prime}\right)$ holds for each $i=1,2, \ldots, m-1$.

Lemma 5.2. K is composite.
Proof. Let us introduce two more arcs on Q_{0} as follows.
First, let $a_{m+1}=f\left(a_{m}^{\prime}\right)$. Recall that the endpoints of a_{i} are labeled by i and $m+i$ and those of b_{j} are labeled by $2 m+j$ and $2 m+n+j$. Thus the action of f is cyclic on the set of the endpoints of a_{i}, b_{j}, and so the labels of the endpoints of a_{m+1} are $m+1$ and $2 m+1$.

Claim 5.3. a_{m+1} is disjoint from $a_{2}, a_{3}, \ldots, a_{m}$ and meets a_{1} in only the endpoint with label $m+1$.

Proof. Clearly, a_{m} is disjoint from a_{i}, and so a_{m}^{\prime} is disjoint from $a_{i}^{\prime}, 1 \leq i \leq$ $m-1$. This implies that $a_{m+1}=f\left(a_{m}^{\prime}\right)$ is disjoint from $a_{i+1}=f\left(a_{i}^{\prime}\right)$ for $1 \leq i \leq m-1$. Furthermore, since $D_{4} \cap Q_{0}=a_{m} \cup b_{n}, D_{4} \cap Q_{1}=f^{-1}\left(a_{1}\right) \cup$ $f^{-1}\left(b_{1}\right)$ and $\left.\pi\right|_{D_{4}}$ is embedding except for four arcs on δ, a_{m}^{\prime} meets $f^{-1}\left(a_{1}\right)$
in a single point. Hence $a_{m+1}=f\left(a_{m}^{\prime}\right)$ meets a_{1} in only the endpoint with label $m+1$.

Next, we give an orientation to each edge of G_{Q} so that it runs from the endpoint with smaller label to the other, and let e be the arc on Q_{0} obtained as the product $a_{1} * a_{m+1}$. By the observations above, the endpoints of e have the labels of 1 and $2 m+1$, and e is disjoint from a_{2}, \ldots, a_{m}.

Claim 5.4. e is separating and essential in Q_{0}.
Proof. Recall that G_{Q} has just three disk faces. One of the disk faces, denoted by D_{a}, is bounded by the edges $a_{1}, a_{2}, \ldots, a_{m}$ together with subarcs of ∂Q_{0}. Another one D_{b} is bounded by the edges $b_{1}, b_{2}, \ldots, b_{n}$ and the other one $D_{a b}$ is bounded by the edges $a_{1}, a_{2}, \ldots, a_{m}, b_{1}, b_{2}, \ldots, b_{n}$ together with subarcs of ∂Q_{0}.

Since the labels of the endpoints of a_{m+1} are $m+1$ and $2 m+1$, the arc a_{m+1} is contained in the disk face $D_{a b}$. Thus e is also contained in $D_{a b}$, and so it is a diagonal arc which separates $D_{a b}$. Moreover, since the labels of the endpoints of e are 1 and $2 m+1$, the endpoints separate $\partial D_{a b}$ into two parts one of which contains a_{i} 's only and the other contains b_{j} 's only. This indicates that e is separating and essential on Q_{0}.

Now, we consider the closed surface $\overline{Q_{i}}$ which is obtained by shrinking ∂Q_{i} to a single point y_{i} for $i=0,1$. We abuse the notations for the arcs and the faces on $\overline{Q_{i}}$ corresponding to those on Q_{i}. Let \bar{f} be the homeomorphism from $\overline{Q_{1}}$ to $\overline{Q_{0}}$ induced from f.

Claim 5.5. $\bar{f}\left(e^{\prime}\right)$ is isotopic to e fixing y_{0}, where $e^{\prime}=\pi(e)$ in Q_{1}.
Proof. Let $\left[a_{i}\right],\left[a_{i}^{\prime}\right], 1 \leq i \leq m+1$, and $[e],\left[e^{\prime}\right]$ be the elements of $\pi_{1}\left(\overline{Q_{0}}, y_{0}\right)$ and $\pi_{1}\left(\overline{Q_{1}}, y_{1}\right)$ represented by the corresponding ones.

Let R be the polygon bounded by e and $a_{1}, a_{2}, \ldots, a_{m}$ in $D_{a b}$. Then, under the above setting, ∂R is represented as

$$
a_{1} * a_{2}^{-1} * a_{3} * a_{4}^{-1} * \cdots * a_{m} * e^{-1}
$$

Then, this gives the relation

$$
[e]=\left[a_{1}\right]\left[a_{2}\right]^{-1}\left[a_{3}\right]\left[a_{4}\right]^{-1} \ldots\left[a_{m}\right]
$$

and so we have

$$
\left[e^{\prime}\right]=\left[a_{1}^{\prime}\right]\left[a_{2}^{\prime}\right]^{-1}\left[a_{3}^{\prime}\right]\left[a_{4}^{\prime}\right]^{-1} \ldots\left[a_{m}^{\prime}\right]
$$

Also ∂D_{a} is represented as

$$
a_{1} * a_{m} * a_{m-1}^{-1} * a_{m-2} * a_{m-3}^{-1} * \cdots * a_{2}^{-1}
$$

This gives

$$
\left[a_{1}\right]=\left[a_{2}\right]\left[a_{3}\right]^{-1}\left[a_{4}\right]\left[a_{5}\right]^{-1} \ldots\left[a_{m}\right]^{-1}
$$

Let $\bar{f}_{*}: \pi_{1}\left(\overline{Q_{1}}, y_{1}\right) \rightarrow \pi_{1}\left(\overline{Q_{0}}, y_{0}\right)$ be the homomorphism induced from \bar{f}. Then

$$
\begin{aligned}
f_{*}\left(\left[e^{\prime}\right]\right) & =f_{*}\left(\left[a_{1}^{\prime}\right]\left[a_{2}^{\prime}\right]^{-1}\left[a_{3}^{\prime}\right]\left[a_{4}^{\prime}\right]^{-1} \ldots\left[a_{m}^{\prime}\right]\right) \\
& =\left[a_{2}\right]\left[a_{3}\right]^{-1}\left[a_{4}\right]\left[a_{5}\right]^{-1} \ldots\left[a_{m}\right]^{-1}\left[a_{m+1}\right] \\
& =\left[a_{1}\right]\left[a_{m+1}\right]=[e] .
\end{aligned}
$$

Therefore two loops e and $f\left(e^{\prime}\right)$ are homotopic on $\overline{Q_{0}}$ fixing y_{0}, and hence isotopic.

As a result, we can obtain an essential, separating annulus in $E(K)$, each of whose boundary circles meets the longitude of K in a single point, from $e \times[0,1] \subset W$. By [BZ, Lemma 15.26], such an annulus comes from a decomposing sphere or a cabling annulus for K. This concludes that K is composite.

Proof of Theorem 1.2. By Lemma 5.2, K is composite. Then by [T2], K is the connected sum of two 2 -cabled knots K_{1} and K_{2}. Let K_{i} be the $\left(2, m_{i}\right)$-cable of a knot \widetilde{K}_{i} for $i=1,2$. Then $r=2 m_{1}+2 m_{2}$ [T2]. Also,

$$
g(K)=\frac{\left|m_{1}\right|-1}{2}+\frac{\left|m_{2}\right|-1}{2}+2 g\left(\widetilde{K}_{1}\right)+2 g\left(\widetilde{K}_{2}\right)
$$

by $[\mathbf{S}]$. Since $|r|=4 g(K)+4$,

$$
2\left|m_{1}+m_{2}\right|=2\left|m_{1}\right|+2\left|m_{2}\right|+8 g\left(\widetilde{K}_{1}\right)+8 g\left(\widetilde{K}_{2}\right) .
$$

Thus m_{1} and m_{2} have the same sign and $g\left(\widetilde{K}_{1}\right)=g\left(\widetilde{K}_{2}\right)=0$, and hence K_{i} is the $\left(2, m_{i}\right)$-torus knot. This completes the Proof of Theorem 1.2.

Finally, we give the examples of hyperbolic knots which show that the estimation of Corollary 1.3 is sharp for each genus g.

Figure 7.

Example 5.6. For genus one case, the figure eight knot is such an example as mentioned in Section 1. Let $n \geq 2$ and let K be the ($2,3,2 n-3$)-pretzel knot. (When $n=2, K$ is 2 -bridge, and it is 6_{2} in the knot table $[\mathbf{R}]$.) Then
K is hyperbolic [$\mathbf{K w}$], and it obviously bounds a once-punctured Klein bottle whose boundary has the slope $4 n$. Also, K has genus n, since the Seifert surface shown in Figure 7 has minimal genus by [G1, G2].

References

[A] I. Agol, Bounds on exceptional Dehn filling, Geom. Topol., 4 (2000), 431-449, MR 2001j:57019, Zbl 0959.57009.
[BH] S. Bleiler and C. Hodgson, Spherical space forms and Dehn filling, Topology, 35 (1996), 809-833, MR 97f:57007, Zbl 0863.57009.
[BZ] G. Burde and H. Zieshang, Knots, de Gruyter Studies in Mathematics, 5, Walter de Gruyter \& Co., Berlin, 1985, MR 87b:57004, Zbl 0568.57001.
[CGLS] M. Culler, C. McA. Gordon, J. Luecke and P. Shalen, Dehn surgery on knots, Ann. Math., 125 (1987), 237-300, MR 89c:57015, Zbl 0633.57006.
[FH] W. Floyd and A. Hatcher, Incompressible surfaces in punctured-torus bundles, Topology Appl., 13 (1982), 263-282, MR 83h:57015, Zbl 0493.57004.
[G1] D. Gabai, The Murasugi sum is a natural geometric operation, In LowDimensional Topology (San Francisco, Calif., 1981), 131-143, Contemp. Math., 20, Amer. Math. Soc., Providence, RI, 1983, MR 85d:57003, Zbl 0524.57004.
[G2] , Genera of the arborescent links, Mem. Amer. Math. Soc., 59 (1986), 1-98, MR 87h:57010, Zbl 0585.57003.
[GL] C. McA. Gordon and J. Luecke, Dehn surgeries on knots creating essential tori, I, Comm. Anal. Geom., 3 (1995), 597-644, MR 96k:57003, Zbl 0865.57015.
[HM] C. Hayashi and K. Motegi, Only single twists on unknots can produce composite knots, Trans. Amer. Math. Soc., 349 (1997), 4465-4479, MR 98b:57010a, Zbl 0883.57005.
$[\mathrm{H}] \quad \mathrm{J}$. Hoffman, There are no strict great x-cycles after a reducing or P^{2} surgery on a knot, J. Knot Theory Ramifications, 7 (1998), 549-569, MR 99h:57008, Zbl 0912.57009.
[K] S. Kamada, Nonorientable surfaces in 4-space, Osaka J. Math., 26 (1989), 367385, MR 91g:57022, Zbl 0705.57015.
[Kw] A. Kawauchi, Classification of pretzel knots, Kobe J. Math., 2 (1985), 11-22, MR 87c:57005, Zbl 0586.57005.
[L] J. Luecke, Dehn surgery on knots in the 3-sphere, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zurich, 1994), 585-594, Birkhauser, Basel, MR 97h:57019, Zbl 0855.57005.
[R] D. Rolfsen, Knots and Links, Mathematics Lecture Series, 7, Publish or Perish, Inc., Berkeley, Calif., 1976, MR 95c:57018, Zbl 0339.55004.
[S] H. Schubert, Knoten und Vollringe, Acta Math., 90 (1953), 131-286, MR 17,291d, Zbl 0051.40403.
[T1] M. Teragaito, Creating Klein bottles by surgery on knots, J. Knot Theory Ramifications, $\mathbf{1 0}$ (2001), 781-794, MR 2002f:57017, Zbl 1001.57039.
[T2] , Dehn surgeries on composite knots creating Klein bottles, J. Knot Theory Ramifications, 8 (1999), 391-395, MR 2000g:57014, Zbl 0937.57020.

Received October 22, 2001 and revised July 20, 2002. The first author is supported in part by JSPS Research Fellowships for Young Scientists, and the second author is partially supported by Japan Society for the Promotion of Science, Grant-in-Aid for Encouragement of Young Scientists 12740041, 2001.

Department of Information and Computer Sciences
Faculty of Science, Nara Women's University
Kita-Uoya Nishimachi, Nara 630-8506, Japan
E-mail address: ichihara@vivaldi.ics.nara-wu.ac.jp
Department of Mathematics and Mathematics Education
Hiroshima University, 1-1-1 Kagamiyama
Higashi-hiroshima 739-8524, Japan
E-mail address: teragai@hiroshima-u.ac.jp
This paper is available via http://www.pacjmath.org/2003/210-2-7.html.

