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Abstract

The computer architecture has been explored for higher per-
formance, higher facilitate and/or more reliable systems at lower
costs ( sometimes at any cost ). Parallel processing with
multiprocessors has been employed by many researchers as a suit-
able technology for the improvements, and has been realized in
experimental or comhercial machines consisting of up to 102 proc-
essors. In particular, a lot of proposals for new super-
computer architectures aimed at increasing machine performance by
an order éf magnitude have come out in the past several years.
Decreasing costs and increasing density of CPU and memory chips
due to the recent advanced VLSI technology have made such com-
puter architectures feasible even if it is a Massive Multiproces—
sor System ( in short, MMS ) configuring more than 103 processing
elements. However, there remain a lot of problems to be
solved toward realization of the MMS's efficiently performing a
job.

The goal of this dissertation is to provide a design method-
ology of such MMS's based on the architecture aimed at increasing
their performance. Though several levels of the architectures
are investigated, we mainly focus on the PMS ( Processor-Memory-
Switch ) level because systems based on the architecture éllow
the design flexibility of their parallelism, and have great
possibility of a realization at high cost-performance.

On the basis of several experimenfs using multiprocessor

UNIP with 32 processors, the dissertation describes a massive



multiprocessor simulator for performance evaluation and inter-
connection networks for MMS's based on a new device technology,
i.e., 3-dimensional integrated ﬁircuits;

First, Chapter 1 surveys studies on computer architectures
toward higher performance of computing systems in various levels.

In Chapter 2, multiprocessor approaches are presented.
Basic parallel processing schemes and typical multiprocessor
configurations are summarized, and then, a fabrication of experi-
mental multiprocessor system UNIP is described. After several
experiments using ﬁNIP are demonstrated, essential and crucial
issues of multiprocessors derived from that experience are sum-
marized.

In Chapter 3, a modeling of MMS programs for performance
evaluation using the parallel programming scheme is proposed.
The model which is largely intuitive, is applicable to a simula-
ter for the performance evaluation of MMS's in which the inter-
processor communication cost can be measured. After a de-
scription language of the programming scheme is described, the
simulator implemented on the UNIX system and simulation analysis
on the experimental results are demonstrated.

In Chapter 4, a new type of common memory ( in short, 3-D CM
) based on a technology of 3-dimensional integrated circuits is
proposed and its fundamental properties are described. A
communication module for connecting processors using 3-D CM and
processor interconnection networks for MMS's, consisting of the
modules are demonstrated. A brief analysis of the network
performance is also described.

Finally, in Chapter 5, we discuss and summarize further

problems to realize high-performance MMS's.
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Chapter 1

Introduction

In the quest for higher levels of computational performance,
systems have been pianned to have throughputs in excess of one
billion instructions per second ( BIPS ). Over the several
- years we have seen myriad proposals for supercomputers, especial-
ly, new architectures aimed at increasing machine performance by
an order of magnitude. As a result, it has been possible to
achieve such high levels of performance only for very specialized
systems such as signal processors. Such systems are optimized
to execute a few well-formed algorithms, so that it is difficult
to effective implement other application-problems;

Recently, it has become clear that there are many applica-
tions ( e.qg., image recognition, computer tomography, data base
management, simulation for weather fbrecast, etc.) which require
high levels of performance. | The variety of the applications
requireé general purpose flexibility for systéms. |

On the other hand, the advent of large and very large scalé
semiconductor integrated fechniques has reduced the cost of
digital circuits. In particular, significant reduction of the
cost has been done for memory and CPU chips. Hence, an inex-
pensive realization of a system having a Qide spectrum of appli-
cations is becoming possible.

The dissertation addresses design methodologies to develop
systems satisfying the following two requirements:

(i) High performance, e.g., exceeding one BIPS,



(ii) General purpose computational flexibility.

- There exist two main approaches to the development of the

supercomputers:

(1) The use of extremely high-speed single processor based on
conventional von Neumann architectures.

(2) The use of new architectures, e.g., parallel processing.

The first approach has been due to the significant improve-
ment of the device technology in the recent years. However,
~since a signal transfer speed in a circuit cannot exceed the ve-
locity of the light in principle, there is an apparent limitation
of the improvement. It is difficult to develop a device which
is hundred times faster than the currently existing chips.

This dissertation adopted the second approach. It has
been employed by several computer researchers and designers, and
a various kind of ad%ances in computer architecture has been
dene. | In [MYERS82], Myers defines the term computer archi-
tecturé as "the distribution of functions across a proposed level
or boundary within a system, and the precise definition of the
boundéry". According ﬁo this definition, é research of the
computer architecture can be divided into a iot of levels. In 
particular, parallel processing techniques for high'pe;formanqe
computation are investigated by the most of researchers at
several architecture levels, which are classified into the

following three typical levels [BELL71]:

(a) RT ( Register-Transfer ) level,



(b) ISP ( Instruction-Set-Processor ) level, and

(c) PMS ( Processor-Memory-Switch ) level.

The major distinction among RT, ISP, and PMS levels 1is the
granularity of their parallelism. RT, ISP, and PMS level
architectures are suitable for sub-instruction, instruction, and
process ( or task ) level parallel prqcessing, respectively.

Parallel processors based on the RT level architectures
execute an instruction in parallel. An example of this type
of architectures is’a vector processor which divides an instruc-
tion into several pipelining stages or a vectorized datum into
elements and executes them simultaneously. Therefore the
division of functions and scheduling of theif execution must bé
decided at the designing time. It is impossible for users to
change them after.the design has completed; A typical example
of the parallel processing systems based on the ISP level archi-
téctures is a data flow machine. The system has several
execution units which perform an instruction when all required
data ( or operands ) of the instruction meet at the units.
The RTband,ISP architectures allow high granularity of parallel
processing;vhowever, they have little flexibility in their execu-
tion. - | o

In contrast, systems based on the PMS level architectures
such as multiprocessor systems, execute a process ({ or a task )
in parallel, Modules composing the systems are autonomous
processing elements or processors, which can be employed under
centralized or distributed control. It is true the PMS archi-
tectures allows the systems to apply a wide spectrum of applica-

tions, but it was said that a drawback in them was that the



modules become large and complex. However, decrease in costs
and increase in the number of CPU's and memories compressible in
a chip due to the recent advance of the VLSI technology have made
such architectures feasible even if it is a Massive Multiproces-
sor System ( in short, MMS ) connecting more than 103 processing
elements [SPECIALS82] [POTTER85] [CHRISTS84]. Thus, we focus on
the PMS architecture level in the dissertation, because systems
based on the architecture are flexible and feasible. Table
1.1 summarizes the architecture levels with respect to parallel

processing stated above.

Table 1.1 Architecture levels with respect to parallel processing.

Architecture | RT ISP PMS
Level '

Parallelism Sub-Instruction Instruction Task or Job
Level

Autonomous No C Nd . Yes

Processing Elements

Examples vector processor| data flow .systolic array
processor array machine |Transputer, GF-11

Many authors have proposed parallel processing systems,
based on the PMS architectures, which have a variety of design

policies. There are four main factors which a designer should




consider and decide on to design PMS architectures:

(1) Processing element flexibility,
(2) Control strategy,
(3) Connection. topology, and

(4) Partitioning and scheduling a job.

Processing element flexibility

As mentioned above, a processing element in the PMS archi-
tecture is assumed ﬁo be an autonomous module which may be small
and simple, or large and complex. The autonomous module, or a
computer, can be decided to be flexible for changing its func-
"tions: hardwired, firmware, and software. When the hardwired
method is selected, we can get a fast and compact module at the
expense of the flexibility. In the case of the softwafe
method, ité condition is the contrary. SyStolic array
[KUNG82a] and wavefront array [KUNG84] are originally based on
hardwired or firmware processing elements. On the other hand,
Transputer [MAY84] designed as a'language—orientéd processor

adopts the software method.

Control strategy

A job is distributed and performed on many processing
elements communicating with other elements. The commpnication
and synchronization are realiéed by certain control functions.
These functions can be managed by a centralized controller or by
each of the individual processing elements. Another way to
manage them is a hierarchical control strategy, i.e., the

elements are divided into several clusters, each of which is



managed by its centralized controller. The centralized
control in GF-11 [BEETEM85], the distributed control in
Transputer, and the hierarchical control in cnm™ [SWANT77] are
typical examples»of the three different control strategies

mentioned above.

Connection topology

Processing elements are connected with each other 5y point-
to-point links or interconnection networks. The former is
called as a static ﬁetwork topology, and the latter as a dynamic
network topology. In the dynamic topology, switches in the
networks can be dynamically set or not dynamically set.
Therefore, connection fopologies can be classified into two
categories: wusing point-to-point links and interconnection
networks. Topology selecting strategies can be grouped into
three categories: static, reconfigurable, and dynamic.
Systolic array, wavefront array, Transputer, etc. belong to the
point-to-point and static class, and GF-11 belongs to the
interconnection network and reconfigurable class. It is now
difficult to find a realistic system which can change its

topology dynamically.

Partitioning and scheduling a job

From the view point of the software design, program parti-
tioning and scheduling are the most important factors influencing
system performance. For high performance, the maximum
parallelism with the lowest possible overhead is desired. A
job can be partitioned into a various size, from a few

instructions to a large task. Parallelism of the job can be



detected by users during algorithm design, by a certain compiler

during the compile time, or by a particular software or hardware

during the run time. Moreover, scheduling in a multiprocessor
is a function that allocates tasks ( or processes ) to
processors, and manages their execution. In the system

design, we can consider two kinds of criteria for the scheduling
function: static or dynamic, and centralized or decentralized.
The static method decides a scheduling before the execution, and
the dynamic one determines a scheduling at the run time. A
scheduler in a sysfem manages’all schedulings in the case of
centralized method, and several schedulers manage their local

schedulings in the case of decentralized one.

As discussed above, there exist several issues to be con-
sidered when a multiprocessbr, i.e., a system based on the PMS
architecture, is designed. It is difficult to obtain a
complete solution of the issues because of their dependency upon
applications performed by the system, even if a target is not
massive, k In particular, the overhead for task and/or resource
allocation, and for task or process scheduling increases with
increasing number of the processors. The‘overhead is a
crucial problem of ﬁassive multiprocessors in both the designing
time and the running time. Although a lot of researchers have
been investigated the allocation or the scheduling'problem
[CHOU82] [IRANI82] [STONE77] [MA82] [MAB84], there has been no
algorithm solving it in feasible time. Since the main
objectve of the dissertation is to obtain a methodology which can
realize to design MMS's in feasible time, we will try to discuss

the methodology under the following assumptions:



(1) ideal ( or almost ideal ) interprocessor communication
hardware and

(2) restricted communication flow.

Those assumptions make it possible to extremely reduce the
overhead at the design because the communication cost can be
estimated as constant value. Moreover, to evaluate the system
performance from the description like a programming language, the
strategy of the dissertation is to use a simulator for accurate
and quick evaluation. There already exist a few programming
language supporting multiprocessors. However, we adopt
another description language simplified for pefformance
evaluation, because they are not enough to describe the MMS's.
On the other hand, a wide bandwidth interconnection network is
also proposed for the first assumption, and makes it possible to

realize a target system evaluated by the simulator.



1.1 Summary of‘Results

The goal of this research is to provide design methodology
of MMS's aimed at increasing performance by an order of magni-
tude. Since the objective applications of the methodology
spread a broad range, it assumes that the target systems, i.e.,
MMS's, are designed for general purpose or a wide range of
applications. This dissertation especially fécuses on the PMS
architecture level which is suitable for VLSI realization of
MMS's. A simulator as a design support tool for MMS's and an
interconnection network for a realization of MMS's are presented.
The dissertation demonstrates the following results through

arguments and experiments:

- Experimental results of parallel processing with task level
control is obtained from experiments using multiprocessor
UNIP with 32 processors. ‘ The experiments are done in the
fundamental parallel processing in multiprocéssors, i.e.,
pipelined processing and parallei processing. The
eésential problems of highly parallel processing - in multi-

processors are derived from the experiments.

- A model based on the program scheme, and a simulator for
performance prediction and evaluation of parallel programs
on MMS's are proposede | The simulator implemented on the
UNIX operating system is used for the analysis on the
experiments. As a result, we found that the simulator is

used for the design of MMS's.



- A processor interconnection network based on a new technolo-
gy of 3-dimensional very-large-scale-integration is proposed
to decrease communication time between processors. The
proposal of the interconnection technology allows the

designer to use the simulator without feedback retry.

1.2 Outline of the Dissertation

In this dissertation, based on experiments using multi-
processor UNIP with 32 processors, a massive multiprocessor
simulator for performance evaluation and an interconnection
networks for MMS's based on the 3-dimensional integrated circuit

technology are discussed.

In Chapter 2, multiprocessor approaChes'are presented.
Basic parallel processing schemes and typical multiprocessor
configurations are summarized, and then, a fabrication of
experimental multiprocessor system UNIP is described. After
several experiménts using UNIP are demonstrated, essential and
important problems of multiproéessors derived from that

experience are summarized.

In Chapter 3, a modeling of MMS programs for performance
evaluation using the parallel programming scheme is proposed.
The model which is largely intuitive, is applicable to a
simulator for the performance evaluation of the MMS's.in which

the interprocessor communication cost can be measured. The
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simulator is implemented on the UNIX system. After a
description language of the programming scheme is described, the
simulator specification and simulation analysis on the

experimental results are also demonstrated.

In Chapter 4, a new type of common memory ( in short, 3-D CM
) based on a new technology of 3—dimenéional integrated circuits
is proposed and its fundamental properties are described. A
communication module for connecting processors using 3-D CM and
processor interconnection networks for MMS's consisting of the
modules are demonstrated. A brief analysis of the network

performance is also described.
Finally, in Chapter 5, we conclude the dissertation and

summarize future problems for a realization of high-performance

MMS's.
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Chapter 2

" Multiprocessor Approach

The discussion and the experiments in this chapter give the
basis of the design and realization of MMS's based on the PMS
level architectures. Consideration of essential multiproces-
sor issues leads us to crucial problems of MMS's. A fabrica-
tion of a multiprocessor makes difficult points of the MMS's
realization clear. The experiments going on in this chapter
suggest that a precise estimation of program execution in MMS's

is possible before the systems are realized.

First, fundaﬁental.properties of multiprocessor systems
aimed at high levels of performance are discussed in this
chapter. After advantages and disadvantages of the multi-
processor approaches are presented, we consider essential issues,
especially, their control schemes, and performance measures of
the syétems. Next, an experimental multiprocessor UNIP with
32 microprocessors is proposed and experiments using UNIP are
demonstrated. Finally, we point out crucial prqblems of
multiprocessors toward MMS's which have high levels of computa-

tional performance and the flexibility for their applicatioms.
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2.1 Overview

With the advent of VLSI technology which made it possible to
manufacture high-performance microprocessors and other circuits
at low cost, multiprocessore with many processors have been
highlighted in recent years. The following major motivations
( or advantages ) for building multiprocessor systems:

(1) to increase performance,
(2) to increase reliability, and

(3) to meet distributed application requirements.

On the other hand, several disadvantages of multiprocessor can be

pointed out as follows:

(1) The software is complex, difficult to design, expensive to
produce, and difficult to test.

(2) Information of the hardware 1is required for efficient
software implementation.

(3) All hardware resources are rarely used at a time.

Gajiski [GAJISKI85] has pointed out the essential issues in
multiprocessor systems: hierarchical control of computation,

program partitioning, scheduling, synchronization, and memory

access, These issues are closely related with multiprocessor
architectures. Hierarchical control of computation is
discussed in the next section. Program partitioning,

scheduling, and synchronization are related to Chapter 3 in this

dissertation; however, since we assume that task allocation

- 13 -



should be given for inspections at the design of MMS's, these
issues are not discussed in detail, The last issue of memory

access is discussed in Chapter 4.
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2.2 Parallel Processing Control Scheme

‘A program executed in a multiprocessor is represented by a
control graph [GAJISKI85], in which nodes represent one or more
transformations or movements of data, and arcs represent the
order in which nodes are executed. The program execution is
indicated by the flow of data or control tokens on the graph.
From the standpoint of segquencing, there are two models. A
serial model of computation corresponds to seguential language
execution, where only one token exists in the graph. The
token flows without splitting into two or more, In contrast;
a parallel model of computation has splitting nodes and merging
nodes., A token in the graph flows with splitting and/or

merging.

The latter model explicitly represents a parallel
processing. Though the former model looks valid bnly for
sequential processing, it can provide parallel processing for
several data. |

A simple example of the parallel proceséing in the serial
model is pipelined processing, that is, several data flow on the
sequentially control graph and parallel processing is performed
between processing data. On the other hand, a typical example
of the parallel processing in the parallel model is parallel
processing in a narrow sense,Athat is, several processing
elements are executed simultaneously. These two processing
control schemes are so simple and fundamental that they aré
suitable for implementation in MMS's consisting of a large number

of processing elements,

- 15 -



Parallelism of the pipelined processing and the parallel
processing can be implemented at several levels: instruction
level, process level, task level, etc. There is a trade-off
between parallelism granularity and communication overhead.
The ‘designer should decide a 1level of parallelism in
consideration of program algorithm to be solved and a capacity of

the interconnection networks.
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2.3 Performance Measure

A performance measure of multiprocessors ( or, parallel
processors ) is needed to evaluate a system whether it is
sufficient to perform a specified job. In case of single
processors, the measure is often represented as throughput (
e.g., MIPS: Million Instructiohs Per Second, FLOPS: FLoating
Point Operations Per Second, etc. ) which is the capability of
performing instructions or operations in one unit time. The
throughput makes it possible to compare performance with other
systems; and to estimate execution time for a specified job.
Since a single processor executes instructions sequentially, the
throughput represents accurate performance of the processor.
( Note that MIPS or FLOPS does not always reflect the accurate
performance when each execution time for an instruction or an
operation is not constant but dependent on its variety. )

The throﬁghput, however, is not sufficient to measuré
performance of multiprocessors because of their parallelism.
Moreover, a performance measure which represents multiprocessor
architécture as a complex of hardware and software systems is
needed, because the throughput only represents the ability of

hardware systems.

Several measures of multiprocessors ( or, parallel proces-

. sors ) have been proposed as follows:
(1) speed-up ratio [STONE73],
(2) throughput ( improved ratio ) [ENSLOW74],

(3) parallelism [FENG72],

- 17 -



(4) throughput and parallelism [HOCKNEY81] etc.

The speed-up ratio represents how many times a multiproces-
sor can execute programs faster than a single processor can.
The speed-up ratio is defined as,

execution time in a single processor
execution time in a multiprocessor

speed-up ratio =

Since the measure directly indicafes an effectiveness of multiple
processing, it can be intuitively acceptable. However, since
it is a relative value, it is difficult to compare a multiproces-
sor system with another system based on the different processors

by the speed-up ratio.

The throughput represents, like definition for a single
processor, the capability of performing total instructions or
operations on a multiprocessor at unit time. By this measure,
we can easily compare performances between systems based on
different processors. Moreover, the throughput improved
ratio, which is'defined as the ratio of the multiprocessor
fhroughput to the single processor throughput, is often referred

as a measure of parallel processing effectiveness.

On the other hand, the parallelism, eJL} the number of bits
or words executing at a ﬁime, is proposed as a measure of
multiprocessor performance, especially‘of architectural factor.
The measure is based on the idea that the architectural
performance of multiprocessors should be represented by the
degree of parallelism but not by their throughput capabilities,

which of course depend on their clock rates. The measure may

- 18 -



also refer to the number of words or data performed at a time.

Hockney et al. have proposed two measures, r, and ni, for
the linear approximation, i.e., execution time is approximated by
vector length of 4input data. They imply throughput
capabilities and parallelism of multiprocessor systems. It
assumes that the system is designed for vectorized data input.
When the system solves a problem of\input data length n, the
system performance r, is defined as

r_ = n/t

n n '’

where t, is the processing time for the problem,
t, is obtained from the following linear approximation:

t, = (n+n%)/rw ’
where r, is the maximum performance and

ni
2

is the length of input data for which the system per-
formance is the half of the maximum performance.

r,, which is the limit of r., as n approaches infinity, is

n

consider to represent the system throughput. n1 is regarded

_;_
as a parallelism measure. The linear approximation of the
last prbposal cannot always apply to any multiprocessor 'systems
based on task level pafallelism. However, the measure can
represent both the throughput and the parallelism.

| Measures (1)-(4) can be selected by the requirements or the
design pdlicy of the target system. Thrbughout the disserta-

tion, we use the following two measures, from which all the

measures listed above can be derived:

interval time : t;.; and

response time : t,. o .

- 19 -



The interval time t; . is the average processing time per datum

~and the response time t._ o is the processing time for the first

datum. For example, r, and ni are derived as follows:
Yo = 1/tint and
ni = (To/Tq)=1 = Tt ag-1

where rq is the system performance for a datum defined above.
The speed-up ratio is also derived as follows: |
speed-up ratio = tref/(tint'n + treg)y

where n is the number of input data and

tref is the execution time for the same job in a reference

single processor.

It.couldidefinitely be said that the execution time in a refer-
ence single processor is required. Other measures described

above are also derived in a similar way.
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2.4 Experimental Multiprocessor UNIP

We have developed a multiprocessor UNIP with 32 processors
for experimental applications [AE82]. UNIP served as a pilot
machine for acquiring fundamental data of execution and
communication time in task level parallelism. In this
section, the hardware and system software of multiprocessor UNIP

are presented.

2.4.1 Design Policy

Multiprocessor UNIP with 32 microprocessors has been
designed as an experimental machine for the purpose of gaining
fundamental data, e.g., execution and communication time for
parallel processing, and making underlying problems visible
toward high—performance‘MMS's. ' We fabricated a realistic
machine with more than ten processors even if an each processor
is very small, and‘facilitated execution of pipelined processihg
and/or parallel processing.- - The design policy of the

multiprocessor is listed as follows:

(1) Simple hardware,

(2) Attached processor,

(3) Homogeneous-processor organization,
(4) Single bus structure, and

(5) Parallel and/or pipelined processing configuration.
Simple hardware is required for a guarantee of execution

- 21 -



stability when several asynchronous processors run individually.
Each processor and its communication mechanism with other
processors are designed as simply as possible. The simplicity
is also suitable for the VLSI realization.

Attached processor, which needs a host computer to complete
a job, plays a role of a back-end processor of the host.
Since the host handles its peripheral devices, e.g., disk
storage, and user interface facility, the multiprocessor éan
dedicate itself to its own tasks. UNIP communicates with a
host computer through a full-duplex parallel port.

Homogeneous-processor organization and single bus structure
are available to simplify the hardware and to repair or exchange
a faulty processor. They also lead to an ease of fabrication
and the system extensibility.

UNIP has two kinds of communication mechanismAbetween
processors, i.e., bus transfer mechanism connecting all
processors and parallel port connecting adjacent processors.
The mechanism is used for pipelined and/or parallel processing.
In the pipelined processing, main data stream uses the parallel
port. ‘In the parallel processing, data are distributed and

acquired through the bus.,

2.4.2 Hardware Overview

UNIP contains 32-working processors called slaves, and one
supervisor called master. All processors are connected with a
shared bus where the master processor performs memory access to

slaves. In addition, two adjacent processors are combined to
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each other with a parallel port. Fig. 2.1 shows the
lconfiguration of UNIP. Each processor of master or slave is
assembled on a single board, and has Zilog Z-80A CPU, 16 KBytes
random access memory, input/output interfaces ( a pair of bit-
parallel ports for slaves and two pairs for master ), bus
controller, etc. All slaves are completely homogeneocus except

for hardware switch to identify slaves.

As one of the characteristics of UNIP, each processor has a
communication port to both of adjacent processors. Since the
port can be combined with any device or processor as well as
adjacent processor, the connection configuration of processors is
not fixed.ﬁ In reality, Severél multiproéessors, i.e., subset
of UNIP, with a few slaves which have different connection

pattern are also produced in our laboratory.

There exist many multiprocessor systems with single bus
structure and a variety of access methods through the bus. To
avoid the occurrence of conflict on the bus, sevefél arbitration>
methods are proposed. A typical solution is an additional:
hardware arbiter, e.g., a ring arbiter, race arbiter, etc.
When two or more processors is reguired to use a single bus at
the same time, the bus arbiter accepts only one request and
permits its accepted processor to access the bus. UNIP,
however, has no additional hardware-for bus arbitration because
of its hardware simplicity. The access right through the bus
is given only to the master processor of UNIP for the reason that
the master dedicates itself to all communications through the -

bus. Therefore, the master plays a role of an interprocessor,
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or a communication processor, transferring data between host and
slaves, and between slaves. Fig 2.2 shows memory map of
relation between the master and slaves. From the master
processor, all slaves' memory modules look like one module by
interleaving. The master has two memory access modes:
individual mode and broadcasting mode. In the former mode,
the master can individually read and write‘a slave's memory.
For the selection of a specified slave memory, the address bus
width is extended to 24 bits, where the extended 8 bits can
select a slave from the maximum 256 slaves. In the access
mode, the slave to which the master accesses halts during a
period of real memory access ( about 500 nsec per access ).
In the latter access mode, the master can write data in inter-
leaved memory of all slaves simultaneously, where the extended
address is ignored and all slaves halt. The memory access is.

restricted to only write operation in this case.

Interruption is required for task level synchrbnization
between the master and slaves. . Two directions of the
»interruption are considered: the master interrupts slaves for an
initiation or termination of slave tasks, and slaves inﬁerrupt
the master for a communication request with another slave or with
the master. Since UNIP has a hardware interruption mechanism
only from the master to slaves because of its simpligity, the»

master must observe status of all slaves instead of the

interruption. The interruption is provided with two modes
such as the memory access. One is individual interruption and
the other is broadcasting, The former interrupts the slave

selected by extended address, and the latter causes the
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interruption in all slaves at a time. Since NMI ( Non
Maskable Interrupt ) of Z-80A is used for the interruption,

slaves can never avoid it.

2.4.'3 System Software

UNIP provides basic communication and processor control
facilities by system software including software development
tools. The sofﬁware is divided into two functiohal parts:
runtime support and development assistance. These functions

are as follows:

Runtime sﬁpport
- data transfer through the bus
- data transfer using the parallel port
- slave control functions, e.g., reset, interruption,
initiation of slave program, etc. ( master only )

- communication with a host computer ( master only )

Development_assistance

- memory read and write in an arbitrary processor from‘the
host |

- initiation of programs in an arbitrary processor from the
host

- single step execution at machine language level for
debugging

- development support of multiple languages, i.e., assembly

language, C language and Forth language
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Since the runtime support part must be installed in small
memory space of the processors, the functions are minimized for

compaction within 2K Bytes of the code size.
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2.5 Case Studies
2.5.1 Sorting and Searching

In database management systems, the execution time for 'data
sorting and searching occupies the most part of the whole
execution time. An interactive database system requires its
processor to shorten the processing time dramatically, when the
large amount of data is treated. We have implemented a
SOrting and searching modules on UNIP and obtained their
eXperimental‘results [ATIBARASS].

The sorting and searching algorithms that we use have been
originally proposed by Tanaka et al.v[TANAKABOJ called pipelined
heap sorting and pipelined searching, respectively. The
original algorithms have the same data structure, as shown.in
Fig. 2.3 , i.e., binary tree structure. Since a processor
corresponds to a level of the data structure in implementation on
-a multiprocessor, the level i processor must contain 21 gata.
However, it is difficult for the processor which keeps only 8-
KByte memory space ( after that, memory has increased up to 16
KBytes ) to implement the algorithms. As a result, we
modified the algorithms for the data structure, as shown in Fig.
2.4 . The structure saturates increase in data at level s in
order to limit at most 25 data stored in a processorﬂ : | The

modified algorithms require the number of processors, p:

p = [(n+1)/k]—1+log2k ( n22k ) or

[logy(n+1)] ( n<2k ),
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where n 1is the number of processing data ( sorted data in the
sorting, stored and searched data in the searching Y,

~and
k is the maximum number of stored data in a processor (

i.e., k=2% ).

The sorting and searching algorithms consist of two phases,
respectively. . In the sorting, one is input phase, when data
from the host come into the multiprocessor comparing the data
with another data and they are stored in each processors, and the
other is output phase, when stored data comparing with another
data go out to the host. In the searching, one is storing
phase, when data élready sorted come intb the multiprocessor’and
they are stored in the specified segquence, and the other is‘
searching phase, Qhen data to be searched come froﬁ the host and
they are compared with the stored data. The identifier of the
stored data is taken out in the search phase, when the datum of
-the same wvalue is found. Each phase is executed in pipelined
processing. ’ Fig. 2.5 shows a time chért of the input phase in
the'softing and the both phases in the searching, and Fig. 2.6
shows a time chart of the output phase in the sorting, where
Figs. 2.5 and 2.6 indicate the case thét each processor cannot
execute both internal processing ( e.g., comparing’) and

input/output handling concurrently.

Figs. 2.7 and 2.8, and Tables 2.1 and 2.2 show experimental
results of total execution time for sorting and searching.
Moreover, Table 2.3 shows the average rate of data transfer

between UNIP and the host computer in sorting and searching.
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Table 2.4 shows each part of sorting and searching time
represented by percentages. The specification of the

implementation is listed as follows:

- One datum consists of

key : 32 bits ( 4 bytes ) and

identifier : 16 bits ( 2 bytes ).
- The maximum number of stored data in the system is 11775.
- The maximum number of stored data in a processor is 512.
- The maximum number of working processors is 31.

- The programs are written by assembly language.

2.5.2 Two-Dimensional Bit-Pattern Matching

An experimental 2-dimensional bit—pattern matching system
has implemented in UNIP, The system is divided into two
- parts: pattern analysis for data compression (GA), and data
searching (REC). GA and REC can be executed in parallel
processing and in pipelined processing, respectively, when
several bit—pattern data to be matéhed come from the host.
UNIP slave processors are divided into two parts corresponding to
GA and REC, The GA part is used as parallel processor and the
REC part is used as pipelined processor. Fig. 2.9 shows the
experimental results of execufion-time, where the number of GA
part processors added to REC processorslis constant ( that is 29
). Table 2.5 shows each part of 2-dimensional bit-pattern
matching execution time, which has been estimatedAfrom the

program list. The processing system is divided into several
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parts as shown in the Table:

Host -»> Master :

Master -> GA

GA

GA -> Master :

Bank1

REC

Bank?2

Master -> Host :

The master receives bit-pattern data to be
matched from the host.

The master sends the data to GA processor
waiting for the input.

A GA processor analyzes a bit-pattern and
compress it into a string data.

The master acquires results from GA's which
have completed the processing.

A slave receives the string data from master
and sends it to a REC processor.

A REC compares the input string‘data with the
reference data stored in the processor. The
REC finding a matched data sends its identi-
fier as output.

A slave sends results of REC's to the master.
The master sends the results obtained from the

Bank2 to the host.

Note that, the master, the Bankl and the Bank2 play the role of

data buffering.
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Fig. 2.3 Data structure for sorting and searching.v
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Table 2

.1 Sorting execution time.

Number of Sorting Time (sec)
Data min. max.
100 0.19 0.20
- 500 0.57 0.86
1000 1.61 1.69
2000 3.18 3.36
3000 4,75 5.03
4000 6.34 6.71
5000 7.91 8.25
6000 9.49 10.05
7000 11.07 11.72
8000 12.65 13.40
9000 14,24 15.10
10000 15.82 16.78
Table 2.2 Searching execution time.
Number of Searching Time (sec)
Data Store Search
100 0.11 0.08
500 0.37 0.40
1000 0.71 0.79
2000 1.37 1.57
3000 2.04 2.36 -
4000 2.70 3.14
5000 3.37 . 3.92
6000 4.03 4.71
7000 4.70 5.49
8000 5.36 6.28
9000 6.03 7.06
10000 6.69 7.84
Table 2.3 Average data transfer speed
in sorting and searching.
Ave. Data Transfer
Phase (Kbyte/sec)
Sort Data Input 8.9
Data Output 6.3
Search | Data Store 9.0
Data Search 7.7
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Table 2.4

Each part of sorting and searching time.

Phase Essential Data Other
Processing (%) | Transfer (%)|Processing (%)
Sort Data Input 13.9 62.5 23.6
Data Output 10. 84.4 5.1
Search | Data Search 12. 86.2 1.3

Table 2.5 Each part of 2-dimensional bit-pattern matching

Note that, m is the number of REC processors.

execution time.

, . Time
Processing Part (msec/data)
Host -> Master 21.1
Master -> GA 2.97
Proc. GA 489
GA -> Master 0.72
Master -> Bankl 0.72
Bankl -> REC 3.20
Proc. REC 300+827/m
REC -» REC 3.20
REC -> Bank2 3.20
Bank2 -> Master 0.09
Master -> Host 0.64
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2.6 Summary

We have obtained fundamental data with respect to the
parallel and pipelined processing and given essential issues of
multiprocessing through the experiments using UNIP. Major
problems of designing and realizing such a multiprocessor as an

MMS with more than 103 processors are presented'as follows:

(1) Does the algorithm contain sufficient parallelism for MMS's?

(2) Is it possible to estimate the total execution time
including the communication time?

(3) Is it possible to expand the communication bandwidth of

interconnection networks?

Though solution of the optimum parallelism of algorithm is
not a goal of this dissertation, we believe that there exists
sufficient parallelism in the application fields of database
“management, pattern recognition, etc., as mentioned in the

previous section.

Approaches to a solution of the problem (2) can»be

classified into two categories:
(a) to obtain an ( approximately ) optimum allocation of tasks
for a given configuration of multiprocessor and
(b) to estimate or evaluate the performance for a given task
allocation and a given multiprocessor configuration.
For the approach (a), the solution using the minimum cut
algorithm in graph theory [STONE77] and the heuristic algorithm

[MA82] have been proposed. These algorithms, however, can
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solve the problem restricted to a few processors, and cannot
apply to a large number of processors such as MMS's. For the
"approach (b), the queuing theory and simulation methods such as
the Monte Carlo simulation can apply to the problem. In this
approach, the simulation is repeated until the evaluation results
satisfy the designated requirements. This dissertation adopts
the simulation for performance evaluation. The simulation
model and a simulator realized on a UNIX system will be described

in the next chapter.

‘A solution of problem (3) is the interconnection network
with sufficiently broad bandwidth. However, there exists a
trade-off between network cost ( i.e., hardware complexity ) and
network pefformance ( i.e., throughput and delay ). A multi-
port memory with multiple-read single-write based on a new device
technology of 3-dimensional integrated circuits ( i.e., multi-
layered VLSI ) is proposed in Chapter 4. Moreover, MMS's

~interconnection networks using the memory are considered.
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Chapter 3

Performance Evaluation

This chapter mainly discusses a simulator as a development
support tool for the performance evaluation of Massive Multi-
processor Systems ( MMS's ) aimed at high levels of performance.
To clearly represent MMS's functioning and behaviors, the
Parallel Flow Graph ( PFG ) which consists of nodes representing
small tasks and arcs indicating inter-task communications is
introduced for their design, performance evaluation and
simulation. For the performance evaluation of MMS's, a
simulator which can simulate more than 103 nodes has been

implemented regarding PFG as a simulation model.

. 3.1 Modeling

When studying the performance of asynchronous concurrent

systems, various techniques are available to model system's

behavior and workloads [SPECIAL83] [SPECIAL84] [HIDELBERGERS82]
[DUBOIS841], A model for predicting the total execution time

of a logical scheme must satisfy at least the following criteria:

(1) Describes a logical scheme of MMS and its data flow.
(2) Provides the capability to evaluate a large system.
(3) Provides a complete, unambiguous, and machine-processable

form.
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Considering the first criterion, a graph model is preferable
to othérs, Queuihg Modél, Markovian Model etc., and have been
developed by many authors. Therefore, we introduce a graph
model, which is similar to Flow Graph [WESSELKAMPERS82]
[GAJISKI82] [KODRES78] [OLDEHOEFT83] [MEKLEY80] [JAJODIA83] and
Timed Petri Net [PETERSON81] [RAMAMOORTHY80] as a candidate which
satisfies the above criterion.

In order to model and to evaluate clearly the data flow on
the logical scheme of MMS, we begin with Parallel Flow Graph (in
short, PFG), i.e., an expansion of Flow Graph. Other
graphical schemes, process flow graphs, data flow graphs and data
dependence graph, are alike except that PFG is provided for the
performance analysis of logical schemes. PFG is a finite
digraph which has nodes, directed edges, and dot markings for
representation of processes, communication links and
communication media such as messages, respectively. We assume
-that those processes logically communicate with each other only
through channels, and that the execution itself is sequentially

performed within a process.

A. Node Primitives
According to input/output behavior, we introduce five node
primitives: process nodes, fork nodes, join nodes, select nodes

and merge nodes [AIBARABG].
Process Node (PN)
A process node has a single incoming edge for a single input

port and a single outgoing edge for a single output port. It
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receives one message as an input, and sends one message to the
output port. (See Fig. 3.1(a).) Throughout this chapter, we
denote that a message is the media of communications.

Fork Node (FN)

A fork node has a single incoming edge for a single input
port and n outgoing edges for n output ports. As 1s shown in
Fig. 3.1(b), it receives a message as an input, and sends n
messages to the n output ports.

Join Node (JN)

A join node has n incoming edges for n input ports and a
single outgoing edge for a single output port. As is shown in
Fig. 3.1(c), it receives n messages as n inputs from each
direction, and sends a message to the output port.

Select Node (SN)

A select node has a single incoming edge fbr a single input
port and n outgoing edges for a single output port. As is
shown in Fig. 3.1(d)[ it receives a message as an input, and
_sends a message as an output to an appropriate direction selected
from the n directions.

Merge Node (MN)

A merge node has n incoming edges for a single input port
and a single outgoing edgevfor a single output port. As is
shown in Fig. 3.1(e), it receives a message as an input from an
appropriate direction selected from the n directions,‘and sends a

message to the output port.
n means the number of incoming or outgoing incident edges.
If n is equal to 1, a node primitive can be regarded as a process

node.
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B. Node State and Time Factors
Each node primitive has a unique state at a time. There

are six states as follows:

1. input ready,

2. input,

3. process ready,

4. process, -
5. output ready, and

6. output.

We assume the state transition to be shown as in Fig. 3.2.
When a message flows into a certain node, the node changes its
state with time delay. The time delay of a node is defined as
the time elapsed from when a node state is input ready to when it
becomes input ready again. The time delay can be divided into
threé factors: the processing time P, the communication time C,

~and the waiting time W. Hence,

Total Time Delay = P+C+W.

Considering the meaning of input and output behavior of a
node, a communication time C can be divided into the input time
Cin and the output time Cout:

C = Cin+Cout.

Thus, a circular state transition requires the following

time wvalues.
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Phase 1: from input ready to process ready: Cin
" Phase 2: from process ready to output ready: P

Phase 3: from output ready to input ready: Cout+W

The value W, i.e., a waiting time, is the time that the node
spends to wait for the successor's input ready state. The
behavior "waiting" is caused by following synchronizations,

(Note that these synchronizations are mentioned only for the
process node primitive, In another case, some extensions are

needed.)

Synchronization 1:
A node whose state is input ready changes its state to input,
if and only if its predecessor's state is output ready.
Synchronization 2:
A node whose state is 6utput’ready changes 1its state to

output, if and only if its successor's state is input ready.

In>order to represent the time domain behavior, we label the
processing time on a node and the communication time on a
directed edge (See Fig. 3.3), because we éan obtain those times
as static time factors.

Considering the dynamic time-domain behavior, thg waiting
time must be included. However, we cannot clarify it except
the restricted case [AE84a], since the waiting time is a dynamic
factor which is affected by other nodes (which are adjacent to

others).
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3.2 Applicable Structure and Description

3.2.1 Representation of Graph Constructions

In this section we present basic properties of PFG which can
be denoted by the symbolic form [AE84al]. In contrast to the
reduction rules in the definition of PFG, there exist the
construction rules, which are called "sequential construction",
"parallel construction" and "selective construction", and which
perform precisely’reverse operations to reduction rules.
These constructions are denoted by expressions with a substitu-
tion form as follows. To simplify the notation, a module is
denoted by a single symbol which is unigue within a PFG as an

identifier.

1. Seguential Construction:
M:=a-b denotes the sequential construction of module "M"

into module "a" followed by module "b" as shown in Fig. 3.4(a).

Module "M" is called a "sequential module'".

2. parallel construction:
M:=a|b denotes the parallel construction of module "M" into
module "a" and "b" connected by the fork/join nodes as shown in

Fig. 3.4(b). Module "M" is called a "parallel module".

3, selective construction:
M:=a+b denotes selective construction of module "M" into
module "a" and "b" connected by the select/merge nodes as shown

in Fig. 3.4(c). Module "M" is called a "selective module".
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In the case of Fig. 3.5, the construction of the PFG begins
with module "A" at the highest level. Next we apply the above
constructions to obtain the scheme represented by Fig. 3.5 as

follows:

B:=D+E

D:=F|G .

After the abové’substitutions‘of expressions, we obtain the

symbolic form
A=((F|G)+E)-C

which represents the given logical scheme. Such an expres-
sion is equivalent to PFG, and is also another representa@ion of
the logical scheme. This is an important property because it
provides machine processable forms for a design support system.
The following section will show you that it is very usable fér

the simulator implementation.

- 53 -



~(a) Seqguential construction

(c) Selective construction

Fig. 3.4 Three construction rules.
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Fig. 3.5 Example of Parallel Flow Graph.
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3.2.2 Behavior of Modules

The message flow on the three kinds of modules at any level

are specified as follows:

Sequential Module

Fig. 3.6(a) essentially represents a sequence of two process
nodes, i.e., a sequential module where the input message is given
in turn. An input message flows into the node A and the node
B sequentially with’some time delayed. Fig. 3.6{(b) shows the
time chart of Fig. 3.6(a). In the condition that there are '"no
wait" caused by the synchronization, the time delay is equal to
C1+P1+C2+P2+C3. In a general case, however, the waiting time
W must be included so that total‘time delay is represented as

follows:
Total Time Delay = C1+P1+C2+P2+C3+W .

That waitihg time within a process node is caused by its
successor who is not input ready when he is output ready. - Such
waiting time can be hardly clarified deﬁerministically because it
is h&rd to clarify when the successor.will be input ready'while
its successor's status is affected by the successor's successor |
recursively. Therefore, we can label the static timg factor,
the processing time and the communication time, on node
primitives while we cannot label the delay time including the

waiting time on modules in general.
Parallel Module
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Fig. 3.7 illustrates a parallel module which contains two
modules A and B represented by squares, the fork node and the
"join node. An input message i is copied into two messages
with same identifier i at the fork node. Two messages flow
along the path F-A-J and the path F-B-J, respectively, and at the
join node, those are reduced into one. As is easily
understood, the total delay time of an input message in this
module is obtained as the maximum delay time of two paths.'
Considering the join node's behavior, it is needed that two
modules, A and B, must have the FIFO gueue for the input/output,
in'order to join two messages with same identifier. A1l node
primitiveé, the sequential module and the parallel module have
essentially the FIFO gqueue, In the case of selective module,
more detailed description is needed.

Note that, from now on, we use the rectangle or the sguare

for the representation of modules in figures,

Selective Module

Fig. 3.8 represents a selective module which contains two
modules A and B represented by squares, the select node and the
merge node; " The path of an input message 1i's flow, is
. switched by the select node according to conditions of the
message's contents or the status of module A and B. A
selective module indicates a non-deterministic bghavio; in the
meaning of that the direction of a meséage flow is not decidable.
Therefore, the total delay time of an input message in this
module should be obtained as the best case or the worst case.
Meanwhile, in order to keep FIFO manner, we must describe the

merge node's behavior in detail. In a selective module, it
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easily occurs that two consecutive message i and message i+1
arrive at a merge node in the reverse order, for the preceding
‘"message can take‘moré‘delay time than the following message
depending on the selected path. In order to avoid this case,
we assume that the merge node must select its input so that

message i+1 follows message i for any i (1g£ign).
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3.3 Simulator

'3.3.1 Requirements for Simulator

Before going into the main argument of a simulator, we
mention the user environment of its usage and the requirements

for its performance capability.

A. Environment

We assume that the user of this simulator operates it
interactively, because the performance evaluation is required
whenever the logical scheme is changed. For a simulator, we

define

Inputs: Workload,
Outputs: Performance, and

Parameters: Software/Hardware Configuration.

A simulator is regarded as the subsystem of MMS's design
support system. A total system configuration is not mentioned

in detail because we concentrates on the performance evaluation

in this chapter. If we are forped to mention MMS support
system configuration, it consists of two major system, the editor
and the éimulator, which constructs and analyzes MMS modgl, using
an interactive graéhic terminal. " For exampie, Fig. 3.9 illus-

trates the configuration of such interactive design system.

B. Requirements for Simulator

There are two major capabilities which are required for a



simulator. These are as follows;

(1) Performance Measurement and

(2) Behavior Inspection.
The outline will be discussed below.

Performance Measurement:

The first capability should be recognized as an extension to
cover the performance evaluation for the dynamic workload.
Any performance measure is derived from the time when a message
comes into a module and when it leaves the module. The
simulator can obtain the total time delay at a module, i.e.,
P+C+W, for any message. Therefore, any performance measure

can be derived by the integration of them. The simulator can

explore the following:

(1) The performance evaluation of workldad—sensitive measures
such as the response time, the input queue length ahd SO
on.

(2) The perforﬁance evaluation of the interactive scheme.

(3) The performance evaluation under the condition that there
are hardware restriction between the logical communication

link and its realization.

Behavior Inspection:
In order to quickly inspect the logical scheme to find
bottlenecks or other performance problems, such as detection of a

deadlock, it is needed for the simulator to visualize the message
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flow on the scheme. On the real-time simulation, the messagé
flow is visualized in the indefinite scaled time snapshots.
The ratio of the simulated time to the real-time is controlled by
a user. To change that ratio, the user invokes a simulator
command and uses the keyboard to define the new ratio. The
simulator can be terminated or interrupted at any time by calling
a menu to the display. Otherwise, it terminates when there
are no pending messages on the scheme. The inspection is
performed for a module at any level.

If the logical scheme has a structured property, it is
defined as the Parallel Flow Graph (in short, PFG), and both the
performance measurement and the behavior inspection can be per-
fo:med at each module on each hierarchical level [AES85b].
Fig. 3.10 illustrates also such concept, in which the inspection
point or the measurement point is placed at the node of syntax
tree. For the performance measurement, the simulator provides
the result of measurement.with the module designated by the
measurement point. For the behavior inspection, the simulator
visualizes the behavior of modules which are immediately sub-
ordinate to the module designated by the inspection point.
Using this capability, we can improve the performance for each
module. = It is needed for a user to designate the module in

order to set up the inspection or measurement point.
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Fig. 3.9 Example of total system configuration.
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Fig. 3.10 Hierarchical measurement or inspection.
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3.3.2 Simulator

To meet the above requiréments, the following specification

of the simulator is adopted.

A. Specification of Simulator

We specify the input, the parameters and the output of the

simulator. - For the parameters, we integrate them to addi-

tional input of the simulator. Consequently, the input of the

simulator is as follows.

Input:

(1) Workload.

(2) Hardware/Software Configuration.
(a) Logical Scheme of PFG
(b) Time Factors |
(c) Hardware Information
(d) Scheduling of Loop Node

(3) Simulator Control.
(a) Break Point
(b) Scaled Time Ratio

({c) Measurement (or Inspection) Point

The output of the simulator is classified into

ries according to the simulation mode as follows.

Output:

Performance Measurement Mode:

two catego-

(1) Input Interval and Output Interval of the designated module
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for any message.

(2) The number of input and output messages of the designated
module at any time.

(3) Input Queue Length at any time.

(4) Response Time of the designated module for any message.

Behavior Inspection mode:

(1) Status of the subordinate modules from the inspection point
at any time.

(2) The message flow from the designated inspection point on

the scaled real-time.

B. Implementation of Simulator

In the input of simulator, the workload, the logical scheme,
the time factors and the designation of measurement (or
inspection) points are realized by "script" which is coded like a
program format. Other inputs are realized by the simulator
ingquiry. We will explain the input and éutput of the

simulator briefly in an orderly manner.
Workload:

Since the workload is represented by an input sequence

(x1,x2,,“,xn), we describe it as follows:

$£{ Tin(1),Tin(2),....,Tin(n-1) }% ,
where n is the number of inputs. If n=1, the workload de-
scription is

${ 1% .
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The symbol "%{" and "}%" indicate the begin and the end of
character sequence, respectively. Tin(i) 1¢ign-1, which is a
non-negative integer, represents the input interval between xy
and x;,q for PFG model. This description can be simplified if
consecutive input intervals take the same value. For example,
the workload, which has 5 input data and the input interval T for
all, is described as follows:

${ 4(T) 1% .

Logical Scheme of PFG:

To clarify the description, an example is given in Fig.
3.11. The exaﬁple is described by the following symbolic
form. Note that this symbolic form does not permit more than
.one construction for each line to provide the time factor des-
cription fqr control nodes such as fork, join, select, merge and
loop nodes. Thus, M1=(E1|E2|E3|E4)*4 is not acceptable in the

example.

@MAIN
MAIN=M1-M2
M1=A%4
M2=B1+B2

A=E1|E2|E3|E4

The symbol "@" identifies the most abstract module MAIN,
Furthermore, we can simplify the notation for a number of
eguivalent modules, i.e., those modules are copied from an
original module. For example, if E1=E2=E3=E4(=E), the

notation A=E1|E2|E3|E4 is simplified to A=4|E. In the same
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way, other cases are described as follows:

‘A=E1-E2-E3-E4 is simplified to A=4-E and

A=E1+E2+E3+E4 is simplified to A=4+E.

The detailed syntax of the script is described in the
Appendix A.1. In the implementation, a sequential scheme is
represented as "M1-M2" instead of '"M1+M2" by reason that the

symbol "-" is not acceptable in our machine.

Time Factors:
To simulate a PFG scheme, the processing time and communica-
tion time are provided for node primitives. In the case of

the above example, they are described as follows:

Process node E1 is described as

#E1(C3,P3,C4),
where E1 is the identifier of the process node, and C3, P3, and
C4 are the communication time for an input, the processing time,

and the communication time for an output, respectively.

Fork/join nodes are described as

#A(C2,P2|P4,C5),
where A is the identifier of the parallel module, and cz2, pP2, P4,
and C5 are the cdmmunicagion timebfor an input of thé fork node,
the processing time of the fork node, the processing time of the
join node, and the communication time for an output of the join

node, respectively.
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Select/merge nodes are described as

#M2(C6,P6|P8,C9),
where M2 is the identifier of the selective module, and C6, P6,
P8, and C9 are the communication time for an input of the select
node, the processing time of the select node, the processing time
of the merge node, and the communication time for an output of

the merge node, respectively.

Loop node is described as

#M1(C1,P1,C6),
where M1 is the identifier of the iterative module, and Ct, P1,
and C6 are the communication time for an input of the loop node,
the processing time of the loop node, and the communication time

for an output of the loop node, respectively.

In the implementation, those time factors are represented as

non-negative integers.
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Fig. 3.11 Example of logical scheme including a loop.
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Designation of the Inspection or Measurement Point:

A user can designate an arbitrary module as the objective
module to be inspected or measured. " Thus, the simulation
result is presented for the designated module. For example,
if the user intends to measure the module A in Fig. 3.11, he can
designate A in the following manner:

observer {i/MAIN/M1/A } .

If he intends to get the total performance, the description

is as follows:
observer { /MAIN } .
Therefore, module designation is performed by '"path

expression" on the the module hierarchy of a logical scheme.

Other Inputs:

Inputs of hardware information, scheduling of loop nodes,
the break point and the scaled time ratio are realized by inquiry
of the simulator. The simulator provide some guestions to the
user to obtain the above inputs. For the hardware
- information, following items are considered.

(1) Capability of Processor,
(2) Capability of Communication Link, and
(3) Interconnection Network Configuration.

( Point-to-Point, Bus, etc.)

For the scheduling at a loop node, following two cases are
considered as a convenient and temporary method:
(1) No scheduling.
(2) Restrict the message incoming of the iterative module

according to the message outgoing.

- 73 -



Break points are classified into two categories which are
the "space'" break point and the "time" break point. In the
space break point, if a user designates a process node and its
status, simulator breaks his behavior when the designated process
node becomes the specified status. In the time break point,
the user sets a logical time. The simulator breaks‘his
behavior at the specified logical time.

The scaled time ratio has been implemented. In addition
to original capability, it is able to instruct "step'by step"
behavior. That means that logical clock is stopped until a

user invokes a simulator command.

Outputs:

The outputs have been already realized except the behavior
inspection. At the present stage, the graphical display is
not realized owing to the hardware environment. Instead of
the graphical display, as a very simple and handy method, we have
realized "stétus snap" in which the events caused by a message

flow are reported as statements. -

Fig. 3.12 illustrates the simulator cohfiguration. As is
mentioned above, Script includes the description of the workload,
the time factors and the measurement (or inspection) point.
| The simulator can work even on a small UNIX machine (Radio
Shack TRS-80 Model 16 with XENIXTM), where about maximum 600
primitive nodes can be realized. About 50,000 primitive nodes

can be realized on VAX 11/750.
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3.4 Case Studies

To demonstrate the use of simulator, we provide an example
of the script in the following. The section enclosed in the
marks "/*" and "*/" declares a comment in which any description
is ignored. In this example, the horiiontal broken lines with
PFG's names (Thus, these are comments.) are added to indicate the
degree of PFG construction. PFG construction starts with a
PFG G which consists of one process node. Gq is constructed
from Gy by applying the sequential construction: MAIN=A-B-C-D.
In the same manner, Gy...Gg are constructed in order.
Therefore, those have the relation such that Gg Gq Gy G3 G4 Gs.

Since this script represents the PFG Gg about the
description of the logical scheme and time factors, in the case
of G3 evaluétion(0§i§4),'the description between the broken line
with Gg and one with G; must be omitted. In this case, the
workload is described as 50 inputs which have the same input
interval 75 respectively. The simulation result of this
example is shown in Fig. 3.13. Fig. 3.13 illustrates the
response time improvemeht associated with GrG1+G2:G3,Gy and Gg.

The simulator is‘still been déveloping for the case of

general logical scheme.
An Example of Script:
@MAIN . ¥MAIN(50,2000,2)
¥ Gy - - - = = = oo oo %

MAIN=A-B-C-D #2(50,1000,30) #B(30,800,20)
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/*

/*

/*

/*

/*

/*

/*

#C(20,300,20)

#D(20,60,2)

Gy - - - - = = = = = - - - - -
A=(5-I)-G  #I(50,200,50) #G(50,50,50)
B=(2-F)-E #F(30,400,30) #E(30,100,20)

Gy, - - - = = = = = = - - - - -
F=5|aJ #F(30,5|5,30) #J(10,100,10)
C=10+N #C(20,20]5,20) #N(20,300,20)
I=10|M #1(50,10|5,50) #M(5,30,5)

Gy - - - = = = = ~ - - - = = -
G=4+$S #G(50,2|1,50) #5(50,50,50)
E=X-Y-2 #X(30,10,30) #Y(30,80,30)
J=P-Q-R #7(30,10,30)  #P(10,40,20)

#0(20,40,20)  #R(10,30,10)

Gy - - - - - - - - - - - - = -
Y=4|W #Y(30,10]5,30) #w(8,20,8)
D=2+0 #D(20,4[2,2)  #0(20,60,2)

Gg - =~ - = = = = = - - - - = =

Workload */

${ 49(75) 1%

Measurement Point */

observer { /MAIN }
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Fig. 3.13 Example of simulation results.
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Furthermore, we demonstrate the simulation results of 2-
dimensional bit-pattern matching presented in subsection 2.5.2.
‘'The job can be divided into parallel part and pipelined part,
sequentially, where the sum of the parallel processors and the
pipelined processors is fixed to 29. The simulation input
data is based on the execution time derived from the individual
| part measurements of the realized program ( as shown in Table 2.5
). Fig. 3.14 shows the simulation results comparing with the
experimental results, and Table 3.1 shows the detailed results.
The simulation consuming time for the experiment is about 70
seconds per one plotted point where Radio Shack TRS-80 model 16B
is used, and about 25 seconds per one plotted point where DEC
VAX-11/750 is used. The script of the simulation is deécribed

as follows.

Script of 2-Dimensional Bit-Pattern Matching:

$n=$1 /* the number of GA */

$m=29-%$n /* the number of REC */

/* Scheme */
@main‘
main=ga-rec
ga=($n)+gasub

rec=bankl-($m)-recsub-bank2-mast2

/* Time factor */

$port A = 2114

- 79 -



$bus_ A = 297
$bus B = 72
$mastl = 1
$mast2 = 1
$ga_p = 48885

#ga($port_A,$mastl|$mast2,bus_B)

#gabus($bus_A,$ga_p,$bus_B)

$portB1 = 513
$busB = 72
$portB2 = 326
$busC =9

$portC = 64

$a=5910%14/$m+300

#bank1($busB,1,$portB2)
#recsub($portB2,%$a,$portB2)

#bank2($portB2,1,$busC)
#mast2($busC}1,$portC)

/* Input sequence */
${ 102(0) 1%

/* Measurement point */
observer { /ﬁain }

End of Script
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Table 3.1

Simulation results of

2-dimensional bit-pattern matching.

Number Number Simulation Results (sec)
of GA of REC Total t. t
int res
1 28 51.76 0.4879 26.639
2 27 26.63 0.2419 13.971
3 26 18.25 0.1601 9,758
4 25 13.90 0.17212 7.661
5 24 11.43 0.0970 6.411
6 23 9.86 0.0789 5.584
7 22 8.57 0.0685 5.002
8 21 7.68 0.0597 4.572
9 20 7.04 0.0538 4,245
10 19 6.86 0.0513 4.163
11 18 7.10 0.0529 4,281
12 17 7.37 0.0546 4,413
13 16 7.68 0.0566 4.562
14 15 8.02 0.0589 4.731
15 14 8.41 0.0615 4,926
16 13 8.88 0.0646 5151
17 12 9.41 0.0681 5.416
18 1 10.04 0.0723 5.729
19 10 10.81 0.0774 6.107
20 9 11.74 0.0836 6.569
21 8 12.90 0.0914 7.149
22 7 14.40 0.1014 7.897
23 6 16.41 0.1149 8.895
24 5 19.21 0.1337 10.296
25 4 23.43 0.1620 12.399
26 3 30.45 0.2092 15.910
27 2 44,51 0.3038 22.936
28 1 86.71 0.5876 44,029
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3.5 Summary

This chapter has mainly demonstrated the simulator as an
MMS's design support tool which can estimate the systems perform-
ance. Performance of MMS's was evaluated by two measures,
i.e., response time and‘interval time, from which throughput, .
parallelism etc. can be derived. We can find that it was
sufficient to evaluate the restricted processing scheme con-
structed by pipelined and/or parallel processing in MMS's.
Moreover, the simulation experiments compared with the multi-
processor execution indicated that the simulator is high-speed
and is suitable to the systems.

The simulator can accept the réstricted scheme, i.e,

extended series-parallel flow because of the restriction of its

translator. The interpreter, however, is possible to apply an
arbitrary scheme. Therefore, the simulator can accept another
scheme by exchange of the translator for another one, For

example, we have implemented a new translator for 2-demensional
array simulation. Appendix A.2 demonstrates a syntax of

script for 2-dimensional array scheme.
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Chapter 4
Interconnection Network Based on

Three-Dimensional Integrated Circuits

A realization of MMS's based on PMS level architectures is
presented in this chapter. The most crucial issue of PMS
architecture realizations is the Switch, that is, interconnection
‘between processors or between processors and memory modules.
Though researchers have proposed various techniques, there are
few proposals suitable for realizétion of MMS's with many
processing elements. In this chapter, we propose a common
memory with very low access conflicts, based on a new aevice’
technology, that 1is, 3-dimensional integrated circuits [AE85a]l.
Moreover, an interconnection network incorporating the common
memory as its elements is presentéd for a realization of MMS's.

e

Though the crossbar is the best known scheme for connecting
n processors to n memory modules { or processors ), its cost,
i.e., O(nz) beéomes too expensive for a large number of n.
Therefore, a lot of modifications have been discussed, one kind
of which is the multistage network‘with the cost of O(n log n).
Though the multistage network is also a good scheme because of
the full access property [SULLIVAN77], the bandwidth.( or the
throughput ) is not so high as the crossbar switqh. In order
to improve this, Dias et al. [DIAS81] have proposed thé buffered
delta network, which performance may become comparable to that of
the crossbar switch as to the bandwidth. The buffered delta

network, however, suffers from additional delay arising from a
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number of buffering besides to the delay of O(log n) which exists

originally in the multistage network.

4.1 Overview

A typical multiprocessor configuration is shown as in Fig.
4.1, which represents the memory modules explicitly. In this
configuration the crossbar switch 1s the best scheme,
disregarding the cost of,O(nz), where n is the number of ports.
Therefore, it has been aqtually used for cases of relatively
small n ( e.g., n=16 at C.mmp [WULF81] ). For the massive
multiprocessor case ( e.g., n=103 ), however, its cost is
considered too expensive to be realized.

In order to decrease the network cost, the packet switching
interconnection network with multistages ( shown as in Fig. 4.2 )
is becoming popular [FENG72], because it has the reasonable cost,
i.,e., O(n log n) and the full access property [SULLIVAN77] that
all ports can access distinct destinations simultaneously.
In this case the memory does not appear explicitly and the packet
flows unidirectionally. ‘ |

The bandwidth ( or the throughput ) of thé multistage
network, however, is lower than the crossbar switch, aﬁd, to
improve this, Dias{et al. [DIAS81] have proposed the buffered
multistage interconnection network ( actually, the buffered delta
network ) which performance may become comparable to that of thé
crossbar switch as to the bandwidth. The buffered delta
network, however, includes the delay increasing with the buffer

size besides to the delay of O(log n) which is essential in the
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multistage network.

In this chapter, we discuss an alternative way of improving
the throughput, where the common memory or the multiport memory (
we often refer to it as n-port memory ) plays an important role.
The multiport memory is, in a sense, logically equivalent to the
memory with the crossbar switch. An n-port memory is shown
as in Fig. 4.3. Suppose that the size of memory is large
enough to divide the area into sub-areas used for processor-to- .

and Pi mean the

processor communication as in Fig. 4.4, where aj

address and the processor, respectively.

The features of the idealized n-port memory are listed as
follows:
(i) random access is allowed, and
(ii) reader and writer processes can be executed concurrently,
because they can read and write all addresses
simultaneously except that the same address cannot be

accessed at a same time by multiple writer processes.

Obviously, the idealized n-port memory is also expensive, rather

more than the crossbar switch with the memory. Therefore, we
introduce the way of reducing the complexity with the multiétage
sfructure, where the module on each stage has a restricted size (
e.g., 2x2-port memory ). Moreover, such a module is assumed
to be realizable by the three-dimensional VLSI technology
[AE84b][AE85c]. We call this network the COMBINET ( COmmon-

Memory-Based Interconnection NETwork ).
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The features of COMBINET are summarized as,
(1) the throughput is essentially the same as the buffered
‘multistage network,
(2) the delay of each stage is kept constant for any buffer
sizeias long as possible to improve the throughput, and
(3) the multiple channels on a path and the broadcast are also

easily realizable.
Features (2) and (3) come from the property of the common memory,

which is assumed to be realizable by the multi-layered 3-D VLSI

technology.
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Fig. 4.1 Typical multiprocessor' configuration.
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4.2 Three-Dimensional Common Memory

About thé multiport memory, Chang [CHANGSO] has proposed ‘a
multiple-read, single-write memory which can be realized with the
conventional ( i.e., two-dimensional ) LSI/VLSI technology.
Recent semiconductor technologies make it possible to realize the
three-dimensional integrated circuit [KAWAMURAS83][KAWAMURAS84],
which is expected to be extensible to the large-scale or even fo
the very-large-scale. When assuming the three—dimensional
VLSTI ( in short, 3-D VLSI ) technology, the multiple-write as
well as the multiple-read can be realized easily [AE84].
Note thét, even in this type of memory, only multiple-write in
the same address at a timé must be avoided.

In this chapter, however, we focus the communication
between processors by the message passing ( like the programming
in Ada™ [Dpop80]1, Occam™ [INMOS84] etc. ), instead of the
variable sharing communication. ’ For this case the conflict
of multiple-write at the same address access is ignofed, because
Py ( i=1,***y,n ) in Fig. 4.4 can read the whole area but can
write oﬁly‘the area from a;_4 to aj.
In this section, we describe how to design a multiport

memory with such multiple accesses gsing the idealized 3-D VLSI
technology. Suppose that the fundamental part ( hereafter,
we call it the memory cell ) of the memory consists of NMOS SRAM
( N-type Metal-Oxide-Semiconductor Static-Random-Access-Memory ).
Our proposal of the memory cell is shown in Fig. 4.5, where Qq,
QZ' Q3, Q4qr Ry, and Ry construct a memory cell in the
conventional NMOS SRAM, and Qq, Qy, Rq, and R, work as a flip-

flop for holding the single bit data. Though Q3 and Q4 are
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used for both read and write of data in the conventional memory
cell, they work only for data-read, and Q5 and Qg are provided
especially for data-write.

The total configuration of a_three—dimensional common
memory is shown in Fig. 4.6, where each layer works as its own
memory and the value of the same address is always identified
through all layers.

The interconnection among memory cells at vertical axis is
shown in Fig. 4.7. When the write-access for the memory cell
at address j of i-th layer occurs, the cell is accessed through
Qg and Q, or, Q5 and Qg for data-write. At the same time
the cell at address j of all layers receives the same data
through Q7 and By, or, Qg and B,. At other cells, Qg or Qg
writes the data received from B, or B,.

B4 and B, work as buses through all layers when a data is
written at a layer. The behavior of By and B, is represented

as in Table 4.1.

Table 4,1 Behavior of B1 and Bsy.

B4l By Behavior

0ofo Nothing.
-0 |1 Write "O".
110 Write "1".

1 11 Conflict.

The conflict occurs only when the different values are written

into the same address at multiple layers ( e.g., "0" at p-th
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layer and "1" at g-th layer, where piqg ). The problem of
conflict, however, is not discussed here because of the reason

described above.

Obviously, the number of layers corresponds to the number
of ports. Even if we assume the multi-layered 3-D VLSI
memory, the number of layers should be expected rather small (

e.g., less than ten ). For convenience, we assume that the

number of layers is four ( ,which is known to be already
realizable experimentally ). Hereafter we restrict our

attention to the four-layered 3-D VLSI memory, i.e., the four-

port ( or 2x2-port ) memory.
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Fig. 4.6 Three-dimensional common memory.
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Fig. 4.7 Interconnection among memory cells at vertical axis.
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4.3 Common-Memory-Based Interconnection Network

The COMBINET is obtained from the idealized n-port memory
as the multistage network is derived from the crossbar switch.
Therefore, the topology of COMBINET is the same as the multistage
network. Though many possible configurations may exist for
COMBINET, we restrict our attention to the type of multistage
configuration consisting of the 2x2-port memory modules ( four-
layered 3-D VLSI realizable, and topologically, the same as the
2x2-switching-element networks ) due to the reason described in
the previous section.

A 2x2 dual interconnecting modular netﬁork device
—Dimond— 1is shown in ?ig. 4,8, quoting from [JANSENS8O0]. On
the other hand, the module of COMBINET is shown in Fig. 4.9 which
is based on a 2x2-port memory. Comparing this module with

the Dimond,

(1) the 2x2-port memory block is very large. It occupies
almost the total size of the module, and
(2)the transfer block plays a role of data-transfer

processor, togethet with the write block connected to it.

The 2x2-port memory has logically four circular gueues on the
memory space, Each gqueue has two pointers, i.e., one is a
pointer to read a data from the gqueue, and the other is to write
in ( see Fig. 4.10 ). The transfer block of module i and the
write block of module j are connected as shown in Fig. 4.11.
The transfer block of module i reads the data from‘its own

address which the read pointer indicates, and send it to the

- 98 -



write block of module j connected to module i. This
operation repeats until the packet ends. Each packet
includes the routing information, i.e., path code or destination
address, and the packet length. The write block of module j
begins to write the data from module i into the 2Z2xZ-port memory
of module j just after it receives a data ( e.g., 32 parallel
bits ). Note that the transfer block and the write block
work together just as a data-transfer processor, and that this
operation of two blocks is pipelined only with the delay of
transfer time as shown in Fig. 4.12. The transfer time is
constant for the direct data-transfer and is included within the
time required to transfer a packet through the module ( t_pass
[DIAS81] ).

In this chapter the case of the direct data-transfer is
only discussed. However, the function f may be added through
transfer as shown in Fig. 4.13. Since f may increase the
transfer time, only simple functions are allowed. ( The
transfer time should be uniform even if f is not unigue on each
module. )

Each module has four-way connections for two inputs and two
outputs as shown in‘Fig.4.14. Note that 1-3 and 2-3 ( or 1-
4 and.2—4 ) transfers can be done in pérallel as well as 1-3 and
2—4, or 1-4 and 2-3, where the number corresponds to the port.
This comes from the fact that the 2x2-port memory has separated
queue buffers for each transfer. Reading operation, however,
is done sequentially for the buffer including more than one
‘packet sequence. The similar situation occurs for multiple
broadcasting. When the data is broadcasted, e.g., ﬁrom port

1, both the buffer of 1-3 and that of 1-4 include the same data.
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Note that these broadcasted transfers are done in parallel with
another broadcasting ( 2-3 and 2-4 ) and that the sequential
reading is required also for this case.

The COMBINET may have all configurations already realized
in the multistage network consisting of 2x2-port modules.
Since multiple transfers between ports in the module can be done
in parallel, the blocking ( i.e., the conflict in the communica-
tion link ) does not occur. An 8x8 shuffle-exchange COMBINET
is shown in Fig. 4.15, where the line with a dot shows the
connected transfer block with the write block.

The memory size of the module is estimated as shown in
Table 4.2, comparing it with the case of the conventional SRAM.
The estimation is done by figuring the three-dimensional mask
pattern of the memory cell. The buffer size of each queue (

e.g., 85K bits ) is long enough to improve the throughput.

Table 4.2 Estimated capacity of a 3-D VLSI RAM.

»2—D SRAM 2x2 3-D VLSI RAM
bit/chip I bit/chip | bit/queue
64k | 21K 5.3K
256K 85K 21K
1024K I‘ 340K 85K
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4.4 Performance Evaluation

Though the 2x2-port memory module has four queues described
in the previous section, it is modeled by two queues and an
idealized 2x2-crossbar switch for a performance analysis in this
section. We assume that each gqueue connects the input port
of the 2x2-crossbar switch to the output port of the preceding
stage, i.e., it plays a role of a buffer between stages.
This case has been analyzed by Dias et al. [DIAS81]. The
environment of the networks and their operation are assumed

mainly as follows:

(1) The berformance of the networks is compared in an
environment of maximum loading, i.e., there is a buffer at
network input links which is filled by an input packet
whenever it is emptied by the network. It is assumed
that buffers at network output links are emptied
instantaneously.

(2) All input packets are aséumed to be independently and
équiprobably directed to each network output link.

(3) The delay at a 2x2 switch module is modeled aé consisting
of two time intervals: time t_select for selecting a
switch output link and time t_pass for passing the data to

the selected output link [DIASS81].

For the case of 2x2-port memory module, we may assume that
t pass=0 because of the circular gqueues. The transfer block
of a module can transfer data of a packet from the queue

instantaneously, when the transferring direction of the packet is
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recognized by the module and the buffer of the following stage is
available. Moreover, the write block of a module can put
data of a packet into the gueue instantaneously, when the
transfer block of the module begins to get data from the gueue
which is completely occupied by data.

One of the results of the analysis, i.e., the normalized
throughput versus the number of stages, is shown in Fig. 4.16.
The throughput of a network for a particular environment is the
average number of packets put out in unit time, and the
normalized throughput is the ratio of the throughput to the

maximum throughput.

- 110 -



o o [
. N .
[@))] [0} (o]

normalized throughput
[an]
~

0.2

0.0

Ficj° 4,16 Normalized throughput versus number of stages .

COMBINET - infinite.buffers

unbuffered crossbar switch

- & Py & .

COMBINET - single buffer

unbuffered delta network

[DIAS81].

7 - 9 11

number of stages

- 111 -



4.5 Summary

In this chapter we proposed the COMBINET as a new multi-
processor interconnection network, and discussed its realization

using the 3D-VLSI technology.
The features of COMBINET are summarized as follows:

(1) the throughput becomes similar to that of the multistage
network with’infinite buffers, because the module, i.e.,
the 2x2-port memory works as a buffered 2x2-crossbar,
where the buffer length is long enough, and

(2) the delay is constant for each stagé, not depending on the
buffer length, because the transfer between modules is

pipelined.

The operation for data between modules in the COMBINET can
be inserted, although this feature is not discussed in the
chapter. This may bring varieties of functions into the

massive multiprocessor architectures with the COMBINET.

The COMBINET stated here is only a prototype, i.e.,
constructed by the 2x2-port memory modules. For a lafge
number of n, e.g., 512, the number of modules become§ 256x9,
This number, however, is reduced to 64x3, if the hodule is an
8x8-port memory, although it requires the 16-layered 3-D VLSI
technology. More configurations of COMBINET will be derived
from many researches of the multistage networks ( e.g.,

[SIEGEL81a] [SIEGEL81b] [CHEN81] [BARNES81] ). Moreover,
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other configurations than the multistage network are alsb

realizable ( e.g., the processor array [AE85c] ).
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Chapter 5

Conclusions

5.1 Conclusions of the Dissertation

We have presented fundamental issues for hardware design of
MMS's aimed at increasing their performance. The objective
systems are assumed’to be designed as dedicated processors for
the purpose of highly parallel processing. Moreover, the
systems are required to apply a wide variety of problem. The
first assumption reasonably comes from needs for supercomputing
architecture realization; however, the second assumption mainly
comes from fabrication costs. In reality, significant reduc-
tion of the cost in recent computer systems is due to the mass
production of the same chips. Therefore, the cost of systems
is closely related to the number of their production, i.e., a
variety of their’applications. Thé cost, however, has not
explicitiy presented in this dissertation because it is difficult
to precisely predict the costs. We have implicitly referred
to the system costs which can be reduced by wide appliéations of
the systems and the construction using a number of homogenebus

processing elements.

First, we have discussed about multiprocessor approaches
toward MMS's. Through the design of the realistic multi-
processor system and several experiments using the system, we

have pointed out the crucial issues at the design and realization
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of MMS's. We have focused on two issues of them: performancé
prediction and evaluation of the MMS's, and interconnection

between the processing elements for a realization of MMS's.

The first issue have been solved by simulation method.
Our trial began with modeling a processing elements by a node
which had only simple state transition with two types of control
functions. The performance prediction and evaluation is
obtained by the simulator based on the model. Owing to the
model simplicity, the simulator realized on a UNIX system has
sufficient simulation capability for the number of processors in
MMS's. The performance measurements proposed in Chapter 2,
i.e., interval time and response time, for designated MMS's can
be interactively obtained with various information about the

execution time.

For the second issue, we have proposed interconnection
networks containing several switch elements using the common
memory that 1is based on the 3-dimensional VLSI technology.
The switch elements can select a processor communication path
with data buffering. Since the common memory in the elements
can be accessed without conflict, the interconnection networks

will connect processors in MMS's at high throughput.
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5.2 Future Problems

The following future problems are left unsolved in our
investigation, when we realize such Massive Multiprocessor

Systems.

(1) Improvement of the performance evaluation system

The simplicity of the model proposed here decreases the
simulation time in the performance evaluation.of‘MMS's.
However, since it allows description inaccuracy of processor
behavior, the model could not apply to detail analysis and
verification of MMS's with complex behavior elements. It is
expected to improve the mddel and the simulation system under
consideration of a trade-off between model granularity and

simulator consuming time,

(2) Switch element of the interconnection network

The switch element with 3-dimensional common memory has only
simple data transfer function. In order‘to applied it to a
varietj of network topology, the switch element should be
extended to a flexible and high performance communication

element, i.e., the communication-oriented processor.

(3) Fault-tolerance

With the increase in processing elements of MMS's, the
probability of existing faulty units in the system goes up
increasingly. Since it is always difficult to expect a
complete system that includes no faulty unit, MMS's need‘to equip

fault-tolerant capability in levels of hardware and software.
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In particular, since an interconnection network in MMS's become
considerablyvcomplex, its faulty should be inspected dynamically

or statically [AE85c].

(4) Software utilities ( operating systems, description
languages, etc. )
MMS's require system software which helps application
programs. efficiently utilize hardware resources, e.g., processing
elements, and description languages for easy representation of

highly parallel processing.

(5) Three-dimensional VLSI technology
It is required for realization of the low conflict common
memory to improve and establish the 3-dimensional VLSI

technology.
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Appendix
Syntax of thechript

A.1 Extended Series-Parallel Flow

script ::= main_module declaration
logical_scheme
time factors
set_pbserver
workload -

set_breakpoint

|

|

|

|

| set_variable
|

| hardware constraint
l

print_variable

main module declaration ::= '@' module

logical_scheme ::= module '=' sequential_ module
| module '=' parallel module
| module '=' selective module
| module '=' iterative module

sequential_module ::= module

| sequential_module '-' module
| copy '-' module
| sequential_module '-' copy '-' module
parallel module ::= module '|' module
| parallel module '|' module
| copy '-' module
| parallel module ‘|' copy '|' module
| module '|' copy '|' module |
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selective module ::= module '+’ module

1,1

selective module '+' module

selective_module '+' copy '+'

|
| copy '+' module
|
| module '+' copy '+' module

iterative_module ::= module '*' repeat

copy ::= number

| "(' expression ')'

time factors

. time ',' time ")’

= '#' module '(' time ',
| "#' module '(' time ',' time '|' time ',' time ')’

time ::= /*empty*/
| expression
set_observer ::= "observer" W'>path_name '}!
= "g{" interval "}&"
I ll%{" "}%“

interval ::= expression

| interval ',' interaval

expression '(' interval ')'

set_variable ::= variable '=' expression
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set breakpoint

::= "break" '{'
| "break" '{'
| "break" '({
| "break" '{'
| "break" '{'
| "break" '{’
| "break" '{'
| "break" '({’

hardware_constraint :

element "input" ‘(' token ')' '}
element "procs" '(' token ')' '}’
element "output" '(' token ')' '}'

"at" number '}'
"interval” number '}’
"queue" number '}’
"term" number '}'

element "wait time" '(' number ')' '}’

-
-

= "exelem" '{' element_list '}’
| "exedge" '{' edge_list '}’

element list ::= element

| element_ list ',' element

element ::= path_name
path_name

path_name

|

|

| path_name
| path_name
l

path_name

path_name ::

1 / 7 "fork"
1 / 1 "j Oin"
I/I "Select"

/' "merge"
l/l "loop"

'/' module

| path name '/' module'
|

path_name '/' module '.' number

= edge
| edge_1i

element "(1i)

| element "(o)

st ',' edge

print variable ::= '?' variable
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expresion ::= '(' expression ')'

expression '+' expression

expression '-' expression

expression '*' expression

expression '/' expression

1o?

'-!' expression

variable
argument

number
| module alpha
| module numeric
variable ::= '$' alpha
| variable alpha
| variable numeric

argument ::= '$' number

number ::= numeric

| number numeric

- 130 -

|
|
|
|
] expression '%' expression
I
|
|
|



Two-Dimensional Array

script ::= variable def array size def cell def
default_def workload

variable def ::= /* empty */

| "VvAarR" '{' variable_ list '}'
variable_list ::= variable_assign
| variable_list variable_assign

variable assign ::= variable ":=" expression

array size def ::= "ARRAY" '(' expression ',' expressibn !

cell_def ::= /* empty */
| cond_list

coﬁd_list ::= cond_statement

| cond_list cond_statement

cond_statement ,
::= "CONDITION" '(' cond_expr ')' '{' time_def "}’
| "CONDITION" '(' cond_expr ')' '{' cond_list '}’

cond_expr ::= comp

cond_expr "AND" cond_expr
cond_expr "OR" cond_expr
"NOT" cond_expr

'(' cond_expr ')’
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comp ::= expr '<' expr

| expr '<=' expr
| expr '>' expr
| expr '>=' expr
| expr '=' expr
|

expr '<>' expr

time _def ::= /* empty */

| time_def set time

| time_def variable assign
set_time ::= "PROC" ":=" expr

| "up" "e=" expr

| "DOWN" ":=" expr

| "LEFT" ":=" expr

|

"RIGHT" ":=" expr
default_def ::= "DEFAULT" '{' time_def '}'

workload ::= source_list
source_list ::= source statement

| source list source statement

source_statement
::= "SOURCE" '(' "upP" '")' '{' source_cond '}'
| "SOURCE"™ '(' "LEFT" ')' '{' source_cond '}'
source_cond
::= "CONDITION" '(' cond expr ')' '{' input interval '}’

input_interval ::= "INTERVAL" '(' interval ")'

interval ::= expr

| interval ',' interval

| expr '(' interval ")'
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expr ::= expr expr

expr '-' expr
expr '*' expr
expr '/' expr
expr '%' expr
expr '!'
tAa
expr

'-' expr

expr

I(l expr l)l
number
variable

argument

| X parameter

| Y_parameter

lxl

X_parameter ::

Y parameter ::='Y'

variable ::= 'a' | .. | 'w z ‘Al

| number numeric
argument ::= '$' number

numeric ::= '0' | .. | '9'
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