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P.H. Leslie’s method to construct a discrete two dimensional dynamical system dynamically consis-
tent with the Lotka-Volterra type of competing two species ordinary differential equations is applied
in a newly extended manner for the Lotka-Volterra prey-predator system which is structurally un-
stable. We show that, independently of the time step size, the derived discrete prey-predator system
is dynamically consistent with the continuous counterpart, keeping the nature of neutrally stable
periodic orbit. Further, we show that the extended method to construct the discrete prey-predator
system can provide a dynamically consistent model also for the logistic Lotka-Volterra one.
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1 Introduction

At the end of 50’s, P.H. Leslie, who is well-known from his pioneer works of the
matrix model for the structured population [3,4], constructed and numerically
analyzed a kind of discrete two dimensional dynamical system derived from
the familiar Lotka-Volterra type of competing two species ordinary differential
equations (ODE) [5–7]:

dN1(t)
dt

= {r1 − b11N1(t) − b12N2(t)}N1(t);

dN2(t)
dt

= {r2 − b21N1(t) − b22N2(t)}N2(t),

(1)

where Ni(t) (i = 1, 2) is the population size of species i. Parameters ri, bij

(i, j = 1, 2) are all positive. ri (i = 1, 2) is the intrinsic growth rate of species i,
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bii (i = 1, 2) the intra-specific density effect of species i, and bij (i, j = 1, 2; i 6=
j) the inter-specific density effect, that is, the competition effect from species
j to species i. For the ODE system (1), Leslie [5] considered the following
discrete two dimensional system:

N1(t + h) =
1

1 + φ1(h) {b11N1(t) + b12N2(t)}
· er1hN1(t);

N2(t + h) =
1

1 + φ2(h) {b21N1(t) + b22N2(t)}
· er2hN2(t),

(2)

where

φi(h) =
erih − 1

ri
(i = 1, 2),

and h is the size of time step.
Surprisingly, his discrete system (2) qualitatively conserves the characteris-

tics of the solution of the original ODE system (1) even with sufficiently large
time step size h, that is, (2) is a dynamically consistent discrete system for the
ODE system (1) [2,8–10,12,13]. Therefore, Leslie’s idea to construct the differ-
ence equations from the ODEs might serve as an alternative and satisfactory
numerical scheme for numerical investigation about nonlinear ODE system.

Different from the usual discretization scheme for ODE (for instance, by
Euler method), Leslie’s idea to derive (2) from (1) is specific and intuitive
since it significantly depends on the idea of mathematical modelling concerning
to the original ODE system. His idea is originally inspired by the relationship
between the logistic equation and its exactly corresponding difference equation.
For the logistic equation with positive coefficient β of intra-specific density
effect on the per capita growth rate:

dN(t)
dt

= {r − βN(t)}N(t), (3)

we can easily obtain the following exact solution with the initial population
size N(0):

N(t) =
1

1 + φ(t)βN(0)
· N(0)ert, (4)

where φ(t) = (ert − 1)/r. Making use of the exact solution (4), we can imme-
diately obtain the corresponding exact discrete model with an arbitrary time
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step size h as follows (k = 0, 1, 2, . . .):

Nk+1 =
erhNk

1 + φ(h)βNk
(5)

with N0 = N(0). This is a discrete model sometimes called ‘Verhulst model’
or ‘Beverton-Holt model’. Independently of the sign of r, the exact discrete
model (5) can exactly trace the solution (4) with same parameter values,
independently of the time step size h.

Seno [14] has investigated the Leslie’s idea from the viewpoint of the dy-
namical consistency with respect to the general single-species model given by
the following ODE and the counterpart difference equation:

dN(t)
dt

= {r − Q(N(t))}N(t);

Nk+1 =
erhNk

1 + φ(h)Q(Nk)
,

(6)

where the parameter r is positive, and the function Q is assumed to be non-
negative and sufficiently smooth. It was shown that, independently of the
time step size h, the qualitative behavior around trivial equilibria is consistent
between them, and, if

0 <
d[log Q(N)]

d[log N ]

∣∣∣∣
N=N∗

≤ 1, (7)

so is that around the non-trivial equilibrium.
Although Leslie’s idea was inspired by the idea of mathematical modelling

concerning to the original ODE system, the derived discrete system could
provide a possibly appropriate form as a mathematical model for a genera-
tional variation of interacting populations. Except for few models including
well-known Nicholson-Bailey model [11], it have attracted little mathematical
attention what mathematical description would be appropriate to describe a
density effect or an intra/inter-specific reaction in a time step (generation)
specified in the discrete model. Especially with respect to the multi species
system, the relationship between the ODE model and the discrete model has
been considered much little.

In this paper, in contrast to previous researches about such discrete systems
dynamically consistent with the continuous counterpart from the viewpoint of
some nonstandard discretization method (for example, [2,8–10,12,13]), we con-
sider an extension of Leslie’s idea for the Lotka-Volterra prey-predator model,
and present a new discrete prey-predator system dynamically consistent with
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the original ODE model, even when the original one is structurally unstable.

2 From ODE to time-discrete model

The following Lotka-Volterra prey-predator model is well-known from its struc-
turally unstable nature (e.g. see [1]):


dH(t)

dt
= rH(t) − bH(t)P (t);

dP (t)
dt

= cbH(t)P (t) − δP (t),

(8)

where H(t) and P (t) are respectively population sizes of prey and predator.
r is the intrinsic (malthusian) growth rate of prey, δ the natural death rate of
predator. b is the predation coefficient, c the energy conversion rate from the
predation to the predator’s reproduction.

From (8), we can easily find that the following function of populations H
and P , which value is kept constant independently of time [1]:

V (H,P ) = cbH − δ log H + bP − r log P. (9)

The constant value is determined by the initial state (H(0), P (0)). Indeed,
the ODE system (8) has the infinite number of periodic orbits depending
on the initial state, and each periodic orbit in the phase space is given by
V (H,P ) = V (H(0), P (0)) (see Fig. 1).

Now, we present the following discrete system dynamically consistent with
the original ODE system (8) as we will show in the subsequent analysis:

Hk+1 =
erhHk

1 + φH(h)bPk
;

Pk =
eδhPk+1

1 + φP(h)cbHk+1
,

(10)

where　

φH(h) =
erh − 1

r
; φP(h) =

eδh − 1
δ

and h is the time step size.
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Figure 1. Numerically obtained trajectories in the phase plane (H, P ) for the ODE system (8) and
the discrete system (11). Trajectories from some different initial points (white circles) are drawn.
Dashed thin curves are for (8) and the darker thick plots for (11). (a) h = 0.5 to the 1500 th step;

(b) h = 20.0 to the 3000 th step. r = 1.0; b = 1.0; c = 0.01; δ = 0.1.

The first equation for the prey in (10) is built along the method of Leslie
[5–7]. In contrast, the second equation for the predator in (10) is built with our
method newly extended from the Leslie’s idea: The equation for the predator
in the ODE system (8) can be written as follows:

dP (t)
d[−t]

= δP (t) − cbH(t)P (t).

The form in the right side of this equation corresponds to that in the right side
of the equation for the prey in (8), and is adoptable for the Leslie’s method
of building the corresponding discrete equation, except for the variables H
and P of −t instead of t. Since the use of −t indicates the temporal inversion
as t increases, we put the temporal relation inverse as shown by the second
equation in (10), applying the Leslie’s method to build the corresponding
discrete equation. Similarly as in Leslie’s case, this extension of the method to
build a discrete equation corresponding to an ODE is still intuitive. However,
it surprisingly works well as we will show in the following analysis.

Now the system (10) can be rewritten as follows:
Hk+1 = erhHk {1 − Πh(Pk)} ;

Pk+1 = e−δh

{
Pk + c

φP(h)
φH(h)

· erhHk · Πh(Pk)
}

,

(11)
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where

Πh(Pk) =
φH(h)bPk

1 + φH(h)bPk
. (12)

We can easily find that the discrete system (11) converges to the ODE system
(8) as h → 0.

We can regard (11) as the discrete prey-predator system characterized by
the predation probability Πh per prey in the time interval h, given by (12), and
the corresponding energy conversion rate from the predation to the predator’s
reproduction, given by cφP(h)/φH(h).

Since φH(h)/h → 1 as h → 0, Πh(Pk)/h converges to bPk. Therefore, the
predation probability Πh given by (12) can be regarded as providing the pre-
dation effect appropriately corresponding to the predation term in the ODE
system (8). The energy conversion rate in the discrete model (11) converges
to c as h → 0, which exactly corresponds to that in the ODE model (8), too.

These features of the discrete model (11) is very interesting from the view-
point of mathematical modelling for the time-discrete variation of population
size. The predation probability Πh is a rational function of bP , which is mono-
tonically increasing in terms of bP with the upper bound 1. Hence the ratio of
predated prey population is not proportional to the predator population size
in the time-discrete model. In contrast, in the ODE model (8), the momental
predation rate is proportional to the predator population size at each moment,
because of the mass-action type of predation term. In fact, such mass-action
type of predation term in the ODE model does not mean the linear relation-
ship of the decrease of prey population size due to the predation. It results
in a non-linear characteristics of the decrease of prey population size. In our
derivation of a dynamically consistent discrete prey-predator model, we can re-
gard that such non-linearity of the decrease of prey population size due to the
predation would be reflected to the form of rational function for the predation
probability Πh.

2.1 Existence and stability of equilibria

It is easily shown that the systems of (8) and (11) have the common equilibria:
(0, 0) and (δ/α, r/b). No other equilibrium exists. As for the trivial equilib-
rium (0, 0), the eigenvalues for (8) are r and −δ while erh and e−δh for (11).
Therefore, for both systems of (8) and (11), the equilibrium (0, 0) is unstable
as a saddle point, independently of the time step size h.

As for the non-trivial equilibrium (δ/α, r/b), the eigenvalues for (8) is given
by ±i

√
rδ. So the equilibrium (δ/α, r/b) has the neutral stability for (8). In

comparison, the eigenvalue λ for the equilibrium (δ/α, r/b) of (11) is given by
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Figure 2. Numerically obtained variation of H and P to the 300 th step. Thick curve is for the
ODE system (8), and the thin with black plots is for the discrete system (11). r = 1.0; b = 1.0;

c = 0.01; δ = 0.1; h = 0.5; H(0) = H0 = 10.0; P (0) = P0 = 0.6.

the roots of the following characteristic equation:

λ2 −
(
1 + e−rh + e−δh − e−rhe−δh

)
λ + 1 = 0. (13)

Since the discriminant for this equation is given by

−
(
1 − e−rh

)(
1 − e−δh

)(
3 + e−rh + e−δh − e−rhe−δh

)
< 0,

the eigenvalues are always complex. Further from the characteristic equation
(13), we can easily find that the absolute value of the eigenvalue is 1. The
unity of the absolute value of the eigenvalue means that the stability of the
equilibrium (δ/α, r/b) of (11) is neutral as that of (8), again independently of
the time step size h.

As indicated by the numerical calculation of trajectories in the phase plane
(H,P ) in Fig. 1, the sequence of points given by (11) is on a closed curve
determined by the initial point in the phase plane. This can be regarded as
a nature dynamically consistent with the original ODE system (8) which has
the periodic orbit V (H,P ) = V (H(0), P (0)) defined by (9).

On the other hand, from a mathematical viewpoint, the discrete system (11)
shows a sort of chaotic variation. Although Fig. 2 might be quasi-periodic,
it does not, because the trajectory in the phase plane appears dense on a
closed curve as shown in Fig. 1. However, the numerically estimated Lyapnov
exponent results in nearly zero instead of positive.

2.2 Numerical estimation of the difference from the ODE counterpart

In this section, we numerically investigate the quantitative difference between
the behaviors of the discrete system (11) and the ODE one (8). Although we
have seen the qualitative correspondence between them in the previous section,
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Figure 3. Numerically obtained variation of the distance between points of (8) and (11) in the
phase plane (H, P ). (a) h = 0.1; (b) h = 0.5. Commonly, r = 1.0; b = 1.0; c = 0.01; δ = 0.1;

H(0) = H0 = 10.0; P (0) = P0 = 0.5..

the quantitative difference between them could be relevant, for instance, as a
nonstandard discretization method for the ODE system (8).

As seen in Fig. 2, the variation of population sizes for (8) and (11) is quan-
titatively different from each other in terms of their values at each moment,
whereas the qualitative nature is consistent as shown in the previous section.
In fact, as shown in Fig. 3, the distance between points of (8) and (11) in the
phase plane (H,P ) appears oscillatory. Numerical results imply that the ac-
tual velocity of moving on a closed curve in the phase plane is different about
these two system even with the same parameter values. We can see that the
velocity is higher for the discrete system (11) than for the ODE system (8).

To investigate numerically the h-dependence of the difference in terms of the
distance between points of (8) and (11) in the phase plane (H,P ), we consider
the following time-averaged difference of the distance:

Êd = lim
n→∞

1
n

n∑
k=1

√
{Hk − H(kh)}2 + {Pk − P (kh)}2. (14)

Numerically estimated value of Êd is shown in Fig. 5. Our numerical calcula-
tions indicate that the value of Êd tends to increase in terms of h. This means
that the trajectory of the discrete system (11) becomes quantitatively more
different from the trajectory of the ODE system (8) with the same initial state.
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Figure 4. Numerically obtained variation of the difference of the value of function V (H, P ),
defined by (9), for the discrete system (11). The value of {V (Hk, Pk) − V (H0, P0)}/V (H0, P0) is
plotted. (a) h = 0.1 to the 2500 th step; (b) h = 0.5 to the 500 step. Commonly, r = 1.0; b = 1.0;

c = 0.01; δ = 0.1; H0 = 10.0; P0 = 0.5.

Figure 5. Numerically obtained h-dependence of the averaged difference bEd and bEV , respectively
defined by (14) and (15), between the ODE system (8) and the discrete one (11), according to the

trajectory in the phase plane (H, P ). r = 1.0; b = 1.0; c = 0.01; δ = 0.1; H0 = 10.0; P0 = 0.5.

This can be seen also in Fig. 2. It is natural that the value Êd also depends on
the initial state (H0, P0). Besides, since each trajectory is on a closed curve,
the averaged difference Êd is bounded.

As another comparison between them, we investigate the temporal variation
in the value of the function V (H,P ) defined by (9), since it temporally keeps
a constant value V (H(0), P (0)) determined by the initial state in case of the
ODE system (8). As shown in Fig. 4, its variation is oscillatory for the discrete
system (11), too, and however has relatively small values in its temporal vari-
ation. As we can see in Fig. 1(a), the closed curve on which the trajectory of
the discrete system (11) for a small h (even though still relatively large from
the viewpoint of numerical calculation approximating the ODE system (8))
has a little difference from that of the ODE system (8), while the difference
becomes greater as the time step size h gets larger.

To investigate numerically the h-dependence of the difference of the value of
V (H,P ) for the discrete system (11), we consider the following time-averaged
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difference of the value of V (H,P ):

ÊV = lim
n→∞

1
V (H0, P0)

√√√√ 1
n

n∑
k=1

{V (Hk, Pk) − V (H0, P0)}2. (15)

Numerically estimated value of ÊV is shown in Fig. 5. Our numerical calcula-
tions indicate that the value of ÊV is monotonically increasing in terms of h.
This means that the closed curve on which the trajectory of the discrete sys-
tem (11) is located is more different from the closed orbit of the ODE system
(8) with the same initial state as the time step size h gets larger. This can be
seen also in Fig. 1. It is natural that the value ÊV also depends on the initial
state (H0, P0). Besides, since each trajectory is on a closed curve, the averaged
difference ÊV is bounded.

2.3 General form of the discrete 1 prey-1 predator model

From the discrete system (11), we can derive the following general form of the
discrete 1 prey-1 predator model:

Xk+1 = R

(
Xk − XkYk

1 + Yk

)
;

Yk+1 = DYk +
XkYk

1 + Yk
.

(16)

Parameters R and D are positive with D < 1. This system can be derived
from (11) with the following transformation of variables and parameters: Xk =
cbφP(h)erhHk; Xk+1 = cbφP(h)erhHk+1; Yk = φH(h)bPk; Yk+1 = φH(h)bPk+1;
R = erh; D = e−δh. Although these parameters are not independent of each
other in terms of h, we here consider more generally the case when these
parameters R and D are independent.

The confinement of D < 1 is a modelling requirement. As a dynamics of
predator population growth, the predator population can grow only with the
predation. If D > 1, Yk → ∞ as k → ∞ even without the prey, since Yk+1 > Yk

for any k. Now the parameter D means the natural death rate for the predator,
so that we assume hereafter that D < 1.

The system (16) has only two equilibria: (0, 0) and (R(1 − D), R − 1). The
non-trivial POSITIVE equilibrium (R(1−D), R−1) exists if and only if D < 1
and R > 1. If R < 1 and D < 1, the trivial equilibrium (0, 0) is locally stable.
As in case of the discrete system (11), even in this general case of (16), the
stability of the non-trivial positive equilibrium is neutral whenever it exists.
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Numerical calculations show that the trajectory for (16) is always on a closed
curve, as in case of (11), independently of parameter values. Therefore, the
general form of discrete population dynamics given by (16) can be regarded
as dynamically consistent with the Lotka-Volterra prey-predator system (8).

Consequently, we can regard the model of the prey-predator population
dynamics given by (16) as a time-discrete version corresponding to the Lotka-
Volterra prey-predator model (8). Further, we could regard the prey-predator
reaction term given by a rational function in (16) as a temporally integrated
(over the period of the discrete time step) mass-action type of prey-predator
reaction, because of the correspondence with the mass-action term in the ODE
model (8).

3 Application for a more general structurally unstable system of
prey-predator type

In this section, we consider a family of general prey-predator ODE system
given by


dX(t)

dt
= rX(t) − f(Y (t))X(t)

dY (t)
dt

= g(X(t))Y (t) − δY (t),

(17)

where functions f and g are assumed to be sufficiently smooth and satisfy that
f(x) ≥ 0 and g(x) ≥ 0 for any x > 0 with f(0) = g(0) = 0.

Our method to construct the corresponding discrete system gives the fol-
lowing:


Xk+1 =

erhXk

1 + φH(h)f(Yk)
;

Yk =
eδhYk+1

1 + φP(h)g(Xk+1)
,

that is,


Xk+1 = erhX(t) {1 − Πh(Yk)} ;

Yk+1 = e−δh {Yk + φP(h)g(Xk+1)Yk} ,

(18)
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where

Πh(Yk) =
φH(h)f(Yk)

1 + φH(h)f(Yk)
.

Existence and stability of equilibria. It can be easily seen that the ODE
prey-predator system (17) and the discrete system (18) have the following
common equilibria and does not have any other: (0, 0) and (X∗, Y ∗), where the
coexistent equilibrium (X∗, Y ∗) can exist if and only if the following equations
have positive roots: {

f(Y ∗) = r;

g(X∗) = δ.

As for the trivial equilibrium (0, 0), the eigenvalues for (17) are r and −δ
while erh and e−δh for (18). Therefore, for both systems of (17) and (18), the
equilibrium (0, 0) is unstable as a saddle point, independently of the time step
size h.

Next, let us consider the case when a non-trivial equilibrium (X∗, Y ∗) ex-
ists. In this case, the eigenvalues for the ODE system (17) are given by
±

√
−f ′(Y ∗)g′(X∗)X∗Y ∗. Therefore, for the ODE system (17), the coexis-

tent equilibrium (X∗, Y ∗) is unstable if f ′(Y ∗)g′(X∗) < 0 as a saddle, while
neutrally stable with purely imaginary eigenvalues if f ′(Y ∗)g′(X∗) > 0

As for the discrete system (18), the eigenvalue λ for the coexistent equilib-
rium (X∗, Y ∗) is given by the root of the following characteristic equation:

λ2 − (2 − AB)λ + 1 = (λ − 1)2 − ABλ = 0,

where

A = e−rhφH(h)f ′(Y ∗)X∗; B = e−δhφP(h)g′(X∗)Y ∗.

From the above characteristic equation, we can find that the coexistent equi-
librium (X∗, Y ∗) of the discrete system (18) is unstable if f ′(Y ∗)g′(X∗) < 0
as a saddle with positive eigenvalues, one of which is less than 1 and the other
more than 1. When f ′(Y ∗)g′(X∗) > 0, if

f ′(Y ∗)g′(X∗)X∗Y ∗ < Ψ(h) =
4e(r+δ)h

φH(h)φP(h)
, (19)

the eigenvalues are complex with the absolute value 1, so that the equilibrium is
neutrally stable. In contrast, when f ′(Y ∗)g′(X∗) > 0, if f ′(Y ∗)g′(X∗)X∗Y ∗ >
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Figure 6. Numerically obtained trajectories in the phase plane (H, P ) for the ODE system (17)
and the discrete one (18) with (20). Uniquely determined coexistent equilibrium is indicated by a
black point. The lighter curve is for (17) and the darker plots to the ten thousandth step for (18).

(a) h = 0.5; (b) h = 1.0; (c) h = 2.0; (d) h = 2.5; (e) h = 2.65; (f) h = 5.0. Commonly, r = 1.0;
δ = 0.5; H0 = 0.99; P0 = 0.25.

Ψ(h), the eigenvalues are negative, one of which is less than −1 and the other
more than −1, so that it is a saddle again. In this case, the dynamical con-
sistency breaks down between (17) and (18). Since Ψ(h) is monotonically de-
creasing in terms of h and lim

h→0
Ψ(h) = ∞, this inconsistency can not occur for

sufficiently small time step size h but could do for relatively large time step
size h, depending on the characteristics of functions f and g. For example, the
following f and g give an example for such a case of the dynamical consistency
breaking down (see Fig. 6):

f(y) = 5y;

g(x) =
x12

1 + x12
.

(20)

In this case, the discrete system (18) shows a chaotic oscillation for sufficiently
large time step size h.

Since Ψ(h) further satisfies that lim
h→∞

Ψ(h) = rδ, if f ′(Y ∗)g′(X∗)X∗Y ∗ ≤
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rδ = f(Y ∗)g(X∗), that is, if

d[log f(y)]
d[log y]

∣∣∣∣
y=Y ∗

· d[log g(x)]
d[log x]

∣∣∣∣
x=X∗

≤ 1, (21)

then the condition (19) is always satisfied so that the coexistent equilibrium
(X∗, Y ∗) is neutrally stable, independently of the value of time step h, when
f ′(Y ∗)g′(X∗) > 0. The condition (21) appears the extension of the correspond-
ing (7) for the one-dimensional case (6) discussed by Seno [14]. Lastly, if the
condition (21) is satisfied for every equilibrium, then the discrete system (18)
is dynamically consistent with the ODE system (17) according to the existence
and the local stability of equilibria.

4 Application for the Lotka-Volterra prey-predator system with
logistically growing prey

In this section, as a natural extended ODE model from (8), we consider the
following ODE system with logistically growing prey:


dH(t)

dt
= {r − βH(t)}H(t) − bH(t)P (t);

dP (t)
dt

= cbH(t)P (t) − δP (t).

(22)

Analogously to the discrete system (10), we now present the following discrete
system a corresponding discrete model:


Hk+1 =

erhHk

1 + φH(h) {βHk + bPk}
;

Pk =
eδhPk+1

1 + φP(h)cbHk+1
,

that is, 
Hk+1 = erhHk {1 − Γh(Hk, Pk) − Πh(Hk, Pk)} ;

Pk+1 = e−δh

{
Pk + c

φP(h)
φH(h)

· erhHk · Πh(Hk, Pk)
}

,

(23)

PREPRINT



May 21, 2007 11:18 Journal of Difference Equations and Applications seno˙to˙JDEA-07

A discrete prey-predator model 15

where

Γh(Hk, Pk) =
φH(h)βHk

1 + φH(h)βHk + φH(h)bPk
; (24)

Πh(Hk, Pk) =
φH(h)bPk

1 + φH(h)βHk + φH(h)bPk
. (25)

From the obtained form of the discrete system (23), we can see that the
function Γh represents the contribution of the logistic density effect on the
prey population growth in the period h, and the function Πh does that of
the predation. Differently from the predation probability (12) in the previous
discrete model (11), the function Πh of (25) depends also on the prey pop-
ulation size Hk. We can consider that this would be an effect of the logistic
density effect on the predation efficiency since the reduction of prey density is
reflected to the net growth rate through the density effect while the predation
to reduce the prey density depends on the prey density itself. Simultaneously
the density effect function Γh of (24) depends on the predator population size.
This can be regarded as to reflect the effect of predation which decreases the
prey density and then reduces the density effect in the period h.

Existence and stability of equilibria. It can be easily seen that the ODE
system (22) and the discrete system (23) have the following common three
equilibria: (0, 0), (r/β, 0), and (δ/(cb), (rcb − βδ)/(cb2)).

The extinction equilibrium (0, 0) is unstable as a saddle point for both sys-
tems because the eigenvalues are r and −δ for the ODE system (22) while erh

and e−δh for the discrete system (23).
As for the predator extinction equlibrium (r/β, 0), the eigenvalues are −r

and rcb/β − δ for the ODE system (22) while e−rh and

(1 − e−δh)
rcb

βδ
+ e−δh

for the discrete system (23). In both cases, we find that the equilibrium is a
locally stable node if βδ/rcb > 1. If βδ/rcb < 1, it is a saddle in both cases.
Hence, also as for the stability of the predator extinction equlibrium (r/β, 0),
the discrete system (23) is dynamically consistent with the ODE system (22).

As for the coexistent equilibrium (δ/(cb), (rcb − βδ)/(cb2)), we consider its
stability under the following condition for its positiveness: βδ/rcb < 1. If this
positiveness condition is satisfied, the predator extinction equilibrium (r/β, 0)
is always unstable, that is, if the coexistent equilibrium exists, the predator
extinction equilibrium is not feasible.

The eigenvalue λ of the coexistent equilibrium for the ODE system (22) is
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Figure 7. Numerically obtained trajectories in the phase plane (H, P ) for the ODE system (22)
and the discrete system (23). Lighter curves are for (22) and the darker thick plots (connected with

thin black lines) for (23). (a) β = 0.01 and h = 0.5; (b) β = 0.01 and h = 20.0; (c) β = 0.05 and
h = 0.5; (d) β = 0.05 and h = 20.0. Commonly, r = 1.0; b = 1.0; c = 0.01; δ = 0.1.

given by the following characteristic equation:

λ2 +
βδ

cb
λ + rδ

(
1 − βδ

rcb

)
= 0.

We can easily find that the coexistent equilibrium (δ/(cb), (rcb−βδ)/(cb2)) for
the ODE system (22) is locally stable whenever it exists (see Fig. 7). Further,
from the above characteristic equation, we find that, if

βδ

rcb
<

2
1 +

√
1 + r/δ

,
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the coexistent equilibrium (δ/(cb), (rcb−βδ)/(cb2)) is a stable focus (Fig. 7(a,
b)), while, if

2
1 +

√
1 + r/δ

≤ βδ

rcb
< 1,

it is a stable node (Fig. 7(c, d)).
In contrast, the eigenvelue λ of the coexistent equilibrium for the discrete

system (23) is given by the following characteristic equation:

g(λ) = λ2 − Bλ + 1 − βδ

rcb
(1 − e−rh) = 0,

where

B =
{

1 − βδ

rcb
(1 − e−rh)

}
e−δh +

{
1 + (1 − e−δh)e−rh

}
.

For βδ/rcb < 1 when the coexistence equilibrium exists, 0 < g(0) < 1, g(1) > 0
and 0 < B < 2. Hence we can easily see that the root of above characteristic
equation always satisfies that |λ| < 1. This means that the coexistent equilib-
rium for the discrete system (23) is locally stable if it exists (Fig. 7).

Further analysis shows that every eigenvalue for the coexistent equilibrium
for the discrete system (23) is positive less than 1 if the following condition is
satisfied:

q(h) <
βδ

rcb
< 1,

where

q(h) = 1 − 1 − e−rh{√
1 − e−δh +

√
1 − e−(r+δ)h

}2 .

In this case, the coexistence equilibrium of the discrete system (23) is a stable
node. If βδ/rcb < q(h), every eigenvalue is complex with its absolute value
less than 1, so that the coexistence equilibrium of the discrete system (23) is
a stable focus. We can easily find that q(h) → 2/(1 +

√
1 + r/δ) as h → 0,

and q(h) → 3/4 as h → ∞.
From these results, although the dynamical behaviors of the ODE system

(22) and the discrete one (23) are mostly consistent, the subtle nature of the
bifurcation with respect to the stability of coexistent equilibrium is affected
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Figure 8. A numerical example of the h-dependence of the bifurcation between the stable node
and the stable focus according to the coexistent equilibrium of (22) and (23). Region (F, F )

indicates that both the ODE and the discrete systems show the stable focus, and (N, F ) does that
the ODE system shows the stable node while the discrete one does the stable focus. The other

symbols are similarly defined. (a) b = 0.3; (b) b = 0.5; (c) b = 0.6; (d) b = 1.0. Commonly r = 1.0.

by the value of time step size h (see Figs. 7(d) and 8). However, since q(h) has
a finite limit of the value 3/4 as shown in the above, surprisingly the difference
of the bifurcation boundary is bounded for any time step size h (Fig. 8). In
this sense, the dynamical consistency between the ODE system (22) and the
discrete one (23) would be regarded as rather robust against the time step size
h.

5 Conclusion and future directions

Our method to construct a discrete prey-predator system from the ODE model
successfully provides a dynamically consistent model which could have a struc-
ture explicitly translatable in ecological meanings from the viewpoint of math-
ematical modelling. Although our method is somehow intuitive as Leslie’s, the
mathematical formulas in the constructed model would be appropriate ex-
pression of the intra/inter-specific density effect on the population dynamics
in a discrete time step. For further example, some numerical and mathemat-
ical analyses show that our method would be valid also for the Kermack-
McKendrick SIR model, which we did not describe in this paper.

In history, lots of ODE models have been successful to explain or describe
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biological phenomena even when those phenomena are fundamentally com-
posed of time-discrete or temporally discontinuous events. Generally we could
have any data in a discrete time step or analyze only such a sequence of
data. In these reasons, some successful ODE models would be expected to
provide some informations useful to find an appropriate structure of time-
discrete model which explain or describe the biological phenomena. Especially
in the theory of population dynamics, the essential structure of mathematical
model depends on the expression of intra/inter-specific interaction. Hence it
is very important how the density effect is involved in the model. However,
we have had little knowledge or discussion about the appropriate formulas
of some density effect in the discrete model, although some discrete model
derived from the ODE counterpart model with a discretization method have
been successful. We expect that our result would be helpful to develop some
theory or discussion about this subject.

As another aspect, since our method to construct a discrete system from the
ODE counterpart is newly discussed here, it would be helpful for some dis-
cussion about some nonstandard discretization method which could robustly
dynamically consistent with the original ODE system. Recently some works
have been done on the nonstandard discretization of the Lotka-Volterra prey-
predator model that also preserves the unstable structure of the original ODE
system [2, 8–10, 12, 13]. Those works have focused the algorithmic way of the
dynamically consistent discretization for the ODE system with the polyno-
mial (especially mass-action) type of reaction terms. Roeger [13] discussed the
generalization of the dynamically consistent discretization originally proposed
by Mickens [9] for the Lotka-Volterra system, though there was no discussion
about the meanings or the perspectives as the discrete model of population
dynamics with some specific density effect. In her paper, the discrete prey-
predator system corresponding to ours, (11) with (12), appears as a specific
case, although there was a difference about the contribution of the time step
size h in the discrete system. Moreover her and the other previous works
did not mention the idea and the intuitive way of discretization by Leslie
and Gower [5–7], and independently discussed the dynamically consistent dis-
cretization.

Since the aim of this paper is to discuss the structure of a discrete model
corresponding to the Lotka-Volterra prey-predator model, we do not discuss
in this paper any more the further generalization of our method to construct
a discrete system. It is very interesting to extend our method, for instance, to
a multi-species (more than one prey or predator) system or to a more general
family of 1 prey-1 predator system. It is one of the next steps of our work.
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