
AN ARCHITECTURAL STUDY

ON MASSIVE MULTIPROCESSOR SYSTEMS

by

Reiji Aibara

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Circuits and Electrical System Engineering)

xn Hiroshima University

January 1986

Abstract

The computer architecture has been explored for higher per-

formance, higher facilitate and/or more reliable systems at lower

costs (sometimes aと　any cost).　　　Parallel processing with

multiprocessors has been employed by many researchers as a suit-

able technology for the improvements, and has been realized in

experimental or commercial machines consisting of up to lO^ proc-

essors.　　In particular, a lot of proposals for new super-

computer architectures aimed at increasing machine performance by

an order of magnitude have come out in the past several years.

Decreasing costs and increasing density of CPU and memory chips

due to the recent advanced VLSI technology have made such com-

puter architectures feasible even if it is a拭assive Multxproces-

sor system (in short, …S) con figuring more than 10 process-g

elements.　　　However′　there remain a lot of problems to be

solved toward realization of the MMS's efficiently performing a

∃ob.

The goal of this dissertation is to provide a design method-

olog・y of such MMS-s based on the architecture aimed at increasing

their performance.　　Though several levels of the architectures

are investigated, we mainly focus on the PMS (Processor-Memory-

Swxtch) level because ,systems based on the architecture allow

the design flexibility of their parallelism, and have great

possibility of a realization at high cost-performance.

On the basis of several experiments using multiprocessor

UNIP with　32　processors, the dissertation describes a massive

-　1　-

multiprocessor simulator for performance evaluation and inter-

connection networks for MMS-s based on a new device technology,

i.e., 3-dimen云ional integrated circuits.

First, Chapter 1 surveys studies on computer architectures

toward higher performance of computing systems in various levels.

In Chapter　2, multiprocessor approaches are presented.

Basic parallel processing schemes and typical multiprocessor

configurations are summarized, and then, a fabrication of experi-

mental multiprocessor system UNIP is described.　　　After several

experiments using UNIP are demonstrated, essential and crucial

issues of multiprocessors derived from that experience are sum-

marized.

In Chapter　3/ a modeling of MMS programs for performance

evaluation using the parallel programming scheme is prOpOsed.

The model which is largely intuitive, is applicable to a simula-

ter for the performance evaluation of MMS s in which the inter-

processor communication cost can be measured.　　　After a de-

scription language of the programming scheme is described, the

simulator implemented on the UNIX system and simulatxon analysis

on the experimental results are demonstrated.

In Chapter 4. a new type of common memory (in short, 3-D CM

) based on a technology of　3-dimensional integrated circuits is

proposed and its fundamental properties are described.

communication module for connecting processors using　3-D CM and

processor interconnect!on networks for MMS's, consisting of the

modules are demonstrated.　　　A brief analysis of the network

performance is also described.

Finally, in Chapter　5, we discuss and summarize further

problems to realize high-performance MMS s.

-　11　-

製577(33酬H3

Chapter 1 lntroductxon

l.1　Summary of Results

l.2　0utline of the Dissertat.ion

Chapter　2　Multiprocessor Approach

2. 1　Overview

2.2　Parallel Processing Control Scheme

2.3　　Performance Measure

2.4　Experimental Multiprocessor UKIP

2.4.1　Design Policy

2.4.2　Hardware Overview

2.4.3　System Software

2.5　　Case Studies

2.5.1　Sorting and Searching

2.5.2　Two-Dimensional Bit-Pattern Matching

2.6　Summary

Chapte王r　3　Performance Evaluation

3.1　Modeling

3.2　Applicable Structure and Description

3.2.1　Representation of Graph Constructions

3,2.2　Behavior Of Z4odules

3.3　　Simulator

3.3.1　Reguxrements for Simulator

3.3.2　Simulator

3.4　　Case Studies

3,5　Summary

-　I ll　-

e
q

一

1

　

　

9

　

0

C

N

f

O

I

D

r

-

-

　

r

-

　

　

　

　

　

(

・

"

)

　

　

t

n

t

n

m

　

　

　

　

　

つ

ん

v

-

　

*

-

　

v

-

　

v

-

　

I

N

　

つ

ん

　

つ

ん

　

2

　

2

　

つ

ん

　

3

　

4

^

r

　

-

*

　

<

N

　

(

N

　

ォ

>

　

<

N

　

<

N

t

-

~

-

　

′

o

　

つ

J

・

^

　

^

j

i

l

o

u

i

i

n

　

^

　

^

　

i

o

s

c

o

Chapter　4　Interconnection Network Based on

Three-Dxmensional Integrated Cxrcuits

4. 1　Overview

4.2　Three-Dimensional Common Memory

4.3　Common-Memory-Based Interconnection Network

4.4　Performance Evaluation

4.5　Summary

Chapter　5　Conclusions

5.1　ConclusiOnS Of the Dissertation

5.2　　Future Problems

Acknowl edgment s

Reference s

Appendix Syntax of the Scrxpt

A.1　Extended Series-Parallel Flow

A.2　Two-Dimensional Array

-　IV　-

^

　

i

n

c

m

　

0

0

　

9

　

つ

ム

0
0
　
C
O

O
¥
　
O
I

O

r
-

【
i

r
i

4　4　6

r
山
　
　
　
　
　
　
　
　
　
　
r
r
L

L

l

i

i

l

l

l

L

l

r
-
　
　
[
-
-

J
f
i
^
^
H
^
S
　
　
顕
l
J

r

i

r

i

i

i

List of Figures

_
　
　
　
　
　
t

q

一

　

q

一

-
H
　
-
H

F

F

°
　
　
　
　
　
_

q

一

　

q

一

-
H
　
-
H

ど

ど

°

　

　

　

　

　

_

D

q

一

-
H
　
-
H

e
^
^
^
H
c
T

°

　

　

_

　

　

_

g

q

一

g

・

H

　

-

H

　

-

H

P

P

ど

o

j

m

　

'

!

t

f

i

u

"

>

　

*

」

>

　

r

-

-

　

o

o

c

r

ノ

_

　

　

°

　

　

_

　

　

_

　

_

　

　

t

　

　

°

　

　

t

　

　

_

2

　

つ

山

　

フ

]

　

C

N

C

N

　

<

N

　

つ

ム

　

2

　

2

Configuration of multiprocessor UNIP.

工Ilustration of memory map in UN工P.

Data structure for sorting and searching.

Modified data structure for sorting and searching.

Time chart of pipelined processing (I)

Time chart of pipelined processing (II)

Sorting execution time.

Searching execution time.

Two-dimensional bit-pattern

matching execution txme.

Fig. 3.1　Node primitives.

Fig. 3.2　　Node state transition.

Fig. 3.3　　Labeling on process node.

Fig. 3.4　　Three construction rules.

Fig. 3.5　　Example of Parallel Flow Graph.

Fig. 3.6　　Sequential model and, its time-domain behaviOr・

Fig. 3.7　　Behavior of parallel module.

Fig. 3.8　　Behavior of selective module.

Fig. 3.9　　Example of total system configuratiOn・

Fig. 3.10 , Hierarchical measurement or inspection.

Fig. 3.11　Example of logical scheme including a loop.

Fig. 3.12　Simulator configuration.

Fig, 3.13　Example of simulation results.

Fig, 3。14　Simulation results compared with

exper土mental results.

Fig. 4.1

Fig. 4.2

Fig. 4.3

Fig. 4.4

Fig. 4.5

F土　　4.6

e

.

C

n

r

-

　

c

o

　

つ

1

　

^

　

i

n

w

r

>

　

c

o

a

　

っ

ん

　

2

　

3

　

つ

n

r

o

n

r

n

n

ォ
T

r

-

　

o

　

　

　

　

"

*

　

m

　

(

T

i

o

L

O

k

O

　

つ

ん

　

5

　

8

　

　

　

　

　

1

・

<

#

-

i

n

i

n

i

n

i

n

i

n

v

o

v

o

v

o

v

s

r

-

　

t

-

-

-

r

サ

　

　

　

　

o

o

Typical multiprocessor configuration.

Typical multistage network.

N-port memory.

Memory area divided into each processor-to-processor

communication.

Example of memory cell.

Three-dimensional common memory.

-　V　-

1　5　69　9　9

Fig. 4.7　Interconnection among memory cells

at vertical axis.

Fig. 4.8　　A 2x2　dual interconnecting modular network device

‖Dlmond‖　for packet switching.

Fig. 4.9　　A 2x2　dual interconnecting modular network device

・

　

　

ォ

　

　

・

　

　

・

　

　

f

t

s
m
s
R
　
好
~
n
　
加
i
^
H
s
i
凹

蝣

H

　

-

H

E

n

b

l

i

i

f

a

　

甘

ユ

*
*

0

1

t

1　　　1

°
　
　
　
　
　
`

based on a　2x2-port memory.

Circula工・　queues on a　2x2-port memory.

1　Connecting two modules.

2　Pipelined time chart of transfer between modules.
3　41　　　1

°
　
　
　
　
　
°

4

　

　

4

Function f added through transfer between modules.

Four-way of connections for

two input and two output ports.

Fig. 4.15　An　8x8　shuffle-exchange COMBINET.

Fig. 4.16　Normalized throughput versus number of stages.

-　VI　-

97

101

2　30　0

「

一

t

_

　

　

　

F

一

t

_

4　5　60　0　01　　1　　1

7　8　10　　0　　11　　　1　　　1

List of Tables

Table 1.1

Table　2.1

Table　2.2

Table　2.3

Table　2.4

Table　2.5

Table　3.1

Table　4.1

Table　4.2

Architecture levels with respect to

parallel processing.

Sorting execution time.

Searching execution time.

Average data transfer speed

ln sorting and searching.

Each part of sorting and searching time.

Each part of　2-dimensional bit-pattern matching

execution　と⊥me.

S五mulatiOn results of

2-dimensional bit-pattern matching.

Behavior of B-j and B2.

Estimated capacity of a　3-D VLSI RAM.

-　Vll　-

Page

41

Chapter 1

Introduction

In the quest for higher levels of computational performance,

systems have been planned to have throughputs xn excess of one

billion mstruct⊥ons per second (B工PS).　　　Over the several

years we have seen myriad proposals for supercomputersJ especial-

1y. new architectures aimed at increasing raach土ne performance by

an order of magnitude.　　As a result, it has been possxble to

achieve such high levels of performance only for very specialized

systems such as signal processors.　　Such systems are optimized

to execute a few well-formed algorithms, so thaとit is difficult

to effective implement other application problems.

Recently, it has become clear that there are many applica-

tions (e.g., image recognition, computer tomography, data base

management, simulation for weather forecast. etc.) which require

high levels of performance.　　The variety of the applications

requires general purpose flexibility for systems.

On the other hand, the advent of large and very large scale

semiconductor　土ntegrated techniques has reduced the cost of

digital circuits.　　In particular, significant reduction of the

cost has been done for memory and CPU chips.　　Hence. an　土nex-

pensive realization of a system having a wide spectrum of applx-

cations is becoming possible.

The dissertation addresses design methodologies to develop

systems satisfying the following two requirements:

(i)　High performance, e.g., exceeding one BIPS.

- 1　-

(ii) General purpose computat土onal flexibility.

There exist two main approaches to the development of the

supercompuとers :

(1) The use of extremely high-speed single processor based on

conventional von Neumann architectures.

(2) The use of new architectures, e.g., parallel processxng.

The first approach has been due to the significant improve-

ment of the device technology in the recent years.　　　However,

since a signal transfer speed in a circuit cannot exceed the ve-

locity of the light in principle, there is an apparent limitation

of the improvement.　　工t is difficult to develop a device whxch

is hundred times faster than the currently existing chips.

This dissertation adopted the second approach.　　It has

been employed by several computer researchers and designers, and

a vanous kind of advances in computer architecture has been

dene.　　In 【MYERS82], Myers defines the term computer archi-

tecture as "the distribution of functions across a proposed level

or boundary within a system, and the precise definitxon of the

boundary".　　Aceording to this definitionl a research of the

computer architecture can be divided into a lot of levels.　　工n

particular, parallel processing techniques for high performance

computation are investigated by the most of researchers at

several architecture levels. which are classified into the

following three typical levels [BELL71]:

(a) RT　(Register-Transfer) level,

-　2　-

(b) ISP (Instruction-Set-Processor) level, and

(c) PMS (Processor-Memory-Switch) level.

The major distinction among RT, ISP, and PMS levels is the

granularity of their parallelism.　　RT, ISP, and PMS level

architectures are suitable for sub-instructionJ instruct五〇nJ and

process (or task) level parallel processing, respectively.

Parallel processors based on the RT level architectures

execute an土nstruct土on in parallel.　　An example of this type.

of architectures is a vector processor which divides an instruc-

tion into several pipelining stages or a vectorized datum into

elements and executes them simultaneously.　　　Therefore the

division of functions and scheduling of their execution must be

decided at the designing time.　　It is impossible for users to

change them after the design has completed.　　A typical example

of the parallel processing systems based on the ISP level archx-

tectures is a data flow machine.　　　The system has several

execution units which perform an土nstruct五〇n when all required

data (or operands) of the instruction meet at the units.

The RT and ISP architectures allow high granularity of parallel

processing; however, they have little flexibility in their execu-

土ion.

In contrast, systems based on the PMS level architectures

such as mult土processor systemsl execute a process (or a tasノk)

in parallel.　　Modules composing the systems are autonomous

processing elements or processors, which can be employed under

centralized or distributed contro1.　　It is true the PMS archi-

tectures allows the systems to apply a wide spectrum of appl土ca一

七ionsl but it was said that a drawback　土n them was that the

-　3　-

modules become large and complex.　　However, decrease in costs

and increase in the number of CPUIs and memories compressible in

a chip due to the recent advance of the VLSI t色chnology have made

such architectures feasible even if it is a　地assive Multxproces-

sor System (in short, MMS) connecting more than 103 process-g

elements [SPECIAL82] [POTTER85] [CHRIST84].　　Thus, we focus on

the PMS architecture level in the dissertation, because systems

based on the architecture are flexible and feasible.　　　Table

1.1 summarizes the architecture levels with respect to parallel

processing stated above.

Table 1.1　Architecture levels with respect to parallel processing.

Architecture

Level

RT 工SP PHS

Parallelism

Level

Sub-Instruction 工nstruct土0n Task or Job

Autonomous

Processing Elements

No No Yes

EⅩamp1eS vector processor data flOW systolic array

proc占ssor a中aY machine Transputer, GF-ll

Many authors have proposed parallel processing systems,

based on the PMS architectures, which have a variety of design

policies.　　There are four main factors which a designer should

-　4　-

consider and decide on to design PMS architectures:

(1) Processing element flexibility,

(2) Control strategy,

(3) Connection, topology, and

(4) Partitioning and scheduling a job.

Processing element flexibility

As mentioned above, a processing element in the PMS archi-

tecture is assumed to be an autonomous module which may be small

and simple, or large and complex.　　The autonomous module, or a

computer, can be decided to be flexible for changing its func-

tions: hardwired, firmware, and software.　　When the hardwired

method土s selected′　we can get a fast and compact module at the

expense of the flexibility.　　　工n the case of the software

method, its condition is the contrary.　　　Systolic array

[KUNG82a] and wave front array 【KUNG84】 are originally based on

hardwired or firmware processing elements.　　On the other hand,

Transputer [MAY841 designed as a language-oriented processor

adopts the software method.

Control strategy

A job is distributed and performed on many processing

elements communicating with other elements.　　The communication

and synchronization are realized by certain control functions.

These functions can be managed by a centralized controller or by

each of the individual processing elements.　　　Another way to

manage them is a hierarchical control strategy, i.e.,　the

elements are divided into several clusters′　each of which is

1　5　1

managed by its centralized controller-　　　　The centralxzed

control in GF-ll [BEETEM85], the distributed control in

Transputer, and the hierarchical control in Cm　[SWAN77] are

typical examples of the three different control strategies

mentioned above.

Connection topology

Processing elements are oonnected with each other by polnト

to-point links or interconnection networks.　　　The former is

called as a static network topology′　and the latter as a dynamic

network topology.　　In the dynamic topology, switches in the

networks can be dynamically set or not dynamically set.

Therefore, connection topologies can be classified into two

categories:　using point-to-point links and interconnection

networks.　　　Topology selecting strategies can be grouped into

three categories:　static,　reconfigurable,　and dynamic.

Systolic array, wave front array, Transputer, etc. belong to the

point-to-point and static class,　and GF-ll belongs to the

interconnection network and reconfigurable class.　　It is now

difficult to fxnd a realistic system which can change its

topology dynamically.

Partitionxng and scheduling a job

From the view point of the software design′　program parti-

tioning and scheduling are the most important factors influencing

system performance.　　　For high performance,　the maximum

parallelism with the lowest possible overhead is desired.

job can be partitioned into a vanOuS、 size, from a few

instructions to a large task.　　　Parallelism Of the job can be

-　6　-

detected by users during algorithm design, by a certain compiler

during the compile time, or by a particular software or hardware

during the run time.　　　oreover, scheduling in a multiprocesso-I

is a function that allocates tasks (or processes) to

processors, and manages their execution.　　　In the system

design, we can consider two kinds of criteria for the scheduling

function: static or dynamic, and centralized or decentralized.

The static method decides a scheduling before the execution, and

the dynamic one determines a scheduling at the run time.

scheduler in a system manages all schedulings in the case of

centralized method, and several schedulers manage thexr local

schedulings in the case of decentralized one.

As discussed above, there exist several issues to be con-

sidered when a multiprocessor, i.e., a system based on the PMS

architecture, is designed.　　　It is difficult to obtain a

complete solution of the issues because of their dependency upon

applications performed by the system, even if a target is not

massive.　　In particular, the overhead for task and/or resource

allocation, and for task or process scheduling increases with

increasing number of the processors.　　　The overhead is a

crucial problem of massive multiprocessors in both the designing

time and the running time.　　Although a lot of researchers have

been investigated the allocation or the scheduling problem

【CHOU82] [IRANI82] [STONE77] 【MA82] [MA84]. there has been no

algorithm solving it in feasible time.　　　Since the mam

objectve of the dissertation is to obtain a methodology which can

realize to design mMS's in feasible time, we will try to discuss

the methodology under the following assumptions:

-　7　-

(1)ideal (or aimost ideal) interprocessor communication

hardware and

(2) restricted communication flow.

Those assumptions make it possible to extremely reduce the

overhead at the design because the communication cost can be

estimated as constant value.　　　Moreover, to evaluate the system

performance from the description like a programming language, the

strategy of the dissertation is to use a simulator for accu上ate

and quick, evaluation.　　　There already exist a few programming

language supporting multiprocessors.　　　However, we adopt

another description language simplified for performance

evaluation. because they are not enough to describe the MMS s.

On the other hand, a wide bandwidth interconnection network is

also proposed for the first assumption, and makes it possible to

realize a target system evaluated by the simulator.

-　8　-

1.1 Summary of Results

The goal of this research is to provide design methodology

of MMS s aimed at increasing performance by an order of magni-

tude.　　　Since the objective applications of the methodology

spread a broad range, it assumes that the target systems, i.e.

MMS's, are designed for general purpose or a wide range of

applications.　　This dissertation especially focuses on the PMS

architecture level which is suitable for VLSI realization of

MMS's.　　A simulator as a design support tool for MMS s and an

interconnection network for a realization of MMSIs are presented.

The dissertation demonstrates the following results through

arguments and experiments:

Experimental results of parallel processing with task level

control is obtained from experiments using multiprocessOr

UNIP with　32　processors.　　The experiments are done in the

fundamental parallel processing in multiprocessors, i.e.,

pipelined processing and parallel processing.　　　The

essential problems of highly parallel processing in multi-

processors are derived from the experiments.

A model based on the program scheme, and a simulator for

performance prediction and evaluation of parallel programs

on MMS s are proposed.・　　The simulator implemented on the

UNIX operating system is used for the analysis on the

experiments.　　As a resultJ We found that the s土mulator　土s

used for the design of MMSIs.

-　9　-

A processor interconnection network based on a new technolo-

gy of 3-dimensional very-large-scale-integration is proposed

to decrease communication time between processors.　　　The

proposal of the interconnection technology allows the

designer tO use the simulator without feedback retry.

1.2　0utline of the Dissertation

In this dissertation, based on experiments using multi-

processor UNIP with　32　processors, a massive multiprocessor

s土mulator for performance evaluation and an　土nterconnection

networks for MMS's based on the　3-dimensional integrated circuit

technology are discussed.

In Chapter　2, multiprocessor approaches are presented.

Basic parallel processing schemes and typical multiprocessor

configurations are summarized, and then, a fabrication of

experimental multiprocessor system UNIP is described.　　After

several experiments using UNIP are demonstrated, essential and

important problems of mult土processors derived from that

experience are summarized.

In Chapter　3, a modeling of MMS programs for performance

evaluation using the parallel programming scheme is proposed.

The model which is largely intuitive, is applicable to a

simulator for the performance evaluation of the MMSIs in which

the interprocessor communication cost can be measured.　　The

- 10　-

simulator is implemented on the UNIX system.　　　After a

description language of the programming scheme is described, the

simulator specification and sihulation analysis on the

experimental results are also demonstrated.

In Chapter 4, a new type of common memory (in short, 3-D CM

) based on a new technology of　3-dimensional integrated circuits

is proposed and its fundamental properties are described.

communication module for connecting processors using　3-D CM and

processor interconnection networks for MMS s consisting of the

modules are demonstrated.　　　A brief analysis of the network

perjormance is also described.

FinallyJ in Chapter　5J We Conclude the d土ssertatiOn and

summarize future problems for a realization of high-performance

MMS's,

T ii J

Chapter　2

地ultiprocdssor Approach

The discussion and the experiments in this chapter give the

basis of the design and realization of MMSIs based on the PMS

level architectures.　　　Consideration of essential multiprOces-

sor issues leads us to crucial problems of MMS's.　　A fabrica-

tion of a multiprocessor makes difficult points of the MMSIs

realization clear.　　The experiments going on in this dhapter

suggest that a precise estimation of program execution in MMS's

is possible before the systems are realized.

First, fundamental properties of multiprocessor systems

aimed at high levels of performance are discussed in this

chapter.　　After advantages and disadvantages of the multi-

processor approaches are presented, we consider essential issues,

especially, their control schemes, and performancd measures of

the systems.　　Next,- an experimental multiprocessor UNIP with

32　microprocessors is proposed and experiments using UNIP are

demonstrated.　　　土nally′　we point out crucial problems of

multiprocessors toward MMSls which have high levels ofーCOmputa-

tional performance and the flexibility for their applications.

- 12　-

2.1 Overview

With the advent of VLSI technology which made it possible to

manufacture high-performance microprocessors and other circuits

at low cost, multiprocessors with many processors have been

highlighted in recent years.　　The following major motivations

(or advantages) for building multiprocessor systems:

(1) to　土ncrease pertormance′

(2) to increase reliability, and

(3) to meet distributed application requirements.

On the other hand, several disadvantages of multiprocessor can be

pointed out as foilows=

(1) The software is complex, difficult to design, expensive to

produce. and difficult to test.

(2)Information of the hardware is required for efficient

software　土mplementat土on.

(3) All hardware resources are rarely used at a time,

Gaj土sk土【GAJ工SK工85】 has pointed out the essentIal issues　土n

multiprocessor systems: hierarchical control of computatiOn′

program partitioning, scheduling, synchronization, and memory

access.　　　These issues are closely related with multiprocessor

architectures.　　　Hierarchical control of computation is

discussed in the next section.　　　　Program partitioning,

scheduling, and synchronization are related to Chapter　3 in this

dissertation; however, since we assume that task allocation

- 13　-

should be given for inspections at the design of MMS's, these

issues are not discussed in detail.　　　The last issue of memory

access is discussed　土n Chapter　4.

- 14　-

2.2　Parallel Processxng Control Scheme

A program executed in a multiprocessor is represented by a

control graph [GAJISKI85], in which nodes represent one or more

transformations or movements of data, and arcs represent the

orde工in which nodes are executed.　　　The program execution　土s

indicated by the flow of data or control tokens on the graph.

From the standpoint of sequencing, there are two models.

serial model of computation corresponds to sequential language

execution, where only one token exists in the graph.　　　The

token flows without splitting into two or more.　　In contrast,

a parallel model of computation has splitting nodes and merging

nodes.　　　　token in the graph flows with spl五七七土ng and/or

merging.

The latter model explicitly represents a parallel

processing.　　Though the former model looks valid only for

sequential processing, it can provide parallel processing for

several data.

A simple example of the parallel processing in the serial

model is pipelined processing, that is, several data flow on the

sequentially control graph and parallel processing is performed

between processing data.　　On the other hand/ a typical example

of the parallel processing in the parallel model is parallel

processing in a narrow sense, that is, several processing

elements are executed simultaneously.　　　These two processing

control schemes are so simple and fundaraental that they are

suitable for implementation in MMS s consisting of a large number

of processing elements.

- 15　-

Parallelism Of the pipelined processing and the parallel

processing can be implemented at several levels: instruction

level, process level, task level, etc.　　　There is a trade-off

between parallelism granularity and communication overhead.

The designer should decide a level of parallelism in

consideration of program algorithm to be solved and a capacity of

the　土nterconnect土on networks.

- 16　-

2.3　Performance　祇easure

A pe上formance measure of multiprocessors (or, parallel

processors) is needed to evaluate a system whether it is

sufficient to perform a specified job.　　In case of single

processors, the measure is often represented as throughput (

e.g., MIPS: Million Instructions Per Second, FLOPS: FLoatxng

point Operations Per Second. etc.) which is the capability Of

performing instructions or operations in one unit time.　　The

throughput makes it possible to compare performance with other

systems, and to estimate execution time fo工・ a spec土fled jOb・

Since a single processor executes instructions sequentially, the

throughput represents accurate performance of the processor.

(Note that MIPS or FLOPS does not always reflect the accurate

performance when each execution time for an instruction or an

operation is not constant but dependent on its variety.)

The throughput, however, is not sufficient to measure

performance of multiprocessors because of their parallelism.

Moreover, a performance measure which represents multiprocessOr

architecture as a complex of hardware and software systems is

needed, because the throughput only represents the abilxty of

hardware systems.

several measures of multiprocessors (or, parallel proces-

sors) have been proposed as follows:

(1) speed-up ratio [STONE73]

(2) throughput (improved ratio) [ENSLOW74]

(3) parallelism [FENG72],

- 17　-

(4) throughput and parallelism [HOCKNEY81] etc,

The speed-up ratio represents how many times a multiproces-

sor can execute programs faster than a single processor can.

The speed-up ratio is defined as,

speed-up ratxo　=
execution time in a sin rocessor

execution time in a mulと土processor

Since the measure directly indicates an effectiveness of multiple

processing, it can be intuitively acceptable.　　　However, since

it is a relativevalue, it is difficult to compare a multxproces-

sor system with another system based on the different processors

by the speed-up ratio.

The throughput represents, like definition for a single

processor, the capability of performing total instructions or

operations on a multiprocessor at unit time.　　By thxs measure,

we can easily compare performances between systems based on

different processors.　　　Moreover, the throughput imprOVed

ratio, which is defined as the ratio of the multiprocessor

throughput to the single processor throughput, is often referred

as a measure of parallel processing effectiveness.

On the other hand, the parallelism, e.g., the number of bits

oゞ　words executing at a time, is prOpOsed as a measure of

multiprocessor performance. especially of architectural factor・

The measure is based on the idea that the architectural

performance of multiprocessors should be represented by the

degree of parallelism but not by their throughput capabilities,

which of course depend on their clock rates.　　　The measure may

- 18　-

also refer to the number of words or data performed at a time.

Hockney　占t al二　have proposed two measures,　q and m or
2

the linear approximat1onJ i.e.∫ execution time is apprOximated by

vector length of input data.　　　They imply throughput

capabilities and parallelism of multiprocessor systems.　　　三七

assumes that the system is designed for vectorized data input.

when the system solves a problem of input data length n, the

system performance rn ⊥s defined as

n-n!tn′

where tn is the processing time for the problem.

tn is obtained from the following linear approximation:

tn - (n+n去)/r∞ ,

where r∞ is the maximum performance and

nj_ is the length of input data for whxch the system per-
2

formance is the half of the maximum performance.

rco′　which is the limit of rn as n approaches infinity′　土s

consider to represent the system throughput.　　ni is regarded

as a parallelism measure.　　　The linea、r approximation Of the

上ast proposal cannot always apply to any multiprocessor systems

based on task level parallelism.　　　However, the measure can

represent both the throughput and the parallelism.

Measures (1ト(4) can be selected by the requirements Or the

design policy of the target system.　　Throughout the disserta-

t土on′　we use the following two measures, from which all the

measures listed above can be derived:

xnterval time : t上nt and

response txme : tres

- 19　-

The interval time tint is the average processing time per datum

and the response tih t is the prdcessing time for the first

datum.　　For example, r^　and ni are derived as follows:
2

r∞- 1/:int and

n去- (r①/r,)-1 - r∞・tres-1,

where r^ is the system performance for a datum defined above・

The speed-up ratio is also derived as follows:

speed「up ratio - tref/^int"ll + tres)′

where n is the number of　土nput data and

tref is the executionと1me for the same job土n a reference

single processor.

It could definitely be said that the execution time m a refer-

ence single processor is required.　　　Other measures described

above are also der土ved　土n a s土mllar way.

-　20　-

2-4　Experxmental　比ultiprocessor ONIP

We' have developed a multiprocessor UNIP with　32　processors

for experimental applications [AE82].　　UNIP served as a pilot

machine for acquiring fundamental data of execution and

communication time in task level parallel土sm・　　　工n this

section, the hardware and system software of multiprocessor UNIP

are presented.

2.4.1 Design Policy

Multiprocessor UNIP with　32　microprocessors has been

designed as an experimental machine for the purpose of gaining

fundamental data, e.g., execution and communication time for

parallel processing, and making underlying problems visible

toward high-performance MMSIs.　　　we fabricated a realistic

machine with more than ten processo工蝣s even if an each processor

is very small, and facilitated execution of pipelined processing

and/or parallel processing.　　　The design policy of the

multiprocessor is listed as follows:

d) simple hardware.

(2) Attached processor′

(3) Homogeneous-processor organization,

(4) Single bus structure, and

(5) Parallel and/or pipelined processing configuration.

Simple hardware is required for a guarantee of execution

-　21　-

stability when several asynchronous processors run individually.

Each processor and its communication mechanism with other

processors are designed as simply as possible.　　The simplxcity

is also suitable for the VLSI realization.

Attached processor. which needs a host coraputer to complete

job, plays a role of a back-end processor of the host.

Since the host handles its peripheral devices, e.g., disk

storage, and user interface facility, the multiprocessor can

dedicate itself to its own tasks.　　　UNIP communicates with a

host computer through a full-duplex parallel port.

Homogeneous-processor organization and single bus structure

are available to simplify the hardware and to repair or exchange

a faulty processor.　　They also lead to an ease of fabrication

and the system extens土bility.

UNIP has two kinds of communication mechanism between

processors, i.e., bus transfer mechanism connecting all

processors and parallel port connecting adjacent processors.

The mechanism is used for pipelined and/or parallel processing.

In the pipelined processing, main data stream uses the parallel

port.　　In the parallel processing, data are distributed and

acquired through the bus.

2.4.2　Hardware Overview

UNIP contains　32-working processors called slaves, and one

supervisor called master.　　All processors are connected with a

shared bus where the master processor performs memory access　とo

slaves.　　エn addition. two adjacent processors are combined to

-　22　-

each other with a parallel port.　　　Fig. 2.1 shows the

configuration of UNIP.　　　Each processor of master or slave is

assembled on a single board, and has Zilog乞-80A CPU, 16 KBytes

random access memory. input/output interfaces (a pair of bltI

parallel ports for slaves and two pairs for master), bus

controHer. etc.　　All slaves are Completely homogeneous excer

for hardware switch to identify slaves.

As one of the characteristics of UNIP, each processor has a

communication port to both of adjacent processors.　　Since the

port can be combined with any device or processor as well as

adjacent processor, the connection configuration of processors is

not fixed.　　　工n reality, several mult土processors, 1・eり　subset

of UNIP, with a few slaves which have different connection

pattern are also produced in our laboratory.

There exist many multiprocessor systems with single bus

structure and a variety of access methods through the bus.　　　To

avoid the occurrence of conflict on the bus, several arbitratxon

methods are proposed.　　A typical solution is an additional

hardware arbiter, e.g., a ring arbiter, race arbiter, etc.

When two or more processors　土s required to use a sxngle bus at

the same time, the bus arbiter accepts only one request and

permits its accepted processor to access the bus.　　　UNIP,

however′　has no additional hardware for bus arbitration because

of its hardware simplicity.　　The access right through the bus

is givenonly to the master processor of UNIP for the reason that

the master dedicates itself to all communications through the

bus.　　　Therefore, the master plays a role of an mterprocessor,

-　23　-

or a communication processor, transferring data between host and

slaves′　and between slaves.　　　Fig　2.2　shows memory map of

rとIation between the master And slaves.　　　From the master

processor, all slaves memory modules look like one module by

interleaving.　　　The master has two memory access modes:

individual mode and broadcasting mode.　　　工n the former mode.

the master can individually read and write a slave's memory.

For the selection of a specified slave memory, the address bus

w土dth　土s extended to　24　b土ts′　where the extended　8　bits can

select a slave from the maximum　256　slaves.　　　　工n the access

mode, the slave to which the master accesses halts during a

period of real memory access (about　500　nsec per access)

工n the latter access mode′　the master can write data　土n　土nter-

leaved memory of all slaves simultaneously, where the extended

address is ignored and all slaves halt.　　　The memory access is

restricted to only write operation in thxs case.

Interruption is required for task level syn'chronization

between the master and slaves.　　　　Two directions of the

interruption are considered: the master interrupts slaves for an

initiation or termination of slave tasks′　and slaves interrupt

the master for a communication request with anotheと　slave or with

the master.　　　Since UNIP has a hardware interruption mechanism

only from the master to slaves because of its simplicity, the

master must observe status of all slaves instead of the

interruption.　　The interruption is provided with two modes

such as the memory access.　　One is　土ndividual interruption and

the other is broadcasting.　　The former interrupts the slave

selected by extended address, and the latter causes the

-　24　-

interruption in all slaves at a time.　　　Since NMI (Non

Maskable Interrupt) of Z-80A is used for the interruption,

slaves can never a☆○土d　⊥亡.

2.4.3　System Software

UNIP provides basic communication and processor control

facilities by system software including software development

tools.　　　The software is divided into two functional parts:

runtime support and development assistance.　　　These functions

are as follows:

Runtime support

-　data transfer through the bus

-　data transfer using the parallel port

-　slave control functions,　e.g.,　reset, interruption,

initiation of slave program, etc. (master only)

-　communication with a host computer (master only)

Developraent assistance

一　memory read and write in an arbitrary processor from the

host

-　xnitiation of programs in an arbitrary processor from the

host

-　single step execution at machine language level for

debugging

-　development support of multiple languages, i.e., assembly

language, C language and Forth language

-　25　-

Since the runt土me support part must be土nstailed ⊥n small

hemory space of the processors, the functions aとe minimized for

compaction within　2K Bytes of the code size.

-　26　-

Port

Bus

PU : Master Processo M : Master Memory

PUァ: Slave Processo Mj^ : Slave Memory

(0　圭i　≦　31)

Fig. 2.1　Configuration of multiprocessor UNIP.

-　27　-

Map of Master

Address

OOOOH

Map of Slaves

Master s Private Memory

Slave 0 Slave 1

Address

OOOOH

Slaves Memory

(banking)

Slave　31

Fig. 2.2　Illustration of memory map xn UNIP.

-　28　-

2.5　Case Studies

2.5.1 Sortxng and Searching

In database management systems, the execution time for data

sorting and searching occupies the most part of the whole

execution time.　　　An interactive database sys阜em requires its

processor to shorten the processing time dramatically, when the

large amount of data　土s treated.　　　We have　土mplemented a

sorting and searching modules on UNIP and obtained their

e女perimental results 【AIBARA85],

The sorting and searching algorithms that we use have been

originally proposed by Tanaka et al. [TANAKA80] called pipelxned

heap sorting and pipelined searching, respectively.　　　The

original algorithms have the same data structure, as shown in

Fig. 2.3 , i.e., binary tree structure.　　　Since a processor

corresponds to a level of the data structure in implementation on

a multiprocessor, the level i processor must contain　2　data.

However. it is difficult for the processor which keeps only　8-

KByte memory space (after that. memory has increased up to 16

KBytes) to implement the algorithms.　　　As a result, we

modified the algorithms for the data structure, as shown in Fig.

2.4　こ　　　The structure saturates increase in data at level s in

order to limit at most　2s data stored in a processor.　　The

modified algorithms require the number of processors, p:

p- 「(n+1)!k]-1+l。g2k (n主2k) 。r

flog2(n+1)|　　　(n<2k)

-　29　-

where n is the number of processing data (sorted data　土n the

sorting, stored and searched data in the searching),

and

k　土s the maximum number of stored data in a processor (

土.e., k=2s)

The sorting and searching algorithms consist of two phases,

respectively.　,工n the sorting, one土s input phase′　when data

from the host come into the multiprocessor comparing the data

with another data and　とhey are stored　土n each processors, and the

other is output phase, when stored data comparing with another

data go out to the host.　　In the searching, one is storing

phase, when data already sorted come into the multiprocessOr and

they are stored in the specified sequence′　and the other is

searching phase, when data to be searched come from the host and

they are compared with the stored data.　　The identifxer of the

stored data　土s taken out in the search phase, when the datum of

the same value is found.　　　Each phase is executed in pipelined

processing.　　Fig. 2.5　shows a time chart of the input phase in

the sorting and the both phases in the searching, and Fig. 2.6

shows a time chart of the output phase in the sorting. where

Figs. 2.5　and　2.6 indicate the case that each processor cannot

execute both internal processing (e.g., comparing) and

input/output handling concurrently.

Figs. 2.7　and 2.8, and Tables　2.1 and　2.2　show experimental

results of total execution time for sorting and searching.

Moreover, Table　2.3　shows the average rate of data transfer

between UN工P and the host computer in sorting and searching.

-　30　-

Table　2-4　shows each part of sorting and searching time

represented by percentages.　　　The spec土ficat⊥on of the

土mplementat土on is li'sted as foHows:

-　One datum consists of

key :　　　　　32　b土ts (4　bytes) and

土dentifier : 16　b土ts (2　bytes).

-　The maximum number of stored data in the system is 11775.

-　The maximum number of stored data in a processor xs 512.

-　The maximum number of working processors is　31.

-　The programs are written by assembly language.

2.5.2　Two-Dimensional Bit-Pattern　比atching

An experimental　2-dimensional bit-pattern matchxng system

has implemented in UNIP.　　　The system is divided into two

parts: pattern analysis for data compression (GA), and data

searching (REC).　　　GA and REC can be executed in parallel

processing and in pipelined processing, respectively, when

several bit-pattern data to be matched come from the host.

UNIP slave processors are divided into two parts corresponding to

GA and REC.　　The GA part is used as parallel processor and the

REC part is used as pipelined processor.　　Fig. 2.9 shows the

experimental results of execution七ime. where the number of GA

part processors added to REC processors　土s constant (that is　29

Table　2.5　shows each part of　2-dimensional bit-pattern

matching execution time. which has been estimated f工・om the

program list.　　The processing system is divided into several

-　31　-

parts as shown in the Table:

Host　-〉　Master : The master receives bit-pattern data to be

matched from the host.

Master　->　GA　: The master sends the data to GA processor

GA

waiting for the input.

: A GA processor analyzes a bit-pattern and

compress it into a string data.

GA　->　Master　: The master acquires results from GA s which

have completed the processing.

Banki

EEC

Bank2

A slave receives the string data from master

and sends it tO a REC processor.

A REC compares the input string data with the

reference data stored in the processor.　The

REC finding a matched data sends its identi-

fxer as output.

: A slave sends results of RECIs to the master.

Master　->　Host : The master sends the results obtained from the

Bank2　to the host.

Note that, the master, the Bank.1 and the Bank2 play the role of

data buffering.

-　32　-

Fig. 2.3　　Data structure for sorting and searching.

-　33　-

、
b
I
人
Y
つ
凸

ー
宝
>
-
サ
ー
ー
†
○

-

1

0

Level　0

Level 1

Leve1　2

Level s

Level s+1

Level n-1

Fig。 2・4　Modified data structure for sorting and searching.

-　34　-

e:
S

・
r
l
　
　
　
　
　
　
　
　
　
^
-

⊥
し ー・

⊥

U
・
I ー

蝣
蝣

・
⊥

UP

Processing Time T : Transfer Time

Fig. 2.5　　Time chart of pipelined processing (I).

-　35　-

亡土me PUi-1　　PU土　　PUi+1

P : Processing Time T : Transfer Time

Fig. 2.6　Time chart of pipelined processing (II).

-　36　-

sorting Time (sec)

Fig. 2.7　　Sorting execution time.

-　37　-

Seaching Time (sec)

Fig. 2.8　　Searching execution time.

-　38　-

Execution Time (sec

12　　　　16　　　　20　　　　24　　　'28　GA

28　　　25　　　　21　　　　17　　　　13　　　　　　　　　　　　　　　　　1　REC

Number of Processors

Fig. 2.9　Two-dimensional bit-pattern matching execution time.

-　39　-

Table　2.1　Sorting execution time.

Number of

Data

Sorting Time (sec)

mm . max .

100 0.19 0.20

500 0.57 0.86

1000 1.61 1.69

2000 3.18 3 .36

3000 4.75 5.03 一

4000 6.34 6.71

5000 7.91 8.25

6000 9.49 10 .05

7000 ll.07 ll.72

8000 12.65 13.40

9000 14.24 15.10

10000 15 .82 16.78

Table　2.2　Searching execution txme.

Number of

Data

Searching Time (sec)

Store Search

100 0.ll 0.08

500 0.37 0.40

1000 0.71 0.79

2000 1.37 1.57

3000 2.04 2.36

4000 2.70 3.14

5000 3.37 3.92

6000 4.03 4.71

7000 4.70 5.49

8000 5.36 6-28

9000 6.03 7.06

10000 6.69 7-84

Table　2.3　Average data transfer speed

in sorting and searching.

Phase
Ave. Data Transfer

(Kbyte′sec)

Sort Data 工nput 8.9
Data Output 6.3

Search Data StOre 9.0
Data Search 7.7

1　40　-

Table　2.4　Each part of sorting and searching time.

Phase
Essential Data Other

Processing (%) Transfer ! Processing (%)

Sort Data 工nput 13.9 62.5 23.6

Data Output 10.5 84.4 5.1

Search Data Search 12.5 86.2 1.3

Table　2.5　Each part of　2-dimensional bit-pattern matching
execut土on time.

Processing Part
Time

(msec/data)

Host　->　Master

Master

Proc.

GA　->

紙aster

Bank!

Proc.

REC　-〉

REC　->

Bank2

Master

-　　wa

GA

Master

->　Banki

->　REC

REC

REC

Bank2

->　Master

->　Host

21.1

2.97

489

0.72

0.72

3.20

300+827/m

3.20

3.20

0.09

0.64

Note that, m is the number of REC processors.

-　41　-

2.6　Summary

We have obtained fundamental data with respect to the

parallel and pipelined processing and given essential issues of

multiprocessing through the experiments using UNIP.　　　Major

problems of designing and realizing such a multiprocessor as an

MMS with more than 10 processors are presented as foHows:

(1) Does the algorithm contain sufficient parallelism fo MMS's?

(2)工　it possible to estimate the total execution time

including the communication time?

(3)工s it possible to expand the communicat五〇n bandwidth of

interconnection netwOrks?

Though solution of the optimum parallelism of algorithm is

not a goal of this dissertation/ we believe that there exists

sufficient parallelism in the application fields of database

management, pattern recognition, etc., as mentioned in the

previous section.

Approaches to a solut五〇n of the problem (2) can be

classified into two categorxes:

(a) to obtain an (approximately) optimum allocation Of tasks

for a given configuration of multiprocessor and

(b) to estimate or evaluate the performance for a given task

allocation and a given multiprocessor configuration.

For the approach (a), the solution using the minimum cut

algorithm in graph theory [STONE77] and the heuristic algorithm

[MA82] have been proposed.　　　These algorithms, however, can

-　42　-

solve the problem restricted to a few processorsl and cannot

apply to a large number of processors such as MMS s.　　　or the

approach (b). the queuingヒheory and s土mul'at土on methods such as

the Monte Carlo simulation can apply to the problem.　　In this

approach, the simulation is repeated until the evaluation results

satisfy the designated requirements.　　This dissertation adopts

the simulation for performance evaluation.　　The simulation

model and a simulator realized on a UNIX system will be described

in the next chapter.

A solution of problem (3)土s the interconnect五〇n network

with sufficiently broad bandwidth.　　However, there exxsts a

trade-off between network cost (i.e., hardware complexity) and

network performance (i.eり　throughput and delay).　　A multi-

port memory with multiple-read single-write based on a new device

technology of 3-dimensional integrated circuits (i.e., multi-

layered VLSI) is proposed in Chapter　4.　　　Moreover, MMS s

interconnection networks using the memory are considered.

-　43　-

Chapter　3

performance Evaluation

This chapter mainly discusses a simulator as a development

support tool for the performance evaluation of Massive Multi-

processor systems (MMS's) aimed at high levels of performance.

To clearly represent MMS's functioning and behaviors,　the

Parallel Flow Graph (PFG) which consists of nodes representing

small tasks and arcs indicating inter-task communications is

introduced for their design. performance evaluation and

simulation.　　　For the performance evaluation of MMSIst a

simulator which can simulate more than lO^　nodes has been

implemented regarding PFG as a simulation model.

3.1 Xodeling

When studying the performance of asynchronous concurrent

systemsr var五〇us techniques are available to model system's

behavior and workloads [SPECIAL83] [SPECIAL84】 【HIDELBERGER82]

[DUBOIS84],　　A model for predicting the total execution time

of a logical scheme must satisfy at least the following criteria:

(1) Describes a logical scheme of MMS and its data flow.

(2) Provides the capability to evaluate a large system.

(3) Provides a complete, unambiguous, and machine-processable

form.

-　44　-

Considering the first criterion, a graph model is preferable

to others, Queuing Model, Markovian Model etc., and have been

developed by many authors.　　Therefore, we introduce a graph

model′　which is similar to Flow Graph [WESSELKAMPER82】

[GAJISKI82] [KODRES78] [OLDEHOEFT83] [MEKLEY80] [JAJODIA83] and

Timed Petri Net [PETERSON81 】 【RAMAMOORTHY80] as a candidate which

satisfies the above criterion.

工n order to model and to evaluate clearly the data flow on

the logical scheme of MMS, we begin with Parallel Flow Graph (in

short, PFG), i.e., an expansion of Flow Graph.　　　Other

graphical schemes, process flow graphs, data flow graphs and data

dependence graph, are alike except that PFG is provided for the

performance analysis of logical schemes.　　PFG is a finite

digraph which has nodes, directed edges, and dot markings for

representation of processes,　communicat土on links and

communication media such as messages, respectively.　　　We assume

that those processes logically communicate with each other only

through channels, and that the execution itself is sequentially

performed within a process.

A. Node PrimItxves

According to input/output behavior, we introduce five node

prim土t土ves: process-nodes, fork nodesIコ01n nodes. select nodes

and merge nodes [AIBARA86],

process Node (PN)

A process node has a single incoming edge for a single input

port and a single outgoing edge for a single output port. It

-　45　-

recexves one message as an input, and sends one message to the

output port. (See Fig. 3.1(a).)　　　Throughout thxs chapter, we

denote that a message is the media of communicatiohs・

Fork Node (FN)

A fork node has a single incoming edge for a single input

port and n outgoing edges for n output ports.　　As is shown xn

Fig. 3.1(b), it receives a message as an input, and sends n

messages to the n output ports.

Join Node (JN)

A join node has n incoming edges for n input ports and a

single outgoing edge for a single output port.　　As is shown in

Fig. 3.1(c), it receives n messages as n inputs from each

direction, and sends a message to the output port.

Select Node

A select node has a single incoming edge for a single input

port and n outgoing edges for a single output port.　　As is

shown in Fig. 3.1(d), it receives a message as an input, and

sends a message as an output to an appropriate direction selected

from the n directions.

拭erge Node (比N)

A merge node has n incoming edges for a single input port

and a single outgoing edge for a single output port.　　　As is

shown in Fig. 3.1(e), it receives a message as早n input from an

appropriate direction selected from the n directions, and sends a

message to the output port.

n means the number of incoming or outgoing incident edges.

If n is equal to 1, a node primitive can be regarded as a process

node.

-　46　-

Token
101・

(a) Process Node

(b) Fork Node

=>

(d) Select Node

(c) Join Node

(e) Merge Node

Fig. 3.1　Node primitives.

-　47　-

B. Node State and Txme Factors

Each node primitive has a unique state at a time.　　　There

are s'ix states as follows:

1. input ready,

2. input.

3. process ready.

process′

5. output ready, and

6. output.

We assume the state transition to be shown as in Fig. 3.2.

When a message flows into a certain node, the node changes its

state with time delay.　　　The time delay of a node is defined as

the time elapsed from whena node state is input ready to when lt

becomes input ready again.　　The time delay can be divided into

three factors: the processing time P, the communication time C,

and the waiting time W.　　　Hence,

Total Time Delay　=　P+C+W.

Considering the meaning of input and output behavior of a

node, a commun土cat五〇n time 0 can be divided into the input time

C土n and the output time Cout=

C　=　Cin+Cou乞.

Thus, a circular state transition requires the following

time values.

-　48　-

Phase 1: from input ready to process ready: Cxn

Phase　2: from process ready　とo output ready: P

Phase　3: from output ready to input ready: Cout+W

The value W, i.e., a waiting time, is the time that the node

spends to wait for the successor s input ready state.　　　The

behavior "waiting is caused by following synchronizations.

(Note that these synchronizations are mentioned only for the

process node primitive.　　In another case, some extensions are

needed.)

Synchronization 1 :

A node whose state is input ready changes its state to xnput,

if and only if its predecessor s state　土s output ready.

Synchronization　2:

A node who白e state is output ready changes its state to

output, if and only if its successor s state is input ready.

工n order to represent the time domain behavior. we label the

processing time on a node and the communication time on a

directed edge (See Fig. 3.3), because we can obtain those times

as static time factors.

Considering the dynamic time-domain behavior, the waiting

time must be included-　　　However, we cannot clarify it except

the restricted case [AE84a], since the waiting time is a dynamic

factor which is affected by other nodes (which are adjacent to

others).

-　49　-

Input Ready

Process

Fig. 3.2　　Node state transition.

-　50　-

Fig. 3.3　　Labeling on process node.

-　51　-

3.2　Applicable Sとructure and Descrxption

3.2.1 Representation of Graph Constructions

工n this section we present basic properties Of PFG which can

be denoted by the symbolic form [AE84a],　　In contrast to the

reduction rules　土n the def土n土tlon of PFG′　there exist the

construction rules. which are called l'sequential construct!onlI.

Hparallel construcと土onll and　‖selective construction‖J and which

perform precisely reverse operations to reduction rules.

These constructions are denoted by expressions with a substitu-

tion form as follows.　　To simplify the notation, a module is

denoted by a single symbol which is unique within a PFG as an

identif⊥er.

1。 Sequential Construction:

M:=a*b denotes the sequential construction of module IIM"

into module a followed by module b as shown in Fig. 3.4(a).

弘odule "M" is called a "sequential modulelI・

2. parallel constructxon,:

M:-a|b denotes the parall声I construction of module一一m" into

module "a一一and "b" connected by the forkパoln nodes as shown in

Fig. 3.4(b).　　　　Module "M" is called a　-parallel module".

3. selective construction:

M:=a+b denotes selective construction of module　--M" into

module "a" and "b" connected by the select/merge nodes as shown

in Fig. 3.4(c).　　Module "M" is called a "selective module''.

-　52　-

In the case of Fig. 3.5, the construction of the PFG begins

with module HA" at the highest level.　　Next we apply the above

constructions to obtain the scheme represented by Fxg. 3.5　as

follows:

A:=BォC

B:=D+E

D:-可G.

After the above substitutions of expressionsJ We Obta土n the

symbolic form

A-((F|G)+E)-C

which represents the given logical scheme.　　　Such an expres-

slon土s equivalent to PFGJ and is also another representation Of

the logical scheme.　　This is an important property because it

provides machine processable forms for a design support system.

The following section will show you that it is very usable for

the s土mulator implementation.

-　53　-

101

M:=a*b

サ

X

D

(a) Sequential consヒructiOn

＼
＼ M:=a|b

Parallel construction

、1

M:=a+b

(c) Selective constructxon

Fig. 3.4　　Three construction rules.

-　54　-

A A 轡

-

B
+

D
I

F G E

I

+

C

fv .

Fig. 3.5　Example of Parallel Flow Graph.

-　55　-

3.2.2　Behavior of　班odules

The message flow on the three kind岳　of modules at any le寸el

are specif土ed as foilows:

Sequentxal　拭odule

Fig. 3.6(a) essentially represents a sequence of two process

nodes, i.e., a sequential module where the input message is given

in turn.　　An input message flows into the node A and the node

B sequentially with some time delayed.　Fig. 3.6(b) shows the

time chart of Fig. 3.6(a).　In the condition that there are "no

wait" caused by the synchronization, the time delay is equal to

Cl+Pl+C2+P2+C3.　　In a general case, however, the waiting time

w must be included so that total time delay　土s represented as

foHows:

Total Time Delay　=　Cl+Pl+C2+P2+C3+W

That waiting time within a process node is caused by xts

successor who is not input ready when he is outpiユt ready.　Such

wa五七土ng time can be hardly clar土f土ed determinist土cally because it

is hard to clarify when the successor will be土nput ready while

its successorls status is affected by the successorls successor

recursively.　　Therefore, we can label the static time factor,

the processing time and the communication time, on node

primitives while we cannot label the delay time including the

waiting time on modules in general.

parallel　捜odule

-　56　-

Fig. 3.7 illustrates a parallel module which contams two

modules A and B represented by squaresl the ork node and the

join node.　　　An input message i is copied into two messages

with same identifier i at the fork node.　　　Two messages flow

along the path F-A-J and the path F-B-J, respectively, and at the

コ01n mode′ those are reduced into one.　　　As is easily

understood, the total delay time of an input message xn this

module is obtained as the maximum delay time of two paths.

Considering the　コ○土n nodels behavior,土t　土s needed that two

modules, A and B, must have the FIFO queue for the input/output,

in order to join two messages with same identifier.　　All node

primitIves. the sequential module and the parallel module have

essentially the FIFO queue.　　In the case of selective module,

more detailed descript土on　土s needed.

Note that, from now on, we use the rectangle or the square

for the representation Of modules in figures.

Selective　汎odule

Fig. 3.8　represents a selective、 module which contains two

modules A and B represented by squares, the select node andとhe

merge node.　　　The path of an input message i s flow, is

switched by the select node according to conditions of the

message s contents or the status of module A and B.

selective module indicates a non-deterministic behavior in the

medning-of that the direction of a message flow is not decidable.

Therefore, the total delay time of an input message in this

module should be obtained as the besヒ　case or the worst case.

Meanwhile, in order to keep FIFO manner, we must describe the

merge node's behavior in detail.　　In a selective module, xt

-　57　-

easily occurs that two consecutive message 1 and message i+1

arrive at a merge node in the reverse order, for the preceding

message can take more ・delay time than the、 following message

depending on the selected path.　　In order to avoid this case,

we assume that the merge node must select its input so that

message i+1 follows message i for any i (1≦i≦n).

-　58　-

-^蝣Time

廿
＼

-一

＼十1　　　㌔+2
- - -トう　　-:+ - l一朝　　トづ仁　　^>ト

CI PI C2　　　　　　CI pI

---ト→旨　　キ　　　　　ーt　^J≒==討　I　^-1

C2P2　%

."サProcessing Time

Communication Time

C2　　　P2　　　　　　　　C3

＼

Fig. 3.6　Sequential model and its time-domain behavior.

-　59　-

Fig. 3.7　　Behavior of parallel module.

-　60　1

A B

Fig. 3.8　　Behavior of selective module.

-　61　-

3.3　Sxmulator

3.3.1　Requir占ments for Simulator

Before going into the main argument of a simulator, we

mention the user environment of its usage and the requirements

for　土ts performance capability.

A. Environment

we assume that the user of this Simulaとor operates it

土nteractivelyJ because the perfo工:mance evaluat土on　土s required

whenever the logical scheme is changed.　　　For a simulator, we

define

Inputs: Workload′

Outputs: Performance, and

parameters主　software/Hardware Configuration.

A simulator is regarded as the subsystem of MMSIs design

support system.　　A total system configuration is not mentioned

土n detail because we concentrates on the performance evaluation

in this chapter.　　If we are foreed to mention MMS support

system configuration, it consists of two major system, the editor

and the simulator, which constructs and analyzes MMS model, using

an interactive graphic terminal.　　　or example, Fig. 3.9 illus-

trates the configuration of such interactive design system.

B. Requirements for Simulator

There are two major capabilities which are required for a

-　62　-

simulator.　　　These are as follows;

(1) Performance Measurement and

(2) Behavior　工nspect土on.

The outline will be discussed below.

Perf°rmance払easurement:

The first capability should be recognized as an extension to

cover the performance evaluation for the dynamic workload・

Any performance measure is derived from the time when a message

comes into a module and when it leaves the module.　　　The

s土mulator can obtain the total time delay at a module′　土・e・′

p+C+W, for any message.　　Therefore, any performance measure
ヽ

can be derived by the integration of them.　　The simulator can

explore the following:

(1) The performance evaluation of workload-sensitxve measures

such as the response time, the input queue length and so

onJ

(2) The performance evaluation of the interactive scheme.

(3) The performance evaluation under the condition that there

are hardware restriction between the logical communication

link and its realization.

Behavior lnspectxon:

In order to quickly inspect the logical scheme to fxnd

bottlenecks or other performance problems, such as detectxon of a

deadlock, it is needed for the simulator to visualize the message

-　63　-

flow on the scheme.　　　On the real-time simulation, the message

flow is visualized in the indefinite scaled time snapshots.

The ratio of the simulated time to the real-time is controlled by

a user.　　　o change that ratioI the user invokes a simulator

command and uses the keyboard to define the new ratio.　　　The

simulator can be terminated or interrupted at any time by calling

a menu tO the display.　　Otherwisel　土t terminates when there

are no pending messages on the scheme.　　　The inspection is

performed for a module at any level.

工f the logical scheme has a structured property, 1七　五s

defined as the Parallel Flow Graph (in short, PFG), and both the

performance measurement and the behavior inspection can be per-

formed at each module on each hierarchical level　【AE85b】.

Fig. 3.10 illustrates also such concept, in which the inspection

point or the measurement point is placed aとthe node of syntax

tree.　　For the performance measurement, the simulator provides

the result of measurement with the module designated by the

measurement point.　　For the behavior inspection, the simulator

visualizes the behavior of modules which are immediately sub-

ordinate to the module designated by the inspection point.

using this capability′　we can improve the performance for each

module.　　It is needed for a user to designate the module in

order to set up the inspection or measurement poxnt.

-　64　-

Editor Analyzer

S土mulator

Fig. 3.9　Example of total system configuration.

-　65　-

Fig. 3.10　H⊥erarch土cal measurement or inspection.

-　66　-

3.3.2　Sxmulator

To meet the above requir占ments, the following specification

of　ヒhe s⊥mulaヒor is adopted.

A. Specxfication °f Simulator

We specify the　土nput′　the parameters and the output of the

s土mulator.-　　　For the parameters, we integrate them to addi-

tional input of the simulator.　　Consequently, the input of the

s土mulator　土s as follows.

Input :

(1) Workload.

(2) Hardware/Software Configuration.

(a) Logical Scheme of PFG

Time Factors

(c) Hardware工nformatiOn

(d) Scheduling of Loop Node

(3) Simulator Control.

(a) Break Point

Scaled Time Ratio

(c) Measurement (or Inspection) Point

The output of the simulator is classified into two catego-

ries according to the simulation mode as follows.

Output:

Performance Measurement Mode:

(1) Input Interval and Output Interval of the designated module

-　67　-

for any message.

(2) The number of input and output messages of the designated

module at any time.

(3) Input Queue Length at any time.

(4) Response Txme of the designated module for any message.

Behavior　工nspect土on mode:

(1) Status of the subordinate modules from the inspection point

at any time.

(2) The message flow from the designated inspection point on

the scaled real-time.

B. Implementation of Simulator

In the input of simulator, the workload, the logical scheme,

the time factors and the designation of measurement (or

inspection) points are realized by "script which is coded like a

program format.　　Other inputs are realized by the simulator

inquiry.　　　We will explain the input and output of the

simulator brxefly in an Orderly manner.

Workload:

Sincetheworkloadisrepresentedbyan土nputsequence

(Ⅹ1'Ⅹ2′-′xj,wedescribeitas
knOHows:

%{　Tin(1),Tin(2),　,Tin(n-1) }% ,

where n is the number of inputs.　　　工f n=1′　the workload de-

scription ls

%{　}% .

-　68　-

The symbol "%{" and "}%　indicate the begin and the end of

character sequence. respectively.　　Tin(i) 1≦i≦n-1, which is a

non-negative integer,　represents the input interval between x^

and xj_+1 for PFG model.　　This description can be simplified if

consecu亡ive　土nput　土nterva1s take the same value.　　　or exampleJ

the workload, which has 5 input data and the input interval T for

all′ is described as follows:

%{　4(T) }% .

Logxcal Scheme of PFG:

To clarify the description, an example is given in Fig.

3.ll.　　　The example is described by the following symbolic

form.　　Note that this symbolic form does not permit more than

one construction for each line to provide the time factor des-

cription for control nodes such as fork, join, select, merge and

loop nodes.　　Thus, Ml=(El |E2匝3匝4)*4 is not acceptable in the

example,

@MAIN

MAIN=Ml -M2

Ml=A*4

M2=Bl +B2

A=EI E2　E3　E4

The symbo1蝣蝣ァ'' identifies the most abstract module MAIN.

Furthermore, we can simplify the notation for a number of

equivalent modulesJ l・e‥　those modules are copied from an

original module.　　　For example, if El=E2=E3=E4(-E), the

notation A=El|E2|E3IE4 is simplified to A=4 E.　In the same

-　69　-

wayJ Other cases are described as follows:

A=El-E2-E3-E4 is simplxfied to A=4-E and

A=El+E2+E3+E4　土s simplified to A=4+E.

The detailed syntax of the script is described in the

Appendix A.1.　　In　ヒhe implementat土on′　a sequential scheme is

represented as "M1-M2" instead of "Ml*M2" by reason that the

symbol 1リI is not acceptable in our machine.

Time Factors:

To simulate a PFG scheme, the processing time and communica-

tion time are provided for node primitives.　　工n the case of

the above example, they are described as follows:

process node El is described as

#El(C3.P3,C4),

where El is the identifier of the process node′　and C3, P3, and

C4　are the communication time for an input, the processing txme,

and the communication time for an output. respectively.

Fork/join nodes are described as

#A(C2,P2　P4.C5).

where A is the　土dentifier of the parallel module′　and C2, P2, P4,

and C5年re the communication time for an input of the fork node'

the processing time of the fork node, the processing time of the

コ0土n mode′ and the communication time for an output of the 〕〇五n

mode′ respectively.

-　70　-

Select/merge nodes are described as

#M2(C6,P6|P8,C9)

where M2 is the identifier of the selective module, and C6, P6,

P8′　and C9　are the communication time for an　土nput of the select

node, the proce云sing time of the select node, the processing time

of the merge node, andヒhe communication time for an output of

the merge node. respectively.

Loop node is described as

#Ml(Cl′Pl′C6)′

where MVis the identifier of the iterative module, and Cl′　Pl.

and C6　are the communication time for an input of the loop node,

the processing time of the loop node, and the communication time

for an outpuヒ　of the loop node. respectively.

工n the implementation′　those time factors are represented as

non-negative integers.

-　71　-

Ml

Fig. 3.11　Example of logical scheme including a loop・

-　72　-

Designation of the Inspection or　放easurement Point:

A user can designate an arbitrary module as the objective

module to be inspected or measured. ' Thus, the simulation

result is presented for the designated module.　　For example,

if the user intends to measure the module A in Fig. 3.ll, he can

designate A in the following manner:

observer　{ /MAIN/Ml/A　} .

工f he　土ntends to get the total performance. the description

is as follows:

observer　{ /MAIN I .

Therefore, module designation is performed by "path

expression" on the the module hierarchy of a logical scheme.

Other Inputs:

Inputs of hardware information/ scheduling of loop nodes,

the break point and the scaled time ratio are realized by inquiry

of the simulator.　　The simulator provide some questions to the

user o obtain the above　土nputs.　　　For the hardware

information, following items are considered.

(1) Capability Of Processor'

(2) Capability of Communication Link, and

(3) Interconnect!on Network Configurat与on・

(point-to-Point, Bus, etc.)

For the scheduling at a loop node, following two cases are

considered as a convenient and temporary method:

(1) No scheduling.

(2) Restricと　the message　土ncommg of the iteratIve module

according to the message outgoing.

-　73　-

Break points are class⊥fied　土nto two categ`ories which are

the "space" break point and the "time" break point.　　In the

space break polntJ　土f a user designates a process node and its

status, simulator breaks his behavior when the designated process

node becomes the specified status.　　In the time break point,

the user sets a logical time.　　　The simulator breaks his

behavior at the specified logical time.

The scaled time ratio has been implemented.　　　工n addition

to original capability, it is able to instruct "step by step

behavior.　　That means that logical clock is stopped until a

user　土nvokes a simulator command.

Outputs:

The outputs have been already realized except the behavxor

inspection.　　At the present stage, the graphical display is

not realized owing to the hardware environment.　　Instead of

the graphical display, as a very simple and handy method, we have

realized "status snap in which the events caused by a message

flow are reported as statements.

Fig. 3.12 illustrates the simulator configuration.　　As is

mentioned above, Script includes the description of the workload,

the time factors and the measurement (or inspection) point.

The simulator can work even on a small UNIX machine (Radio

Shack TRS-80　Model 16　with XENIXiiyi), where about maximum　600

primitive nodes can be realized.　　About　50,000　primitive nodes

can be realized on VAX ll/750.

-　74　-

.
u
o
T
一
h
x
t
i
B
t
叫
U
O
O

J
.
O
一
B
i
n
u
i
T
S
　
3
L
*
」
'
b
i
d

.1.iMl

(
u
o
T
q
^
;
r
s
c
i
o

e
A
T
q
o
-
D
J
s
q
i
】
T

〓
闇
朋

Q)

rl

-H

h

>1
h

0
.i)
en

・H
SG

く　　　>

S
T
T
d

J
〇
一
T
U
O
W

h
lJ

d
H O
O rH
Q. -H

チ
I
(
T
O
J
一
u
o
o
)

く

-　75　-

〓
e
T
T
>
a
:
一
n
d
一
n
O

二
　
i

s
l
i
d

T
e
p
o
w

二-≡
ゥ
I
T
a
一
d
T
:
r
-
S

3.4　Case Studies

To demonstrate thd use of simulator, we provide an example

of the script in the following.　　　The section enclosed in the

marks　‖/*‖ and '-辛/''declares a comment in which any description

is ignored.　　In this example, the horizontal broken lines with

PFG s names (Thus, these are comments.) are added to indicate the

degree of PFG construction.　　PFG construction starts with a

PFG Gq which consists of one process node.　　G-j is constructed

from Gq by applying the sequential construction: MAIN=A-B-C-D.

工n the same manner′　G2-　　are OnStrucとed　土n order.

Therefore, those have the relation such that Gq G-j G2 G3　G4 G5.

Since this script represents the PFG Gg about the

description of the logical scheme and time factorsl in the case

of G^ evaluation(0まi王4), the description between the broken line

with Gg and one with Gj_ must be omitted.　　工n this case′　the

workload is described as　50 inputs which hav占　the same input

interval　75　respectively.　　　The simulation result of thxs

example is shown in Fig. 3.13.　　　Fig. 3.13 illustrates the

response time improvement associated with 60,0-1,62,63,04 and G5.

The simulator is still been developing for the case of

general logical scheme.

An Example of Script:

@MAIN

/* Gf

#MAIN(50,2000′2)

-　*/

MAIN=A-B-C-D　　#A(50,1000,30) #B(30,800.20)

-　76　-

/* Gl

/* G2

/* G3

A=(5-I)-G

B=(2-F)-E

F=5　J

C=10+N

l=10　M

G=4+S

E=X-Y-Z

J=P-Q-R

/* G4

/* G5

#C(20′300′20)

#1(50,200′50)

が甘(30,400.30)

#F(30,5[5,30)

#C(20,20|5,20)

#1(50,10　5,50)

#G(50,ノ2日,50)

#X(30,10.30)

#Z(30,10,30)

#0(20,40,20)

Y=4 W　　　　　#・(30,10)5,30)

D-2十o　　　　　#D(20′412,2)

/*　workload　*/

%{　49(75) }%

/*　Measurement Point */

observer　{ /MAIN　}

#D(20,60,2)

#G(50.50,50)

#E(30.100,20)

紺(10.100′10)

#N(20,300,20)

#M(5,30,5)

#S(50,50′50)

#Y(30.80.30)

#p(10.40′20)

#R(10,30,10)

#W(8.20′8)

#0(20,60,2)

*/

*/

*/

*/

*/

End of Script

-　77　-

Response

Txme

unit times

25000

100　　　　　　150　　　　　　200

The Number of Primitive Nodes

Fig. 3.13　Example of simulation results.

-　78　-

Furthermore, we demonstrate the simulation results of　2-

dimensional bit-pattern matching presented in subsection　2.5.2.

The　コOb can be divided into parallel pa吏-t and pipelin占d part,

sequentially′　where the sum of the parallel processors and the

pipelined processors is fixed to　29.　　　The simulation input

data is based on the execution time derived from the individual

part measurements of the realized program (as shown in Table 2.5

Fig. 3.14　shows the simulation results comparing with the

experimental results, and Table 3.1 shows the detailed results.

The simulation consuming time for the experiment is about　70

seconds per one plotted point where Radio Shack TRS-80　model 16B

is used, and about　25　seconds per one plotted point where DEC

VAX-ll/750 is used.　　The script of the simulation is described

as follows.

Script of　2-Dimensional Bit-Pattern Matching:

Sn=$1　　　　　/* the number of GA */

Sm=29-Sn　　　/* the number of REC */

!*　scheme */

@main

main=ga-rec

ga=(Sn)+gasub

rec=bankl - (Sm) -recsub-bank2-mast2

/* Time factor */

Sport A =　2114

-　79　-

SbusJL　=　297

Sbus⊥B　=　72

Smastl　　= 1

Smasと2　= 1

Sga_p　　=　48885

的a(Sport A.Smastl I Smast2,bus」∋)

#gabus(Sbus A,Sga_p,Sbus B)

SportBi　=　513

SbusB　　=　72

SportB2　=　320

SbusC　　=　9

SportC　=　64

Sa=5910*14!Sm+300

#bankl (SbusB.1 ,Spo二七B2)

#recsub(SportB2,Sa,SportB2)

#bank2(SportB2.1 ′SbusC)

#mast2(SbusC.1 ′SportC)

/*　工nput sequence　*/

%{ 102(0) }%

/*　Measurement point　*/

observer　{ /main I

End of Script

-　80　-

Execution Time (sec)

12　　　　16　　　　20　　　　24　　　　28　GA

28 . 25　　　　21　　　17　　　13　　　　　　　　　　　　　　　1　REC

Number of Processors

Fig. 3.14　Simulation results compared with experimental results,

- Two-dxmensional bit-pattern matching. -

-　81　-

Table　3.1　Simulation results of

2-d土raensional bit-pattern matching.

Number

Of GA

Number

Of REC

S⊥mulat土On Results (sec)

Total
'int res

1 28 51.76 0.4879 26.639

2 27 26.63 0.2419 13.971

3 26 18.25 0.1601 9.758

4 25 13.90 0.1212 7.661

5 24 ll.43 0.0970 6.411

6 23 9.86 0.0789 5.584

17 22 8.57 0.0685 5.002

8 21 7.68 0.0597 4.572

9 20 7.04 0.0538 4.245

10 19 6.86 0.0513 4.163

ll 18 7.10 0.0529 4.281

12 17 7.37 0.0546 4.413

13 16 7.68 0.0566 4.562

14 15 8.02 0 .0589 4 .731

1、5 14 8.41 0.0615 4.926

16 13 8 .88 0-0646 5.151

17 12 9.41 0.0681 5 .416

18 ll 10.04 0.0723 5.729

19 10 10 .81 0.0774 6 .107

20 9 ll .74 0.0836 6 .569

21 8 12 .90 0.0914 7 .149

22 7 14.40 0.1014 7 .897

23 6 16.41 0.1149 8.895

24 5 19.21 0.1337 10.296

25 4 23.43 0.1620 12 .399

26 3 30.45 0.2092 15.91.0

27 2 44.51 0.3038 22.936

28 1 86.71 0.5876 44.029

-　82　-

3.5　Summary

This chapter has mainly demonst工-ated the simulator a岳　an

MMS s design support tool which can estimate the systems perform-

ance.　　　Performance of MMS s was evaluated by two measures,

i.e., response time and interval time, from which throughput,

parallelism etc. can be derived.　　　We can f上nd that it was

sufficient to evaluate the restricted processing scheme con-

structed by pipelined and/or parall甲1. processing in MMS s.

Moreover, the simulation experiments compared with the multi-

processor execution indicated that the simulator is high-speed

and is suitable to the systems.

The simulator can accept the restricted scheme, i.e,

extended series-parallel flow because of the restriction of its

translator.　　　The interpreter, however, is possible to apply an

arbitrary scheme.　　Therefore, the simulator can accept another

scheme by exchange of the translator for another one.　　　For

example, we have implemented a new translator for　2-demensional

array simulation.　　　Appendix A.2　demonstrates a syntax of

script for　2-dimensional array scheme.

-　83　-

Chapter　4

Interconnection Network Based on

Three-Dxmensional Integrated Cxrcuxts

A realization of MMS s based on PMS level architectures is

presented in this chapter.　　　The most crucial issue of PMS

architecture realizations is the Switch, that is, interconnection

between processors o工　between processors and memory modules.

Though researchers have proposed various techniques, there are

few proposals suitable for realization of MMS s with many

processing elements.　　In this chapter, we propose a common

memory with very low access conflicts, based on a new device

technology, that is, 3-dimensional integrated circuits [AE85aj.

Moreover, an interconnection network, incorporating the common

memory as its elements is presented for a realization of MMSIs・

,・>

Though the crossbar is the best known scheme for connecting

n processors to n memory modules (or processors), its cost,

i.e., 0(n) becomes too expensive for a large number of n.

Therefore, a lot of modifications have been discussed, one kind

of which is the multistag声netwOrk with the cost of O(n log n).

Though the multistage network is also a good scheme because of

the full access property [SULLIVAN77], the bandwidth (or the

throughput) is not so high as the crossbar switch.　　In order

to lmprOve this, Dias et al. 【D工AS81】 have proposed the buffered

delta network, which performance may beeome comparable to that of

the crossbar switch as to the bandwidth.　　　The buffered delta

network, however, suffers from additional delay arising from a

-　84　-

number of buffering besides to the delay of 0(1og n) which exists

originally in the multistage network.

4.1　Overview

A typical multiprocessor configuration is shown as in Fig.

4.1, which represents the memory modules expl土C土tly.　　　工n this

configuration the crossbar switch is the best scheme

disregarding the cost of-O(n^), where n is the number of ports.

Therefore, it has been actually used for cases of relatively

small n (e.g., n=16　at C.mmp [WULF81]).　　　For the massive

multiprocessor case (e.g., n=10　), however, its cost is

considered too expensive to be realized.

In order to decrease the network cost, the packet switching

interconnection network with multistages (shown as in Fig. 4.2)

is becoming popular [FENG72], because it has the reasonable cost,

i.e., 0(n log n) and the full access property [SULLIVAN77] that

all ports can access dist土net destinations simultaneously.

In this case the memory does not appear explicitly and the packet

flows unid土rectionally.

The bandwidth (or the throughput) of the multistage

networkJ howeverJ Is lower than the crossbar switch, andl tO

improve this, Dias et al. [DIAS81] have proposed the buffered

multistage interconnection network (actually, the buffered delta

network) which performance may beeome comparable to that of the

crossbar switch as to the bandwidth.　　　The buffered delta

network, however, includes the delay increasing with the buffer

size besides to the delay of O(log n) which is essential in the

-　85　-

multistage network.

In thxs chapter, we discuss an alternative way of improving

the throughput, where the common memory or the multiport memory (

we often refer to it as n-port memory) plays an important role.

The multiport memory is, in a sense, logically equivalent to the

memory with the crossbar switch.　　　An n-port memory is shown

as in Fig. 4.3.　　　Suppose that the size of memory is large

enough to divide the area into sub-areas used for processor-to-

processor communication as in Fig. 4.4, where a^　and Pj_　mean the

address and the processor′　respectively.

The features of the idealized n-port memory are listed as

follows;

(i)　random access is allowed′　and

(ii) reader and writer processes can be executed concurrently,

because they can read and write all addresses

simultaneously except that the same address cannot be

accessed at a same time by multiple writer processes.

Obviously, the idealized n-port memory is also expensive, rather

more than the crossbar switch with the memory.　　　Therefore, we

introduce the way of reducing the complexity with the multistage

structure, where the module on each stage has a restricted size (

e.g., 2x2-port memory).　　　Moreover, such a module is assumed

to be realizable by the three-dimensional VLSI technology

[AE84b]【AE85c].　　　We call this network the COMBINET (COmmon一

光emory-Based lnterconnection NETwork).

-　86　-

The features of COMBINET are summarized as,

(1) the throughput is essentially the same as the buffered

hultistage network.

(2) the delay of each stage is kept constant for any buffer

size as long as possible to improve the throughput, and

(3) the multiple channels on a pathaAd the broadcast arealso

easily realizable.

Features (2) and (3) come-from the property of the common memory,

which is assumed to be realizable by the multi-layered　3-D VLSI

technology.

-　87　-

Processors
Memory
Modules

Fig. 4.1　Typical multiprocessor configuration.

-　88　-

Fig. 4.2　　Typical multistage network.

-　89　-

to processor 1

to processor　2

to processor n

Fig. 4.3　　N-port memory.

-　90　-

W ri te

R ead
Pl Pi P n

Ad dre ss a 0 a . - li-1 - ln -l ln

P 1

I
I
-

Pj

I
I
I

㌔

Pn
＼

I ＼

C ommu m c aticon area

from P^ to P-i

Fig-　4.4　Memory area divided into each processor-to-processor

commun土cat土on.

-　91　-

4. 2　Three-Dxmensxonal Con皿on Memory

About th白　multlport memory, Chang [CHANG80] has proposed -a

multiple-read, single-write memory which can be realized with the

conventional (i.e.,　two-dimensional) LSI/VLSI technology.

Recent semiconductor technologies make it possible to realize the

three-dimensional integrated circuit 【KAWAMURA83] [KAWAMURA84】,

which is expected to be extensible to the large-scale or even to

the very-large-scale.　　　When assuming the three-dimensional

VLSI (in short, 3-D VLSI) technology, the multiple-write as

well as the multiple-read can be realized easily [AE84]

Note that, even in this type of memory, only multiple-write in

the same address at a time must be avoided.

In this chapter, however, we focus the communication

between processors by the message passing (like the programming

in Ada�"[DOD80], Occam�"【=NMOS84] etc.), instead of the

variable sharing communication.　　　For this case the conflict

of multiple-write at the same address access is ignored, because

Pj_ (i=1,"',n) in Fig. 4.4　can read the whole area but can

write only the area from a^-^ to a^.

In this section, we describe how to design, a multiport

memory with such multiple accesses using the idealized　3-D VLSI

technology.　　　Suppose that the fundamental part (hereafter,

we call it the memory cell) of the memory consists of NMOS SRAM

(N-type Metal-Oxide-Semiconductor Static-Random-Access-Memory).

Our proposal of the memory cell is shown in Fig. 4.5, where Q-|,

Q2^　Q^r Q4/ Rl/ and R2　construct a memory cell in the

conventional NMOS SRAM, and Ql, Q2, R-|, and R2 work as a flxp-

flop for holding the single bit data.　　　Though Q3 and Q4 are

-　92　-

used for both read and write of data in the conventional memory

cell, they work only for data-read, and Q7 and Qg are provided

especially for data⊥write.

The total configuration of a three-dimensional common

memory is shown in Fig. 4.6, where each layer works as its own

memory and the value of the same address is always identified

through all layers.

The interconnection among memory cells at vertical axis is

shown in Fig. 4.7.　　　When the write-access for the memory cell

at address j of i-th layer occurs, the cell is accessed through

Qg and Q7, or, Q5 and Qg for data-write.　　At the same time

the cell at address j of all layers receives the same data

through Qy and B-j, or, Q8 and B2.　　At other cells, Q5 or Qg

writes the data received from B2 0r B1-

B-, and Bo work as buses through all layers when a data is

written at a layer.　　The behavior of B.|　and B2 is represented

as in Table　4.1.

Table 4.1 Behavior of B-| and B2<

B1 B2 Behavior

0 0 Nothxng .

0 1 W rite ‖0-I.

1 0 W rite "1一㌧

1 1 Conflict.

The conflict occurs only when the different values are written

into the same address at multiple layers (e.g., "0 at p-th

-　93　-

layer and H1" at q-th layer, where pもq)・　　　　The problem of

conflict′　however, is not discussed here because of the reason

described above.

Obvlously, the number of layers corresponds to the number

of ports.　　　Even if we assume the multi-layered　3-D VLSI

memory, the number of layers should be expected rather small (

e.g., less than ten).　　　For convenience, we assume that the

number of layers is four (′which ls-known to be already

realizable experimentally).　　　　Hereafter we restrict our

attention to the four-layered　3-D VLSI memory, i.e., the four-

port (or　2x2-port) memory.

-　94　-

Bォ　　　　　　　　　　　　　B.

Q7甲 甲
I Q8

T

Q3

Q

∀DD

Qi

6

1

Ri R-

"Qi

I
GND

D D

D : Data

RD: Read

WR: Wrxte

w　=　word Selection

F土g. 4・　Example of memory cell.

-　95　-

see Fig.4.7

Fig. 4.6　　Three-dimensional common memory.

-　96　-

B-　　　　　　　B<

layer i-1

layer 1

layer i+1

Fig. 4.7　Interconnection among memory cells at vertical axis.

-　97　-

4. 3　Common一光emory-Based lnterconnection Network

The CO鵬INET is obtained from the idealized n-port memory

as the multistage network is derived from the crossbar switch.

Therefore, the topology of COMBINET is the same as the multistage

network.　　　　Though many possible configurations may exist for

COMBINET, we restrict our attention to the type of multistage

configuration consisting of the　2x2-port memory modules (four-

layered 3-D VLSI realizable, and topologically, the same as the

2x2-switching-element ne亡works) due to the reason descr土bed　土n

the previous section.

A　2x2　dual interconnecting modular network device

-Dimond- is shown in Fig. 4.8, quoting from 【JANSEN80].　　　On

the other hand, the module of COMBINET is shown in Fig. 4.9　which

is based on a 2x2-port memory.　　　　omparing this module with

the D土mond.

(1) the 2x2-port memory block is very large.　　It occupies

almost the total size of the module, and

(2) the transfer bユock playsー　a role of data-transfer

processorl together with the write block connected to lt・

The　2x2-port memory has logically four circular queues on the

memory space.　　　Each queue has two pointersl i.e., One is a

pointer to read a data froin the queue, and the other is tO write

in (see Fig. 4.10).　　　The transfer block of module 1 and the

write block of module j are connected as shown in Fig. 4.ll.

The transfer block of module i reads the data from its own

address which the read pointer indicatesl and send it to the

-　98　-

write block of module j connected to module i.　　　　This

operation repeats until the packet ends.　　　　Each packet

includes the routing　土nformatlon, i.e., path code or dest土nat土on

address, and the packet length.　　　　The write block of module j

begins to write the data from module 1 into the　2x2-port memory

of module j just after it receives a data (e.g., 32　parallel

bits).　　　　Note that the transfer block and the write block

work togetherコust as a data-transfer processorl and that this

operation of two blocks is pipelined only with the delay of

transfer time as shown in Fig. 4.12.　　　The transfer time is

constant or the direct data-transfer and is included wxthxn the

time required to transfer a packet through the module (t_pass

【D工AS81]).

In this chapter the case of the direct data-transfer is

only discussed.　　　However, the function f may be added through

transfer as shown in Fig. 4.13.　　　　Since f may increase the

transfer time, only simple functions are allowed.　　　(The

transfer time should be uniform even if f is not unique On each

module.)

Each module has four-way connections for two inputs and two

outputs as shownin Fig. 4.14.　　　Note that 1-3 and 2-3 (or 1-

4　and 2-4) transfers can be done in parallel as well as 1-3 and

2-4, or 1-4　and　2-3, where the number corresponds to the port.

This comes from the fact that the　2x2-port memory has　弓eparated

queue buffers for each transfer.　　　Read土ng・ operation, however′

is done sequentially for the buffer including more than one

packet sequence.　　　The similar situation occurs for multiple

broadcasting.　　　When the data is broadcasted, e.g., from port

l′　both the buffer of 1-3 and that of 1-4 include the same data.

-　99　-

Note that these broadcasted transfers are done in parallel with

another broadcasting (2-3　and　2-4) and that the sequential

reading is required also for this case.

The COMB工NET may have all configurations already realized

in the multistage network consisting of　2x2-port modules.

Since multiple transfers between ports in the module can be done

in parallel, the blocking (i.e., the conflict in the communica-

tion link) does not occur.　　　　An　8x8　shuffle-exchange COMBINET

is shown in F土　　4.15, where the line with a dot shows the

connected transfer block with the write block.

The memory size of the module is estimated as shown in

Table　4.2, comparing it with the case of the conventional SRAM.

The estimation is done by figuring the three-dimensional mask

pattern of the memory cell.　　　The buffer size of each queue (

e.gサ, 85K bits) is long enough to improve the throughput.

Table　4.2　Estimated capacity of a　3-D VLSI RAM.

2-D SRAM 2x2 3-D VLSI RAM

bit′chip b五七′chip bit′queue

64K 21K 5.3K

256K 85K 21K

1024K 340K 85K

- 100　-

C⊃　　C)
(0 iH
m　　<u
C H

・■

「1　I・」

(0 r-i

LH V

C h
・rl

Fig. 4.8　A 2x2 dual interconnecting modular network device

"Diraond" for packet switching [JANSEN80],

- 101　-

I・■
iH iH　(I)

.ゴ　ロ1　　+J
O CD
(0 U　　　ロ

write
blOCk 1

N
fN (N cO

M　*J J,)
O Q>

(fl VI T3

write
block 2

pOrt 1 port 2

2x2ーPort Memory

pOrt 3 0rt 4

transfer

blOCk 1

rり　M m
^　cr
U　<D

rcj u
rc

t ra ns fer
b 10 Ck 2

KJ^KJ^^^Eu
x a>
U (U U
fO U

て)

Fig, 4.9　A 2x2 dual interconnecting modular network device

based on a　2x2-port memory.

- 102　-

W r i t e

R e a d

w r i t e w r i te

W r i t e p o

b lo ck 1 b 1 0 C k 2
(p O r t 1) (p O r t 2)

t r a n s f e r
b 1 0 C k 1
(p o r t 3)

b u f f e r -j3

t r a n s f e r
b 1 0 C k 2
(p o r t 4)

b u f f e r -i * b u f f e r ^ A

(a) Memory space.

Available data

(b) A circular queue.

Fig. 4.10　Circular queues on a　2x2-port memory.

- 103　-

module i

Fig. 4.11　Connecting two modules.

- 104　-

Fig・ 4=12　Pipelined time chart of transfer between modules.

- 105　-

Fig. 4.13　Function f added through transfer between modules.

- 106　-

2x2-Port Memory

input

port 1

output

port　3

Fig. 4.14　Four-way of connections for

two　土nput and two output ports.

- 107　-

Fig. 4.15　An　8x8　shuffle-exchange COMBINET.

(A dot represents a connected transfer

block with a write block.)

- 108　-

4. 4　Performance Evaluatxon

Though the　2x2-port memory module has four queues described

in the previous section, it is modeled by two queues and an

idealized　2x2-crossbar switch for a performance analysis in this

section.　　　　We assume that each queue connects the xnput port

of the　2x2-crossbar switch to the output port of the preceding

stage, i.e., -it plays a role of a buffer between stages.

This case has been analyzed by Dias et al. 【DIAS81].　　　　The

environment of the networks and their operation are assumed

mainly as follows:

(1) The performance of the networks is compared in an

environment of maximum loading, i.e., there xs a buffer at

network input links which is filled by an　土nput packet

whenever it is emptied by the network.　　　It is assumed

that buffers at network output links are emptied

土nsとantaneously.

(2) All input packets are assumed to be independently and

equiprobably directed to each network output link.

(3) The delay at a　2x2　switch module is modeled as consisting

of two time intervals: time t select for selecting a

switch output link and time t_pass for passing the data to

the selected output link 【DエAS81 】.

For the case of　2x2-port memory module. we may assume that

t_pass=O because of the circular queues.　　　The transfer block

of a raodule can transfer data of a packet from the queue

instantaneouslyJ when the transferring direction of the packet is

- 109　-

recognized by the module and the buffer of the following stage is

available.　　　　Moreover, the write block of a module can put

data of a packet into the queue instantaneously, when thと

transfer block of the module begins to get data from the queue

which is completely occupied by data.

One of the results of the analysis, i.e., the normalized

throughput versus the number of stages, is shown in Fig. 4.16.

The throughput of a network for a particular environment is the

average number of packets put out　土n unit t土me′　and the

normalized throughput is the ratio of the throughput to the

maximum throughput.

- 110　-

COMBINET　- infinite buffers

一
n
d
u
B
n
o
a
i
j
一
p
a
z
T
x
^
u
i
a
o
u

8　　　　　　　　6　　　　　　　　4

°

0

　

　

　

　

　

　

　

0

　

　

　

　

　

　

　

0

11

number of stages

Fig. 4.16　Normalized throughput versus number of stages

[D工AS81].

- 111　-

4.5　Su皿mary

In this chapte土　we propo岳ed the COMBINET as a new multi-

processor interconnection network, and discussed its realization

using the　3D-VLSI technology.

The features of COMBINET are summarized as follows:

(1) the throughput beeomes similar to that of the mult土stage

network with infinite buffers, because the module, i.e.,

the　2x2-port memory works as a buffered　2x2-crossbar,

where the buffer length is long enough, and

(2) the delay is constant for each stage, not depending on the

buffer length, because the transfer between modules is

pipelined.

The operation for data between modules in the COMBINET can

be　土nserted′　although this feature is not discussed in the

chapter.　　　This may bring varieties of functions into the

massive multiprocessor architectures with the COMBINET.

The COMBINET stated here is only a prototype, i.e.

constructed by the　2x2-port memory modules.　　　For a large

number of n, e.g., 512, the number of modules becomes　256x9.

This number, however, is reduced to　64x3, if the module is an

8x8-port memory, although it requires the 16-layered　3-D VLSI

technology-　　　　More configurations of COMBINET wxll be derived

from many researches of the multistage networks (e.g.

[SIEGEL81a] [SIEGEL81b] [CHEN81] [BARNES81]).　　　　Moreover,

- 112　-

other configurations than the multistage network are also

realizable (e.g., the processor array [AE85c]).

- 113　-

Chapter　5

Conclusions

5.1 Conclusions of the Dxssertatxon

We have presented fundamental issues for hardware design of

HMS-s aimed at increasing their performance.　　The objective

systems are assumed to b阜designed as dedxcated processors for

the purpose of highly parallel processing.　　　Moreover, the

systems are required to apply a wide variety of problem.　　　The

first assumption reasonably comes from needs for supercomputing

architecture realization; however, the second assumption mainly

comes from fabrication costs.　　In reality, significant reduc-

土ion of the cost in recent computer systems is due to the mass

production of the same chips.　　Therefore, the cost of systems

土s closely related to the number of their productiOn′ i.e., a

variety of their applications.　　The cost, however, has not

explicitly presented　土n this dissertation because　土t is difficult

to precisely predict the costs.　　　We have　土mplicitIy referred

to the system costs which can be reduced by wide applicat五〇ns of

the systems and the construction using a number of homogeneous

processing elements.

First, we have discussed about multiprocessor approaches

toward MMS's.　　　Through the design of the realistic multi-

processor system and several experiments using the system' we

have pointed out the crucial issues at the design and realization

- 114　-

of MMS s.　　　We have focused on two issues of them: performance

prediction and evaluation of the MMS s, and interconnect!on

betwe由l the processing elements for a realization of" MMS'sこ

The first issue have been solved by simulation method.

Our trial began with modeling a processing elements by a node

which had only simple state transition with two types of control

functions.　　　The performance prediction and evaluatxon is

obtained by the simulator based on the model.　　　Owing to the

model simplicity, the simulator realized on a UNIX system has

suff土C土ent s土mulat土on capability for the number of processors in

MMSIs.　　The performance measurements proposed in Chapter　2,

i.e., interval time and response time, for designated MMS s can

be interactively obtained with various information about the

execution time.

For the second issue, we have proposed　土nterconnect五〇n

networks containing several switch elements using the common

memory that is based on the　3-dimensional VLSI technology.

The switch elements can select a processor communication path

with data buffering.　　Since the common memory in the elements

can be accessed without conflict, the土nterconnect五〇n networks

will connect processors in MMSIs at high throughput.

- 115　-

5.2　Future Problems

The following future problems are left unsolved in our

investigation, when we realize such Massive MultiprOcessOr

Systems.

(1)Improvement of the performance evaluation system

The simplicity of the model proposed here decreases the

simulation time in the.performance evaluation of MMS s,

Howeverl S土nce　⊥t allows′　description　土naccuracy of processor

behavior. the model could not apply to detail analysis and

verification of MMS's with complex behavior elements.　　It is

expected to　土mprove the model and the simulation system under

consideration of a trade-off between model granularity and

simulator consuming time.

(2) Switch element of the interconnect土on network

The switch element with 3-dimensional common memory has only

simple data transfer function.　　In order to applied it to a

variety of network topology, the switch element should be

extended to a flexible and high performance communication

element′　1.eり　the commumcatiOn一〇riented processor.

(3) Fault-tolerance

with the increase in processing elements of MMSI the

probability of existing faulty units in the system goes up

increasingly.　　　Since it is always difficult to expect a

complete system that includes no faulty unit, MMS's need to equip

fault-tolerant capability in levels of hardware and software.

- 116　-

In particular, since an interconnection network in MMS's become

considerably complex, its faulty should be inspected dynamically

or statically 【AE85c].

(4) Software utilities (operating systems,　description

languages, etc.)

MMS s require system software which helps application

programs efficiently utilize hardware resources. e.g., processing

elements′　and description languages for easy representation of

highly parallel processing.

(5) Three-dimensional VLSI technology

It is required for realization of the low conflict common

memory to improve and establish the　3-dimensional VLSI

technology.

- 117　-

Acknowl edgments

工would like to thank many who contributed to the develop-

raent of the ideas and the systems in this dissertation, and its

successful completion.

I am especially grateful to my supervisor, Professor Tadashi

Ae of Hiroshima University.　　He supported me ln all aspects of

the study; he nurtured the research leading to the dissertation

by a combination of encouragement, criticism, and guidance.

I am also indebted to Associate Professor Masafumi Yamashita

of Hiroshima University for his careful and critical reading of

the preliminary version of this d土ssertation・　　工　wish to thank

professors Noriyoshi Yoshida, Tadao Ichikawa, and Kenji Onaga of

Hiroshima University, who are members of my dissertation commit-

tee, for their critical comments and valuable suggestions, and to

thank all professors of Graduate Course of Systems Engineering of

Hiroshima University for their guidance.

Thanks are also due to many of my former and present col-

leagues in Computer Systems Laboratory of Hiroshima Universxty

for their helpful discussions and cooperations in this research.

Messrs. Masaru Iida, Takayuki Okada, and Shigeru Morifuku as-

sisted me in developing the UNIP system software and the applica-

tion programs.　　Their help considerably contributed toward the

experiments of U.NIP.　　Mr. Hiroshi Matsumoto realized the high-

speed simulator on the UNIX operating system.　　I am grateful

to Mr. Minoru Etoh for his helpful discussions about the per-

formance evaluation and his cooperation for the simulator li-

plementatiOn・

- if園　ニ

References

【AE82]

T.Ae and R.Aibara,　Experimentation and Analysis of Multi-

processor Systems,　Proc. IEEE Real-Time Systems Symposium,

pp.69-80, Dec. 1982.

【AE84a】

T.Ae, R.Aibara, and M.Etoh, IDesign and Realization of Many

Processor System using Parallel Flow Graph,　Proc. IEEE

Workshop on Language for Automation, pp.7-12, Nov. 1 984.

【AE84b]

T.Ae and R.Aibara,　An Optically-connected Common Memory for

Multiprocessor System,　Proc. 28th National　比eeting of

Information Processing Society of Japan, 3C-7, 1984, in

Japanese,

【AE85a]

T.Ae and R.Aibara, "A Realization of Parallel Processing

System Based on Tree-Dimensional Integrated Circuits,

Trans. IPS Japan, vol.26, no.6, pp.1145-1148, Nov. 1985, in

Japanese.

【AE85b】

T.Ae, R.Aibara, M.Etoh, and H.MatsumotoJ　‖A Massive Multi-

processor Siraulator for Performance Evaluation," plrSt

エnternatxonal Conference　°n Supercomputing Systems. pp.73-

82′　Dec. 1985.

【AE85C]

T.Ae,

of Tree Networks,　Proc. China 1985 International Conf.

Cxrcuits and Systems, pp.220-223, Jun. 1985.

【A工BARA85]

R.Aibara and T.Ae, "An Implementation of Sort/search Engine

- 119　-

on a Multimicroprocessorl" Trans. IPS Japan′　Vo1.26, no・2,

pp.349-355, Mar. 1985, xn Japanese.

[Å工BARA86 】

R.Aibara, M.Etoh, H.Matsumotol and T.Ae, IIA Many Processor

Simulator for Performance Evaluation,　Trans. IPS Japan,

vol.27, no.2, Feb. 1986, to appear.

[BARNES81 1

G.H.Barnes and S.F.Lundstrom, "Design and Validation of a

Connection Network for Many-Processor Multiprocessor

SystemsJ IEEE ComputerJ VO1.14, no・12J pp.31-41, Dec. 1981.

[BEETEM85]

J.Beetem, M.Dennean, and D.Weingarten,　The GFll Super-

computer," Proc. 1 2th International Symposium on Computer

Archxtecture′　pp.108-115′ Jun. 1985.

[BELL71]

CG.Bell and A.Newell, Computer Structures: Readings and

Exa皿pies. McGraw-Hill, New York. 1971.

[CHANG80]

S.S.L.Chang,　Multiple-Read Single-Write Memory and Its

Applications,l IEEE Trans. Comput., vol.C-29, no.3, pp.689-

694, Mar. 1980.

[CHEN81]

P-Y.Chen, D.H.Lawrie, D.A.Padua, and P-C.Yew, Interconnec-

tion Networks Using Shuffles, IEEE Computer, vol.14, no.12,

pp.55-64′　Dec. 1981

【CHOU821

T.C.K.Chou and J.A.Abraham, "Load Balancing in Distributed

systems,H IEEE Trans. Software Eng., vol.SE-8, no.4, pp.401-

412′ Jul. 1982.

[CHRIST84]

N.H.Christ and A.E.Terrano, "A Very Fast Parallel Proces-

- 120　-

sor, IEEE Trans. Comput., vol.C-33, no.4, pp.344-350, Apr.

1984.

[D工AS81J

D.M.Dias and J.R.Jump,　Analysis and Simulation of Buffered

Delta Networks,　IEEE Trans.　Comput., vol.C-30,　no.4,

pp.273-282, Apr. 1981.

【DOD80】

DoD; Reference　地anual for ADA Programming Language. United

States Deparヒmenヒ　of Defence, Jul. 1980.

【DUBO工S84

M.Dubois and F.A.Briggsl "performance of Synchronized Iter-

active Processes in Multiprocessor Systems/ IEEE Trans.

Software Eng., vol.SE-8, no.4, pp.419-431, Jul. 1984.

[ENSLOW74]

P.H.Enslow.Jr.,班uniprocessors and Parallel Processing,

John Wiley &　Sons,工nc.∫ 1974.

[FENG72]

T-y.Feng, "A Survey on Interconnection Networks,ll IEEE

Computer, vol.14, no.12, pp.12-27 Dec. 1981

[FLYNN72]

M.J.Flynn, "Some Computer Organizations and There Effective-

ness," IEEE Trans. Comput., vol.C-21, no.9, pp.948-960,

1972。

I GAJISKI82]

D.D.Gajiski, D.A.Padua, D.J.Kuck, and R.H.Kuhn, "A Second

Opinion on Data Flow Machines and Languages, IEEE Computer,

vol.15/ no.2, pp.58-69/ Feb. 1982.

【GAJ工SK工85]

D.D.Gajiski and J-K Peir, "Essential Issues in Multi-

processor Systems, IEEE Computer, vol.18, no.6, pp.9-27,

Jun. 1985.

- 121　-

[HE工DERBERGER82 】

P.Heiderberger and K.S.Trvedi, "Queueing Network Models for

parallel Processing with Asynchronous Tasks," IEEE Trans.

Comput., vol.C-31, no.ll, pp.1099-1109, Nov. 1982.

[HOCKNEY81]

R.W.斑ockney and C.R.Jesshope, Parallel Computers′　Adam

Hilger Ltd., Bristol, 1981

[INMOS84]

=nmos, Occam programming　姐anual, Prentice-Hall Inter-

national, London, 1984.

[IRANI82]

K.B.Irani and K.W.Chen,　Minimization of Interprocessor

Communication for Parallel Computation,　IEEE Trans,

Comput., vol.C-31, no・11, pp.1067-1075, Nov. 1982.

[JAJODIA83]

S.Jajodia, J.Liu, and P.A.Ng,　A Scheme of Parallel

processing for MIMD Systems,II IEEE Trans. Software Eng.∫

Vol.SE-9′　no.4′　pp.436-445′ Jul. 1983.

[JANSEN80]

p.G.Jansen and J.L.W.Kessels, "The DIMOND: A Component for

the Modular Coinstruction of Switching Networks," IEEE Trans.

Co皿put., VOl.C-29. no・10′　pp.884-889, Oct. 1980.

【 KAWAMURA83]

S.Kawamura et al., "3-Dimensional SOI/CMOS IC-s Fabricated

by Beam RecrystallizationtH proc. IEEE International

Electron Devices Xeeting, pp.364-367′ 1983.

[KAWAMURA8 4]

S.Kawamura et al., "3-Dimensional Gate Array with Vertically

Stacked Dual SOI/CMOS Structure Fabricated by Beam Re-

crystallization,　Digest of　1984　Symposium on VLSI

Technology, San Diego, pp.44-45, 1984.

- 122　-

[KODRES78 J

U.R.Kodres,　Analysis of Real-Time Systems by Data Flow-

graphs,"工EEE Trans. Software Eng-. Vol.SE-4′　pp.169-178,

May 1978.

[KUNG82a]

H.T.Kung, "Why Systolic Architectures? IEEE Computer,

Vo1.15. no.1′　pp.37-46, Jan. 1982.

[KUNG82b]

S.Y.Kung, K.S.Arun, R.J.Gal-Ezer, and D.V.Bhaskar Rao,

"wave front Array Processor: Language, Architecure, and

ApplicationsTII IEEE Trans. Coiput., vO1. C-311 nO・ ll,

pp.1054-1066,. Nov. 1982.

[KUNG84】

S.Y.Kung, "On supercomputing with Systolic/Wave front Array

processors," proc. the IEEE, vol.72, no.7, pp.867-884, Jul.

1984,

[LAWRIE75]

D.H.Lawrie.　Access and Alignment of Data in an Array

processor," IEEE Trans. Comput., vol.C-24, no.12, pp.1145-

1155′　Dec. 1975.

[MA82]

p.R.Ma, E.Y.S.Lee, and M.Tsuchiya, HA Task Allocation Model

for Distributed Computing Systems,II IEEE Trans. Comput-,

Vol.C-31, no.1. pp.41-47. Jan. 1982.

【MA84】

R.Perng-Yi Ma. "A Model to Solve Timing-Critical Application

problems in D土stributed Computer Systems′-I工EEE Computer′

vol.17′　no.1′　pp.62-68′ Jan. 1984.

[MAY84]

D.May and R.Shepherd, "The Transputer ImplementatiOn Of

Occam,　proc. International Conf. Fifth Generation Computer

- 123　-

Systems 1984, edited by ICOT, pp.533-541, 1984.

[MEKLEY80]

L.J.Mekley and S.S.Yau, "software Design Representation

Using Abstract Process Networks," IEEE Trans. Software Eng.

Vol.SE-6, no.5. pp.420-435, Sep. 1980.

[MURPHY68 ;

J.E.Murphy,　Resource Allocation with Interlock Detection in

a Multi-Task System,II proc. AFIPS FJCCJ VO1.33, Part　2′

pp.1169-1176, 1968.

[MYERS82]

G.J.Myers, Advances in Computer Architecture, Second

Edition, John Wiley　&　Sons′　工nc.∫ 1982.

[OLDEHOEFT83]

R.R.Oldehoeft,　Program Graphs and Execution Behavior, IEEE

Trans. Software Eng., vol.SE-9, no.1, pp.103-108, Jan. 1983.

[PATERSON82]

D.A.Paterson and C.H.Sequin, "A VLSI RISC," IEEE Computer,

Vo1.15′　no.9′　pp.8-18, Sep. 1982.

[PETERSON81]

J。L.Peterson, Petrx Net Theory and The K°deling of Systems,

Prenice-Hall　工nc‥　N.J.∫ 1981.

【 POTTER85 】

J.L。Potter (ed.), The杜assively Parallel Processor, Research

Report and Notes, Scientific Computation Series, MIT Press,

1985.

[RAMAMOORTHY80]

C.V.Ramamoorthy and G.S.Ho,　Performance Evaluation of

Asynchronous Concurrent Systems using Petri Nets, IEEE

Trans. Softare Eng., vol.SE-6, no.5, pp.440-449, Sep. 1980.

[SIEGEL81a]

- 124　-

H.J.Siegel et al., '-PASM: A Partitionable SIMD/MIMD System

for Image Processing and Pattern Recognition, IEEE Trans.

Comput., vol.C-30, no.12, pp.934-947, Dec. 1981

[SIEGEL81b]

H.J.Siegel and R.J.McMillen, "The Multistage Cube: A

Versatile Interconnection Network," IEEE Computer, vol.14,

no.12. pp.65-76′　Dec. 1981.

[SPECIAL82]

Special Issue on Highly Parallel Computing, IEEE Computer,

Vo1.15　no.1′ Jan. 1982,

[SPECIAL83]

Special　工ssue on Performance Evaluation of Mult土pie Proces-

sor Systems, IEEE Trans. Comput-, vol. C-32, no.1, Jan.

1983.

[SPECIAL84]

Special Issue on Effect of Hardware-Software Interactxon on

system performance, IEEE Computer, vol.17, no.7, Jul. 1984.

[STONE73]

H.S.Stone, IIproblems of Parallel Computation′　Complexity of

sequential and Parallel Numerical Alg°rithmSJ Academic

Press, 1973.

[STONE77]

H.S.Stone,　Multiprocessor Scheduling with the Aid of

Network Flow Algorithms,l IEEE Trans. Software Eng.∫ vol.SE-

3′　no.1′　pp.85-93′ Jan. 1977.

[SULLIVAN77 J

H.Sullivan and T.R.Bashkow,　A Large Scale, Homogeneous,

Fully Distributed Parallel Machinel　工JII proc. 4th Inter-

national Symposium on Computer Architecture, pp.1 05-1 24J

1977,

[SWAN77]

- 125　-

R.J.Swan et al.f "cm　-A Modular Multi-Microprocessorr"

proc. AFIPS Conf., Nat. Coinput. Conf., vo1.46, pp.637-644,

1977.

[TANAKA80]

Y.Tanaka et al., "pipeline Searching and Sorting Modules as

Components of a Data Flow Database Computer,　S.H.Lavington

(ed.): Information Processing　80, pp.427-432, North-Holland

Pub. C0., 1980.

TRELEAVEN82 J

p.C.Treleaven,　D.R.Brownbridge,　and R.P.Hopkins,　Data-

Driven and DemandTDriven Computer Architecture" AC紙

Computing Surveys, Vo1.14′　no・11 pp.93-143, May 1982.

【WESSELKAMPER82]

T.C.Wesselkarnper, "Computer program Schemata and the Proces-

ses They Generate," IEEE Tran-s. Software Eng.∫ VOl.SE-8,

no.4′　pp.412-419′ Jul. 1982.

[WULF81]

W.A.Wulf, R.Levin, and S.P.Harbison, HYDRA!C.mmp. An Experi-

mental Computer System, McGraw-Hill, Inc.∫ 1981,

***　End of References　***

- 126　-

Append x x

Syntax of the Script

A.1　Extended Series-Parallel Flow

script : :=　main_module_declaration

logi calJs cheme

time factors

set_pbserver

】 workl°ad

set⊥van aやl e

set_breakpo int

hardware constraint

print_var iable

main module declaration ::=　t@「module

logical scheme ::= module t=I

l module　-ニー

l module　-ニー

l module '='

sequential module

paral lel_module

selective module

iterative module

sequential_module ::=　module

sequential_module '-' module

copy '-' module

sequent土aLmodule I-l copy　リ　module

parallel_module ::= moduleつ一module

parallel_module　-ll module

copy '-' module

parallel_module　-　copy　つ一　module

I module '|- copyつr module

- 127　-

selective module ::=　module　・+守 module

I selective_module '+' module

I copy '+'module

I selective_module '+' copy '+' module

l module -+-　copy一十■　module

iterat土ve module ::=　module l*I repeat

copy ::=　number

l　■(I expressiOn　-)-

repeat ::=　number

I I(' expression　-).

time factors

:;=　-_#-　module　-(■　七五me　-,1 time　-.-　time I)-

'#' module　-(' time　-,-　time 'I' time　-,-　time ')-

time ::= /詛empty*/

expression

set_observer ::= "observer" '{' path_name　}

workload ::= "%{" interval "}%"

L　一一%(一一"}%"

interval ::=　expressiOn

interval　, interaval

expressiOn -(- interval ')-

set variable ::=　variable '=l expressxon

- 128　-

set breakpoxnt

::= "break" -{' element "input一一　'(' token

I "break一日{' element　-procs-I '(' token

l ・・break-モーelement ‖outputH '・(- token

H
H
u
　
　
「
‖
リ
　
　
H
H

一

　

　

r

r

^

u

u

"break" '{' "at" number '}'

"break" '{' "interval" number '}'

一一breakH　-(■ "queueH number -)I

‖break‖　-(一　一一term" number -)-

"break" '{' element "wait time" '(' number ')' '}

token ::= /*　empty　*/

number

hardware constraint ::= "exeleml={' element list I)I

l "exedge" -{' edge_list ').

element list ::=　element

elemenLIist '.-　element

element ::=　path_name

path_name '/' "fork"

path_name '/' "join"

path_name　- / =-select1-

path_name '/' "merge"

path_name '/' -loop"

path_name ::= / module

l path_name　-/I module

path_name '/-　module '.'number

edge_list ::=　edge

edge_list ',I edge

edge ::=　element "(i)

element "(○)H

print variable ::= ? variable

- 129　-

expresiOn　　'(-　expressiOn　-)'

I甲pressiOn .i-　expressキon

expression '-' expression

expressiOn l*l expression

expression '/' expression

l expression '%' expression

-　expression

I variable

argument

number

module ::= alpha

I module alpha

l module numeric

variable ::=　-専一　alpha

variable alpha

variable numeric

argument ::=　S number

number ::=　numeric

I number numeric

alpha ::=　-a. I I 'z- 1 -A- I I 'z-

numeric ::= 'Ol　.. I '91

- 130　-

A.2　Two-Dimensxonal Array

scrxpt ::=　variable def

default def

array_size_def cell_def

workload

variable def　　/ empty /

"VAR" '{' variable_list '}

variable l上st ::=　variable assign

I variable_list variable_assign

variable assign ::=　variable ":=　expression

array_size_def ::- "ARRAY" '('expression ','expression ')

cell_def ::= /* empty *!

cond list

cond list ::=　cond statement

cond list cond statement

cond statement

-CONDITION"ド(T cond_expr)　-{' time def -)I

"CONDITION" '(-　cond_expr ')={' cond list -)I

cond_expr ::=　comp

I cond_expr "AND" cond_expr

cond_expr "OR"　cond_expr

l .-NOT" cond_expr

l I(-　cond_expr ')-

- 131 -

comp ::=　expr IくI expr

expr lく=I expr

l響Pr -　　expr
l expr　-〉=　expr

I expr　-　　expr

expr　く　　expr

time_def ::= /* empty */

I time_def set_time

l time_def variable_assign

set time ::=　PROCII ll:=H expr

l "up"　"---　expr

"DOWNII II:=ll expr

I "LEFT" ":-" expr

"RIGHT" ":=" expr

default def ::= "DEFAULT" '{' time def '}

work!°ad ::=　source list

source list ::=　source statement

source list source statement

source statement

::= ''SOuRCE" '(　‖Up'' ')' '{' source cond　-)I

"SOURCE一一　(' "LEFT‖　)' '{' source cond　-I■

source cond

:= "CONDITION" '(' cond_expr ')' '{　input_interval '}

input_interval ::= "INTERVAL" '(' interval ')'

interval ::=　expr

l interval 'Jl interval

expr　-(- ・interval　-)-

- 132　-

expr ::=　expr　+　expr

expr l-I expr

expr　*　expr

expr　/' expr

expr　%　expr

expr

expr expr

l I

expr

ー(　expr　-)I

number

variable

argument

X_parameter

Y_parameter

Ⅹ_parameter ::=　XI

Y_parameter ::=　Yl

variable ::-　-a' | .. |　-W' I　-　　'A-　　　'W I .zf

number ::=　numeric

I number numeric

argument ::=　S number

numeric ::- '0つ　‥ I　■9-

- 133　-

