Experimental study on performance of view-based pose estimation

Toru Tamaki i HIROSHIA Hiroyuki Okugawa i HIROSHIA Toshiyuki Amano NAIST Kazufumi Kaneda i HIROSHIA

HIROSHIMA UNIVERSITY

HIROSHIMA UNIVERSITY

HIROSHIMA UNIVERSITY

View-based pose estimation

Learning relations

Learning set lacksquare $\{ heta_{j}, oldsymbol{x}_{j}\}$ (i=1, 2, ..., n)Relations **Nonlinear** $\theta_j = f(\boldsymbol{x}_j)$ Linear $\theta_i = F \boldsymbol{x}_i$ Estimation **Nonlinear** $\theta = f(x)$ Linear $\theta = F \boldsymbol{x}$

Nonlinear methods
Parametric Eigenspace method
(Murase, 1995)
Kernels
(Melzer, 2003)
(Ando, 2005)
Manifold learning

Learning relations

Learning set lacksquare $\{ heta_{i}, oldsymbol{x}_{i}\}$ (i=1, 2, ..., n)Relations Nonlinear $\theta_j = f(\boldsymbol{x}_j)$ $\theta_i = F \boldsymbol{x}_i$ Linear **Estimation** Nonlinear $\theta = f(x)$ Linear $\theta = F \boldsymbol{x}$

Linear methods
Linear regression

(Okatani, 2000)

Cyclic permutation

(Tamaki, 2007)

EbC

(Amano, 2006/2007)

Overview of EbC

Learning phase

EbC: "Estimation-by-Completion"

Chearn Chearn

- \Box Image part x_j
- \square Parameter part p_i
- Compute Eigenspace
- Estimate pose
 - A test image has no parameter part
 - Completed as missing image area

Questions to investigate

- Performance depends on the number of learning images.
 - Few images: bad estimation
 - Many images: better performance
 - Is it really? How many images are enough?

Questions to investigate

- Performance depends on the number of learning images.
- What is an appropriate set of images when we fix the number of images?
 - Any set is enough?

Learning image set

Definition of a learning set :

$$S_{i,s} \!\!=\!\! \{oldsymbol{x}_{ik+s}\} \ oldsymbol{x}_{ heta}$$
 : images at $heta$

i : sample span [deg] s : start angle [deg] $k = 0,1, ..., n_i$ -1

 $n_i = 360/i$

Example :

Performance evaluation

Root mean square error (RMSE):

$$RMSE_{i,s} = \sqrt{\frac{1}{72 - n_i} \sum_{x_j \notin S_{i,s}} \left(\hat{\theta}_j - \theta_j\right)^2}$$

 θ : true angle $\hat{\theta}$: estimated angle

Exclude learned images

sample spans: i = 5,10,15,20,30,40,45,60,90,120(divisors of 360 [deg])

Experimental results 1: moderate case

Experimental results 2: performance dip at 40 deg.

Examples of learning sets

Objects that have performance dip at 40 deg.

ObjectObjectObjectObjectObject569111419

What property affect the performance?
Future work....

Experimental results 3: keeping good performance

Objects that keep good performance

COIL-20 Object 15 $S_{120,0}$

Round shape may affect the performance Also future work...

COIL-20 Object 12 $S_{120,0}$

COIL-20 Object 20

Conclusions

Performance evaluation of EbC a view-based pose estimation **Experimental results:** Some objects have the performance dip Some objects keep good performance Future work To investigate the relationship between performance and object shape