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ABSTRACT- Since Henze discovered vanadium in the blood (or coelomic) cells of an 

ascidian in 1911, this unusual phenomenon has attracted the interest of many 

investigators.  The highest concentration of vanadium (350 mM) in the blood cells of 

Ascidia gemmata, which belongs to the suborder Phlebobranchia, is 107 times higher 

than that in sea water.  Of the approximately ten types of blood cells, a combination of 

cell fractionation and neutron-activation analysis revealed that the signet ring cells were 

the true vanadocytes.  In the vanadocytes, 97.6% of the vanadium is in the +3 oxidation 

state (III).  The extremely low pH of 1.9 found in vanadocytes suggests that protons, 

concentrated by an H+-ATPase, might be linked to the accumulation of vanadium 

energetically.  The antigen recognized by a monoclonal antibody, S4D5, prepared to 

identify vanadocytes, was determined to be 6-PGDH in the pentose phosphate pathway.  

NADPH produced in the pentose phosphate pathway in vanadocytes is thought to 

participate in the reduction of vanadium(V) to vanadium(IV).  During embryogenesis, a 

vanadocyte-specific antigen first appears in the body wall at the same time as significant 

accumulations of vanadium become apparent.  Three different vanadium-associated 

proteins (VAPs) were extracted from the blood cells of vanadium-rich ascidians.  These 

are 12.5, 15, and 16 kDa in size and are associated with vanadium in an approximate 

ratio of 1:16.  The cDNA encoding the 12.5 and 15 kDa VAPs was isolated and the 

proteins encoded were found to be novel.  Further biochemical and biophysical 

characterization of the VAPs is in progress. 

 

Discovery of Vanadium-Containing Ascidians 

In 1911, a German physiological chemist, Martin Henze, discovered high levels 

of vanadium in the blood (or coelomic) cells of an ascidian collected from the Bay of 

Naples (Henze, 1911).  Ascidians, known as tunicates or sea squirts, possess a 

notochord, a dorsal nerve and pharyngeal gill slits and belong to the phylum Chordata, 

which is an evolutionary link between the Invertebrata and the Vertebrata.  His 

discovery attracted the attention of chemists, physiologists, and biochemists for two 

reasons.  There was initial interest in the extraordinarily high levels of vanadium, which 

had never been reported in other organisms.  There was also considerable interest in the 

possible role of vanadium in oxygen transport as a third possible prosthetic group in 

respiratory pigments in addition to iron and copper.  Much of the interest developed 
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because vanadium was found in ascidians, which are phylogenically intermediate 

between the Invertebrata and the Vertebrata. 

Since many review articles on the accumulation of vanadium by ascidians have 

been published (Biggs et al, 1976; Boyd and Kustin, 1985; Goodbody, 1974; Kustin et 

al., 1983; Kustin and Robinson, 1995; Michibata, 1989, 1993, 1996; Michibata and 

Sakurai, 1990; Michibata and Kanamori, 1998; Michibata et al, 1998), we now focus 

attention on vanadocytes, the vanadium-containing blood cells, which must hold the key 

to resolving this extremely unusual phenomena of accumulating excessive amounts of 

vanadium. 

 

Concentration of Vanadium in Ascidian Tissues 

After Henze (1911) initially discovered vanadium in ascidian blood cells, 

several analytical chemists looked for vanadium in many species of ascidians.  It is 

difficult, however, to quantitatively assay transition metals, including vanadium.  A 

variety of analytical methods has been applied, including colorimetry, emission 

spectrometry, and atomic absorption spectrometry.  Besides vanadium, niobium, 

chromium, tantalum, tungsten, and titanium have also been found in ascidians, although 

not all the results are reproducible (CantacuzÎne and Tchekirian, 1932; Vinogradov, 

1934; Kobayashi, 1935; Webb, 1939; Noddack and Noddack, 1939; Bertrand 1950; 

Boeri, 1952; Lybing, 1953; Boeri and Ehrenberg, 1954; Webb, 1956; Levine, 1961; 

Bielig et al., 1954, 1961a, b, c, 1966; Kalk, 1963a, b; Ciereszko et al., 1963; Rummel et 

al., 1966; Carlisle, 1968; Swinehart et al., 1974; Danskin, 1978; Botte et al., 1979a, b; 

Hawkins et al., 1980a).  Early data could not be compared directly, since the sensitivity 

and precision of the techniques varied considerably and the results were reported in 

terms of dry weight, wet weight, ash weight, inorganic dry weight, or amount of protein.  

This presented problems to researchers studying the physiology of vanadium 

accumulation in ascidians.  About 20 years ago, we planned to quantify the vanadium 

levels in several tissues definitively using neutron-activation analysis, which is an 

extremely sensitive method for quantifying vanadium.  We collected many species of 

ascidians, belonging to the Phlebobranchia and Stolidobranchia, two of the three 

suborders, from the Mediterranean and from the waters around Japan.  Eight samples 

were taken from each specimen for analysis: blood cells, plasma, tunic, mantle (muscle), 
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branchial basket, stomach, hepatopancreas, and gonad.  These were subjected to 

neutron-activation analysis in a nuclear reactor (Michibata, 1984; Michibata et al., 

1986). 

The data results are summarized in Table 1.  Although vanadium was detected 

in samples from almost every species examined, the ascidians belonging to the suborder 

Phlebobranchia appeared to contain higher levels of vanadium than those belonging to 

the Stolidobranchia.  Of the tissues examined, we confirmed that blood cells contain the 

highest amounts of vanadium.  The highest concentration of vanadium (350 mM) was 

found in the blood cells of Ascidia gemmata belonging to the suborder Phlebobranchia 

(Michibata et al., 1991a).  This concentration is 107 times higher than that in seawater 

(Cole et al., 1983; Collier, 1984).  Levels of iron and manganese, determined 

simultaneously, did not vary much between the members of the two suborders 

(Michibata et al., 1991a). 

 

Isolation of Blood Cells Containing Vanadium  

Of the ascidian tissues examined, blood cells were confirmed to contain the 

highest amounts of vanadium.  However, there are between nine and eleven different 

types of ascidian blood cells, which are grouped into six categories on the basis of their 

morphology: hemoblasts, lymphocytes, leukocytes, vacuolated cells, pigment cells, and 

nephrocytes (cf. Wright, 1981).  The vacuolated cells can be further divided into at least 

four different types: morula cells, signet ring cells, compartment cells, and small 

compartment cells.  Which of these cell types were the vanadium-containing blood cells 

(vanadocytes) was a subject of controversy.  For many years, the morula cells were 

thought to be the so-called vanadocytes (Webb, 1939; Endean, 1960; Kalk, 1963a, b; 

Kustin et al., 1976).  With the increasing availability of scanning transmission electron 

microscopes equipped with an energy dispersing X-ray detector at the end of the 1970’s, 

it became possible to address the question of whether the morula cells were the 

vanadocytes with greater confidence.  An Italian group was the first to demonstrate that 

the characteristic X-rays of vanadium were not detected in morula cells, but were seen 

in granular amoebocytes, signet ring cells, and compartment cells.  Moreover, 

vanadium was selectively concentrated in the vacuolar membranes of these cells, and 

vanadium granules were present inside the vacuoles (Botte et al., 1979b; Scippa et al., 
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1982, 1985; Rowley, 1982).  Identifying the true vanadocytes became a matter of the 

highest priority to those interested in the mechanism for the accumulation of vanadium 

by ascidians. 

We attempted to end the controversy over the identity of the true vanadocytes, 

using a combination of density gradient centrifugation, to isolate specific types of blood 

cells, and neutron-activation analysis, to quantify the vanadium content of the isolated 

subpopulations of blood cells (Michibata et al., 1987).  When blood cells were loaded 

onto a discontinuous gradient that consisted of four different concentrations of Ficoll in 

artificial seawater and the gradient was centrifuged at 100 g, the blood cells were 

partitioned into four discrete layers.  Neutron-activation analysis revealed that the 

subpopulation of cells in layer 4, dominated by signet ring cells, contained the highest 

level of vanadium.  The same experiment was repeated with three different ascidian 

species and signet ring cells were found to be the true vanadocytes in all three species 

(Michibata et al., 1990, 1991a; Hirata and Michibata, 1991) (Fig. 1). 

 

Preparing Monoclonal Antibodies against Ascidian Blood Cells 

It is necessary to establish reliable cell markers that recognize different types of 

blood cells for two reasons.  It is difficult to discriminate between several types of 

blood cells morphologically and our knowledge of the cell lineages from the so-called 

stem cells to the peripheral cells is inadequate.  We prepared a monoclonal antibody, 

which we hoped might serve as a powerful tool for solving these problems, using a 

homogenate of the subpopulation of signet ring cells from Ascidia sydneiensis samea as 

the antigen (Uyama et al., 1991).  The monoclonal antibody S4D5 reacted specifically 

with vanadocytes from A. sydneiensis samea and two additional species, A. gemmata 

and A. ahodori.  Immunoblotting analysis showed that this antibody recognized a single 

polypeptide of approximately 45 kDa in all three species.  The 45 kDa antigen was 

subsequently revealed to be 6-phosphogluconate dehydrogenase, localized in the 

cytoplasm of vanadocytes (Uyama et al, 1998a).  S8E4 monoclonal antibody, also 

specific to vanadocytes, recognized a 100 kDa antigen in the cytoplasm (Fig. 2), which 

was identified as glycogen phosphorylase (Uyama et al., 1998b).  We also obtained 

monoclonal antibodies against blood cells other than vanadocytes.  C2A4 monoclonal 

antibody reacts specifically with vacuolar amoebocytes and recognizes a single 200 kDa 
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protein (Kaneko et al., 1995).  V2C3 monoclonal antibody reacts with a 130 kDa 

polypeptide in the vacuolar membranes of vanadocytes (unpublished data). 

 

Localizing Hematopoietic Tissues with Monoclonal Antibodies 

Employing these monoclonal antibodies and the autonomous fluorescence 

emitted by each type of cell as cell markers (Wuchiyama and Michibata, 1995), we 

found that vanadocytes were distinct from morula cells, compartment cells and 

amoebocytes, and were localized in the connective tissues around the alimentary canal 

(Fig. 3) (Kaneko et al., 1995).  According to earlier reports (Kalk, 1963a; Smith, 1970a; 

Ermak, 1975, 1976), hematogenic activity is observed in three main areas of ascidians: 

(1) the connective tissues around the alimentary canal, (2) the pharyngeal wall and 

transverse vessels of the branchial basket, and (3) in discrete nodules located in the body 

wall.  Amoebocytes are also localized at site (2).  As shown in Fig. 4, most of the 

amoebocytes were localized in the transverse vessels of the branchial basket, where 

C2A4 monoclonal antibody recognized the cells.  Morula cells emitting blue-green 

fluorescence were localized just beneath the epidermis of the mantle around the visceral 

region (Kaneko et al., 1995).  These results suggest that the precursors of vanadocytes 

develop in the connective tissues, while other types of blood cells develop at other sites. 

 

Proliferation of Vanadocytes and Accumulation of Vanadium during 

Embryogenesis 

Monoclonal antibodies are also useful tools for determining when vanadium 

starts to accumulate during embryogenesis.  Since the amount of vanadium stored in 

embryos is below the limits of detection of conventional analytical methods, such as 

atomic absorption spectrometry, there are no reports on the direct determination of 

vanadium accumulated during ascidian embryogenesis.  Using neutron-activation 

analysis and an immunofluorescence method, we found that the amount of vanadium per 

individual increased dramatically two weeks after fertilization.  In A. sydneiensis 

samea, the amount accumulated in larvae after two months was about 600,000 times 

greater than that in unfertilized eggs (Michibata et al., 1992), as shown in Figure 5.  A 

vanadocyte-specific antigen, recognized by a monoclonal antibody specific to the 

vanadocytes, first appears in the body wall at the same time as the first significant 
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accumulation of vanadium (Fig. 6) (Uyama et al., 1993). 

 

Oxidation State of Vanadium in Ascidians 

Although vanadium is in the +5 oxidation state in seawater, in ascidians almost 

all the vanadium is reduced to the +3 oxidation state via the +4 oxidation state and 

stored in vanadocyte vacuoles.  Henze (1911) was the first to suggest the existence of 

vanadium in the +5 oxidation state.  Later, Lybing (1953), Bielig et al. (1954), Boeri 

and Ehrenberg (1954), and Webb (1956) reported the +3 oxidation state of vanadium.  

More recently, noninvasive physical methods, including electron spin resonance 

spectrometry (ESR), extended X-ray absorption spectrometry (EXAFS), X-ray 

absorption spectrometry (XAS), nuclear magnetic resonance spectrometry (NMR), and 

superconducting quantum interference device (SQUID), have been used to determine 

the intracellular oxidation state of vanadium.  These studies indicate that the vanadium 

ions in ascidian blood cells are predominantly in the +3 oxidation state, and a small 

amount is in the +4 oxidation state (Carlson, 1975; Tullius et al., 1980; Dingley et al., 

1981; Frank et al., 1986; Lee et al., 1988; Brand et al., 1989). 

However, these results were not derived from vanadocytes, but from the entire 

population of blood cells.  Therefore, we made noninvasive ESR measurements of the 

oxidation state of vanadium in fractionated blood cells of A. gemmata under a reducing 

atmosphere after separating the various types of blood cells (Fig. 7)(Hirata and 

Michibata, 1991).  Most of the vanadium (97.6%) in vanadocytes is in the +3 oxidation 

state, which is the most reduced state of vanadium in biological systems, while 2.4% of 

the vanadium is in the +4 oxidation state. 

 

Agents that Reduce Vanadium 

Reducing agents must participate in the accumulation of vanadium in 

vanadocytes.  Several candidates for the reduction of vanadium in ascidian blood cells 

have been proposed: tunichromes, a class of hydroxy-Dopa containing tripeptides 

(Bruening et al, 1985), glutathione, H2S, NADPH, dithiothreitol (Ryan et al., 1996), and 

thiols such as cysteine (Frank et al., 1987).  Of these, the presence of a pyrogallol 

(1,2,3-trihydroxybenzene) moiety in tunichromes suggested that tunichromes act as both 

a reducing agent and a complexing agent.  Early studies showed, however, that in vitro 
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tunichromes are only able to reduce vanadium(V) to vanadium(IV) and not  

vanadium(III) (Macara 1979a, b; Kime-Hunt et al., 1988).  The discovery that 

vanadium and tunichromes are located in separate blood cells raised further doubt about 

the participation of tunichromes in the vanadium reduction process (Michibata et al., 

1988, 1990; Oltz et al., 1988).  Furthermore, the very acidic environment of vanadium 

in tunicate blood cells (videinfra) is not good for coordination with phenolic ligands.  It 

is also predicted that catechol (cat: 1,2-dihydroxybenzene) cannot stabilize the 

vanadium(III) oxidation state.  Conversely, hard catechol-type ligands stabilize the 

highest oxidation state of the metal, and in fact [V(cat)3]3- is very sensitive to oxidation 

(Cooper et al., 1982).  Therefore, it is very unlikely that tunichromes play simultaneous 

roles as reducing and complexing agents, although they may still act as a reducing 

agent. 

Despite the identification of tunichromes as a potential reducing agent it is still 

now known how vanadium(V) is reduced to vanadium(III) in ascidians.  Recently, we 

discovered that cysteine methyl ester can reduce vanadium(IV) to vanadium(III) in the 

presence of aminopolycarboxylate in water (Kanamori et al., 1997). 

 

Localization of the Pentose Phosphate Pathway in Vanadocytes 

Recently, it was revealed that the antigen of the S4D5 monoclonal antibody 

specific to vanadocytes, is 6-phosphogluconate dehydrogenase (6-PGDH: EC1.1.1.44) 

localized in the cytoplasm of vanadocytes (Uyama et al., 1998a).  6-PGDH is the third 

enzyme in the pentose phosphate pathway.  Western blot analysis confirmed the 

abundance of 6-PGDH in vanadocytes and the soluble protein extracted from the blood 

cells also had correspondingly high levels of 6-PGDH enzymatic activity (Uyama et al, 

1998a).  Glucose-6-phosphate dehydrogenase (G6PDH: EC1.1.1.49), the first enzyme 

in the pentose phosphate pathway, was also localized immunocytologically (Fig. 8) and 

enzymatic activity in the cytoplasm of vanadocytes was confirmed (Uyama et al., 

1998b).  These two enzymes are known to produce 2 mols of NADPH in the pentose 

phosphate pathway. 

On the other hand, it has been reported that vanadium(V) stimulates the 

oxidation of NAD(P)H; specifically, vanadium(V)  is reduced to vanadium(IV) in the 

presence of NAD(P)H in vitro.  Erdmann et al (1979) first noted that vanadium(V) 
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stimulated the oxidation of NADH by plasma membranes and attributed this effect to a 

membrane-containing NAD(P)H-dependent vanadium(V) reductase.  Liochev and 

Fridovich (1990) proposed that NAD(P)H dehydrogenases or oxidases produce O2
ÿ, 

which causes vanadium(V) to stimulate NAD(P)H oxidation, and endogenous 

superoxide plays a central role in this reaction.  Shi and Dalal (1991, 1993) 

demonstrated that O2
ÿ radicals do not play a significant role in generating vanadium(IV), 

but they pointed out that vanadium(IV) is generated by the microsomal reduction of 

vanadium(V) in the presence of NAD(P)H and that vanadium(IV) formation exhibits 

typical enzymatic kinetics.  In fact, our preliminary data showed that NADPH could 

reduce vanadium(V) to vanadium(IV) in vitro (to be published elsewhere).  These 

observations suggest that NADPH conjugates the reduction of vanadium(V) to 

vanadium(IV) in the vanadocytes of ascidians, although there is controversy over the 

mechanism involved.  The pentose phosphate pathway consists of oxidative and 

nonoxidative parts.  The oxidative part converts glucose-6-phosphate into ribulose-5-

phosphate and CO2 and generates NADPH for use in reductive biosynthesis at the same 

time.  The nonoxidative part isomerizes ribulose 5-phosphate into xylulose 5-phoshate 

and ribose 5-phosphate, which are converted into fructose 6-phosphate and 

glyceraldehyde 3-phosphate by a sugar rearrangement system.  In addition to the two 

enzymes, 6-PGDH and G6PDH, in the oxidative part of the pentose phosphate pathway, 

we found that transketolase (TKL: EC2.2.1.1) (manuscript in preparation) and glycogen 

phosphorylase (EC 2.4.1.1) (Uyama et al., 1998b) are also localized in vanadocytes 

exclusively.  The former is an enzyme in the nonoxidative part of the pentose phosphate 

pathway and the latter is an enzyme that catalyzes the phosphorolysis of glycogen to 

produce glucose 1-phosphate, which is interconverted to glucose 6-phosphate, the initial 

substrate in both the pentose phosphate and Embden-Meyerhof pathways. 

 

Low pH and Energetics 

Henze (1911), the discoverer of extremely high levels of vanadium in the blood 

cells of ascidians, also reported that the homogenate of the blood cells was extremely 

acidic (Henze, 1911, 1912, 1913, 1932).  This unusual phenomenon has also attracted 

the interest of investigators because of the possible role of the highly acidic environment 

in changing or maintaining the redox potential.  We found a correlation between the 
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concentration of vanadium(III) ions and the pH within the vacuole (Michibata et al, 

1991a), as shown in Table 2.  In Ascidia gemmata, which contains the highest 

concentration of vanadium (350 mM), the vacuoles have the lowest pH (1.86).  

Vacuoles of A. ahodori containing 60 mM vanadium have a pH of 2.67, and those of A. 

sydneiensis samea containing 13 mM vanadium have a pH of 4.20 (Michibata et al., 

1991a). 

Immunocytological studies, using antibodies against subunits A and B of the 

vacuolar-type H+-ATPases (V-ATPases) developed from bovine chromaffin granules, 

show that V-ATPases are localized in the vacuolar membranes of vanadocytes (Uyama 

et al., 1994).  A specific V-ATPase inhibitor inhibits the proton pump in the vanadocyte 

vacuoles, neutralizing the vacuoles’ contents, as shown in Fig. 9 (Uyama et al., 1994).  

Therefore, one definite function of V-ATPases is to accumulate protons in the 

vanadocytes.  However, it is difficult to explain the extremely low pH observed in 

ascidian vacuoles only by the action of V-ATPases, since the maximum ΔpH that a 

V-ATPase can generate under typical physiological conditions is around 4 pH units, 

based on measured H+/ATP stoichiometry (Rea and Sanders, 1987). 

We proposed that two mechanisms are responsible for the proton accumulation 

in vanadocytes.  One is the hydrolysis of the water molecules coordinating to the 

vanadium(III) ions.  In a recent study, we showed that an extremely low pH could be 

achieved by hydrolyzing the water molecules coordinating to vanadium(III) ions 

(Kanamori et al., unpublished data).  The other mechanism involves the extremely tight 

coupling of ATP hydrolysis and proton pumping by V-ATPase in the vanadocytes.  In 

general, V-ATPase is composed of at least five different subunits, denoted as subunits A 

to E.  Of these, direct chemical labeling and sequence homology studies show that 

subunits A and B play an important role in binding and catalyzing ATP.  Therefore, as a 

first step to assess the second mechanism, we isolated and analyzed the cDNA of 

subunits A and B of V-ATPase from the blood cells of the vanadium-rich ascidian, 

Ascidia sydneiensis samea.  The nucleotide sequences of the cDNA of subunits A and B 

encoded proteins of 619 and 509 amino acids, respectively.  Both of these are highly 

conserved in ascidian species (Ueki et al., 1999).  So far, we have not found any 

evidence of other isoforms of subunits A or B in the V-ATPase from vanadocytes.  

However, it is still possible that the V-ATPase in vanadocytes is unusually tightly 
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coupled to ATPase activity and proton pumping and can generate very low pH values in 

the vacuole.  Recently, the subunit composition of V-ATPase in the lemon juice sac, 

whose vacuoles have a pH of 2.5, was reported to differ from that in other organs, and 

the authors suggested that this may be responsible for the low pH (M¸ller et al., 1997). 

 

Sulfate in Vanadocytes 

A considerable amount of sulfate is always associated with the vanadium in 

ascidian blood cells (Henze, 1932; Califano and Boeri, 1950; Bielig et al., 1954; Levine, 

1961; Botte et al., 1979a, b; Scippa et al., 1982, 1985, 1988; Bell et al., 1982; Pirie and 

Bell, 1984; Lane and Wilkes, 1988; Frank et al., 1986, 1987, 1994, 1995; Anderson and 

Swinehart, 1991).  This suggests that sulfate might participate in the accumulation and 

reduction of vanadium or play an unknown biological role.  Frank et al (1987) 

suggested the existence of a non-sulfate sulfur compound, an aliphatic sulfonic acid, in 

ascidian blood cells.  As the first step in studying the correlation between the 

accumulation and reduction of vanadium and sulfate, we determined the ratio of the 

levels of sulfate and vanadium in blood cells from the ascidian Ascidia gemmata by 

Raman spectroscopy, as shown in Figure 10.  The ratio was approximately 1.5, which is 

expected if the sulfate ions are present as the counter ions of vanadium ions in the +3 

oxidation state.  We also found evidence of an aliphatic sulfonic acid in the blood cells 

(Kanamori and Michibata, 1994). 

 

Vanadium-Associated Proteins 

It seems likely that some proteins participate in the pathway for the 

accumulation of vanadium from seawater, even though the results reported to date seem 

to indicate that in ascidians vanadium is present as either a free, non-complexed form or 

in association with low-molecular-weight components.  The route for accumulating 

vanadium ions from seawater into the blood system is still unknown.  Previous studies 

were designed to clarify the direct uptake of vanadium ions from the surrounding 

seawater.  These used radioactive vanadium ions (48V) and were, therefore, limited to 

examining how much vanadium was incorporated into certain tissues (Goldberg et al., 

1951; Bielig et al., 1963; Dingley et al., 1981; Michibata et al., 1991b), although there 

were a few exceptions (Hawkins et al., 1980b; Roman et al., 1988).  The majority of 
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the vanadium incorporated by ascidians was thought to be dissolved as ionic species or 

associated with low-molecular-weight substances rather than proteins (cf. Kustin and 

Robinson, 1995). 

Heavy metal ions incorporated into the tissues of living organisms generally 

bind to macromolecules such as proteins.  Therefore, we searched for vanadium-

binding proteins in ascidian blood cells.  Using a combination of anion-exchange 

columns and flameless atomic absorption spectrometry, we succeeded in extracting a 

vanadium-associated protein (VAP), which was estimated to associate with vanadium in 

an approximate ratio of 1:16.  SDS-PAGE revealed that the peak contained three 

peptides whose molecular weights were estimated to be 12.5, 15, and 16 kDa (Fig. 11) 

(Kanda et al, 1997).  We raised a monoclonal antibody against VAP that recognized the 

related 15 and 16 kDa peptides.  Using this antibody, VAP was found in the cytoplasm 

of vanadocytes and compartment cells (Wuchiyama et al., 1997).  Recently, we isolated 

the cDNA encoding the 12.5 and 15 kDa VAP (manuscript in preparation).  A search of 

the sequence database for similar peptides showed that VAP is a novel protein.  Further 

biochemical and biophysical characterization of VAP is in progress. 

 

Physiological Roles of Vanadium in Ascidians 

The physiological roles of vanadium remain unknown.  Recently, the 

polychaete Pseudopotamilla occelata was reported to accumulate high levels of 

vanadium (Ishii et al., 1993).  P. occelata possess two antigens that are also found in 

the ascidian Ascidia sydneiensis samea.  These antigens are recognized by a polyclonal 

antibody against VAP extracted from blood cells and a monoclonal antibody against 

vanadocytes in the vanadium-rich ascidian A. sydneiensis samea.  Therefore, it is likely 

that a similar mechanism causes vanadium accumulation in the Polychaeta and the 

Ascidiidae (Uyama et al, 1997).  The characterization of these phenomena should help 

to elucidate the reason for the unusual accumulation of vanadium by one class of marine 

organisms. 

 

Conclusions 

As mentioned above, ascidian vanadocytes are unusual cells that contain high 

levels of both vanadium and protons in their vacuoles.  Almost all of this vanadium is 

 12



reduced to the +3 oxidation state and stored in the vacuoles with high levels of sulfate.  

Enzymes from the pentose phosphate pathway are localized in the cytoplasm (Fig. 12).  

How ascidians accumulate high levels of vanadium and what purpose this serves are two 

unanswered questions that should be resolved by elucidating the functions of the 

vanadocytes. 
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Table 1. Concentrations of Vanadium in the Tissues of Several Ascidians (mM) 

 Tunic Mantle Branchial 
basket 

Serum Blood cells

Phlebobranchia      

Ascidia gemmata N.D. N.D. N.D. N.D. 347.2 

A. ahodori 2.4 11.2 12.9 1.0 59.9 

A. sydneiensis 0.06 0.7 1.4 0.05 12.8 

Phallusia 

mammillata 

0.03 0.9 2.9 N.D. 19.3 

Ciona intestinalis 0.003 0.7 0.7 0.008 0.6 

Stolidobranchia      

Styela plicata 0.005 0.001 0.001 0.003 0.007 

Halocynthia roretzi 0.01 0.001 0.004 0.001 0.007 

H. aurantium 0.002 0.002 0.002 N.D. 0.004 

N.D.: not determined. 
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Table 2.  Correlation between the Vanadium Concentration and pH in Ascidian Blood 

Cells 

Species Vanadium Concentration pH 

Ascidia gemmata 350mM 1.86 

A. ahodori 60mM 2.67 

A. sydneiensis samea 13mM 4.20 
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Fig. 1.  Morula cells (A), initially misidentified as vanadocytes, and signet ring cells 

(B), recently identified as vanadocytes, in the ascidian, Ascidia ahodori.  Scale bar 

indicates 10 micro meter. 

 

 
Fig. 2.  Immunocytological detection of S8E4 monoclonal antibody in blood cells of 

the vanadium-rich ascidian, Ascidia sydneiensis samea. 

 The blood cells shown in panels (A) and (a) were reacted with S8E4.  The 

blood cells in panels (B) and (b) were reacted with nonimmune mouse serum as a 

negative control.  The upper (A and B) and lower (a and b) panels were visualized by 

Nomarski differential-interference and fluorescence microscopy, respectively.  

Vanadocytes (signet ring cells) were recognized by S8E4 exclusively and fluoresced 

with FITC.  No immunoreactivity was observed in the other types of blood cells.  

Morula cells emitted autofluorescence faintly.  s, vanadocyte (signet ring cell); m, 
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morula cell.  Scale bar indicates 10 micro meter. 

 

 
Fig. 3.  The localization of signet ring cells as revealed by indirect 

immunofluorescence microscopy.  Clusters of dozens of signet ring cells that reacted 

with the monoclonal antibody S4D5 are observed in the connective tissues around the 

alimentary canal. Smaller blood cells, resembling signet ring cells, are found in this 

area, but were less reactive with S4D5 monoclonal antibody.  Autonomous orange-

yellow fluorescence is emitted from a type of pigment cell.  The upper photograph is a 

fluorescence micrograph and the lower one is a Nomarski differential-interference 

micrograph.  SRC, signet ring cells; SSRC, smaller signet ring cells.  Scale bar = 10 

micro meter. 
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Fig. 4.  Blood cells, flowing in the transverse vessels of the branchial basket (the 

photographs on the left), are stained for indirect fluorescence with a monoclonal 

antibody specific to amoebocytes (C2A4).  A small number of vacuolar amoebocytes 

are also observed in the connective tissue around the alimentary canal (the photograph 

on the right).  The upper photographs are fluorescence micrographs and the lower ones 

are Nomarski differential-interference micrographs.  AC, vacuolar amoebocytes.  The 

arrow indicates the transverse vessels.  Scale bar = 10 micro meter. 

 

 
Fig. 5.  Accumulation of vanadium during embryogenesis in the ascidian, Ascidia 

sydneiensis samea.  To determine when the accumulation of vanadium commences 

during embryogenesis, eggs and embryos were subjected to neutron-activation analysis.  

The levels of vanadium began to increase during embryogenesis and the amount in 
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larvae reached 2.3 micro g/individual, which was about 600,000 times higher than the 

amount in unfertilized eggs (Michibata et al., 1992).  Furthermore, a vanadocyte-

specific antigen first appeared in the body wall at the same time as the first significant 

accumulation of vanadium (Uyama et al., 1993). 

 

 
Fig.6.  Occurrence of the antigen in coelomic cells that seem to be the presumptive 

vanadocytes.  A cross-section of a 2-week-old juvenile incubated with S4D5 

monoclonal antibody was observed under Nomarski differential-interference (A) and 

fluorescence microscopes (a).  Scale bar = 50 micro meter.  Another cross-section of 

the same sample incubated with non-immune mouse serum as a negative control was 

observed in the same manner as above (B and b).  Specimens of a 3-week-old juvenile 

(C and c) and a 1.5 month juvenile (D and d) were observed after treatment with the 

monoclonal antibody. 

A vanadocyte-specific antigen, recognized by S4D5 monoclonal antibody, first appears 

in the body wall of a 2-week-old juvenile after metamorphosis.  The antigen is evident 

in the cytoplasm of vanadocytes 3 weeks and one and a half months after 

metamorphosis.  Vanadocytes recognized by S4D5 monoclonal antibody are clearly 

identified morphologically. 
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Fig. 7.  ESR spectra of Ascidia gemmata at 77K.  (a) Living cells, which were washed 

twice with 5 mL ASW and measured under a nitrogen atmosphere.  (b) Washed cells 

lysed by a freeze-thaw cycle under a nitrogen atmosphere.  (c) The same lysate 

oxidized with blowing oxygen gas: the intensity of the spectrum increased 7-fold after 2 

hours at room temperature.  (d) The same sample 24 hours later: the intensity of the 

spectrum increased 13-fold.  (e) Hydrogen peroxide added to the lysate: the spectrum 

due to vanadium(+4) has vanished. 
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Fig. 8.  Immunocytological detection of G6PDH in the vanadocytes of the vanadium-

rich ascidian, Ascidian sydneiensis samea.  The blood cells observed in panels (A) and 

(a) were reacted with anti-G6PDH antibody, while those in panels (B) and (b) were 

reacted with preimmune rabbit serum as a negative control.  The upper (A and B) and 

lower (a and b) panels are visualized by Nomarski differential-interference and 

fluorescence microscopy, respectively.  Anti-G6PDH antibody and fluorescence with 

FITC recognizes vanadocytes (signet ring cells) exclusively.  No immunoreactivity is 

observed in the other types of blood cells.  s, vanadocytes (signet ring cells).  Scale bar 

= 10 micro meter. 
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Figure 9.  Acidity of vanadocyte vacuoles and inhibition of the acidification by 

bafilomycin A1.  After incubating Ascidia sydneiensis samea blood cells with 2 ?M 

acridine orange for 1 hr, the signet ring cells (vanadocytes) emitted a brilliant vermilion 

indicating an acidic pH.  None of the other types of blood cells had an acidic pH.  

However, the addition of 1 micro M bafilomycin A1, a specific inhibitor of vacuolar 

H+-ATPase, neutralized the vanadocytes (showing green fluorescence) and inhibited the 

H+-ATPase pump.  Bafilomycin A1 did not change the color of autonomous 

fluorescence emitted from morula cells (Uyama et al, 1994).  S, Signet ring cells 

(vanadocytes); M, morula cells.  Scale bar indicates 10 micro meter. 
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Fig. 10.  Raman spectra of the blood cells of Ascidia gemmata.  High levels of sulfate 

or sulfur compounds are associated with vanadium in ascidian blood cells.  Raman 

spectrometry can determine the amounts of sulfate and vanadium in the vanadocytes 

noninvasively.  The band at 983 cm-1 and the shoulder at 995 cm-1 are derived from 

SO4
2- symmetric stretching vibration and V=O stretching vibration, respectively.  

Based on the intensities of these peaks, the ratio of SO4
2- to V3+ was calculated to be 

1.47 (Kanamori and Michibata, 1994). 

 

 
Fig. 11.  Isolation of vanadium-associated proteins (VAPs) from the blood cells of the 

vanadium-rich ascidian, Ascidia sydneiensis samea.  When the supernatant from blood 

cells is applied to a DEAE-Sephacel anion-exchange column, one major peak (Peak 1) 

containing both proteins and vanadium is obtained in fractions 3-9.  A second major 

peak (Peak 2) containing only vanadium is found in fractions 30-35, followed by 200 to 

400 mM NaCl.  The Peak 1 fractions contained 25 micro g/mL protein and 0.95  micro 

g/mL vanadium.  The Peak 2 fractions contained an inorganic vanadium species.  The 

insert is SDS-PAGE, showing that Peak 1 contains three proteins whose molecular 

weights are estimated to be 12.5, 15, and 16 kDa. 
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Fig. 12.  Schematic representation of the ascidian vanadium accumulation pathway.  

Vanadium in the +5 oxidation state dissolved in seawater is thought to be incorporated 

into the interior of the body via the branchial baskets, where vanadium is reduced to the 

+4 oxidation state.  Vanadium in the +4 oxidation state is further reduced to the +3 

oxidation state and stored in the vanadocyte vacuoles.  Some proteins, specifically 

vanadium transfer, vanadium receptor, and vanadium channel proteins, are thought to be 

involved in the accumulation of vanadium. 
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