
3678 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 10, OCTOBER 2007

Universal BER Performance Ordering of
MIMO Systems over Flat Channels

Shuichi Ohno, Member, IEEE, and Kok Ann Donny Teo

Abstract— We present universal BER performance ordering
for different antenna sizes in Multiple-Input Multiple-Output
(MIMO) wireless systems with zero-forcing (ZF) equalization,
which hold for all SNR. We first show that when the number of
transmit antennas is fixed, BER of each symbol degrades with a
decrease in the number of receive antennas even if the received
SNR is kept constant. Then, we prove that when the number
of receive antennas is fixed, the average BER improves with
a decrease in the number of transmit antennas, which shows
the tradeoff between BER and bandwidth efficiency in MIMO
with ZF equalization. Furthermore, discussions on the relation
of BER with the same change in the number of receive and
transmit antennas show that there is no universal order in BER
for any particular channel. These highlight the advantage and
the limit of MIMO with ZF equalization.

Index Terms— BER, MIMO, Equalization

I. INTRODUCTION

MULTIPLE-Input Multiple-Output (or the so-called
MIMO) system, which employs multiple antennas at

both ends of the receiver and transmitter terminals, has been
the subject of intensive research efforts in the past decade with
potential application in future high speed wireless communica-
tions network. This is motivated by the benefits of 1) diversity
gain, which can be achieved by averaging over multiple path
gains to combat fading, to improve bit-error rate (BER); 2)
the fading-induced spatial multiplexing gain, which makes
use of the degrees of freedom in communication system by
transmitting independent symbol streams in parallel through
spatial channels, to improve capacity and/or BER (see e.g.,
[1]–[7] and references therein).

It has been shown that for linear detectors, the diversity
order of MIMO transmissions with Nt transmit and Nr receive
antennas over i.i.d. Rayleigh channels is Nr − Nt + 1 at
full multiplexing [8]. The diversity order is usually measured
by the slope of the BER curve at high SNR. From this we
can infer that the diversity order is improved by increasing
the number Nr of receive antennas, whereas the diversity
order is degraded by increasing the number Nt of transmit
antennas (which also contributes to multiplexing gain). In [1],
gains induced by different schemes of MIMO systems were
analytically and numerically compared. For a fix number of
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receive antennas, numerical simulations show a loss in signal-
to-noise ratio (SNR) with an increase in the number of transmit
antennas but no analytical explanation for this phenomenon is
given. On the other hand, the exact expressions for the symbol
error-rate (SER) of MIMO with minimum mean squared error
(MMSE) equalization is rigorously derived in [9], while an
approximate BER expression of MIMO with zero-forcing (ZF)
equalization is derived in [10]. However, these analysis are
heavily dependent on the specific channel probability density
function (pdf). They require integration over a given channel
pdf, without which no general conclusion can be made.

Indepth theoretical study of MIMO systems which includes
Vertical Bell Laboratories Layered Space-Time (V-BLAST),
has also been reported in [11] which focuses on the tradeoff
between the multiplexing and the diversity gain based on
an approximate outage probability expression that is satis-
fied only asymptotically at high SNR. Diversity-multiplexing
tradeoff with regard to group detection for MIMO at high
SNR has been done in [12]. The insights glimpsed from these
analysis are important and beneficial. However, the common
shortcoming of these works is that they are approximations or
bounds in the high/low SNR regimes which may be obsolete
at practical range of SNR. We also bring attention to the fact
that diversity gain at high SNR is not synonymous with BER
or diversity gain at a particular value of SNR. Furthermore,
diversity gain achieved for Rayleigh channels may not be
achieved for other types of channels.

In this paper, we develop a novel approach to analyze the
error-rate performance in MIMO system with linear equaliza-
tions that is not limited to the SNR extremes but apply for all
range of SNR. In particular, we focus on the impact of antenna
size on the BER performance. As suggested from the diversity
order at high SNR, increasing the number of receive antennas
should enhance the BER performance since the receive SNR
increases, while decreasing the number of transmit antennas
should do the same, because the symbols transmitted from
other antennas can be regarded as interferences. However, it is
not obvious that these still hold after linear equalization which
stimulates the need for our theoretical analysis. Especially for
the former case, under the condition that the receive SNR
is kept constant, i.e., without power gain/loss due to the
increase/decrease in the number of receive antennas, it will
be interesting to analyze how the BER will be affected by the
change in the number of receive antennas. We explicitly show
that when the number of transmit antennas is fixed, the BER
degrades with a decrease in the number of receive antennas,
even if the receive SNR is fixed. This receive diversity loss
or BER loss is due to the inherent convexity property of BER
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functions. Then, we analytically prove that for a fix number
of receive antennas, the BER improves with a decrease in
the number of transmit antennas, which implies that there
exists a pure tradeoff between BER and bandwidth efficiency
in MIMO system employing ZF equalization.

Albeit we do not evaluate how much gains there actually
are, which require the knowledge of the channel coefficients
or the associated channel pdf, our results are universal in the
sense that performance ordering with the number of transmit
antennas and the number of receive antennas holds true at
all SNR, irrespective of channel pdf. Last but not least, for
completeness, we also show that the BER is not ordered
for any particular channel when both the number of transmit
antennas and the number of receive antennas simultaneously
change. Simulations to corroborate our theoretical analysis are
presented.

II. PRELIMINARIES AND SYSTEM MODEL

We consider a MIMO transmission with Nt transmit and
Nr receive antennas (Nr ≥ Nt) over flat channels. Let us
define ρ/Nt as the transmit power at each transmit antenna for
the Nr ×Nt MIMO system. At the receiver, the Nr received
samples, x = [x1, . . . , xNr ]T , is expressed as

x =
√

ρ

Nt
Hs + w, (1)

where the Nt × 1 combined data vector s having i.i.d. entries
with unit variance, the Nr × 1 vector w of zero mean cir-
cular complex additive white Gaussian noise (AWGN) entries
with unit variance and the Nr × Nt channel matrix H are
respectively given by

s =

⎡
⎢⎣

s1

...
sNt

⎤
⎥⎦ , w =

⎡
⎢⎣

w1

...
wNr

⎤
⎥⎦ , H =

⎡
⎢⎣

h11 . . . h1Nt

...
. . .

...
hNr1 . . . hNrNt

⎤
⎥⎦ ,

(2)
such that hmn denotes the path gain from transmit antenna n
(n ∈ [1, Nt]) to receive antenna m (m ∈ [1, Nr]). The path
gains are assumed to be perfectly known at the receiver but
unknown at the transmitter.

Let the mth row (which corresponds to the mth receive
antenna) of the channel matrix H be hm for m ∈ [1, Nr],
and the nth column (which corresponds to the nth transmit
antenna) of the channel matrix H be h̃n for n ∈ [1, Nt].
Consequently, we can also express H as

H = [h1, . . . , hNr ]
T = [h̃1, . . . , h̃Nt ]. (3)

The signal-to-noise ratio (SNR) at receive antenna m is found
to be ρ||hm||2/Nt, where || · || is the 2-norm of a vector,
while the total receive power of the symbol transmitted from
antenna n, i.e., the sum of power for symbol sn at all receive
antennas, is ρ||h̃n||2/Nt.

MIMO system offers the benefits of diversity gain to
improve bit-error rate (BER) and/or the fading-induced spatial
multiplexing gain to increase channel capacity. Mathematical
capacity analysis reveals that the channel capacity scales with
the minimum of the number of transmit antennas and the
number of receive antennas [3], while the analysis of the
diversity gain, which is fully achieved by non-linear Maximum

Likelihood (ML) equalization, shows a tradeoff between the
number of transmit antennas and diversity advantage [11]. In
this paper, we consider more practical linear equalizations and
analyze their performance with respect to antenna size.

For transition to our analysis in the proceeding sections, let
us review linear equalizations for MIMO systems. The output
of a zero-forcing (ZF) equalizer is obtained by multiplying

G =
√

Nt

ρ (HHH)−1HH to x, which gives us ŝ = s+Gw,

where (·)H stands for complex conjugate transposition. To
enable ZF equalization, we require that:
Assumption 1: The channel matrix is tall and has column full
rank.

The covariance of Gw is given by ( ρ
Nt

HHH)−1. Let us
define

RNr,Nt = HHH =
Nr∑

m=1

hH
mhm, (4)

and denote the nth diagonal entry of R−1
Nr,Nt

as λNr,Nt,n.
Then, it follows from ŝ = s + Gw that the (post-processing)
receive SNR of symbol sn after ZF equalization is expressed
as

SNRNr,Nt,n =
ρ

Nt

1
λNr,Nt,n

, for n ∈ [1, Nt]. (5)

On the other hand, the MMSE equalizer is given by G =√
ρ

Nt
HH( ρ

Nt
HHH+I)−1. Based on ŝ = Gx, we define the

nth entry of the equalized output as ŝn = pnsn + vn, where
vn is the effective noise contaminating symbol sn. Then, we
can show that the covariance of the effective noise meets
E{|vn|2} = pn(1 − pn). The receive signal-to-interference
noise ratio (SINR) of symbol n after MMSE equalization is
then expressed as SINRNr,Nt,n = ρ

Nt

1
ξn

− 1, where ξn is
the nth diagonal entry of [HHH + Nt

ρ I]−1. Similar SINR
expressions are also found for block transmission with linear
equalization [13] and MIMO-OFDM with linear processing
[14].

We remark that SNRs or SINRs are fundamental parameters
of system performances. If a symbol-by-symbol detection is
employed, the BER or symbol-error rate (SER) function can
usually be described by SNR or SINR. Suppose that we
draw symbols from a fixed digital modulation with finite
constellation. For the constellation, let us denote f(·) as a
function in SNR or SINR to describe the bit-error probability
of the transmitted symbols. It is obvious that f(·) is a
decreasing function in SNR or SINR. Take for example, the
symbol-by-symbol hard detection of QPSK constellation and
ZF equalization. Then, the BER of symbol sn for Nr × Nt

system is expressed as BERNr,Nt,n = f(SNRNr,Nt,n) =
Q(
√

SNRNr,Nt,n), where Q(x) denotes the Gaussian-Q func-
tion Q(x) ≡ (1/

√
2π)

∫∞
x e−t2/2dt.

For ZF equalization, the BER of symbol sn decreases with
an increase in SNRNr,Nt,n, which is inversely proportional to
λNr ,Nt,n. To investigate the BER performance of the MIMO
system, we need to investigate the properties of λNr,Nt,n.
From the properties, we would like to study how the antenna
number affects the BER performance. Unlike diversity analy-
sis, e.g., [1], [3], we do not specify any pdf of the channel
gains. Our BER analysis also holds at practical range of SNR
unlike [8], [11], [12].
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In the sequel, we focus our attention on ZF equalization.
The same results for SNR of ZF equalization can be developed
for SINR of MMSE equalization. However, since the effective
noises of MMSE equalization are in general non-Gaussian and
depend on the channel structure, e.g., the number of transmit
and receive antennas, we cannot describe the BER function
of MMSE equalized symbols by one function. If BER of any
antenna size can be approximated as one function of SINR,
then the discussion on BER in the rest of the paper will also
hold for BER with MMSE equalization.

III. DECREASING THE NUMBER OF RECEIVE ANTENNAS

Now, let us study the BER performance of MIMO system
when we decrease the number of receive antennas, while fixing
the number of transmit antennas. As the number of receive
antennas decreases, the total receive power of a transmitted
symbol decreases. Thus, it may be obvious that the BER
performance degrades due to the power loss. However, under
the condition that the total receive power of each symbol is
kept constant even if the number of receive antennas decreases,
it is not clear if the same conclusion can also be made.
We investigate how the BER performance is affected by the
number of receive antennas when the total receive power of
each symbol is fixed.

Let us assume that Nr − 1 ≥ Nt. We fix the number of
transmit antennas at Nt and decrease the number Nr of receive
antennas by one. When receive antenna μ is removed from the
Nr ×Nt system, the corresponding channel matrix is denoted
as H(μ), which is assumed to have column full rank. The
(Nr−1)×Nt channel matrix H(μ) yields the Nt×Nt matrix
R

(μ)
Nr−1,Nt

, corresponding to (4), expressed as R
(μ)
Nr−1,Nt

=
H(μ)HH(μ) =

∑Nr

m=1,m �=μ hH
mhm. It is easy to see that the

matrices RNr ,Nt and R
(μ)
Nr−1,Nt

are related as

Nr∑
μ=1

R
(μ)
Nr−1,Nt

= (Nr − 1)RNr,Nt . (6)

It follows that SNRNr,Nt,n in (5) can be expressed as

SNRNr,Nt,n =
ρ

Nt

1
[R−1

Nr,Nt
]n,n

(7)

=
ρ

Nt

1

(Nr − 1)[(
∑Nr

μ=1 R
(μ)
Nr−1,Nt

)−1]n,n

,

where [ · ]m,n denotes the (m, n)th entry of a matrix.
To compare the Nr × Nt system with the (Nr − 1) × Nt

system, it is reasonable to uniformly remove one antenna
among Nr antennas, i.e., the selection of any one receive
antenna has the same probability 1/Nr. If receive antenna μ is
removed from the Nr×Nt system, then the total receive power
of symbol sn reduces to ρ

∑Nr

m=1,m �=μ |hmn|2/Nt. Thus, for
(Nr − 1) × Nt system, the average total receive power of
symbol sn with respect to random receive antenna dropping
is given by

1
Nr

Nr∑
μ=1

⎛
⎝ Nr∑

m=1,m �=μ

ρ
|hmn|2

Nt

⎞
⎠ =

(
Nr − 1

Nr

)
ρ
||h̃n||2

Nt
. (8)

To ensure that the average total receive power of each symbol
remains constant even when the number of receive antennas
reduce by one, we increase the transmit power of the (Nr −
1)×Nt system by a factor of Nr

Nr−1 , i.e., we replace ρ in (8)
by Nr

Nr−1ρ. Subsequently, for this (Nr − 1) × Nt system, the

receive SNR at receive antenna m increases to Nr

Nr−1
ρ||hm||2

Nt

and hence the average total receive power of the (Nr − 1) ×
Nt systems becomes equal to the total receive power of the
Nr × Nt system. Thus, the effects of power loss due to the
reduction of the number of receive antennas disappears on the
average.

Let us define the symbol SNR of symbol sn after ZF equal-
ization when receive antenna μ is removed as SNR(μ)

Nr−1,Nt,n

for n ∈ [1, Nt]. Then, similar to (5), the symbol SNR of
symbol sn for the (Nr − 1) × Nt system is expressed as

SNR(μ)
Nr−1,Nt,n

=
Nr

Nr − 1
ρ

Nt

1

[(R(μ)
Nr−1,Nt

)−1]n,n

. (9)

To compare the (Nr − 1) × Nt system with the original
Nr×Nt system, we utilize the following lemma (see Appendix
I for a proof):

Lemma 1: For a given channel matrix, if H(μ) has column
full rank for μ ∈ [1, Nr], then for n ∈ [1, Nt],

1

[(
∑Nr

μ=1 R
(μ)
Nr−1,Nt

)−1]n,n

≥
Nr∑
μ=1

1

[(R(μ)
Nr−1,Nt

)−1]n,n

. (10)

From (7) and Lemma 1, we obtain

SNRNr,Nt,n ≥ 1
Nr

Nr∑
μ=1

SNR(μ)
Nr−1,Nt,n

, (11)

where 1
Nr

∑Nr

μ=1 SNR(μ)
Nr−1,Nt,n

denotes the average symbol
SNR of symbol sn when one receive antenna is randomly
dropped. This shows that the average SNR of symbol sn

degrades when we randomly remove one receive antenna even
if the average total receive symbol power remains constant.

We denote the BER of symbol sn for (Nr−1)×Nt system
when receive antenna μ is removed as BER(μ)

Nr−1,Nt,n
=

f(SNR(μ)
Nr−1,Nt,n

). Then, its BER averaged with respect to
random receive antenna dropping is simply

BER′
Nr−1,Nt,n =

1
Nr

Nr∑
μ=1

BER(μ)
Nr−1,Nt,n

, (12)

where we utilize the superscript ′ to denote the average value
with respect to random antenna dropping. Although from
(11), SNRNr,Nt,n ≥ 1

Nr

∑Nr

μ=1 SNR(μ)
Nr−1,Nt,n

, this does not
necessarily imply that BERNr ,Nt,n is lower than the BER
averaged with respect to random receive antenna dropping,
i.e., BER′

Nr−1,Nt,n. To show this, we require that
Assumption 2: f(·) is a convex function in SNR.
This assumption is reasonable. For example, the Gaussian-
Q function Q(

√
x) is convex in x ≥ 0. The BER functions

of most digital modulations are expressed (at least approxi-
mately) as a Gaussian-Q function or a linear combination of
Gaussian-Q functions. For such a digital modulation, the BER
function is invariably convex in all SNR.
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Coupled with Assumption 2, since f(·) is a decreasing
function in SNR, we have

f(SNRNr,Nt,n) ≤ f

(
1

Nr

Nr∑
μ=1

SNR(μ)
Nr−1,Nt,n

)

≤ 1
Nr

Nr∑
μ=1

f(SNR(μ)
Nr−1,Nt,n

), (13)

for n ∈ [1, Nt]. This reveals that removing one receive antenna
randomly degrades the average BER of each symbol even
if we increase the transmit power to keep the average total
receive symbol power of (Nr − 1) × Nt system equal to the
total receive symbol power of the original Nr × Nt system.
We summarize this result in the following theorem:

Theorem 1: Suppose ZF equalization in an Nr ×Nt MIMO
transmission over a fixed static channel, where Nr − 1 ≥ Nt.
We randomly remove one receive antenna but increase the
transmit power by a factor of Nr/(Nr − 1), If the channel
matrices satisfy Assumption 1 and the BER function is convex,
then for all SNR, we have

BERNr,Nt,n ≤ BER′
Nr−1,Nt,n. (14)

Theorem 1 clearly states the BER gain of a symbol in
MIMO transmission over a fixed static channel obtained by
simply increasing the number of receive antennas. Receive
diversity is said to be acquired. Remember that the effect of
power loss is eliminated. It has already been shown in [8]
that at high SNR, the diversity order of Nr × Nt systems
for linear detection over i.i.d. Rayleigh distributed channels
is Nr − Nt + 1 at full multiplexing. This implies that BER
gain/receive diversity gain is obtained by increasing Nr.
Unlike [8], we embraced a more pragmatic approach where no
approximation is made and no fading is assumed. Theorem 1
can be applied to all digital modulations satisfying Assumption
2, regardless of the underlying channel pdf. Importantly, it
states a universal and deterministic characteristics of the BER
performance of MIMO systems that is contributed in large part
by the convexity property of the BER function. For a given
channel environment and at all SNR, if a receive antenna is
randomly dropped, the average BER performance deteriorates.
To know how much the actual deterioration is, one has to
evaluate using the exact channel coefficients. Indeed, the BER
averaged with respect to random receive antenna dropping
depends on the number of receive antennas and a fortiori
deteriorates as the number of receive antennas is lessened.
This highlights the advantage/disadvantage of MIMO system
upon increasing/decreasing the number of receive antennas.

So far, we have not specified any channel pdf. To gain more
insights, let us denote the channel pdf of channel H as P (H)
and of H(μ) as P (H(μ)). To see the BER of symbol sn

averaged over random channels, we consider the following
channel characteristics:
Assumption 3: P (H(1)) = P (H(2)) = · · · = P (H(Nr)).
This means that when any one row is removed from the
Nr ×Nt channel matrix, the resultant (Nr − 1)×Nt channel
matrix has the same pdf. Clearly, if the entries of H are
i.i.d., then the assumption holds true. However, it should be
remarked that a more general class of channels which includes

for example, non i.i.d. channels having correlation between
channel gains, also meets the assumption.

Under Assumption 3, we have for μ ∈ [1, Nr],∫
BER(μ)

Nr−1,Nt,n
P (H(μ))dH(μ) ≡ BERNr−1,Nt,n, (15)

where BERNr−1,Nt,n is the BER of symbol sn averaged over
random (Nr−1)×Nt channels. The over-bar is used to denote
the average over random channels to differentiate with the
average over antenna dropping. Utilizing (14) of Theorem 1,
straightforward manipulation yields∫

BERNr,Nt,nP (H)dH ≤
∫

BER′
Nr−1,Nt,nP (H)dH .

(16)
It follows from (12) and (15) that the R.H.S of (16) is
equivalent to BERNr−1,Nt,n.

On the other hand, if we denote the BER of symbol sn of
Nr × Nt system averaged over random Nr × Nt channels as
BERNr,Nt,n, then L.H.S. of (16)

∫
BERNr,Nt,nP (H)dH =

BERNr,Nt,n. Since the equality in (10) holds only for some
special channels, we can conclude that:

Theorem 2: Suppose an Nr ×Nt MIMO transmission with
ZF equalization, where Nr−1 ≥ Nt. Then, under Assumptions
1–3 and for a fix number of transmit antennas, the BER of
symbol sn averaged over random channels is a decreasing
function in the number of receive antennas for all SNR such
that

BERNr,Nt,n < BERNr−1,Nt,n. (17)

In addition to degrading the BER of each symbol averaged
over random receive antenna dropping (as proven in Theorem
1), Theorem 2 states that decreasing the number of receive
antennas also degrades the BER of each symbol averaged over
random channels (or equivalently, increasing the number of
receive antennas improves the average BER performance). We
stress that the BER gain attributed to an increase in the number
of receive antennas comes from the convexity of the BER
function, irrespective of channel pdf and SNR. The implication
is that receive diversity is always available for any channel pdf
and at any value of SNR.

To further emphasize the importance of the convexity
property, let us suppose that the BER function is concave
(which is of course impossible in practice). Then, all the
inequality signs in the equations are reversed. In this case,
all the results derived so far will also be reversed, and we
get BERNr,Nt,n > BERNr−1,Nt,n, i.e., BER gain can only be
achieved with a decrease in the number of receive antennas.

IV. DECREASING THE NUMBER OF TRANSMIT ANTENNAS

In this section, we consider the BER for a fix number Nr of
receive antennas when the number Nt of transmit antennas is
reduced by one, assuming that 2 ≤ Nt ≤ Nr. For comparison
between Nr ×Nt system and Nr × (Nt−1) system, as in the
previous section, we uniformly remove one transmit antenna
among Nt transmit antennas, i.e., the selection of any one
transmit antenna has the same probability 1/Nt.

It is often the case that the total transmit power of all
transmit antennas is kept constant for different number of
transmit antennas. But here, we fix the transmit power of each
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transmit antenna to be ρ/Nt. This implies that the sum of
transmit power reduces from ρ to ρ(Nt−1)/Nt, if one transmit
antenna is removed. In this case, the total receive power from
a transmit antenna remains constant, while the average receive
power at each receive antenna of Nr × (Nt − 1) system with
respect to transmit antenna dropping is (Nt − 1)/Nt of the
receive power at each receive antenna of the original Nr ×Nt

system. Note that even if the sum of transmit power is kept
constant, our subsequent analysis still hold.

When transmit antenna ν is dropped from the Nr ×
Nt system, the corresponding channel matrix is denoted
as H [ν]. Let us define an (Nt − 1) × (Nt − 1) matrix
R

[ν]
Nr,Nt−1 = H [ν]HH [ν]. We also define the nth diagonal

entry of (R[ν]
Nr ,Nt−1)

−1 as λ
[ν]
Nr,Nt−1,n for n ∈ [1, ν − 1] and

the (n− 1)st diagonal entry of (R[ν]
Nr ,Nt−1)

−1 as λ
[ν]
Nr ,Nt−1,n

for n ∈ [ν+1, Nt] so that λ
[ν]
Nr ,Nt−1,n corresponds to the SNR

of symbol sn after equalization.
The following lemma is fundamental to our BER analysis

(see Appendix II for a proof):
Lemma 2: For n ∈ [1, Nt] and n �= ν,

λ
[ν]
Nr ,Nt−1,n ≤ λNr ,Nt,n, (18)

where equality holds if and only if h̃μ is orthogonal to all h̃n

for n �= μ.
The SNR of symbol sn for the Nr×(Nt−1) system without

transmit antenna ν is expressed as

SNR[ν]
Nr,Nt−1,n =

ρ

Nt

1

λ
[ν]
Nr ,Nt−1,n

. (19)

We have from (5), and direct application of Lemma 2 that for
n �= ν,

SNR[ν]
Nr,Nt−1,n =

ρ

Nt

1

λ
[ν]
Nr ,Nt−1,n

≥ ρ

Nt

1
λNr ,Nt,n

= SNRNr,Nt,n. (20)

Notice that in the case where the sum of transmit power
is kept constant, then SNR[ν]

Nr,Nt−1,n = ρ
Nt−1

1

λ
[ν]
Nr,Nt−1,n

>

ρ
Nt

1

λ
[ν]
Nr,Nt−1,n

≥ SNRNr,Nt,n, and the relation in (20) is simi-

larly obtained except that the equality sign is removed. Hence,
removing one transmit antenna (reducing the bandwidth or
spectral efficiency) improves the SNR of each symbol trans-
mitted from the remaining antennas and hence its BER, i.e., if
we denote the BER of symbol sn of Nr × (Nt −1) system as
BER[ν]

Nr ,Nt−1,n = f(SNR[ν]
Nr ,Nt−1,n), then BER[ν]

Nr,Nt−1,n ≤
BERNr ,Nt,n, for n �= ν.

Intuitively, this result may be quite reasonable, since in
the original Nr × Nt system symbol sν can be considered
as an interference to symbol sn and the effect of symbol sν

is absent if symbol sν is not transmitted. For i.i.d. Rayleigh
channels at high SNR, the diversity order of Nr ×Nt systems
for linear detection is Nr − Nt + 1 and hence reducing
Nt increases diversity order [8]. However, diversity gain at
high SNR does not equate to BER improvement at all SNR.
Therefore, our result is not self-evident. From (20), we can
find a fundamental tradeoff between bandwidth efficiency and

SNR, or equivalently, BER performance in ZF equalization
that holds at any value of SNR. If one increases the number of
transmit antennas, then bandwidth efficiency or multiplexing
gain is enhanced but the BER of each symbol is degraded.

Now let us consider the average BER of Nr × Nt MIMO
system in one transmitted block, i.e., the BER averaged over
the Nt symbols, which is defined as

BERNr,Nt =
1
Nt

Nt∑
n=1

f(SNRNr,Nt,n). (21)

To differentiate this with the BER of each symbol, we call this
block BER. The block BER is introduced to compare systems
having different number of symbols in one transmitted block.
The block BER of Nr × (Nt − 1) system without transmit
antenna ν is defined as

BER[ν]
Nr,Nt−1 =

1
Nt − 1

Nt∑
n=1,n�=ν

f(SNR[ν]
Nr,Nt−1,n). (22)

Let us define the block BER of Nr×(Nt−1) system averaged
with respect to random transmit antenna dropping as shown
in (23). The difference BERNr,Nt − BER′

Nr,Nt−1 is given by
(24). Since f(·) is a decreasing function in SNR, one finds
from (20) that the argument in the brackets of (24) is greater
than or equal to 0, which leads to:

Theorem 3: Suppose ZF equalization of an Nr ×Nt MIMO
system over a fixed static channel. We randomly remove one
transmit antenna and denote the block BER of Nr × (Nt −1)
systems averaged with respect to random transmit antenna
dropping as BER′

Nr,Nt−1. If the channel matrices satisfy
Assumption 1, then for all SNR, we have

BER′
Nr,Nt−1 ≤ BERNr,Nt . (25)

Theorem 3 shows that for a fix number of receive antennas,
if one transmit antenna is randomly removed with probability
1/Nt, the block BER of Nr × (Nt − 1) system averaged
with respect to random transmit antenna dropping is smaller
than the block BER of the original Nr × Nt system. Since
the equality sign only holds for some special channels, we
can say that on the average, reducing the number of transmit
antennas improves the block BER performance, which is in
sharp contrast to Theorem 1. We can find a pure tradeoff
between bandwidth efficiency and the block BER performance
in ZF equalization. It is worth emphasizing that Theorem 3
holds in any given channel environment satisfying Assumption
1 regardless of the underlying channel pdf and is valid for all
SNR.

To get further insights, we assume that
Assumption 4: P (H [1]) = P (H [2]) = · · · = P (H [Nt]),
where P (H [ν]) denotes the channel pdf of H [ν].
We integrate both sides of (25) with respect to P (H). Then
the R.H.S. gives BERNr,Nt . Under Assumption 4, the L.H.S
becomes the block BER averaged over random Nr × (Nt−1)
channels as BERNr,Nt−1 =

∫
BER[ν]

Nr,Nt−1P (H [ν])dH [ν] =∫
BER[ν]

Nr,Nt−1P (H)dH . Since the equality sign in (25) only
holds in some special channels, we can conclude that:

Theorem 4: Suppose Nr × Nt MIMO transmission with
ZF equalization under Assumptions 1 and 4. Then, for a fix
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BER′
Nr,Nt−1 ≡ 1

Nt

Nt∑
ν=1

BER[ν]
Nr,Nt−1 =

1
Nt

Nt∑
ν=1

⎛
⎝ 1

Nt − 1

Nt∑
n=1,n�=ν

f(SNR[ν]
Nr,Nt−1,n)

⎞
⎠ . (23)

1
Nt

Nt∑
n=1

⎡
⎣f(SNRNr,Nt,n) −

⎛
⎝ 1

Nt − 1

Nt∑
ν=1,ν �=n

f(SNR[ν]
Nr,Nt−1,n)

⎞
⎠
⎤
⎦ . (24)

number of receive antennas, the block BER averaged over
random channels is an increasing function in the number of
transmit antennas for all SNR such that

BERNr,Nt−1 < BERNr,Nt . (26)

Repeatedly using Theorem 4, one finds an ordered per-
formance with respect to the number of transmit antennas:
BERNr ,1 < BERNr,2 < · · · < BERNr,Nt .

Theorem 4 indicates that for all SNR, increasing the number
of transmit antennas, i.e., the bandwidth efficiency, degrades
the block BER performance averaged over random channels
(or equivalently, decreasing the number of transmit antennas
improves the block BER). Theorem 4 is completely different
from Theorem 2. While the BER of each symbol is a decreas-
ing function in the number of receive antennas (as shown in
Theorem 2), the block BER is an increasing function in the
number of transmit antennas. This affirms the tradeoff between
BER and bandwidth efficiency in MIMO with ZF equalization,
which was also found in ML equalization for i.i.d. channels
at high SNR [11]. Unlike [11], any characteristics of random
channels are not specified except for Assumption 4, and (26)
holds for any value of SNR.

V. DECREASING BOTH THE NUMBER OF TRANSMIT AND

RECEIVE ANTENNAS

When we randomly remove one receive antenna from
Nr ×Nt system, we can define the block BER averaged with
respect to random receive antenna dropping as BER′

Nr−1,Nt
.

It follows direct from Theorem 1 that

BERNr,Nt ≤ BER′
Nr−1,Nt

, (27)

provided Nr − 1 ≥ Nt. Thus, not surprisingly, for all SNR,
random removal of one receive antenna degrades the block
BER as well. To recap from the previous sections, we have
verified that decreasing the number of receive antennas has
a negative impact on BER performance, while decreasing the
number of transmit antennas positive. However, the impact of a
simultaneous decrease in both the number of receive antennas
and the number of transmit antennas on the BER in MIMO
has yet to be clarified. In this section, we show by using a
simple example of QPSK signaling that there is no ordered
BER for the same change in the number of receive antennas
and the number of transmit antennas.

Even when the number of receive antennas and the number
of transmit antennas simultaneously decrease by one, i.e.,
Nr → Nr − 1, Nt → Nt − 1, we keep the total receive SNR
in all the receive antennas unchanged. By dropping receive

TABLE I

SNR AND BER FOR CASE 1 AND CASE 2

Case 1 Case 2

(μ, ν) SNR(μ,ν)
1,1,1 BER(μ,ν)

1,1,1

(1, 1) 9.7435 0.0009

(1, 2) 9.7783 0.0009

(2, 1) 23.4698 0.0000

(2, 2) 3.6504 0.0280

n SNR2,2,n BER2,2,n

1 7.7513 0.0027

2 5.5796 0.0091

(μ, ν) SNR(μ,ν)
1,1,1 BER(μ,ν)

1,1,1

(1, 1) 3.8439 0.0250

(1, 2) 32.9487 0.0000

(2, 1) 4.8307 0.0140

(2, 2) 6.0063 0.0071

n SNR2,2,n BER2,2,n

1 3.4056 0.0325

2 11.5624 0.0003

antenna μ and transmit antenna ν, the corresponding input-
output relation of the (Nr −1)× (Nt−1) system is expressed
as

y(μ) =

√
Nrρ

(Nr − 1)Nt
H(μ,ν)s(ν) + w(μ), (28)

where y(i), s(i), and w(i) are obtained by removing the ith
entry of y, s, and w, and H(μ,ν) by removing the μth row
and the νth column of H . Like in Section III, the transmit
power of (Nr − 1) × (Nt − 1) system increases by a factor

Nr

Nr−1 .
Because it is difficult to compare the block BER between an

Nr×Nt system and an (Nr−1)×(Nt−1) system analytically,
we consider a simple example by comparing an 1× 1 system
with an 2 × 2 system. When receive antenna μ and transmit
antenna ν are removed, for the (Nr − 1) × (Nt − 1) system,
we denote SNR(μ,ν)

Nr−1,Nt−1,n and BER(μ,ν)
Nr−1,Nt−1,n as the SNR

and BER of the symbol from the nth antenna respectively.
Note that from an 2 × 2 system, there are 4 possible com-
binations of removing both the transmit and receive antenna
such that only one entry in {h11, h12, h21, h22} remains in the
1 × 1 system. This means that there are 4 possible SNR(μ,ν)

1,1,1

and BER(μ,ν)
1,1,1 . We denote the (block) BER averaged with

respect to random transmit and receive antenna dropping as
BER′

1,1 = 1
4

∑2
μ=1

∑2
ν=1 BER(μ,ν)

1,1,1 , while the block BER of
the 2×2 system as BER′

2,2 = 1
2 (BER2,2,1 +BER2,2,2). These

block BERs are used for comparison instead of the individual
BERs. We also let ρ = 10dB.

Case 1: Let h11 = 0.4962 − 0.3448i, h12 = −0.8680 −
0.4737i, h21 = 1.3170+0.7827i and h22 = 0.9482+0.2744i.

Then, the values of {SNR(μ,ν)
1,1,1 }(2,2)

(μ,ν)=(1,1),

{BER(μ,ν)
1,1,1 }(2,2)

(μ,ν)=(1,1), {SNR2,2,n}2
n=1 and {BER2,2,n}2

n=1

are respectively calculated and listed in Table I. From Table
I, we obtain BER′

1,1 = 0.0075 > BER′
2,2 = 0.0059. On the

other hand, consider another channel where
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TABLE II

COEFFICIENTS OF THE FIX CHANNEL

h11 0.4879 - 0.0014i h31 0.5767 - 0.1108i

h12 0.0886 + 0.2034i h32 0.8409 - 0.0266i

h13 -0.1320 + 0.5132i h33 -0.0964 + 0.0805i

h14 -0.0676 - 0.5885i h34 0.5051 + 1.1481i

h21 -0.2379 - 0.5502i h41 -0.3059 - 1.1778i

h22 -0.8107 + 0.8421i h42 0.2314 + 0.1235i

h23 -0.4160 + 1.5438i h43 0.7543 + 0.0419i

h24 0.2082 - 0.9448i h44 -0.4892 + 0.6067i
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Fig. 1. BER with respect to random receive antenna dropping for a fix
Nt = 2 and varying Nr over a fix channel.

Case 2: Let h11 = −0.5534 − 0.5426i, h12 = −0.6816 −
1.6823i, h21 = −0.0758 − 0.6909i and h22 = −0.5927 +
0.1820i.

Then, like in case 1, the values of {SNR(μ,ν)
1,1,1 }(2,2)

(μ,ν)=(1,1),

{BER(μ,ν)
1,1,1 }(2,2)

(μ,ν)=(1,1), {SNR2,2,n}2
n=1 and {BER2,2,n}2

n=1

are similarly obtained and listed in Table I. From Table I,
we have BER′

1,1 = 0.0115 < BER′
2,2 = 0.0164.

These two contrasting cases demonstrate that there is no
universal order for the block BER of ZF equalization for the
same change in the number of receive and transmit antennas
in an MIMO system for any particular channel. Although the
MIMO BER is not ordered for a particular channel, the block
BER averaged over a large number of random channels may
be ordered. To see this, one has to resort to the property of
the channel pdf.

VI. NUMERICAL SIMULATIONS

To validate our theoretical findings, we test the MIMO
system with ZF equalization for different antenna sizes. The
information symbols are drawn from a QPSK constellation.
In our simulations, we always keep the average total receive
power of each symbol the same as in our theoretical analysis.
We plot the BER with respect to Eb/N0, where at each Eb/N0,
the average receive power of each symbol is kept constant
regardless of the antenna configuration.

In our first two simulations, we send transmitted symbols
over a fix channel with coefficients given in Table II. Fig. 1
illustrates the result for a fix Nt = 2 and Nr varying from
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Fig. 2. BER with respect to random transmit antenna dropping for a fix
Nr = 4 and varying Nt over a fix channel.
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Fig. 3. BER for a fix Nt = 2 and varying Nr over random Rayleigh
channels.

4 to 2 for ZF equalization for the fix channel. We observe
that the block BER averaged with respect to random receive
antenna dropping degrades with a decrease in Nr. This result
holds not just for this fix channel but for any other channels
we tested, which confirms Theorem 1 or (27).

Next, we set Nr = 4 and decrease Nt from 4 to 1 for the
fix channel. The simulation results are shown in Fig. 2. As
the number of transmit antennas is reduced, the block BER
averaged with respect to random transmit antenna dropping
improves which validates Theorem 3.

In our subsequent simulations, we average the results over
105 Rayleigh channels that compose of zero mean Gaussian
taps with unit variance, and over 105 Rice channels with Rice
factor 2. The Rice channels are generated like in [15]. For a
fix Nt = 2 and Nr varying from 4 to 2 for ZF equalization,
Fig. 3 and Fig. 4 depict the results for Rayleigh channels and
for Rice channels respectively. From both figures, the block
BER averaged over random channels degrades with a decrease
in Nr. This is a direct corollary of Theorem 2 since it holds
for all symbols and for any channel under Assumption 3 at
all range of SNR.

Fig. 5 and Fig. 6 show the results for a fix Nr = 4 and
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Fig. 4. BER for a fix Nt = 2 and varying Nr over random Rice channels.
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Fig. 5. BER for a fix Nr = 4 and varying Nt over random Rayleigh
channels.

Nt varying from 4 to 1 for ZF equalization for Rayleigh
channels and for Rice channels, respectively. The simulation
results confirm Theorem 4 which holds for all SNR, as the
block BER averaged over random channels indeed improves
significantly with a decrease in Nt (or equivalently, decrease
in bandwidth efficiency). This shows unequivocally that there
is a tradeoff between the BER performance and bandwidth
efficiency.

On the other hand, it is interesting to see what will happen to
the block BER of ZF equalization averaged over random chan-
nels if we decrease both the number of transmit antennas and
the number of receive antennas simultaneously. As mentioned
earlier, we know from our theoretical analysis in Sect. III and
Sect. IV as well as Fig. 3, Fig. 4, Fig. 5 and Fig. 6 that; 1) the
block BER averaged over random channels degrades with a
decrease in Nr; while 2) the block BER averaged over random
channels improves with a decrease in Nt. Thus, there appears
to be an offset between 1) and 2) which indicates that the
trend for the block BER performance averaged over random
channels is unpredictable with a decrease in both Nr and Nt.
Our discussion in Section V also verifies that for a particular
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Fig. 6. BER for a fix Nr = 4 and varying Nt over random Rice channels.
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Fig. 7. BER for varying Nt = Nr over random Rayleigh channels.

channel, there is no ordered block BER averaged with respect
to antenna dropping when there is a change in both Nr and
Nt. Hence, to see how the block BER averaged over random
channels changes when both Nr and Nt are decreased, we
perform simulations for Nt = Nr ∈ [1, 4]. The results for
Rayleigh and for Rice channels are plotted in Fig. 7 and Fig.
8 respectively.

From Fig. 7 for Rayleigh channels, the decrease in the block
BER averaged over random channels when Nt = Nr = 2 is
reduced to Nt = Nr = 1 is evident but for Nr = Nt ≥ 2,
the change in the block BER for any decrease in both Nt and
Nr is small. For ZF, the diversity order is unaffected by the
same change in the antenna number on both sides of the link.
Some multiplexing gain is obtained when both the number
of transmit and receive antennas decreases. Fig. 7 and Fig.
8 show that for ZF, the block BER averaged over random
Rayleigh or Rice channels seem to be ordered such that it
improves with a decrease in both Nt and Nr.

Furthermore, in order to investigate this phenomenon, we
take statistics over a large number of Rayleigh channels to
see how the block BER of (Nr − 1)× (Nt − 1) system fares
as compared to the block BER of Nr × Nt system. With
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Fig. 8. BER for varying Nt = Nr over random Rice channels.

TABLE III

P (BERN−1 < BERN ) FOR VARIOUS N

SNR = 10dB SNR = 25dB

N ZF

2 0.7776

3 0.6633

4 0.6074

N ZF

2 0.8131

3 0.7004

4 0.6341

the number of transmit antennas and the number of receive
antennas set the same as Nr = Nt = N , the probability
P (BERN−1 < BERN ) that the BER for N receive (transmit)
antennas, denoted as BERN , is higher than the BER for
N − 1 receive (transmit) antennas, denoted as BERN−1, is
also obtained over 105 channel realizations at SNR = 10dB
and 25dB. The results are summarized in Table III. Albeit
a universal order of the block BER over a static channel is
not true for ZF equalization, Table III illustrates that when
averaged over random channels, there is a biasness towards
block BER improvement with a decreasing antenna size (or
block BER degradation with an increasing antenna size) since
the probabilities are all greater than 0.5. This suggests that
the average effect of BER improvement due to a decrease in
the number of transmit antennas is greater than the average
effect of BER degradation due to a decrease in the number of
receive antennas. This accounts for the ordered performance
in Fig. 7.

VII. CONCLUSIONS

We have demonstrated theoretically that for ZF equalization,
under the condition of a fix total receive power and a fix
number of transmit antennas, the BER averaged over random
receive antenna dropping and the BER averaged over random
channels degrade with a decrease in the number of receive
antennas. For a fix number of receive antennas, we have also
proven that a decrease in the number of transmit antennas
translates into an amelioration in both the block BER averaged
over random transmit antenna dropping and the block BER
averaged over random channels, which reveals the tradeoff
between BER and bandwidth efficiency. These analytical

results are universal that hold true for all SNR and for any
i.i.d. channels. In addition, for the same decrease in both the
number of receive and transmit antennas, the block BER of
ZF equalization is not strictly ordered for a particular channel
but the block BER averaged over random channels may be
ordered.

APPENDIX I

Suppose an N×1 complex vector y ∈ CN and N×N posi-
tive matrices A1 and A2. In [16, pp. 453], for non-zero vector
y ∈ CN and positive definite matrices A1, A2, it is shown
that 1/[yH(A1+A2)−1y] ≥ 1/[yHA−1

1 y]+1/[yHA−1
2 y]. It

follows that for positive definite matrices Ai with i ∈ [1, K],
1/[yH(A1 + · · · + AK)−1y] ≥ ∑K

i=1 1/[yHA−1
i y]. Then,

since R
(μ)
Nr−1,Nt

for μ ∈ [1, Nr] is a positive definite matrix,
we have that

1

yH [(
∑Nr

μ=1 R
(μ)
Nr−1,Nt

)−1]y
≥

Nr∑
μ=1

1

yH [(R(μ)
Nr−1,Nt

)−1]y
.

(29)
Let yn be a vector with only one non-zero entry of 1 in
the nth position and zero entries in the other positions. By
substituting y as yn in (29), the denominators in all the terms
in (29) become the nth diagonal entry of the respective inverse
matrices which leads to Lemma 1.

APPENDIX II

Since the νth column of the channel matrix (or the index
of the νth transmit antenna) can always be rearranged to be
in the last (Ntth) column, we just need to consider the case
when the Ntth transmit antenna is removed. We prove Lemma
2 as follows: First, we partition RNr ,Nt into four submatrix
components as

RNr,Nt =

[
R

[Nt]
Nr ,Nt−1 c

cH d

]
, (30)

where c = [
∑Nr

m=1 h∗
m1hm,Nt , . . . ,

∑Nr

m=1 h∗
m,Nt−1hm,Nt ]T

and d =
∑Nr

m=1 |hm,Nt |2. Then, by applying the well-known
matrix inversion lemma [17] to the inverse of (30), we obtain

R−1
Nr ,Nt

=

[
(R[Nt]

Nr,Nt−1)
−1 0

0 0

]
+ (31)

[
−(R[Nt]

Nr ,Nt−1)
−1c

1

]
	−1

[
−cH(R[Nt]

Nr ,Nt−1)
−1 1

]
,

where 	 = d − cH(R[Nt]
Nr ,Nt−1)

−1c. Just as R
[Nt]
Nr ,Nt−1 is

positive definite, 	 is also positive definite. Comparing the
diagonal entries of both sides of (31), we can get (18). The
equality in (18) holds only if c = 0, i.e., h̃Nt is orthogonal to
all h̃n for n �= Nt, which completes the proof of Lemma 2.
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