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Baba[l] proposed wave breaking resistance as a new component of ship resistance. He could provide
quantitative evidence of a resistance component due to wave breaking around the bow through measuring
head-loss by wake survey method. Taneda and Amamoto[2] explained the bow breaking wave as a vortex
motion. They called it "necklace vortex” to distinguish from the horseshoe vortex which was mainly gen-
erated by a boundary layer flow around a body mounted on a plate. They also reported that this necklace
vortex was strongly affected by the Froude number while the horseshoe vortex was affected by the Reynolds
number(2,3].

Since then, many investigations have been made to clarify the mechanism of the bow wave breaking both

experimentally and numerically.

Experimental investigations

Experimental observations of the formation of bow vo_rtical flows and the fluctuations of the free surface
related to the bow bfeaking waves have been made, for example, by Miyata et al.[4-7], Grosenbaugh and
Yeung(8], Kayo and Takekuma[9], Ogiwara et al.[10], Takekuma and Eggers[11], Matsui et al.{12] and so
on. Miyata et al.[4-7] and Grosenbaugh and Yeung[8] showed an oscillatory motions of bow wave front
which occurred when a certain critical speed was exceeded. Miyata et al.[6] also explained that overturn-
ing of waves generated a necklace vortex of which intensity depended on the strength of the overturning
motion. Moreover, they reported that the vorticity generated by the breaking waves spreaded forward by
the movement of wave front and backward by diffusive effect. However, it may be difficult to say that their
findings are general characteristics of bow waves because they used two-dimensional floating bodies. Kayo
and Takekuma[9] carried out a model test to explain the effect of a shear flow on the free surface. They
towed a vinyl sheet in front of a bow with the same speed of a ship. They showed that the fluctuations of
the free surface became intensive when a vinyl sheet was towed together. They deduced that the shear flow
of the free surface had a significant effect on the formation of the bow breaking waves and vortical motions.
Ogiwara et al.[10] reported that the vortical motions were mainly generated by the flow above a stagnation
point on the body surface. On the other hand, Takekuma and Eggers[11} explained that the bow wave
breaking was characterized by the vortical motions below the free surface. The vortical motions located just
below the free surface where the flow broke and the region of the vortical motions did not extend widely and
the depth was nearly as deep as the wave height. They also showed that the intensity of the vortical motions
around the body in a shallower draft was stronger than that in a deeper draft. Matsui et al.[12] performed
a series of model tests to find out the effect of the draft and bow curvature on the vortical motions. They
investigated the relation between the bow curvature and the distanﬁe from the bow to wave front at the
center plane. However, the relation could not be made clearly. The reason may be that the position of the

wave front is not so clear at a low speed. On the other hand, it is difficult to measure the position at a high



speed region because the position may fluctuate or oscillate above a certain velocity.

All the studies mentioned above are mainly concerned to the "broken” waves. However, to make clear
the phenomena it may be necessary to study the earlier stage where the breaking is apt to occur.

Kayo and Takekuma[l1] and Honji[13] experimentally showed the vortical motion beneath the free sur-
face around the bow at a very low Froude number where no significant bow waves were generated. They
explained that these results might be caused by the shear flow on the free surface.

On the other hand, Mori[14,15] divided the flow into three stage; the development of the free surface
shear layer, the formation of the necklace vortex and the production of unsteady turbulent free surface flow.
The final stage was called ”sub-breaking waves” as a free surface turbulent flow in distinction from spilling
or plunging breakers. He showed the characteristics of the suB~breaking waves by measuring the velocity
components around the first wave crest generated by a two-dimensional submerged hydrofoil[14]. His ex-
perimental results have shown that when the velocity is less than the critical value, the wave crests remain
rounded and no symptoms of breakings are present but once the velocity increases even a little beyond the
critical one, the steady breakers suddenly takes place. The wave amplitude under the sub-breaking becomes
smaller while the wave length shorter as if Froude number were smaller. If the oncoming flow is further ac-
celerafed, this intermediate stage is overcome by the breakers such as spilling or overturning. He explained
that the sub-breaking waves could be understood as follows; the energy accumulated around the wave crest
transits into the turbulent flow to meet the required free surface condition. The energy of the main stream is
transformed into a turbulent energy which dissipates at the same time. Eventually main stream has velocity
defects, i.e. head-loss, and the flow remains without any catastrophic breakings. He also investigated the
curvature effect of the bow using a circular cylinder and an elliptic strut[15]. According to his experimental
results, the bow with a larger curvature (elliptic strut) generated more intensive wrinkle, which was a kind
of free surface instability, than that generated by the bow with a smaller one(circular cylinder) at the same

speed. He explained that the reason was the different curvature of the free surface in front of the bows.

Numerical investigations

Recently, the CFD(Computational Fluid Dynamics) becomes a general tool in various scientific fields;
aeronautics, mechanical engineering, civil engineering, naval architecture and ocean engineering and so on.
A main merit of the CFD technique is that it makes possible to study the complicated phenomena systemat-
ically when the experimental investigations are difficult. In the field of ship hydrodynamics, many attempts
have been made to simulate the flow around ship[16-18]. However, there are some difficulties to simulate
the free surface flow especially bow and shoulder wave breakings. The difficulties are mainly caused by the
free surface boundary condition under the breaking condition because the mechanism of the breaking waves
have not yet come to knowledge clearly.

Miyata et al.[19] explained that at a high Froude number, steep waves generated alongside of the bow



were nondispersive and they call them ”free-surface shock waves(FSSW)”. Duncan[20] found that it was
possible to introduce steady breaking by disturbing non-breaking wave-train which was a transition from
a non-breaking to a breaking waves although within a narrow range. Shin and Mori[21,22] simulated the
sub-breaking wave generated by two-dimensional submerged hydrofoil. They introduced the Reynolds stress
components on the free surface boundary condition which were modeled by the measured velocity on the
free surface. They suggested that the turbulence terms played an important role in the computations of the
sub-breaking waves. Hinatsu and Takeshi[23] also simulated breaking waves in front of a two-dimensional
box-shaped body. As a first step for the simulations, they measured the velocity components in front of the
body by LDV system. Then they modeled the turbulent shear stress on the free surface. Their results gave
one possibility for the direct simulation of the breaking waves although the results did not agree well with
the experimental results. Lungu and Mori[24,25] simulated two-dimensional sub-breaking waves directly by
imposing a disturbance for vertical velocity component while Coleman(26] used a disturbance of pfessure on
the free surface. The role of these disturbances was a kind of a trigger for the transition to the turbulent
flow. Shin et al.[27], Park and Miyata[28] also studied the characteristics of the bow breaking waves by
numerical simulation method. However they did not consider the viscous effect on the free surface although
the viécous effect was important to that kind of the flows as pointed out by Patel et al.[29] who simulated
the vortical flows under the similar condition with the Honji’s experiment[13] as mentioned before. They
theoretically explained that the vortical flows at a low Froude number could be caused by the balance of a
surface tension and a normal component of a viscous stress. Yeung and Ananthakrishnan{30] simulated the
vortical flows in front of the two-dimensional rectangular body. They explained that the surface tension was
important and the vorticity strength due to the free surface curvature was not so strong. However, Jeong
et al.[31,32] suggested that the free surface curvature could be one of the important sources of the vortical

flows beneath the free surface around a blunt bow.

As investigated above, the so-called bow breaking waves and necklace vortex motion are not so sim-
ple and the mechanism has not yet come to knowledge clearly. Further studies are required to clarify the

mechanism.
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In this chapter, some experimental results concerning vortical flows around bow are discussed to under-

stand the basic characteristics of the vortical flows.

1 Review of Experimental Investigations

According to some experimental results, vortical flows exist beneath the free surface in front of a blunt
bow. Fig.2.1 shows a schematic view of the vortical flows by Taneda et al.[3]. They explained that the
flow patterns on the free surface around a surface piercing body were similar with a horseshoe vortex which
appeared around a strut mounted on a plat(Fig.2.2). They called it "necklace vortex” to distinguish from
the horseshoe vortex. They deduced that the necklace vortex was strongly affected by the Froude number
while the horseshoe vortex was affected by the Reynolds number. Fig.2.3 shows a sketch of a generation of
the vortical flows by Miyata et al.[6]. They explained that overturning of waves generated a necklace vortex
of which intensity depended on the strength of the overturning motion. Moreover, they reported that the
vorticity generated by the breaking waves spreaded forward by the movement of wave front and backward
by diffusive effect.

However, Takekuma et al.[11] and Honji[13] showed the existence of the vortical flows beneath the free
surface even a extremely low Froude number(Figs.2.4-2.5). However, the characteristics seem to be different
from those observed in the breaking wave. As shown in Figs.2.4 and 2.5, the free surface is almost flat and
no significant bow waves are observed. The strength of the vortical motion is very weak. They deduced
that the vortical flows were caused by the shear flow on the free surface while Patel et al.[29] theoretically
explained that the vortical flows at a low Froude number could be caused by the balance of a surface tension
and a normal component of a viscous stress.

The effect of shear flow on the bow breaking waves was also investigated by Kayo and Takekuma[9]. They
towed a vinyl sheet in front of a bow with the same speed of a ship. They showed that the fluctuations of
the free surface became intensive when the vinyl sheet was towed together(Fig.2.6).

Fig.2.7 shows the typical free surface flows around a circular cylinder at various draft by Takekuma and
Eggers[11]. As shown, the free surface flows in front of the bow are more intensive in shallower draft than
in deeper draft. Fig.2.8 shows the vortical flows beneath the free surface in front of the bow on the center
plane for two different draft. The vortical flows in shallower draft are more intensive than those in deeper
draft. This can explain the reason why bow wave breaking in ballast condition is more intensive than in full
load condition. They also investigated the effect of a underwater protruding bulb on the vortical flows. As
shown in Fig.2.9, the vortical flows become weak in case that the bulb is attached. This can explain that a
well-designed bulbous bow can play an important role to reduce the vortical flows.

On the other hand, Mori[15] investigated the curvature effect of the bow using a circular cylinder and an



elliptic strut(Fig.2.10). As shown in this figure, the bow with a larger curvature (elliptic strut) generated
more intensive wrinkle, which was a kind of free surface instability, than that generated by the bow with
a smaller one(circular cylinder) at the same speed. He explained that the reason might be the different
curvature of the free surface in front of the bows. The effect of bow curvature will be discussed in the next

section continuously.

2 Observation of Bow Wave Patterns

In the present study, an observation of bow wave patterns was performed for the struts having
NACA0008, NACA0012 and NACA0024 sections(called NS08, NS12 and NS24 hereafter) at the circulat-
ing water channel(CWC) of Hiroshima University. The length and the draft of the models were 0.8m and
0.4m respectively. Experimental arrangement is shown in Fig.2.11. The wave patterns were photographed
through the observation window placed on the bottom of the CWC. The striped-screen was fixed above the
free surface to make the pictures clear. The pictures were taken with a surfactant, which was a commercial
detergent, to remove a surface tension(33].

Fig.2.12 shows a sketch of the bow wave on the center plane. The ”Zone-I” where the free surface has
smooth concave curvature is the part ahead of the bow wave. Through a sharp change of the curvature,
the flow enters ”Zone-II” where the flow can not be stable any more. A border of these two zones is ”wave
front” where the curvature has a maximum(15].

Fig.2.13 shows the flow patterns on the free surface around the bow of NS12 at various Froude numbers.
No clear waves are observed at Fn=0.15(Fig.2.13(a)). Increasing the Froude number(#n=0.20), the wave
front can be clearly observed surrounding the bow(Fig.2.13(b)). At Fn=0.25, the wave front appears clearly
and the position moves away from the bow(Fig.2.13(c)). At those Froude numbers, no significant features
of turbulence appear on the free surface.

Fig.2.14 shows the free surface flows around the bows at Fn=0.30 for the three models. The Reynolds
number based on the length of the strut is 4.60x10%. The free surface flows of NS08 and NS12 seem to be
quite complicated and turbulent in ”Zone-11” which can be called the sub-breaking wave[14,15). The wrinkles
of NS08 and NS12 are more intensive than N524 around the bow. However, the flow of NSé4 looks still
gentle. Here, a question may appear; why the intensity of the free surface wrinkles of NS08 is much stronger
than that of NS24 although the bow of NS24 is much blunter? Similar results were obtained by Mori[15]
as shown in Fig.2.10. The detail discussions on the effect of bow curvature will be made by a numerical

simulation in Chapter 5.
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1 Governing Equations

Three dimensional incompressible time averaged Navier-Stokes(Reynolds averaged Navier-Stokes;RaNS)
and continuity equations are employed for the present numerical study. These governing equations are writ-

ten as follows;

1
U + uz + vuy + wu, = —¢; + %V2u+ R,
)
vt+uv,+vvy+wu,=—¢y+ﬁ-v v+ Ry (1)

1
wy + uw, + vwy +ww, = —¢@, + —V2w+R,

Rn
Uz +vy+w, =0 (2)
z 2
¢—p+m_P¢zt+§k (3)

where u, v and w are the velocity components in (z,y,z)-directions in the Cartesian co-ordinate system
as shown in Fig.3.1; z in the uniform flow, y in the lateral and z in the vertical directions respectively.
The origin is located at the leading edge of the strut on the undisturbed free surface. Subscripts represent
partial differentiations with respect to the referred variables except R, Ry and R, which are Reynolds stress
components. Fn, Rn, ¢, p, Pa; and k are Froude number, Reynolds number, modified pressure, pressure,
atmospheric pressure and turbulent energy respectively. All the variables are normalized by the uniform
velocity(Up) and the length of strut(L).

The Reynolds stress terms can be expressed as follows;

Rz = {vi(us + ug)}e + {vauy +vz)}y + (e + ws)}e
Ry = {vi(uy + vz)}e + {vi(vy + vy)}y +{u(v. + wy)}. (4)
R, = {Vt(u: + wx)}r + {Vt(vz + wy)}y + {Vt(wz + wz)}z

where v; represents kinematic eddy viscosity.

2 Co-ordinate Transformation

A numerical co-ordinate transformation is introduced into a body fitted curvilinear co-ordinate system

to simplify the computational domain and to facilitate the implementation of boundary conditions.

15



A half C-H type grid system is used to simulate the flow around a blunt bow while a half H-H type one is
used for a wedge shaped model. The curvilinear co-ordinate system on horizontal plane is shown in Fig.3.1;
€- and 7-axes are the streamwise and lateral directions respectively and (-axis coincides with the z-axis.

The transformation is given as follows;

§=§(z,9,21)
n=n(z,v,21) (5)
¢=¢(=y,21)

T=t.

The transformation links the partial derivatives expressed on the physical and computational domains

through the following formula.

0 d
_; Ezaf'*‘nr +Cz C

0 0 0 0

oy = Yoty T a0 ©
LI Y
9z 65 %80 T8¢
6_9 _,8_,9_,8
ot~ or "oz Yoy Moz
With the above relations, the following transformed governing equations are obtained.
- RaNS equations
ur = F—¢;
v, =G — ¢, )
w, = H — ¢z

¢:: . ‘;’)Ef:: +¢nnz + é(C:

16



by = Geby + Py + G¢Cy

¢z = ¢E€z + ¢r)"7z + ¢(Cz

where,

F=—Uug + Vu, + Wug) + R}—nvzu +R.+f
G = —(Uve + Vv, + W) + ’I%V2v+ R, +g
H=—-(Uw +Vuw, + Ww¢) + R%Vzw+ R,+h
f=uzzs +ugys + us 2,
g = VzZr + VyYr + V25
h=wez;: +wyy, +w,zr
where, U, V and W are contravariant velocity components defined as
U = ub, + v€, + vk,

V= ung + vy + w,

W = ul; + vy + w(;

- Continuity equation

(uféx + UnpTc ~+ u((z‘) -+ (UEEJ: + UnNz + v((z) -+ (we{: + Wy )z + w((::) =0

(8)

(9)

(10)

(11)

(12)

Laplacian V2 in F, G and H of equation(3.9) can be expressed in the curvilinear co-ordinate system as

follows;

V2q = (agge + bann + Sacc) + 2(dgey + ane + face) + (99¢ + hay + 1g¢)

17
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where a, 13, etc. are defined as

The second derivative terms §, & and 7 in equation(3.14) are computed by the following formula.

L8

@ = VE-VE=E 446
b= Vn-Vn=nl+ni+’
¢ = VC-VC=¢++(]
d = VE-Vn=Eenz +Eyny + 627

VT] . VC = 7],;(;— -+ 7]y<y + nzCz

(33
!

f= V(- VE=Gbo + Gyl + Gk
§ = V=t Eytéan
h = V20=ne+ 1y + 0
i = VX =Coot Gy + G

vi¢

—a(Ecee + EyVee + E2ee) — b(ExTyn + EyUny + E2gn)
—&(Eazcc + Eyyee + Eazcc) — 2d(Eazen + EyYen + Ex 2en)
—28(€xzce + Eyvce + Ex2¢6) — 2 (EsTac +EyYac + Ex2ac)
vy

—a(nzzee + NyYee + M:2¢¢) — b(NeTon + NyUng + Nz 2nn)
—&(nezec + My Yoc + M 2cc) — 2d(TeTen + My Yen + M2 2¢n)
—2é(nzxce + Myyce + N22¢e) — 2f(7)xxﬂ( + Ty Yn¢ + Mz 2n¢)
v

—a(Czzee + CyYee +Ca2ee) — 13((,2,,,, + CyUnn + C22nn)
—&(Cem + Cyee + Cazee) = 2d(Cozen + Cy¥en + C: 26n)

—26(Cozce + CyUce + Co2ce) — 2f(CaTng + CyUng + Cozng)

The metrics of the grid (;,&y,&:,...) are computed by the following relations.

&z = (Ynz¢ — Ycz)/Js 0o = (Yeze — Yez¢) /Ty Go = (Yezn — Ynze)/J

€y = (2qz¢ — 2¢xg) /T, ny = (2¢ze — zex) [T, Cy = (2¢xy — 292¢)/JT

& = (zaye —z¢yn)/I, m: = (2cye —2zeye) /I, G = (zeyn — zn¥e)/JT

where, J is the Jacobian given by
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(17)

3 Numerical Algorithm

MAC(Marker-and-Cell) type algorithm[34] is used in the present numerical study. By taking a diver-
gence of the momentum equations and substituting the results into the continuity equation, the following

Poisson equation for the pressure is obtained.

V¢ =F,+Gy+H, - D, (18)

where F, G and H are defined in equation(3.9) and D is

D=y +vy +w,; (19)

The Poisson equation(3.18) is solved in place of the continuity equation imposing the divergence of (n+1)th
time step(D"*!) to be zero. Thus, D; in equation(3.18) is expressed as follow by the first order Euler explicit

scheme.

Dn+1 — D" Dn
be=—x—="=x

(20)
where At denotes time increment and superscripts denote time step. Here, D" is retained to prevent insta-
bility coming from the accumulation of numerical errors[35]. Thus, if a converged solution for the pressure

is obtained the continuity is implicitly satisfied. The Poisson equation for the pressure is iteratively solved

by using SOR(Successive Over Relaxation) method in the folllowing way.

651 = ¢F +w (gt - 6F) (21)

where w represents the relaxation factor and superscripts indicate the number of iteration. ¢**! is the
most recent value calculated from the Liebmann procedure and ¢* is the value from the previous iteration.
Iterations are stopped when the pressure difference between two consecutive approximations is smaller than
a certain quantity, £, chosen a priori.

After solving the pressure, the velocity components can be obtained from the momentum equations(3.7) by

the first order upwind scheme as follows;

Ut = w4 (F - 4 AL
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v = 07 4 (G - ¢y)AL (22)

w'tl = w" 4 (H - ¢,)At

where F', G and H are given in equation(3.9).

A finite difference method is represented on a regular grid system. So all the variables are defined
on the grid nodes. The first order differencing of the time derivatives in NS equations is used for an explicit
advancement in time. The convective terms in NS equations are discretized by the third order upwind scheme
while the first order upwind scheme is used on the boundaries as follows in case that the grid spacing is the

same.

- 1st order upwind scheme

du U; U;
Ua_.s = ﬁ (tip1 — Uiz1) — a%?é (tig1 — 2u;i 4+ ui-y) (23)
- 3rd order upwind scheme
du U;
r = 19AE (ui—2 — 8ui—1 + 8uiy1 — Uit2)
U;
+a£|1_Aé|’. (uim2 — 4ui—y + 6u; — 4duipr + uig2) (24)

where o = 1.0 is used as a standard coefficient.
All the other spatial derivatives are discretized by the second order central differencing scheme except the
boundary points while a oneside differencing scheme is introduced on the boundaries.

The computation starts from a rest condition and the flow is accelerated up to given velocity for the
numerical stability. The effect of the acceleration rate will be discussed in Chapter 4.

The computational procedure is shown in Fig.3.2.

4 Boundary Conditions

There are several boundaries which are fitted to the curvilinear co-ordinate system as shown in Fig.3.3.

The detail boundary conditions are as follows.

4.1 Free surface boundary conditions

The flow with the free surface remains still as one of the most challenging problems in the field of fluid
mechanics. The primary difficulties arise from the nonlinearlity of the free surface boundary conditions.
The free surface location can be calculated to satisfy the kinematic condition which represents that fluid

particles of the free surface always remain on it. In the present study, the following Euler-type kinematic

20



condition is used.

hi + uhy +vhy —w =10 (25)

where h(z,y,t) is the wave height and the subscripts represent partial differentiations with respect to the
referred variables. The equation(3.25) is discretized by the first order forward scheme for the time integration
and the third order upwind scheme for other terms.

On the other hand, the velocity and pressure can be calculated by an equilibrium of stresses on the free

surface as follows;

oijnj = o5n; (1,7=1,2,3) (26)
_ 1 ,0u; Oy —
i = —péu + Rn(a:c]- + 82:,' ) B uiuj

where o5, 0f;, nj , 6;; and —ugu} are fluid stress tensor, external stress tensor, unit outward normal vector

to the free surface, Kronecker delta and Reynolds stress respectively in the Cartesian co-ordinate system.
Assuming no-shearing stress and excluding the surface tension, the equation(3.26) can be rewritten as

follows;

oijnjn; = Po - (27)

oijnit; =0 (28)

where ¢; is the unit tangential vector to the free surface.
Finally, the following equations can be used as a dynamic free surface boundary condition assuming that

the normal component of the viscous and Reynolds stresses are negligibly small.

$=—— (29)
2uzng + (uy + vz)ny + (u; +w)n, =0
(vz + uy)nz +2vyny + (v, +wy)n, =0 (30)

(w + u;)nz + (wy + v2)ny + 2w,n; =0

where, h, n;, n, and n, are wave height and (z,y,z)-components of the unit outward vector normal to the
free surface respectively. Solving equation(3.30), on the free surface the velocity components can be calcu-
lated.

The no-shearing stress condition leads a generation of vorticity on the free surface[36]. The axis of the
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vorticity is perpendicular to the streamwise direction and the strength of the vorticity is

w = 2k,qs (31)

where, k, and g, are the curvature of streamline and streamwise velocity on the free surface respectively.
Equation(3.31) means that the curvature of the free surface can generate the vorticity if the streamwise
velocity is not zero.

A zero-gradient extrapolation for the velocity is commonly used on the free surface because of the
simplicity. In the present study, the above two approaches are compared in Chapter 5.

The detail derivation of the free surface boundary condition is explained in Appendix A.

4.2 Other boundary conditions

Body Boundary

In the curvilinear co-ordinate system used in this study, the body surface is located 7-constant plane.
On the body surface, a no-slip condition is used for the velocity while Neumann-type condition is applied
for the pressure. When the no-slip condition is applied on the body surface, the following linear algebraic

equations are obtained.

¢£€z + ¢7177: + ¢(Cz =F
bely + dnmy + é¢Cy =G (32)

¢E~£z + ¢n7]z + ¢(<z =H

where, F, G and H are defined in equation(3.9).
From the above equations, ¢, can be obtained.

Finally, the pressure can be calculated on the body surface by the following way.

1 .
¢; = 3(46j+1 = dj42 — 2¢y) (33)

On the other hand, it is difficult to treat the intersection of the free surface and solid body because the
region is a kind of a singular one[37]. In this study, no-slip condition is used for the velocity and wave
elevation is linearly extrapolated using several neighboring points on the free surface which are calculated
by the kinematic free surface boundary condition. The pressure in this singular region is obtained by the
dynamic free surface boundary condition.

Some discussions concerning numerical treatment of the intersection region will be made in Chapter 4.
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Symmetry Plane

In half-C type grid systems used in this study, there are two symmetry planes which are forward center
plane and wake center plane. On the symmetry plane, the following symmetric condition is applied by

assuming that the flow is symmetric there.

Inflow Boundary

A uniform velocity and zero wave elevation are applied on inflow boundary as follows;

u="U

v=w=¢=h=0 (35)

Outer boundary

Outer boundaries are made up by side, downstream and bottom boundaries. Sometimes, improper
boundary conditions give some numerical troubles such as reflection or oscillation of waves on the outer
boundaries[38]. However, a simple zero-gradient extrapolation can be acceptable to investigate the flow near
the body because the outer boundary or the grid arrangement around the far field region does not affect so
much the flow near the body when the computational domain is large enough.

In the present study, the following simple zero-gradient extrapolation is used on all the outer boundaries.

Side boundary:

Up = vy =wy =@y =hy = (36)
Downstream boundary:
ue=ve=wg=¢¢ =hg =0 (37)
Bottom boundary:
u<=v<=w<=¢(:0 (38)

5 Turbulence Model

Turbulence model for the flow with free surface around a ship like body is complicated and not well

developed yet. In this study, the turbulence transportation is described by using an algebraic eddy-viscosity
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model proposed by Baldwin and Lomax([39] which is widely used in computational fluid dynamics for its

simplicity.

The Baldwin-Lomax formulation works with a two-layer algebraic eddy viscosity defined as follows;

v, = (Vt)inncr ifn < Nerossover (39)
(Vt)outer if n > Nerossover
where n is the normal distance from the wall and n¢rossover 15 the smallest value of n at which values from

the inner and outer formulas are equal.

In the inner region, the Prandtl-Van Driest formulation is used to compute the kinematic eddy viscosity.

(Vt)irmer = Izlwl (40)

where |w| is the magnitude of the vorticity and ! is computed by using the following formula;

=i e ()] @

~ (12)

Urn
n+ -— —
v

RIS

In the above expression k=0.4 is the von Kdarman’s constant and u, and 7, are frictional velocity and wall
shear stress respectively.

In the outer region, the eddy viscosity is computed by using the following formula;

(Vt)outer = KCcp Fuake FKies (43)

where, K=0.0168 is the Clauser’s constant and Ccp=1.6 is an additional constant.

Fyare in equation(3.43) is computed as follows;

Nmaz £
Fwake - min marimazr (44)
Clnmazu?)[F/Fmax
Baldwin-Lomax used C;=0.25 originally. However, Rentze et al.[40] modified the coefficient to 1.0 to make

smooth the eddy-viscosity in the streamwise direction. In this study Cy=1.0 is used. F,4, is the maximum

value of the following function.

Pl = o |1 - ez (5 )| | (45

while n,,,4z is the value of n at which Fiuq: is found.

upsF represents the difference between the maximum and minimum total velocity at a fixed z station.

uprr = (Vu2 + 02 + w?)maz — (VU2 + 92 + w?)min (46)
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The second term in equation(3.46) is taken to be zero except wake zone where the exponential term of
equation(3.41) is set zero.

Fr1ep 1s the Klebanoff intermittency factor as follow;

-1

6
Frieo(n) = |145.5 (9'&)] (47)

Nmax

where, Cki1ep = 0.3 is the Klebanoff’s constant.

Degani and Schiff[41] pointed out that the major difficulty encountered in applying the Baldwin-Lomax
turbulence model to bodies with crossflow separation was the evaluation of the nm,g; and in turn, of de-
termining (Vt)outer- Fig.3.4 shows the typical behaviors of the function of F(n) of equation(3.45)b at one
station. In case that the separation is not so strong, F(n) has a single peak at n=a(Fig.3.4(a)). Thus, the
determination of Fiaz, Nmar and Fygage is straightforward. However, in case of a strong separation region,
the overlying vortex structure causes a peak in F(n) at n=>b(Fig.3.4(b)). As originally implemented, the
computed code searches the peak in F(n) occurring at n=b. The choice of the peak at n=b leads a large
value of the eddy-viscosity in outer layer. This result will cause that the primary vortices will be smaller
than those observed experimentally. In addition, the secondary separation and secondary vortices will not
appear in the computed flow[41]. To eliminate this problem, they introduced the following treatment for the
determination of the proper Fi,qr and npy,g, in the separation region;

The first peak of F(n) was selected if there are several peaks. On the other hand, if there is no peak, the
value of the previous station was used[41].
Sung et al.[42] showed that the modification was useful to improve the predictions of axisymmetric stern

flows where the separation was intensive.

According to some experimental and numerical findings, separated re-circulating flows exist on the free
surface around a shoulder part of a body above a certain velocity[43-45]. Thus, it may be necessary to modify
the original Baldwin-Lomax model like Degani and Schiff as mentioned before. However, some difficulties
may occur such that the first peak of F(n) has large value or it is located far away from the body. In those
cases, a large value of eddy-viscosity can be obtained. On the other hand, it may occur that several stations
do not have the peak.

To avoid such problems, in this study, the following modification is introduced.

If F(n) has single peak within a certain range, which is approximately determined by 120 % of a boundary
layer thickness of a two-dimensional flat plate, Fj,,,; and n,,4; can be selected by the value directly. If there
are several peaks within the range, the peak having maximum F(n) is selected. On the other hand, if there
is no peak of F(n), the maximum value within the range is used as the Finaz.

The detail discussions for the above modification will be made by a numerical simulation in Chapter 7.
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6 Grid Generation

A grid generation is one of the most important factors in CFD because the numerical solution of partial
differential equations requires some discretisztion of the field into a collection of points or elemental volume.
The use of a curvilinear co-ordinate system makes possible to simplify the computational domain and to
facilitate the implementation of boundary conditions strictly.

The grid system is required to be orthogonal and the grid size should be changed smoothly to avoid a
numerical error due to the grid system. However, it is difficult to generate a ”good grid” satisfying both
orthogonality and smoothness near a complicated-shaped body. In that case, a quasi-orthogonal grid can be
used by strict treatment of the boundary condition[46]. Another requirements are clustering and minimum
grid spacing. These requirements are necessary where the physical values change rapidly within a small
distance.

Two types of method for the generation of grid system are widely used. One is analytic method and the
other is algebraic one. The analytic method solves a partial differential equation. The method guarantees
non-overlapping and smooth grid. However, it is not so easy to control thé grid points as desired. On the
other hand, the algebraic method uses an interpolation and a smoothing technique which can easily control
the grid points. However, the generated grid is liable to be overlapped.

In this study, a geometrical method[47], which is a kind of the algebraic method, is used to generate
C-type grid in horizontal plane. The first step of the geometrical method requires an initial grid which can
be made by connection of the grid points on the boundaries. And then the initial grid points are iteratively
modified to satisfy the several requirements such as orthogonality, smoothness, clustering, minimum grid
spacing and so on.

Fig.3.5 shows one example of the generated grid system on the horizontal plane. The initial grid sys-
tem(Fig.3.5(a)) is given by the connection of grid points between the inner and outer boundaries. Fig.3.5(b)
shows an intermediate stage of the iteration. The grid is still not so smooth. Fig.3.5(c) shows the final
satisfactory grid system. The grid lines are smooth and clustered near body.

After the generation of the two-dimensional grid system on the horizontal plane, the whole grid system
is obtained by stacking it in the vertical direction. The grid lines should be clustered near the'free surface
to simulate the vortical flows well. The effect of the grid resolution on the vortical flows will be discussed in

Chapter 5.
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1 Introduction

A validation of the computed results is important to simulate the physical phenomena within a certain
range of accuracy. The use of an unimproved code may lead misunderstanding of the physical phenomena.
Thus, some computed results are compared with the experimental ones to validate the code developed in
this study. Four kinds of comparisons are made as follows;

1) Double model flow around a vertical strut having parabolic section(L/B=10.0) at Rn=10°.

2) Double model flow around a vertical strut having NACA0012 section at Rn=10°.

3) Free surface flow around a vertical strut having parabolic section(L/B=10.0) at Fn=0.25 and Rn=10°.
4) Free surface flow around a vertical strut having NACA0012 section at Fn=0.25 and Rn=4.0-10%

The computed results of the double model flows are compared with the experimental ones. of two-
dimensional flows because it is assumed that the strut has a infinite depth and constant section in depthwise
direction.

In addition, the numerical treatment of intersection region between the free surface and solid body are
investigated together with the effect of oncoming flow acceleration in the initial stage of the computation.

The struts having the parabolic(L/B=10.0) and NACA0012 sections are called PS10 and NS12 respec-
tively hereafter. '

The modified Baldwin-Lomax turbulence model described in Chapter 3 is used for the computations of

high Reynolds number flows. It is assumed that the flow is turbulent from z=0.10.

2 Results and Discussions

2.1 Double model flow of PS10

Four different grid cases are used to investigate the effect of a minimum grid spacing near body as shown
in Table 4.1. The computed results are compared with the near-wall velocity profile called logarithmic law
and frictional resistance by Schonherr line.

Fig.4.1 shows one example of generated grid on the horizontal plane. H-type grid system is used because
PS10 is sharp wedge model.

Fig.4.2 shows near wall velocity profiles at three different positions. As shown, a turbulent boundary
layer is well realized in every cases. However, the frictional resistances in the coarse grid cases(Cases-A
and -B) are a little different while the fine grid case(Case-D) has almost the same value with the Schonherr

line(Table 4.2).
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These results indicate that the minimum grid spacing is one of the important parameters in numerical

simulations.

2.2 Double model flow of NS12

The computed pressure distribution is compared with the experimental data for this model. The
experimental data(Rn=2.7 - 10%), which was carried out in the wind tunnel, was given by Riegels[48].
The computational conditions are listed in Table 4.3.

Fig.4.3 shows the comparison with the computed and experimented pressure distributions on the body
surface. Although the minimum grid spacing is a little large(An=0.0001), the overall results agree well with
each others except the trailing edge. The discrepancy of the trailing edge may be caused by insufficient grid
resolution and difference of Reynolds numbers.

Fig.4.4 shows the computed velocity distribution at £=0.80. As shown, the turbulent boundary layer is

well realized in the computation.

2.3 Free surface flow of PS10 and NS12

In the pilot computations for the free surface flows, the computed wave profiles along the body surface
are compared with the experimental ones.

Computational conditions for both models are tabulated in Table 4.4.

An experiment was carried out in the circulating water channel(CWC) of Hiroshima University to mea-
sure the wave profile of NS12. The length and draft of the strut were 0.15m and 0.50m respectively. Wave
profiles along the body surface were measured by use of an image processing system developed at Hiroshima
University[49]. During the measurements, a surfactant was-used to remove a surface tension[33]. In case of

PS10, the experimental result by Ikehata[50] is compared.

As described in Chapter 3, there is a difficulty in numerical treatment of the intersection of free sur-
face and solid body. The effect of the boundary conditions on the intersection region, which are slip and
no-slip condition, is investigated. In case of the slip condition, the vertical component of the velocity is
linearly extrapolated using the neighboring points on the free surface while no-slip condition is applied for
other components because the free surface moves up- and downward directions before the steady state.

Fig.4.5 shows the comparison of wave profiles for PS10. The computed results agree well with the exper-
imental one. There are no differences in the wave profiles at fully developed stage depending on both slip
and no-slip conditions. The reason may be that the grid system near body is fine enough and the velocity
close to the body surface is almost zero. In this study, all the computations hereafter are performed by using

no-slip condition.
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In the present computations, the oncoming flow is linearly accelerated in the initial stage of the compu-
tation until {=T,. The effect of acceleration rate of oncoming velocity on bow wave is investigated. Two
kinds of acceleration rates are compared. One is a suddern acceleration(7,=1.0) and the other is a slow
acceleration(T5=5.0).

Fig.4.6 shows time histories of the computed wave elevations at leading edge of NS12 for two different
accelerations. In case of the slow acceleration(7,=5.0), the wave elevation reaches to the steady state after
the acceleration while it oscillates in the sudden acceleration case(T3=1.0). This result explains that the
free surface flows around a blunt bow is affected by the acceleration rate of oncoming velocity. Thus, in this
study, all the computations for the blunt bows are performed using 7,=5.0.

Fig 4.7 shows comparison of wave profiles for NS12. The computed results are good agree with the ex-
perimental result. The computed wave profiles around shoulder part(z=0.30) oscillate slightly. The reason
may be that the free surface flow around shoulder part of the blunt model is complicated including strong

separated flows called shoulder wave breaking[43-45].

‘able 4.1 Computational conditions for double model flows of PS10.

Case-A | Case-B | Case-C | Case-D
Rn 10° 10° 108 10°
Grid numbers
- €-direclion(i) 119 119 119 119
- y-direction(j) 45 50 50 50
- (-direction(k) 7 7 7 7
Min. grid spacings
- A 0.005 0.005 0.005 0.005
- Ay 0.0002 | 0.00012 { 0.00008 | 0.00004
Computational -12<x<3.0
domains 00£y<15
-1.0<2<0.0

‘able 4.2 Comparison of [frictional resistance for PS10 al Rn=10°.

Case-A | Case-B | Case-C | Case-D | Schionherr
C,x10%] 4.78 4.80 4.65 1.46 1.41

Table 4.3 Computational conditions for double model flow of NS12.

Itn 10¢
Crid numbers
(ixjxk) 101 x 50 x 7
Min. grid spacings
N 0.005
- Ay 0.0001
Computational |[-1.56 <x <25
domains 00<y< 1S
-1.0<2<00
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Fig.4.7 Comparison of computed and measured wave profiles on body surface of
NS12, Fn=0.25.

1 Introduction

Bow breaking wave is one of the most noticeable phenomena in the field of ship hydrodynamics. Not
only for a practical ship design but also for a scientific interestings, it is necessary to clarify the mechanism

of the breaking waves.

Taneda and Amamoto[2] explained the bow breaking wave as a vortex motion as shown in Fig.2.1.
They called it "necklace vortex” to distinguish from the horseshoe vortex which was mainly generated by
a boundary layer flow around a body mounted on a plate. They also reported that this necklace vortex
was strongly affected by the Froude number while the horseshoe vortex was affected by the Reynolds num-
ber[2,3). Ogiwara et al.[10] reported that the vortical motions were mainly generated by the flow above a
stagnation point on the body surface. Takekuma and Eggers[11] expla.in_ed that the bow wave breaking was
characterized by the vortical motions below the free surface. The vortical motions were located just below
the free surface where the flow breaked and the region of the vortical motions did not extend widely and the
depth was nearly as deep as the wave height. On the other hand, Mori[15] deduced that the formation of
the vortex motions was a previous stage of the breaking.

From these situations, it can be considered that the vortex motions are important sources of the breaking
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waves.
Moreover, the free surface flows around bow are strongly affected by the bow curvature as shown in
Fig.2.14. The large curvature bow(NS08 in Fig.2.14) generates more complicated flow than that of the small
one(NS24 in Fig.2.14) although NS24 has much blunter bow. Similar results were obtained by Mori(15] who -
investigated the curvature effect of the bow using a circular cylinder and an elliptic strut. According to his
experimental results, the bow with a larger curvature (elliptic strut) generated more intensive wrinkle, which
was a kind of free surface instability, than that generated by the bow with a smaller one(circular cylinder)

at the same speed(Fig.2.10).

In this chapter, basic characteristics of the vortical flows beneath the free surface around bow are numer-
ically investigated.

The RaNS and continuity equations are used for the numerical simulations. In the computations of high
Reynolds number flows, the modified Baldwin-Lomax turbulence model[41] mentioned in Chapter 3 is used
and it is assumed that the turbulent flow starts at z=0.1.

In order to avoid the effect of a draft on the vortical flows around the free surface, it is assumed that
the st?ut has a deep draft and constant section in depthwise direction. Half C-H type grid system is used
because the flow is assumed to be symmetric on the centerplane(y=0.0). The no-slip condition is introduced
at the intersection region of the free surface and solid body. The oncoming velocity is slowly accelerated
until ¢t=>5.0 in the computations.

Several computations are performed before the breaking condition. Four different struts having NACA0005,
NACA0008, NACA0012 and NACA0024 sections(called NS05, NS08, NS12 and NS24 respectively hereafter)
are used to investigate the curvature effect of a bow. The effect of a free surface boundary condition, Froude

and Reynols numbers and grid dependency are discussed together.

2 Vortex Generation beneath Free Surface

2.1 Computational conditions

The no-shearing stress condition{equation(3.31)) used in the present study means that the free surface
curvature generates a vorticity on the free surface if the streamwise velocity is not zero. However, A zero-
gradient extrapolation is often used because of its simplicity.

Liu and Kodama[51] compared the above two approaches in the computations of the free surface flows
of Series 60 (Cb=0.60) ship model. They showed that the both treatments gave good agreement with the
experimental results.

In this section, those two treatments are compared in the vortical flows point of view. Computations are
performed for NS05 and NS12 at Rn=5000 and various Froude numbers.

Computational conditions for the standard case are listed in Table 5.1.
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2.2 Discussions

Fig.5.1 shows the computed velocity and vdrticity distributions at center plane for two different treat-
ments of the dynamic free surface boundary conditions for NS05 at Fn=0.30. In case of the zero-gradient
extrapolation, the computed wave height at the bow is almost the same value as the static head at the
stagnation point for inviscid fluid. On the other hand, the introduction of the no-shearing stress condition
makes the counter-clockwise vorticity more intensive and the wave height decreases. The maximum vorticity
is located just beneath the free surface. This is similar with the experimental results by Takekuma et al.[11]
who reported that the vortical motions were located just below the free surface and the region did not extend
widely so much and the depth was nearly as deep as the wave height.

Fig.5.2 shows the computed wave profiles along the body surface by the two treatments. The results are
almost same except leading edge where the vortical flows are most intensive. In case of the zero-gradient
extrapolation, the wave profile around leading edge is sharp. The introduction of the no-shearing stress
condition removes the sharp crest of wave profile. This means that the energy accumulated around the wave
crest is consumed by the generation of the vorticity.

Fig.5.3 shows the wave contours by the two treatments. The overall patterns are almost same. In both
case, the wave systems are developed well.

In case of a lower Froude number flow(Fn=0.25, NS12), however, there are no signiﬁcant differences
between the two results as shown in Figs.5.4 and 5.5.

From these results, it can be concluded that the numerical simulations neglecting the no-shearing stress
condition can lead misunderstanding of the phenomena when the vortical flows are intensive although the
zero-gradient extrapolation is useful to simulate the propagative wave system.

Fig.5.6 shows the time evolutions of the bow wave formation at center plane during the acceleration for
NS05 at n=0.30 when the no-shearing stress condition is introduced. At T'=3.0, counter-clockwise vortic-
ity(dotted lines) falls appearing on the free surface which has concave curvature. Increasing the upstream
velocity, the concave curvature of the free surface becomes larger and the strength of the vorticity increase
together. Around T'=4.0, a sharp change of the curvature called wave front appears obviously and the peak
of the vorticity is located just beneath the free surface around there. However no significant reverse flows

are observed. The vorticity exists just beneath the free surface close to the body.

It can be pointed out that the no-shearing stress condition on the free surface plays an important role
to produce the vortical motions where the free surface curvature is large. Thus, all the computations are

performed taking into account the no-shearing stress condition hereafter.
Fig.5.7 shows the effect of the Froude number for NS05. Increasing the Froude number, the vortical

flows become more intensive and the gradient of the wave profile in front of the bow becomes steep. Strong

reverse flows appear at a higher Froude number flow(Fn=0.35) around the juncture of the free surface and
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strut. The vortical flows do not spread to forward direction. This result can explain that the vortical motions
may become more intensive at a much higher Froude number flow and eventually the motions may make the

flow unstable.

From these results, it can be concluded that the free surface curvature, especially concave shape, is
one of the important sources of the vorticity in front of the bow, which is generated to satisfy the no-
shearing stress condition on the free surface. The vorticity induces vortical motions beneath the free surface

when the free surface curvature is large.

3 Curvature Effect of Bow

3.1 Computational conditions

The free surface flows around a bow are strongly affected by the curvature of the bow as shown in
Fig.2.14. The larger curvature bow(NS08 in Fig.2.14) generates more intensive fluctuations than those in
smaller one(NS24 in Fig.2.14). This situation could be also found in Mori[15] as mentioned before.

In this section, the reason of the above situation is numerically investigated. Computations are performed
at Rn=5000, 10* and 10°. The computed free surface flows at Rn=10° are compared with the experimentally
observed results.

Computational conditions for the standard cases are shown in Table 5.2.

3.2 Discussions

Rn=5000 and 104

Fig.5.8 shows the vorticity(wy) distributions on the free surface on the center plane for NS05, NS08
and NS12 at Fn=0.30 and Rn=5000. Wave height(h) and streamwise velocity(g,) on the free surface are
plotted together. The peaks of the vorticity are located around concave curvature as indicated by dotted
arrows. According to the no-shearing stress condition(equation(3.31)), the vorticity on the free surface can
be expressed as the product of the free surface curvature and the streamwise velocity. Although the wave
front has a larger curvature than that of the concave surface, the vorticity is smaller at the wave front
because the streamwise velocity becomes smaller around there. This is the reason why the counter-clockwise
vorticity occupies the region in front of the bow. The model with larger curvature bow(NS05) intensifies the
concave curvature of the free surface and generates stronger vorticity comparing with other models(NS08
and NS12).

Fig.5.9 shows the vorticity(wy) and velocity distributions on the center plane in front of the bows of the
three models. The model with larger curvature bow(NS05) generates the most intensive vorticity. The peaks

of the vorticity are located beneath the free surface around the wave front for each struts.
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Fig.5.10 shows the velocity distributions on the free surface around the bows of the three models. The
wave front line of NS05 is clearly observed. Decreasing the curvature of the bow, this line goes away from
the body and becomes weak.

From Figs.5.8-5.10, it can be found that the position of wave front is affected by the bow curvature. The
distance between bow and wave front of the smaller curvature bow(NS12) is larger than that of the larger
curvature bow(NS05). NS08 has about mediate value between NS05 and NS12.

Figs.5.11 and 5.12 show the vorticity distributions beneath the free surface around the bows, where the
vorticity is maximum, at Fn=0.30 and Rn=5000 and 10* respectively. The distance from the free surface
is about 0.005. The vorticity distributed aside from the bow, called a necklace vortex, of NS12 is more
intensive than that of NS05, although the strength of the vortical motions of NS12 is less intensive on the
center plane in front of the bow. Due to the viscosity of fluid, the vorticity is diffused. On the other hand,
even a slight vorticity can form an intensive vortex because of the stretching of vortex tubes, which is mainly
caused by a local flow acceleration. The local flow acceleration of NS12 is larger than that of NS05 around
the side of the bow. This situation is clearly observed at Rn=10%(Fig.5.12).

These results are similar to the results by Mori[15] who explained that the necklace vortex of the bow
with a smaller curvature(circular cylinder) was more intensive than that of the bow with a larger one(elliptic
strut) although the flow on the free surface around the bow of the elliptic strut was more unstable than that

of the circular cylinder(Fig.2.10).
Rn=10°

Fig.5.13 compares the computed and the experimented free surface flows for NS08, NS12 and NS24 at
Fn=0.25. The Reynolds numbers for the computation and experiment are 1.0x10° and 3.8x10° respectively.
It is noted that the flow fields around the bows are almost steady both in the experimental and computed
results for these cases. The overall computed flow patterns agree well with the experimental results. The
wave front lines are clearly shown in both computed and experimented results except NS24. The computed
distances between the leading edge(z=0.0) and the wave front on the center plane are about 0.03L(z=-0.03)
and 0.04L(z=-0.04) for NS08 and NS12 respectively (L: length of the strut). As discussed in low Reynolds
numbers cases, the positions of the wave front line are affected by the bow curvature. However, Matsui et
al.[12] could not make clear the relation between the bow curvature and the position. The reason may be
that it is difficult to measure the position strictly in experiment because the position fluctuates or oscillates
in a high Froude number while the position is not clear in a low Froude number.

The comparison of the vorticity(wy) and velocity distributions on the center plane in front of the bows
for the three models is shown in Fig.5.14. The model with larger curvature bow(NS08) generates the most
intensive vorticity which is induced by the free surface curvature as mentioned before. The peaks of the

vorticity are located beneath the free surface around the wave front for each models except N524. In case
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of NS24, however, there are no such vortical motions because the free surface is smooth enough. These
results can give some explanations to the experimental findings as shown in Fig.2.14; the bow with a larger
curvature(NS08) generates more intensive wrinkles than that with the smaller one(NS24).

Fig.5.15 shows the vorticity distributions on the horizontal plane beneath the free surface around the
bows at Fn=0.25. The distance from the free surface is about 0.003. The necklace vortex of NS12 is more
intensive than that of NS08, although the strength of the vorticity in front of bow of NS12 is smaller. This
situation is the same tendency with the low Reynolds number flow as mentioned before. The necklace vortex
motions of NS12 at Rn=10° are more intensive than those at Rn=5000 and 10%(Figs.5.11-5.12) although
the Froude number is smaller(Fn=0.25 and 0.30 respectively). This can explain that the necklace vortex
motions can be affected by the Froude number as well as Reynolds number. In case of NS24, however, there
are no such clear necklace vortex. The reason is that the free surface flow of NS24 is premature to generate

the vortex motions at this Froude number.

From these results, It can be concluded that the bow shape has strong relation with the free surface

curvature, especially concave shape, which is responsible for the vortical flows around the bow.

4 Grid Dependency

4.1 Computational conditions

In CFD, the computed results are strongly influenced by a grid system. The computed results by
using an improper grid may lead a misunderstanding of the physical phenomena. Thus, the effect of a grid
resolution should be investigated.

In this section, a grid dependency on the vortical flows is investigated for NS12 at Rn=5000 and 10°.

Computational conditions for the standard case are the same as the previous cases as tabulated in Table 5.2.

4.2 Discussions

Fig.5.16 shows the effect of a grid density in vertical direction to the free surface at Fn=0.30 and
Rn=5000; minimum grid spacings(A(¢) are 0.00075, 0.0015 and 0.003 respectively. The minimum grid spac-
ing and grid density in normal direction to the body surface are kept almost same as shown in Table 5.2.
In case of the coarse grid (A¢=0.003), the vortical motions do not fully develop. On the other hand, the
vortical motions develop well for other two cases and almost the same results are obtained for these two
cases.

The same investigation is made at a high Reynolds number(Rn=10° and Fn=0.25) in Fig.5.17. The
minimum grid spacings{A() near free surface in vertical direction are 0.0003, 0.0006 and 0.0012 respectively.
The minimum grid spacing and grid density in normal direction to the body surface are kept almost same.

Although A¢=0.0010 - 0.0015 are enough in low Reynolds number case as shown in Fig.5.16, in case of a
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high Reynold number, however, the size seems to be not enough. Except the case of A(=0.0012, the vortical
motions develop well and almost the same results are obtained.

Fig.5.18 shows the effect of a grid density in normal direction to the body surface at Fn=0.30 and
Rn=>5000. The total grid numbers are 91x20x20, 91x45x20 and 91x65x20 respectively in the same computa-
tional domain as shown in Table 5.2. The minimum grid spacing in normal direction to the body surface and
the grid density in vertical direction are the same for all the cases(A7n=0.002 and A{=0.0015). Although
the minimum grid spacings are kept to be the same, the results are quite different each others. The vortical

motions in coarse grid(case(a)) can not be simulated well.
From these results, it can be concluded that the grid density around the free surface is one of the

important computational parameters to detect the vortical flows which are induced by the free surface

curvature.

Table 5.1 Computational conditions.

Rn 5000
Fn 0.20- 0.35
Grid numbers
(ixjxk) 91 x 45 x 20
Min. grid spacings
- A¢ 0.005
- Ang 0.002
- AC 0.0015 ’ Table 5.2 Computational conditions.
Time increment 0.001
Rn=104 Rn=10° .
Computational -20<x<35 .
== Grid numbers
domains 00<y<20 ..
(ixjxk) 110 x 50 x 20 | 119 x 60 x 20
-1.0 <z < hpas . . B
Min. grid spacings

- At 0.005 0.005

- Ang 0.001 0.0005

- AC 0.001 0.0006

Time increment 0.0005 0.00025

Computational 220<x<35
domains 0.0<y<20
-1.0 €2z < hpas
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0.05

~-.05 X Bow ~. 05 X Bow -. 05 X

(a) Fn=0.20 (b) Fn=0.25 (c) Fn=0.30 (d) Fn=0.35

Fig.5.7 Computed velocity and vorticity(w,) distributions at center plane in
front of bow: effect of Froude number; NS05, Rn=5000,
T=15.0 {contour interval=10.0}.

Fig.5.8 ari ici
8.5.8 Comparison of vorticity(w, ), wave profile(h) and streamwise velocity(q,)

on the free surface at center plane in front of bow; NS05, NS08 and NS12
Fn=0.30, Rn=5000, T=15.0. ’
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— 1.0 — 1.0 . — 1.0

Fig.5.9 Computed velocity and vorticity(w,) distributions at center plane in
front of bow: effect of bow curvature; NS05, NS08 and NS12, Fn=0.30,
Rn=5000, T=15.0 (contour interval=10.0).

FFig.5.10 Computed velocity distributions on the free surfcae: effect of bow
curvature; NS05, NS08 and NS12, £n=0.30, Rn=5000, T'=15.0.
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Fig.5.14 Computed velocity and vorticity(w,) distributions at center plane in

front of bows: effect of bow curvature; NS08, NS12 and NS24, Fn=0.25,
Rn=1.0-10%, T=15.0 (contour interval=10.0).

Wz

~0.1

(a) NS08 (b) NS12

(c) NS24

Fig.5.15 Vorticity(w: and w,) distributions beneath free surface: effect of bow

curvature; NS08, NS12 and NS24, Fn=0.30, Rn=10%,
T=15.0 (contour interval=5.0).
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(2) A(=0.00075 (b) A¢=0.0015 (c) AC=0.0030

Fig.5.16 Grid dependency of the vortical flows at center plane: effect of A(;
NS§12, Fn=0.30, Rn=>5000, T'=15.0 (contour interval=10.0).

() AC = 0.0003 (b) A¢ = 0.0006 (¢) AC = 0.0012

Fig.5.17 Grid dependency-of the vortical flows at center plane: eflect of A(;
N§12, Fn=0.25, Rn=10°, T=15.0 (contour interval=10.0).
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— 10 — 1.0 — 1.0

0.05

(a) 91 x 20 x 20 grid. (b) 91 x 45 x 20 grid. (c) 91 x 65 x 20 grid.

Fig.5.18 Grid dependency of the vortical flows at center plane: effect of grid
density in normal direction to the body surface ; N§12, Fn=0.30,
Rn=5000, T=15.0 (contour interval=10.0).

585 6E Sub-breaking wave

1 Introduction

Free surface flows around a bow develop into the quite complicated stage, called wave breaking, above a
critical velocity. Since Baba[l] pointed out its importance in ship design point of view, many investigations
have been made to clarify the mechanism. However, the so-called bow breaking wave is not so simple as
expressed in a word.

Miyata et al.[19] explained that, at a high Froude number, steep waves generated alongside of the bow
were nondispersive and they call them ”free-surface shock wave”. Their numerical simulation was mainly
concerned with a plunging breaker. However, Mori[14,15] proposed ”sub-breaking wave” as a free surface
turbulence in the previous stage of spilling or plunging breakers. He showed the characteristics of the sub-
breaking waves through the measﬁrement of the velocity components around the first wave crest generated
by a two-dimensional submerged hydrofoil{14]. His experimental results have shown that when the velocity
is less than the critical value, the wave crests look rounded and no symptoms of breakings are present and
if the velocity increases a little beyond the critical one, the steady breakers suddenly takes place. The wave
amplitude under the sub-breaking becomes smaller comparing with that of just before the sub-breaking

while the wave length shorter as if Froude number were smaller. If the oncoming flow is further accelerated,
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this intermediate stage is overcome by the breakers such as spilling or overturning. He explained that the
sub-breaking waves could be understood as follows; the energy accumulated around the wave crest is spent
to generate the turbulent flow. The energy of the main stream is transformed into a turbulent energy which
dissipates at the same time. Eventually main stream has velocity defects, i.e. headloss, and the flow remains
without any catastrophic breakings.

On the other hand, Lungu'and Mori[24,25) simulated two-dimensional sub-breaking waves directly by
imposing a disturbance for vertical velocity component while Coleman(26] used a disturbance of preésure on
the free surface. The role of these disturbances was a kind of a trigger for Fhe transition to the turbulent

flow and it could be assumed as a source that maintains the turbulence on the free surface.

As shown in Fig.2.14, the free surface flows of NS08 and NS12 seem to be quite complicated and turbulent
which can be called the sub-breaking wave. In this chapter, basic characteristics of the sub-breaking waves
are numerically investigated under the similar condition with the experixﬁents.

Large Eddy Simulation(LES) is performed for the strut having NACA0012 section. The Sub-Grid
Scale(SGS) turbulence model[52] is introduced for the simulation. An artificial disturbance is introduced to

generate fluctuations on the free surface.

2 Numerical Algorithm

2.1 Governing equations

The following three dimensional incompressible space averaged Navier-Stokes and continuity equations
are employed for the present numerical study. These governing equations are expressed as the same forms

with the RaNS equations{equation(3.1)) which are time averaged Navier-Stokes equations.

1
u; + uug + Viuy +wu; = _¢:: + E"n'vzu + S:t:

L

==V 45, (1)

vy + uvz + vy + wu, = —¢y +

1
wy + uwy + vwy + ww, = —¢, + —Vw+ S,

Rn
Uz + vy +w,; =0 2)
z 2
¢=P+m—Paz+'3'k 3)

where u, v and w are the velocity components in (z,y,z)-directions in the Cartesian co-ordinate system as

shown in Fig.6.1; z in the uniform flow, y in the lateral and z in the vertical directions respectively. The

48



origin is located at the leading edge of the strut on the undisturbed free surface. Subscripts represent partial
differentiations with respect to the referred variables except Sz, Sy and S; which are SGS stress components.
Fn, Rn, ¢, p, Ps: and k are Froude number, Reynolds number, modified pressure, pressure, atmospheric
pressure and turbulent energy respectively. All the variables are normalized by a uniform velocity(Us) and

the length of strut(L).

The SGS stress terms can be expressed as follows;

S = {I/,(u,, -+ ux)}x + {I/,(uy + 'U::)}y -+ {U,(Uz + wz)}z
Sy = {vs(uy + vz)}e + {vs(vy +vy)}y + {vs(v: + wy)}s (4)

S = {Vs(uz +wz)}e + {vs(vz + wy)}y + {vs(w: +w,)}.

where v, represents SGS kinematic eddy viscosity.
This method is supposed to resolve the small-scale unsteady turbulent motions[53]. Thus, it may provide
useful information for the understanding of the fundamental features of the free surface turbulent flow called

sub-breaking wave.

2.2 SGS turbulence model
Sub-Grid-Scale(SGS) turbulence model by Deardroff-Smagorinky is expressed as follows;
v, = (C- fp - L,)? - {2ul + 202 + 2w? + (uy + v;)?
+(v: +wy)* + (v, + we) "} (5)

where C=0.1 is the Smagorinky’s coefficient. L, is length scale given by;

L, = A3 . (6)

where A is a cell volume which can be replaced by the Jacobian in this study.

fp in equation(6.5) is damping factor as follow;

—nt

fp=1-ezp (7) (7

where nt is normal distance from the wall normalized by the wall shear stress.

2.3 Numerical approach

Basic solution algorithm is the same as that mentioned in Chapter 3. Half C-H type grid system is

used for the simulation because it is assumed that the flow is symmetric on the center plane(y=0.0).
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In the computation at high Reynolds and high Froude numbers, two turbulence models are used to-
gether. One is the modified Baldwin-Lomax model(MBL) mentioned in Chapter 3 to simulate the flow in
the boundary layer on the body and the other is the SGS model for the sub-breaking wave. The combination
of these two models is sketched in Fig.6.2. It is assumed that the eddy-viscosity is smoothly changed in the
streamwise direction through the intermediate region(INT) where the eddy-viscosity is calculated by the
mean of SGS and MBL.

To reduce an artificial viscosity, a=0.5 which is the combination factor of convective terms in equa-

tions(3.23) and (3.24) is used.

One of the important characteristics of the sub-breaking waves is the intensive fluctuations of the free
surface such as the turbulent flow in the boundary layer flow on a solid body{14,15]. Some disturbances in
the boundary layer developed on a body play a role as a trigger for the transition to the turbulent flow and
the shear flow of the boundary layer maintains the turbulence. Although the situation is a little different
in case of the free surface flow, there exists a boundary layer on the curved free surface which may induce
the free surface turbulence. However, in the direct simulation of the turbulence there are no such a trigger.
Althoﬁgh a machine epsilon plays a role as the trigger, it is not so strong to generate the turbulence. Thus,
an artificial disturbance is often used to simulate the turbulence directly[24-26,54].

In the present numerical study, the following numerical disturbance is introduced.
wg=F-(0.5-u) (8)

where (3 is a random constant(-1.0 < § < 1.0) and u is the calculated velocity of z-component on the free
surface. This disturbance is added on the free surface in the region where the SGS turbulence model is
introduced as indicated in Fig.6.2 only for two successive time steps after T=4.0.

All the boundary conditions are the same as those mentioned in Chapter 3.

3 Results and Discussions

3.1 Computational conditions

Computations are performed for the strut having NACA0012 section(called NS12 hereafter) at Fn=0.25

and 0.30 and Rn=10%. The flow conditions are the same as the experiments as shown in Figs.2.13 and 2.14.
Although a sufficient fine grid system and a small time increment are necessary to simulate the fluctuations
directly with the SGS turbulence model, it is hard to use satisfactory computational parameters because of
a restriction of available memory size and computing time. To avoid the difficulties, a smaller cofnputational
domain is used in the present sub-breaking computations. The computational domain and the conditions

are tabulated in Table 6.1.
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3.2 Discussions

Fig.6.3 shows the computed and observed flow patterns on the free surface around bow at Fn=0.30.
The Reynolds numbers of the computation and the experiment are 1.0x10° and 4.6x10° respectively. The
simulated wave pattern agrees well with the experimented one. The distances between the wave front and the
bow(z=0.0) are about 0.05L(z=-0.05) and almost the same for the both. However, the computed wrinkles
near bow seem smaller compared with the experimental result. The reason may be that the grid system is
still not fine enough to simulate the wrinkles.
Fig.6.4 shows the computed velocity and vorticity(wy) distributions on the center plane at T=10.0. Sev-
eral peaks of the free surface exist. It must be noted that the flow around the bow is still fluctuating.
Although there are reverse flows in the bow wave field, they are not followed by overturning wave. The

vortical flows exist just beneath the free surface close to the bow.

The characteristics of the turbulence on the free surface are investigated at the six points around bow as
shown in Fig.6.5. Time history of velocity components, Reynolds stress components and turbulent energy
are compared at the points respectively.

Fig.6.6 shows the time histories of velocity components through 7T'=8.0-9.5 at the six points. Although
the initial disturbance is imposed all the domain around the bow including point-A, the fluctuations disap-
pear there. The velocity remains almost constant. Thus it can be mentioned that the flow is stable around
point-A. The velocity fluctuates slightly at point-B where the concave curvature of the free surface appears.
The fluctuations become intensive at point-C which is just outside of the wave front and the free surface
curvature is larger. It can be considered that the instability of the free surface starts there. At point-D, the
amplitude of the fluctuations of the velocity components becomes larger and the u-component is less than
zero. This result indicates that the free surface flows at point-D is turbulent and reverse flows exist there.
The fluctuations become gradually weak at points-E, and -F. At point-E, the u-component is still negative
and it is a positive at point-F. The reverse flow on the free surface disappears after the point-E. This result
can indicate that the turbulence and the reverse flows exist near the bow and they do not extend widely so
much. This is similar with the experimental results by Takekuma et al.[11] who reported that the vortical
motions, which were strongly related to the breaking waves, were located just below the free surface and the
region did not extend widely so much.

Fig.6.7 shows the distributions of time averaged velocity components in depthwise direction at points-A
and-D. The velocity is averaged for 15000 time steps from 7'=8.0 to 9.5. At point-D, where the flow is
fully turbulent, the strong defect of the u-component exists close to the free surface while w-component has
small defect. On the other hand, there is no such a velocity defect at point-A where the free surface flow
is laminar. The similar results are found in the experimental results by Mori[15] who measured the velocity
components in front of a elliptic strut and a circular cylinder under the sub-breaking condition.

Fig.6.8 shows the computed Reynolds stress components at point-D. The cross component(u/w’) is almost
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zero on the free surface because the no-shearing stress condition is imposed on the free surface. On the other
hand, other components become larger on the free surface. w'w’ is larger than u'u’. This means that the free
surface mainly fluctuates in vertical direction. However, This result is opposite tendency to the experimental
results by Mori[15] who showed that wu’ was larger than w'w’. In that point of view, more studies should
be required to make clear the phenomena.

Fig.6.9 shows the turBulent energy profiles in depthwise direction at points-A and -D. At point-A, the
turbulent energy is almost zero while, at point-D, it is intensive on the free surface and it abruptly becomes

weak at the depth of 0.02L from the free surface.

As shown in Fig.2.13, the free surface flow at Fn=0.25 seems to be stable. Computations are per-
formed at the similar condition(Fn=0.25, Rn=10%) for NS12.

Fig.6.10 shows the computed velocity and vorticity(wy) distributions on the center plane at 7=10.0. Al-
though the artificial disturbance is imposed at two initial time step of the computation, there are no wrinkles
of the free surface at fully developed stage.

Fig.6.11 shows the time histories of velocity components on the free surface on the center plane at z=-
0.018. Although the initial disturbance is introduced including .the point at T=4.0, no fluctuations appear
and the velocities keep almost constant values. These fesults means that the free surface flow at Fn=0.25

is still premature to maintain the imposed initial disturbance.

From these results it can be pointed out the existence of the free surface turbulence called sub-breaking

waves which are generated beyond a certain critical velocity without overturning.

Table 6.1 Computational condition for Large Eddy Siinulation of

sub-breaking wave.

Rn=10°, Fn=0.25, 0.30
Grid numbers
- §-direction(i) 72
- 1-direction(j) 60
- (-direction(k) 20
Min. grid spacings
- Af 0.005
- Ag . 0.0005
- A 0.0006
Time increment 0.0001
Computational 0.7<x<15
domains 00<y<0.7
-1.0 £z € hyax
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1 Introduction

Breaking waves around a shoulder part of full entrance hull forms are quite complicated and important
phenomena in ship design point of view. Doi[55] and Baba[56] experimentally showed that the viscous
boundary layer developed along the hull surface affected the formation of breaking waves around a stern and
a shoulder part of the body respectively. Pogozelski et al.[44] carried out a model test of free surface piercing
strut having foil section. They showed that the wake flows including bubbles were generated when the Froude
number was greater than 0.15 and the flows, they called them "bubbly wake flows”, started just down stream
of minimum water surface elevation near the body. The position was close to the maximum breadth of the
body. Zhang and Stern[45] numerically investigated the free surface flows generated by a surface piercing
strut having NACA0024 section. They showed that separated re-circulating flows were generated on the free
surface around a shoulder part of the body. They called them ” wave-induced separation”, which means that
the separation is generated by an interaction of the free surface and body. They used the Baldwin-Lomax
turbulence model although there are still negative opinions for the application of the turbulence model to
the separated flows without modification[41,42].

In this chapter, characteristics of the separated flows on the free surface around the shoulder part of
struts are numerically investigated.

The RaNS and continuity equations described in Chapter 3 are used for the numerical simulations. In
the computations of high Reynolds number flows, the modification is introduced to the Baldwin-Lomax
turbulence model as mentioned in Chapter 3 and it is assumed that the turbulent flow starts at z=0.1.
Numerical algorithm and boundary conditions are the same with them explained in Chapter 3. The no-slip
condition is introduced at the intersection region of £he free surface and solid body. For the simplicity of the
problems, it is assumed that the strut has a deep draft and constant section in depthwise direction. Half
C-H type grid system is used because the flow is assumed to be symmetric on the centerplane(y=0.0).

Two different struts having NACA0005 and NACAQ012 sections are used to investigate a curvature effect
of the body.

2 Results and Discussions

2.1 Computational conditions

Computations are performed for two different struts having NACA0005 and NACA0012 sections(called
NS05 and NS12 respectively hereafter) at Fn=0.25 and Rn=5000 and 10°. Computational domains are -2.0
<x<4.0,00<y<20and-1.0 <2z < hnqr for all the computational cases. Computational conditions

for the standard cases are listed in Table 7.1.

58



" Table 7.1 : Computational conditions.

Rn=5000 | Rn=10°

Grid numbers

- {-direction 91 110
- g-direction 45 60
- (-direction 20 20
Min. grid spacings
- Ag 0.005 0.005
- Ag 0.002 0.0005
- A¢ 0.0015 0.0006

Time increment 0.001 0.00025

2.2 Discussions

Typical results of the computed laminar flows are shown in Fig.7.1 which illustrates velocity distribu-
tions on the free surface and deep horizontal plane(z=-1.0) for NS05 and NS12 at Rn=>5000 and F'n=0.25.
There are no separated flows around the shoulder part(z=0.30) on the deep horizontal plane(z=-1.0) for
the both models. On the free surface, however, separated flows appear around the shoulder part. The
separations of NS12 is more intensive than those of NS05 while its vortical flows around the bow, which are
mainly generated by the free surface curvature in front of the bow as mentioned in Chapter 5, is much less
than that of NSO5 as shown in Fig.7.2.

Fig.7.3 shows the computed velocity distributions on the free surface for two different Froude numbers at
Rn=5000 for NS05. In case of Fn=0.30, the separation starts around z=0.30 and the flows become intensive
compared with the results of Fn=0.25(Fig.7.1(a)). Increasing the Froude number(#n=0.35), the position
of the separation moves around £=0.40. Fig.7.4 shows the comparison of wave profiles on the body surface.

The wave troughs locate around z=0.20 and 0.30 for Fn=0.30 and 0.35 respectively.

From these results, it can be pointed out that the separated flows become intensive at a higher Froude

number and the flows start just after the wave trough.

Turbulent flow computations are carried out for NS12 at Rn=10° and Fn=0.25. It is assumed that
the flow is turbulent from z=0.1. Fig.7.5 shows computed velocity distributions on the free surface and deep
horizontal plane(z=-1.0). As shown, on the deep horizontal plane, there are no separated flows. However,
on the free surface, separated flows appear around the shoulder(z=0.30) and aft-part(z=0.75) of the body.
From Figs.7.1(b) and 7.5, it can be explained that the separated flows at a low Reynolds number are more
intensive than those at a high Reynolds number at the same Froude number. The reason is that a boundary

layer thickness at a low Reynolds number is thicker than that at higher Reynolds number. Fig.7.6 shows the
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vorticity distributions beneath the free surface around the bow. The distance from the free surface is about
0.003 where the vorticity is most intensive. The vorticity distributed aside from the bow, called a necklace
vortex, is dissipated away around z=0.20.

From these results it can be explained that the vortical flows or necklace vortex, which are generated
beneat_;h the free surface around bow, do not affect so much the separated flows around the shoulder part of
the body. The separated flows can be generated by the interaction of a boundary layer and the free surface

flows. The separated flows are mainly affected by the local curvature of the body around the shoulder part.

In the present computation, the modified Baldwin-Lomax turbulence model is used for the turbulent
flow simulation.

Fig.7.7 shows the behaviors of the F'(n) of equation(3.45), which is used to calculate the kinematic eddy-
viscosity in outer layer, at =0.30 for NS12 at Rn=10° and Fn=0.25. On the deep horizontal plane(z=-1.0),
F(n) has single peak while multi-peaks(two peaks) on the free surface. This is similar situation with Fig.3.4
as pointed out by Degani and Schiff{41]. Fig.7.8 shows the computed kinematic eddy-viscosity distributions
at the same station. In case of the original model, the distributions of the eddy-viscosity on the free surface
and deep horizontal plane are quite different each other. The value on the free surface by the original model
is too large because the second peak of F(n) in Fig.7.7 is selected by the original Baldwin-Lomax model.
Introducing the modifications, which means the selection of the first peak in Fig.7.7, it becomes similar to
that on the deep horizontal plane and the value seems to be reasonable.

Fig.7.9 shows the velocity distributions on the free surface around the shoulder part(z=0.30). The sepa-
rated flows by the modified model is slightly intensive than those by the original one. The reason is that the
Reynolds stress by the original model may be larger than that of the modified one because the eddy-viscosity
by the original model is larger. Thus the velocity defect by the original one becomes larger. By the results,
the separated flows of the original one become weak comparing with the modified one as pointed out by
Degani and Schiff[41]. However, the wave profiles on the body surface for both treatments are almost same
as shown in Fig.7.10. The reason is that the eddy-viscosities close to the body surface, which are not related

to the F(n), for both treatments are almost same as shown in Fig.7.8.

From these results it can be concluded that the separated recirculating flows are generated on the free
surface around a shoulder part of body due to the interaction of a bouhdary layer and free surface. The
flows start just after the wave trough. The separated flows are not strongly influenced by the vortical flows

or necklace vortex which are mainly generated by the free surface curvature in front of the bow.
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(free surface)

(b) NS12

Fig.7.1 (continued)

P ARARY

() NS05 A (b) NSI12

Fig.7.2 Computed velocity and vorticity(wy) distributions at cenler plane in
fronf of bows of NS05 and NS12, Rn=5000, Fn=0.25, T=15.0.
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Fig.7.8 Computed eddy-viscosity distributions at z=0.30, NS12,
Rn=10%, FFn=0.25, 1'=15.0.



(a) Fn=0.30

(2) Deep horizontal plane (2=-1.0)

(b) Fn=0.35

0.

-0.10

Fig.7.3 Computed velocity distributions on free surface for NS05,
Nn=5000, 1'=15.0
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