Experimental study on performance of view-based pose estimation

Toru Tamaki \grave{j} нrosshma unvessiry
Hiroyuki Okugawa li hrossuma unversm Toshiyuki Amano NAIST Kazufumi Kaneda li meosmamy wivessir

View-based pose estimation

Estimation

(3
$\hat{\theta}$

Learning relations

Learning set
$\square\left\{\theta_{j}, \boldsymbol{x}_{j}\right\}$
($i=1,2, \ldots, n$)
Relations
Nonlinear $\theta_{j}=f\left(\boldsymbol{x}_{j}\right)$
\square Linear $\quad \theta_{j}=F \boldsymbol{x}_{j}$

Estimation

Nonlinear $\theta=f(x)$
Linear $\quad \theta=F x$

Nonlinear methods
\square Parametric
Eigenspace method

- (Murase, 1995)
\square Kernels
(Melzer, 2003)
- (Ando, 2005)
\square Manifold learning

Learning relations

Learning set
$\square\left\{\theta_{j}, \boldsymbol{x}_{j}\right\}$

$$
(i=1,2, \ldots, n)
$$

Relations
\square Nonlinear $\theta_{j}=f\left(\boldsymbol{x}_{j}\right)$
\square Linear $\quad \theta_{j}=F \boldsymbol{x}_{j}$
Estimation
Nonlinear $\theta=f(x)$
Linear
$\theta=F x$

Linear methods
\square Linear regression

- (Okatani, 2000)
\square Cyclic permutation
- (Tamaki, 2007)
$\square E b C$
(Amano, 2006/2007)

Overview of EbC

Learning phase

© EbC: "Estimation-byCompletion"

- Learn
\square Image part \boldsymbol{x}_{j}
\square Parameter part \boldsymbol{p}_{j}
\square Compute Eigenspace
- Estimate pose
\square A test image has no parameter part
\square Completed as missing image area

Questions to investigate

Performance depends on the number of learning images.
\square Few images: bad estimation
\square Many images: better performance
Is it really? How many images are enough?

Questions to investigate

Performance depends on the number of learning images.
What is an appropriate set of images when we fix the number of images?
\square Any set is enough?

Learning image set

Definition of a learning set :

$$
\begin{aligned}
S_{i, s}= & \left\{\boldsymbol{x}_{i k+s}\right\} \\
& \boldsymbol{x}_{\theta}: \text { images at } \theta
\end{aligned}
$$

i : sample span [deg]
s : start angle [deg]

$$
\begin{array}{r}
k=0,1, \ldots, n_{i-}-1 \\
n_{i}=360 / i
\end{array}
$$

Example :

Performance evaluation

Root mean square error (RMSE):

$$
\begin{array}{r}
R M S E_{i, s}=\sqrt{\frac{1}{72-n_{i}} \sum_{x_{j} \notin S_{i, s}}\left(\hat{\theta}_{j}-\theta_{j}\right)^{2}} \quad \begin{array}{l}
\theta: \text { true angle } \\
\hat{\theta}: \text { estimated angle }
\end{array} \\
\text { Exclude learned images }
\end{array}
$$

sample spans:

$$
\begin{array}{r}
i=5,10,15,20,30,40,45,60,90,120 \\
\text { (divisors of } 360 \text { [deg]) }
\end{array}
$$

Experimental results 1: moderate case

Experimental results 2: performance dip at 40 deg.

Examples of learning sets

Worst !
$S_{30,0} 12$ images

Objects that have performance dip at 40 deg.

Object Object Object Object Object Object

5	6	9	11	14	19

What property affect the performance?
\square Future work....

Experimental results 3: keeping good performance

Objects that keep good performance

COIL-20 Object 15

$S_{120,0}$

Round shape may affect the performance
Also future work...

COIL-20 Object 12

Conclusions

Performance evaluation of EbC
\square a view-based pose estimation
Experimental results:
\square Some objects have the performance dip
\square Some objects keep good performance
Future work
\square To investigate the relationship between performance and object shape

