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ABSTRACT

The transition of a quantum state associated with the false vacuum decay of a
metastable system is investigated based on the WKB wave functional approach. In
a covariant manner, we reformulate the WKB wave function for a multidimensionai
tunneling system with finite degrees of freedom, which describes the quasi-ground
state of the system. Then we extend the formalism to the case of a field theory
and develop a systematic method to construct the wave functional which deter-
mines the quantum state after the false vacuum decay. A clear interpretation of
the resulting quantum sta.te'is given in the language of the conventional second
quantized picture. Usi:ng'Vthis'forma,lism, we hi\'restigate'the quantum state during
and after the nucleation of an O(4)-symmetric bubble. We find that the quantum
state inside the nucleated bubble is Lorentz-invariant but very different from the
Minkowski vacuum. There exists a family of hypersurfaces on which the enei'gy
density is constant as a consequence of the invariance of the state, and the éxpec—
tation value of the energy momentum tensor behaves like radiation. Then we find
the possibility of creating a homogenéous and isotropic open universe through the
nucleation of an O(4)-symmetric bubble. To extend this investigation to more gen-
eral cases, we study tunneling phenmenon in silnplekqua.ntum mechanical systems
with émphasis on the interaction between the tunneling mode and that coupled to
it. Analysis using the WIXB wave function shows that the energy is transferred to
the tunneling mode, and implication to a false vacuum decay in the presence of

field excitations before the tunneling is discussed.
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1. Introduction

The quantum tunneling is an old problem as the quantum mechanics itself. At
present, it is important in many areas such as nuclear physics [1], the scanning
tunneling microscopy [2,3], mesoscopic device in solid state physics [4,5], chemical -
reaction [6,7,8] and biology [6,9]. In the field of cosmology, too, a tunneling pro-
cess is important because it is helieved that there were several epochs at which
the universe underwent phase tmnsmons at its early stage Among such phase
transitions, most influential ones are those caused by the deccw of a false vacuun,
i.e., a first-order phase t1a11S1t10n of a metastable vacuum to a more stable state _
through the tunneling. The particular inter est i taken in the false vacuum dec ay
during an inflationary stage of the universe [10], which was recently revived as the

extended inflation model [11] and subsequently in several other scenarios [12,13].

The false vacuum decay is a tunneling phenomenon in field theory, whose dy-
namics was first studied by Voloshin, Kovzarev and Okun [14], and a method to
calculate the bubble nucleation rate and to describe the dynamics of a nucleated -
bubble was given by Coleman [15] and by Callan and Coleman [16], using the Eu-
clidean path integral. Subsequently, a number of efforts were made to study false -
vacuum decay in various situations [17-28]. One of the most important results is the
fact that the decay rate is predominantly given by the path integral around a Eu- -
clidean classical solution with O(4)-symmetry, called an O(4)-symmetric bounce. -
In particular, in the situation when the effect of gravity can be neglected, it was-
proved rather generally that the O(4)-symmetric bounce solution has the minimum
action among the Euclidean classical solutions [17] and has a unique negative 111ot1e
around it [18]. The O(4)-symmetric bounce solution has a bubble-like structure,
with the field value approaching to that of the false vacuum at the EL{clidean in-
finity outside the bubble and close to that of the true vacuum inside the bubble..
When this solution is analytically continued to the corresponding Lorentzian solu-
tion, it describes the motion of a nucleated bubble. Because of the O(4)-symumetry
of the bounce solution, it has the O(3, 1)-invariance, i.e., Lorentz invariance, and

expands with a hyperbolic trajectory.



However, this description of a false vacuum decay and the subsequent motion of
a vacuum bubble is merely the lowest-order WICB picture of the system, as is clear
from the fact that it entirely owes to the classical solution of the field equation.
What one would expect is that the quantum state with the other infinite degrees
of freedom would be significantly affected by the drastic change in a vacuum state

and becomes highly non-trivial after the false vacuum decay.

Study of such a higher order effect was initiated by Rubakov [27] and Vachas-
pati and Vilenkin [28]. Théy introduced a system consisting of two interacting real
scalar fields ¢ and ¢ in the Minkowski background, and studied the effect on thé
quantum state of gD due to the false vacuum decay of the o-field. Although their
approaches are very interesting, neither is satisfactory. Rubakov studied it us-
ing the unjustified method of non-unitary Bogoliubov transformation, and focused
on evaluating the number of particles created during the false vacuum decay by
defining a particle in terms of the instantaneous Hamiltonian diagonalization. The
latter procedure is time- and observer-dependent, and the concept of particle’is
quite ambiguous in the presence of interaction. In particular, the O(4)-symmetry
of a bubble is not respected in his method. On the other hand, Vachaspati and
Vilenkin discussed the quantum state by solving the functional Schrédinger equa-
tion with full respect to the symmetry of the bubble. However, it is not clear if
their boundary condition for the wave functional corresponds to the false vacuum
state before its decay. Further, their analysis focused on the quantum state outside

the bubble, while a matter of more importance is that inside the bubble.

In the present paper, in order to improve the investigation of this problem,
we construct different formalism. We start with the Schrodinger equation in a
multidimensional tunneling system with finite degrees of freedom, and reformulate
the method to construct the WIKB wave function [29,30,31,32], which describes
the quasi-ground state of a metastable system. Here the quasi-ground state means
the lowest energy state sufficiently localized at the meta-stable vacuum minimum.
Keeping in mind that gravity should be consistently taken into account ultimately
in the cosmological context, we develop the formalism in a covariant manner so

that it would be applicable to that case as well. We then extend the result to the
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field theory, and develop a general framework to find the quasi-ground state wave
functional, ¥, in both the classically forbidden and allowed regions. In the field
theory we give an interpretation of ¥ in the second quantized picture, and develop
a systematic method to construct the mode function which describes the quantﬁm
state after the false vacuum decay. We emphasize that our formalism can give a
clear answer to the problem, as we are dealing with the wave function(al) itself

and the boundary condition is explicitly taken into account.

This thesis is organized as followS. In §2, we give a derivation of the WKB
wave function in a multidimensional tunneling system (niultidimensional tunneling
wave function)[32]. In §3, we formally extend our formalism to field theory, and
develop a systematic method to construct the mode functions which determine the
quantum state after the tunneling. Then the result is interpreted in the language
of the conventional second quantization picture. For simplicity, we here introduce
the tunneling field ¢ and the other field ¢ coupled with that, and examine the
effect on the quantum state of ¢ due to a false vacuum decay of o-field. In §4,
we consider a spatially homogeneous decay of a false vacuum as an example of the
field theoretical case, and show that the quantum state after the tunneling genér—
ally contains a spectrum of field excitations. The model considered there is much
simplified, but contains the essence. The resulting spectrum of the excitation is
similar to the thermal spectrum. The same problem was examined by Rubakov,
and justification of his peculiar approach is described briefly in Appendix A. In
§5, we consider the false vacuum decay associated with O(4)-symmetric bubble
nucleation [33]. A 'speciﬁc model under the thin-wall approximation allows us an
analytic treatment, and we find that the resulting state is Lorentz invariant ( i.e;,
0(3, 1)-invariant) but is different from the Minkowski vacuum, as ekpected. We
calculate the two-point function and the expectation value of the energy momen-
tum tensor inside the vacuum bubble, with full use of the O(3,1)-symmetry: An
alternative, more explicit evaluation of the energy momentum tensor by the point-
splitting method is also given in Appendix B. Then we find the field excitation in
the vacuum bubble from the energy momentum tensor that behaves like radiation

at late times. Due to the Lorentz invariance, there exists a family of hypersurfaces
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over which the energy density is constant. Hence we point out that the nucleat-
ing process of the O(4)-symmetric vacuum babble can be regarded as the process
creating a homogeueoué and isotropic open universe filled with radiation, and dis-
cuss the possibility to provide a model of our universe [34]. In §6, attempting to
generalize these investigations, we study the quantum tunneling from a general -
excited state in very simple two-dimensional quantum mechanical systems. The
final section is devoted to the summary and disc-ussions of the results and the is-
_sues that should be solved. In Appendix C, a solution of mathematical 1educt10n
formulae is e\plamed associated with that in §6. We note here that the mgnatule

" of Lmentzmn(Euchdean) metuc is taken as — ++ + (++ ++)



2. Construction of a Multidimensional
Tunneling Wave Function

Let us begin with the construction of the WKB wave function in a multidimen-
sional tunneling system (multidimensional tunneling wave function). Our approach
is essentially based on the Gervais and Sakita's forinalism, which introduces the
concept of the tunneling path, i.e., a classical trajectory in the configuration space,
and evaluate the fluctuation of the next order wave function along the tunneling
path. We reformulate the multidimensional tunneling Vva{/e function in an alterna-
tive covariant manner, which will be useful in the future investigation taking the

gravity into consideration.

We develop the formalism in the system which has the Lagrangian

1 N 1O ) :
L= 504p(0)6"¢" —V(9) (@=0,---,D), (2.1)

where ¢%’s are the coordinates of the (D + 1)-dimensional space of dynamical
variables (i.e., superspace) and g,a(¢) is the superspace metric. We assume that
the signature of the metric is positive definite. The potential V(¢) is supposed to
have a local minimum at ¢® = ¢%,,. Figure 1 is the case D = 1. We call it the
local potential minimum or the false(metastable) vacuum minimum throughout
this thesis, and use the convention that Greek and Latin indices run from 0 to D
and from 1 to D, respectively. The Hamiltonian operator is obtained by replacing
the conjugate momentum of the Hamiltonian with the differential operator in the
coordinate representation. Though there is a.mbiguity of the operator ordering
in this system, we chose it in such a way that the resulting Hamiltonian takes a
covariant form;

. h? ’
H = ==-9"(¢)VaVy + V(0), (22)

where g“/’ (@) is the inverse of go3(¢). Note that this is a Hermite operator, if we
define the inner product using the integration associated with the invariant volume .

element.



Now let us begin with the construction of the wave function. Following the
WKB ansatz, the wave function is assumed to have the following form in the

classically forbidden region,

T = e s WO D) (2.3)
As the static potential is assumed, we should solve the Schrodinger equation,
HU = FEV. (2.4)

We solve this equation order by order with respect to fi. The equation in the lowest

order of i becomes
1 .
—§g°ﬁvaw<0)vﬂwﬁo) +V(¢) = Eo. (2.5)

Here Ej is the zeroth-order part of the energy eigenvalue E. This is the Hamilton-
Jacobi equation with potential, —V, and energy, —Eo. The minus sign appears
because we are considering classically forbidden region, and taking the ansatz (2.3).

Introducing a parameter 7 in terms of

(l@ (T) = gaﬂv VV(O)’ (26)
dr p
(2.5) reads
2o (1) - g 7
Z;T—*:S ) 412, 4067 = ¢°0V,V, (27

where I'%, is the connection coefficient of the superspace metric gog [35]. T his is
nothing but the classical equation of motion with an imaginary time. Thus T is

called the Buclidean time.

As we consider the case Ep is chosen to be V(¢%,,), there exist solutions of
the Euclidean equation of motion which start from the false vacuum minimuni
and reach the region outside the potential barrier. Among the solutions, there is

a solution that gives the minimum Euclidean action, which we call the tunneling
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solution, ¢%(7), and its trajectory the tunneling path or the dominant escape path
(hereafter DEP). It is the path of least resistance [29] or the most probable escape
path [30]. In our case in which Ej is equal to V(¢$,,), the tunneling solution is a
half way of the bounce solution [15]. We can set parametrization of the Euclidean
time so that the tunneling solution leaves the feﬂse vacuuim miniinum, O = 3G ars

at 7 — —o00, and reaches the turning point at 7 = 0, without any loss of generality.

Usually, the tunneling process is described by this tunneling solution. Inte-

grating the equation derived from Eqs.(2.5) and (2.6);

dw (0
dr

=2(V(¢) — Eo), (2.8)

the tunneling rate can be neuvely evaluated by the ratio of the squared amplitude

at the tmnmg pomt to that at the false vacuum orlgm as

I~ exp (2 [WO(=00) - WO(0)] ). (2.9)

Next let us turn to the second order Equation;

1 E
— P WO 4 §gﬂf’vavﬁw<o> =1

= (2.10)

Here F; is O(N) part of the energy eigenvalue E. If solutions of the Euclidean
equation of motion (and also W(®(¢®)) are known with a sufficient number of
integral constants in the vicinity of the tunneling solution, we obtain a congruence

of solutions in the superspace. Then we can introduce a set of new coordinates |
{A%} := {7, A"} which have one-to-one correspondence to the briginal coordinates
{¢°}, where {\"} are the coordinates labeling different orbits of the congruence.

Using these new coordinates, we find

0 o
af (0 — 2.11
9PV, V3l 5 log [det (&\ﬂ) \/ﬁ:l , (2.11)
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where /7 is the determinant of gap. Then Eq.(2.10) is integrated as

wi == log det (22 Vil - —E—I—LT + constant (2.12)
2 N h - -
Therefore the wave functlon is, to the second lowest order, formally given by
¢ T_ w0 \é .
U = —————exp [—W (A*)/h -+ E17‘/h] . (2.13)
d t 345"‘ :
€\ aNs

This wave function is a general one and we need to choose a congruence of or-
~ bits parametrized by A" in the vicinity of the DEP which satisfies an appropriate
boundary condition at 7 — —oo. For this purposé, we first expand the wave func-
tion (2.13) around the DEP introducing the orthonormal basis along it, and then
we require the thus-expanded wave function to have the correct asymptotic behav-
ior at 7 — —o00, so that it is correctly matched to the ground state wave function

at the local potential minimum.

The first step can be achieved by using a technique similar to the Fermi-Walker
transport of a vector and by deriving an equation similar to the geodesic devia-
tion equation [35,36]. Consider a set of orthonormal bases ef"](’r) along the DEP;
Ja/ge[“] [ | = = O[y)[»}> Where [] runs through the range 0,1,- ,D. For notational
convenience we introduce another set of indices (0, a) to denote [1]. We choose eq

to be the unit vector tangent to the DEP ;

a j\fa ¢ .
€p = _‘/\T’ (214) .
where
@ dd)a aﬁ ‘ (O) .
N = — = ¢"" VW', -
(2.13)
| N2 = NoN® = V WOVw© = (v — E).
If we define a differential operator Dp/d7 for a vector X as
Do D oa N" D s XpN? D o , |
= o Xa=—N —N 2.16
or o or A Xﬁ ar N2 Ot (2.16)

where D/d1 = N%V, is the covariant derivative tangent to the DEP, it is easily

seen that Dpe§/dr = 0. Hence we can choose all the basis vectors efy, along the

~12 =



DEP to satisfy
Dp

5-¢fy =0. (217)
(The basis vectors thus defined satisfy the relation eq,aéff = 0 along the DEP
[30]) Then introduce coordinates around the DEP. At each point ¢ on the DEP,
we can find a hypersurface perpeildicular to the DEP, ¥(¢), which is spanned
by all possible geodesics tangent to linear combinations of e3 at g at least in a
sufficiently small neighborhood of ¢ (see Fig. 2). Then it is known that there
exists an exponential map from the tangent space at ¢ of X(¢) to the hypersurface
¥(q) [36], on which we can introduce the Riemann normal coordinates n? with
the identification e$d/9¢™ = 8/0n?; i.e., the bases e$ becomes coordinate bases.

Hence we have

7117 (0)
| = WOed = Nael =0,
=0 | (2.18)
92 / (O) '
nid T/V(O,)e"eﬂ =: Qab,
On2dnP =0 e ab

where the semicolon denotes covariant differentiation with respect to the metric

gap(@). Consequently W(O)(A&) is expanded as
- 1 ;
WO = w7 4 fijabn"‘nb o (2.19)

Now we show how the matrix Q,y is determined in the above expression. First we

set

do” _
= (2.20)
Then a straight-forward calculation yields the following equation for z; along the
DEP,

a _ ara. B3

D2 IS
- ET- T - a oATY B
EroRl Vi g — R 0137‘/\7 N7,

(2.21)

where we follow the convention of [36] for the Riemann tensor. The second equation

is similar to the geodesic deviation equation, except for the first term on the r.h.s.
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This is because the DEP is the solution for the equation of motion in the space
with the potential, which makes the DEP to be different from the geodesics. In
deriving this equation, we used the Euclidean equation of motion (2.7), which now
should read

D 9¢* ,

5;% -Vi¢=0. (2.22)
Next we rewrite Egs.(2.21) in terms of the ordinary partial derivatives along the
'DEP, we consider the components of 2% (2 = 1,2, :, D) projected in the direction
of e ;

22 = el = 3 (7)x s, (2.23)
where xP, is a 7-independent matrix introduced as a normalization factor of I{%,(7).
Then it is straightforward to find the equations for 2%; along the DEP;

d

% = W.apeh 2% = Qabs, (2.24)
2 L b -2 b 2 b -
i Viabzp — SN VaVipz5 — N Raobo? 7 5 (2.25)

where

Viab = 2Viap €,

Via :=€3Via, (2.26)

Raobo = €260 Raop N°NT.
The first term in the r.lus. of (2.25) is the effect due to the change of the potential
curvature along the DEP, the second is the effect how the DEP is bent in the
conﬁgura‘cionbspace, and the third is the effect due to the nonflatness of the space.
Note also that the 111at1'i>’c I3 defined in Eq.(2.23) satisfies exactly the same equa-
tions as 2, does. Using Eq.(2.24), we express .1 in terms of Kabk; multiplying

the both sides of the equation by the inverse of z%;, we find
n

Qab = Zan (7Y = K5 (W7 (2.27)

where the dot denotes T-differentiation. It is worth noticing that there exist arbi-

trariness of constant matrix ,\'b_,—, to determine the matrix Qap.
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Next we express det |9¢*/0)?| in terms of K3, In order to do so, we write
down the superspace line element in the coordinates {\*} = {7, A*} in two different
ways;

d¢~ 9P

86706 ;1o
gaga\# 37 dAMEdN

—— AN\ = (egeoﬁ + eZeag> ONE ONP (2.28)
= ]\rszz + 6abz n< md\nd)\m

Then equating the volume elements in the two expressions, we find

foa(22)

= N| det %]

= '\/Q(V(éa(ﬂ) — Ey) | det K3,(7)|| det x%|-

Substituting Eqs.(2.29) and (2.19) into (2.13), we arrive at a desired expression,

(2.29)

C =W D) hoBur/h

(\/2 V — Ep)| det K3 (7) Hdet\ n]) & (2.30)

1
X exp {—ﬁn NP Qap (7 )J

¢

Now let us turn to the next step, and consider the matching condition for

the wave function. As we are interested in the quantum tunneling decay from -
the false vacuum state in the local potential minimum, we consider construction
of the quasi-ground state wave function, which describes the state of the lowest
energy sufficiently localized at the false vacuum minimum. Here, we assume that
the system can be well approximated by a collection of harmonic oscillators near
the false vacuum minimum and quasi-ground state wave function there can be
approximated by the ground-state wave function for this collection of harmonic
oscillators. This type of matching for the tunneling wave function is explicitly done
in the Refs.[32,37]. Specifically we assume that the potential and the superspace

metric have the following asymptotic forms near ¢ = ¢%,,,

» 1, . - ,
V(6%) = Bo = 5 () (9" = 3a0)(6” = 6a0),
(0)
gaﬁ - ga‘[j’

(2.31)

respectively. Here Jg 3 is a constant positive definite metric and wyg is assumed to

C 15—



be a positive definite matrix. As we can set gg%) = 0,p Without loss of generality,

we do so. The ground-state wave function for this system is

w 1/4 1 , o , B3 ;
U= (det ;) exp [fé-ﬁwa[;(¢>?’ — %) — ¢>LM)], (2.32)

which should be matched to the WKB wave function (2.30). From the assumption
(2.31), the Euclidean equation of motion (2.22) at 7 — —oc takes the follovviné
form, |

52

539" = (%) 15(6” — 0La) (2.33)

Hence with the boundary condition that ¢*(7) — ¢% M‘as T — —00, the relevant

solution which describes a congruénce along the DEP is given by
8% — d3ar = (¢77)C7, (2.34)

where CP are some constants and are related to the arbitrariness of the reparametri-

zation of 7. Integrating the equation W0 /9¢® = 9¢* /07 = wap(¢® — ¢’Z i) we
get

0)/ « 1 , , , L i d ey

wO(g) = SWas(9” — O — dar) (2.35)

where we have set W = 0 at the local potential minimum, ¢* = @%,,. This

also implies that 2, — waﬁegeg =: Oap from (2.18). Then from Eq.(2.27), the

asymptotic boundary condition that /X%, should satisfy becomes
- ory@ ?
K3, = (&) <« K% (2.36)

where licg is a constant matrix. This condition requires that '% decreases expo-
nentially at the local potential minimum. This condition is the necessary condition
to obtain the wave function which decreases away from the classical trajectory DEP

and to mateh it with the harmonic oscillator wave function at the local potential
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minimum. Taking the trace of the equation, K2(K™1)§ = @ap, we find

1 d . N .
T 1(21?( let ) = Tra. (2.37)

Further, using the facts that

1 ol 10
a B8 _ - o __ + Y 2
€oWas€y = ]\rzwaﬂ¢ Q= 29 log N*%, (2.38)
Troo=Trw~— egwaﬂeg,
we can show that the following equality holds in the asymptotic region,
1 d, |
————(Ndet §) = Trw. 2.39
NdethT( e ‘) o (2:39)
Integrating this equation, we get
V2(V(3(7) - Eo) | det K3 ()] = C' €T 7, (2.40)

where C’ comes out of the integration constant, and reflects the arbitrariness to
normalize the matrix A2, Substituting (2.35) and (2.40) into (2.30), and comparing

it with the harmonic oscillator wave function (2.32), we find

Ey= zTr,w, . - (det 9—)1/40’1/2. (2.41)
2 v/ | det x| T '

- Thus E7 is the vacuum fluctuation energy of the false vacuum. Finally we obtain
the WKB quasi-ground state wave function to the second lowest order, which
is matched to the ground state wave function at the false vacuum minimum," as

follows,

A (det u)/’ﬂ') e

_ 1/4
2(v(ge(r) = Bo)| " y/| det k37|
T - (242)
X exp(—% / dr'2(V(¢*(r")) — Eo) + %Trun)

—0

) 1 a b)
xexp( 2ﬁQab(T)’7 )

lII:

' 1/2 , : . o e . .
where 4 = ¢'V/ , Qap is expressed in terms of A'j by (2.27), and it is determined
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by solving Eq.(2:25) with the boundary condition (2.36), i.e., the exponentially
decreasing solutlon as T — —oo. If we fix the normalization of matrix K3, then
that of wave functlon A, s determined. Though we do not fix it here, and keep

the arbitrariness of the normalization of the matrix /{3, for later convenience.

We have found the quasi-ground state wave function in the forbidden region.
But we want to know the quantum state of the field after the tunneling. We
therefore must obtain the wave function in the region beyond the turning point,
i.e., classically allowed region (hereafter, following the conventional terminology,
we call the classically forbidden region the Euclidean region and the claésically
“allowed region the Lorentzian region). The construction of the general form of
the Lorentzian wave function is not much different from that of the Euclidean
wave function. That is, the procedure is to construct classical trajectory of leading
WKB order first, and evaluate the second orde.r wave function along the classical
'trajectory., The essential issue is the matching condition at the turning poilxﬁ
at which the WKB approxiniation breaks down. Nevertheless, in the caSe that
the potential varies slowly in the directioﬁ of tunneling (?r-clirection) around the
turning point, the 11iatching problem reduces to that of one-dimensional quantum
system [38]. Note that since the wave functional ¥ is the eigen-function of the
quam—glound state, it is real everywhere. Hernce, when it is analytically continued
to the Lorentzian region, it consists of the outgoing and incoming wave parts
which are complex conjugate to each other. However, since we are interested in
the wave functional which represents tunneling out of the barrier from the false
vacuum, we focus on the outgoing part. Then the Lorentzian wave function will
simply be given by the analytic continuation of the Euclidean wave function, 7.e.;
replacing the Euclidean time parameter T by the Lorentzian time ¢ with 7 — it
The matching problem for a general case has not been formulated so far and we

hope to come back to this issue in future.
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3. Field Theoretical Description

In this section, we consider the application of the formulation developed in
the previous section to the field theory. For simplicity, we introduce a field o
which undergoes a false vacuum decay and another field ¢ that is coupled to it,
then investigate the effect of the false vacuum décéy on the latter field. In the
beginning, we construct the tunneling wave functional of this system following the
procedure in the previous section, and derive the two point correlation function
from it as an example of the observables after the tunneling. Then we show that

it is possible to interpret the results in the conventional second quantized picture.

Now we write the Lagrangian of the system as

where

/ Bz [ (8u0)? +U(o )} )
Loi= = [ @2)1007 + Jnt0)s?), |

Here we have assumed that the potential U(o) has the form as shown in Fig.3,
and that the false vacuum (o = o_) decays to the true vacuum (¢ = o4) through
the tunneling effect. As is assumed in the previous section, the origin of U(o) is
chosen so that U(s-) = 0 (é.e., the quasi- g1ound state of the false vacuum has the
vamshmg energy at the lowest WIKB order; Eg = 0). The function m 2o ) describes

the interaction between the two fields. The Hamiltonian of the system is given by

A= /43 [——— (aa)+U(a)

2
+/(13a:[ 5 5252 1(3 0)2 + —m (0)(152} :

Then the quasi-ground state WIKB wave functional of the system satisfies the

~19 -



following functional Schrédinger equation,
HY = B ¥, (3.4)

where Ej is the correction to the energy in the first WKB order (which in reality
diverges in field theory, but we will not go into the \problem of regularization and
renormalization here).

In this system the tunneling path(DEP) is found by the classical solution of
the fields, i.e., for the tunneling field the half way of the bounce solution in the
classically forbidden (Euclidean) region, which we denote by oo(z, ), and its an-
alytic continuation 7 — it(t > 0) in the classically allowed (Lorentzian) region,
and for the ¢-field ¢(z) = 0. To avoid complexity, we neglecte the fluctuation of
tunneling field 0. We only take the one degree of freedom in it, i.e., the tunneling
solution &g, which is parametrized by one parameter 7, then investigate the quan-
tum fluctuation of the ¢-field. This is the same approximation as that adopted by,
Rubakov [27] and Vachaspati and Vilenkin [28].

As the tunneling degree of freedom and the fluctuation degrees of freedom is
orthogonal from the beginning, we have the following correspondence, to apply the
previous formalism to the field theory,

¢%(1) — oo(z, 7), |

, (3.5)
- ().

Thus, as far as the ﬂuctua,tmg degrees of freedom are concerned, the extension to

the field theow is done by replacing the suffix a with the spatial 0001 dinates x. To

find the quasi-ground state wave funchonal we have to solve the matrix K% (7),

which we denote in the field theory by K(z,y;7). The equation for it is derived

as follows. Interpreting the potential of the system as
3, |1 )
V=[d 5(3,’00) + U(oo)
s (1002, 1 2 2
+ [ &z | 5(0i0)" + 5m (o0)¢”|

- 90—



Va and Vap, in (2.25) are read as

V;a= (?V =0 :
5@(:2) o=09,0p=0
52V 0 ‘ (3-7).
Viap = ———— = |=Og + m*(op(z, 7)) | 6(z — y),
= DD oy g~ L2+ 0@ ]2 =)
then Eq.(2.25) now,
52 0 .
5—2-+Amf—m (oo(z, 7)) | K(2,y;7) =0, (3.8)

with the boundary condition that it decreases expone‘ntially at 7 — —o0. Here
instead of directly dealing with I(x,y; ), we express K(x,y;7) in terms of a
complete set of functions gx (a, 7) which satisfy the same field equation (3.8) with
the same boundary condition, together with a complete set of 01‘thonormalyspat_ial

harmonics Yy (y);

K(z,y;7) = > grl(a, 7)Y (). (3.9)
3 ,

The boundary condition of gg(2,7) at 7 — -0 is |

gk, 7) — exp(wgT)Yg (), (3.10)
where wy, = \/k2 +m2 | m2 = lim,—_oo m?(co(, 7)), and —k?2 is the eigenvalue
of Yy, :
(Ag + k%) Yy(z) = 0. (3.11)

In what follows, we use z, y, - - - to denote (z,7),(y, 7),: - -, for notational simplicity.

According to the result obtained in the previous section, the quasi-ground state

wave function in the Euclidean region is written as
T = 4 eSS4, 7],

eElT/Tl 1
exp <_:2—ﬁ/(l3m(l3y¢(m)ﬂ(m,y;T)qb(y)) :

2lo()r] = Jdet K(z, 5. 7) |
(3.12)
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where A is a normalization factor,

T B ‘ |
So(r) = wO(r) = / dr' Lglog; 7], Si(T) = ZloglLE[ao;’rH,

(3.13)
Uz, y;7) = /dszarK(m,z;f)K"l(z,y;T),

and the Euclidean Lagrangian L is defined as Lg[o; 7] := —Lq[o;i7]. Using’ (3.9),

Q(z,y;7) can be expressed in terms of gi(z) as
iB y7 Z gk gk 1 (314)

where g "(y) is the inverse of g (x) such that
S~ 03t @)gkly) = 8(z ~ v), / Bz g7t (z)gp(z) = p - (3.15)

k

Thus, to obtain the Euclidean wave functional, all we need to know are the mode
functions gg(x).

One important point to note here is that the wave functional ¥ in Eq.(3.12) can
be regarded as being composed of two distinct parts; namely, the part e=So/h=51
which describes the background tunneling wave function, and ‘the Test ®lo(+), 7]
which describes the fluctuation of the ¢-field. Our wave functional is related to
the formalism developed by Rubakov [27]. To solve the Schrodinger equation (3.4),
Rubakov put an ansatz that the wave functional is written as a product of the WKB
wave function for the tunneling system and the one for the ﬁuctuatingsyé;tein’ asin
Eq.(3.12). With this ansatz, he showed that the wave functional for the fluctuating
system ®[¢(-), 7] satisfies the Euclidean version of the Schrodinger equation with

+ — —ir. In our case, we can also show that ®[¢(-), 7] satisfies the Buclidean

Schrodinger equation as

_(%@[ab(-),f] = (B - B1) @l(), 7],



where

1 1 o, :
B ____. )2 4 =m2 2

/ l 2 6¢2 + ( zQD) ;+ 2m (0’0(117,7'))¢
Thus the ®-part describes the fluctuation of the ¢~field. In particular, all the
information of the quantum state is contained in the function Q(z,y;7). It is
also worthwhile to note that the boundary condition of g(z), Eq.(3.10), cor-
rectly reproduces the (quasi-)ground state wave functional before tunneling be-

cause Q(z,¥;7) — > 1 kak(w)Yk_"l(y) AS T — —00.

Once we obtain the Euclidean wave functional, the remaining taslx is to derive
the Lorentzian wave functional bv matchmg these two at the tulnmg pomt T = 0
This matching procedure can be quite complicated in general. But, as noted in
the last of the previous section, when the potential varies slowly in the direction.
of tunneling (7-direction), the matching problem reduces to that in the case of one
dimensional quantum system [38]. In this case, we can obtain the Lorentzian wave
functional, ¥, which represents tunneling out of the barrier form the false vacuum,
by the analytic continuation of ¥ with 7 — 4. Then inttodtxcing a function vy ()
in the Lorentzian region, the complex conjugate of which, vy (z), is the analytic

continuation of gp(z) with 7 — 4, we find

Uy = F(zt)e\p[ ;/d:”wcﬁy(p( Qp{z,y;)oly) |, (3.16)
with
Qi vit) = —i 3 i (x)e ™(w), (317)
k

where F(it) is a function of ¢ that appears by the procedure of continuation and

the dot denotes t-differentiation.

Now we investigate the nature of the quantum state described by ¥z. As we

are interested in only that of the ¢-field, let us consider the equal-time two-point
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correlation function, which is expressed as

G0 (a, g — LOVTLH@), W)} T

[do()¥1 ¥
= (OL(w,y,;t) + Qi(w,y;t))_ +(z =), (3.18)
= (1T 5 @og o) ~ i Y @) + (@ e )
k k

This expression, as it is, does not give us much information. The reason is that"
although the functions vy (z) form a complete set, they are not properly orthonor-
malized in general. Hence, in order to rewrite Eq.(3.18) in a more comprehensible
form, we introduce a set of normal mode functions u¢(x), each of which is a linear

combination of vg(2),

k
with det Aqk # 0, and are normalized as

_i / Paug(2)ig(2) — ig(hig () = bag- (3.20)

We note that, in principle, these functions can be constructed by Schmidt’s or-
thogonalization procedure. Contracting the both sides of the above normalization

condition by the inverse of uq(x) and g (y), we find
— Z(uq uq (y) — uq 2)ig(y ) Zuq T uq (y). (3.21)

Since )y, 07 (x) Zq Ug(z) (y), the equal-time two-point function is

e\plessed in teuns of uq( x) as

60e0) = 3 (valohigtv) + vytonaln) ) (3.22)

q

This expression coincides with the one for the Heisenberg state ]<I>> defined by
ig|®) =0, for Vg, (3.23)
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where the field operator ¢(z) is expanded as

A

$z)=>_ (aquq(x) + &;[,u;(:c)), (3:24)

q

using the annihilation (creation) operator aq (&2) a:ssociated with the mode func-
tion ug(x) (ug(x)). Summarizing the results, the quantﬁm state of ¢-field after the
tunneling can be described by a “vacuum” whose positive ffequency mode function
is given by ug(2), as is done in the second quantization of a field. Note that this
mode function ug(z) is generally different from the true pbsitive frequency func-
tion after tunneling, say wq(z), if it can be defined. Then ug(z) and wq(x) are
related to each other by a non-trivial Bogoliubov transformation. This implies the
quantum state after tunneling contains a spectrum of excitations of the field ¢. We
will see this in the following sections considering specific models of false vacuum

decay. .
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4. Homogeneous Decay of a False Vacuum

In this section, we consider a specific example of the tunneling in field theory
discussed in the previous section. In pai‘tiCulaf we consider the case when the
decay of a false vacuum occurs homogeneously in the entire universe. The aim is
to demonstrate the significance of our formalism and to show how non-trivial the
resulting qﬁantum state after tumieling will be, as well as to clarify its relation to
the previous work by Rubakov [27]. A false vacuum decay that occurs homoge-
neously can be realized if we consider a spatially closed universe [21], or it may
be regarded as the limiting case of a sufficiently large vacuum bubble compared to
the scale of interest. |

For simplicity, we choose the potential of the tunneling field as,

Uo) = %'(02 - 02)2 - 602_;:6, (e > 0), (4.1)

and assume that e is small enough, so that the true vacuum and thé false vacuum
are approximately given by o(z) = o, and o(x) = —o., respectively, and that
the energy difference between these two state is small compared to the height of
the barrier, i.e., U(0) = Ao%/8 > €. This assumption enables us to use the thin-
wall approximation as in the inhomogeneous vacuum decay with O(4)-sy'mmetri‘c
bubble([15],see also next section). We also assume that the background universe
is the static spatially closed universe of a radius Ry, neglecting the gravity. The

classical solution of the tunneling field in the Euclidean region can be written as

oo(7) = o tanh (V—XUC(%I——D) . (—o0o < 7 <0), (4.2)

where T ~ (1/VAoc) log(Ao/e). The classical solution passes through the top of
the potential barrier at 7 = =T

As for the coupling between o-field and ¢-field, we take the following model,
2 N 2 ,
m*(o) = m§ + fco, (4.3)
here we only consider the case m2(¢) > 0 all the time. If we introduce the spherical
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harmonics on a unit three sphere Ss,

(Do, + 30 +2)] Vitm(z) = 0,
j=0,1,---, 1=01,---,5, m=—l--1,

(4.4)

where Agq, is the Laplacian operator on the unit three sphere, the advantage of
the model of homogeneous decay becomes clear. That is, each mode of ¢-field

decouples with each other, and we find the equation for gz(z)

[-5;25 + k2 — (m% + Be.octanh {M})] ge(z) =0, (4.5)

with the boundary condition at 7 — —oo,

gk(x) = eVFHmmhoTy (a), (4.6)

where we have defined k2 = j(j + 2)/Ro? and denoted k = (4,1, m). Here, to
make the problem simpler, we take the limit of thin-wall. That is, taking the
limit 7> 1/ v Ao., we approximate the classical solution oe(7) by using the step

function. Then Eq.(4.5) can be easily solved to give,

e~ Y (x) (=00 <7 < =T),
gr(x) = _ ] (4.7)
(Age+™ + Bre™*T) Yi(z) (=T <7 <0),
with
Ap = (i)ié_i-__ui:e(w-l-_w—)T’
Wt (4.8)
By = Wi — W e-—(w.,.-}-w_)T,
2(4]_}_

where we have defined wy := (/k2 4+ m2 and m3 := m2 + B.0.. Once we obtain

a wave function in the Euclidean region, that in the Lorentzian region is obtained

by the continuation, 7 — it, as discussed in the previous section. Fortunately,



in the present model, we find the following mode function ug(z) that is properly

normalized in the Lorentzian region,

Ake_iw'*'t + Bk,eiw"'t

up(z) = Vi ()
\/ 2w+(A2 - B 2)
(4.9)
—
\/AT__BE NZTET: \/—— o)
where wy,(z) is the usual positive frequency mode function,
e—iw+t
Yi(z). (4.10)

)y =
wk( ) m

In this model, since the field after tunneling is a simple massive scalar field, there
is no ambiguity in the definition of a particle. This allows us to compare our result
with that of Rubakov [27]. The number of created particles is definitely estimated

in terms of the Bogoliubov coefficient of wj (2) in the expression (4.9) as follows

_ B
e 4 - B} (4.11)
(wi —w-)? o

B (wy +w-)2eor T — (wy —w_)?

In Appendix A, it is shown that this agrees with the result obtained in Rubakov’s
formalism. Here, we note that the above particle spectrum differs from that in the
case of particle creation due to a sudden change of the mass in the real Lorentzian
spacetime. The latter would be the case if the false vacuum decay were considered
in the classical picture and were assumed to occur suddenly at, say, ¢ = 0, in which

the number of created particles would be given by Ny of Eq.(4.11) with 7" =0.

Let us consider some implications of Eq.(4.11). First note that Ng decreases
exponentially as the absolute value of 7' becomes large. In particular, in the limit

wi > w_ o wy < w—, which holds if m2 <« m2 and k% $ m%, or m2 > m% and
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k% < m2, respectively, N, takes the same form as the thermal distribution with

temperature 1/47,

1

However, the behavior in the large momentum limit differs from the thermal spec-

trum as

Ny = = for k2 > m2., (4.13)

(4k2/Am2)? 2T — |

where Am? :=m?2 — m2.

"To gain a bit more insight into the quantum state after tunneling, let us con-
sider the case when the mass difference between the true and false vacua is small;

|Am?| < m3. Then, the number of created particles becomes

2\ 2 ,
Np, o (BT T (4.14)
dw?

and the energy density due to the created particles of the ¢-field is given by

0
AE ~ / Blwy Ny,
0 (4.15)

bl

o
~ Am?* =T /(l.’v—————-———z(‘r + 2{60)6_4@
(z+ 3)0)2
0
where 2g := m4T. Thus, the energy density generated through the tunneling is
of O(Am*) for 29 5 1, while it becomes negligibly small for x9 3> 1. Since 1/T is
related to a certain mass scale M associated with the tunneling field o, the particle
creation is expected to be rather significant for models with my S M. We note
that this conclusion qualitatively holds for general values of the masses m3 as well,

though it has been derived by assuming |Am?| <« m?*_.



5. False Vacuum Decay with an O(4)-Symmetric Bubble

In this section, we consider the case when a false vacuum decays by nucleating
an O(4)-symmetric bubble in the Minkowski spacetime, assuming the following

potential for the tunneling field again

)2— 0'+0'c, (e>0), (5.1)

_ Ao 9
U(o) = = (6 — of 5o, )

with thin-wall approximation U(0) >> e, for simplicity. Introducing the coordinates
in the Euclidean region as
dsh= dr? + dr? + r2dQ? (—o0 <7< 0)

5.2
= £52dT% + dég® + Ep° cos® Tp dQ? (—g < Ty <0), (5:2)

where 7 = £gsinTg and r = {gcosTE, the tunneling solution of classical field is
described by a half way of the bounce solution and is approximately given in the

O(4)-symmetric form as [15]

_ Ee— R 3
oo(ég) = —octanh ( SAR ) ) (5.3)
with
3
R = Y%  AR=—
€ \/:\-Uc

Since R/AR = Aot/e = 8U(0)/¢ > 1 by assumption, the solution describes an
O(4)-symmetric bubble of radius R with very thin wall of thickness AR. The

name, thin-wall approximation, comes form this fact.

As for the mass term of the ¢-field, we adopt the following form,
m?(o) = a(o? — o?), (5.4)

which in the thin-wall limit reduces to

m?(ag) = ms6(Eg — R); ms 1= 46\7{. (5.5)

Thus ¢-field interacts with o-field only on the bubble wall, which allows analytic
calculations. Note also that because of the thin-wall assumption, msR = 4aoz/e =

4(af/N)(R/AR) > 1 unless a < A.
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5.1. CONSTRUCTION OF THE MODE FUNCTION

Now let us find the mode function g (z) for the above model. We have to solve

the Euclidean field equation,
62
|z + 2= ma(es = B)| ae) =0, (5.

with the following boundary condition at 7 — —o0.

gx(x) = é* \/ZJI(M)}lm(Q) (5.7)

where j;(2) is the spherical Bessel function, ¥},, is the spherical harmonic function
on the unit two sphere, and we have chosen the spatial harmonic function Yz (z) to
be that in the spherié.a.l coordinates for later convenience (the eigenvalue k denotes:
(k,1,m) in this case). Using the O(4)-symmetric coordinates (5.2), we rewrite the

Euclidean field equation as

1 o cOS T 9 _l.___l.__.__a__ é‘ 3__8_.>
cos? Tg TE aTE E(?TE 195 o) B g

gk(a') =0,

(5.8)

JANy! 2
- - R

where Aq is the Laplacian operator on a unit two sphere. Then it is apparent that

gr can be expressed in the form,

gk(fl") = Z Xplm(TE)FIJ('fE))/}'lrl(Q)a (59)

plm

where the functions x,n,(T) and F,(¢g) satisfy

1 d { .
{—# (fE" . ) — &5'ms6(Ep — R) + /\,,} Fy(€p) =0,

Epdée déE

1 d 2 d I(+1
Los'2 Tg dTg ( Teorm AT ) Ap = W] Xpim(TE) =0,

(5.10)

respectively, with A, being the eigenvalue of the function F,(£g). In the absence of

interaction, i.e., ms = 0, one has F,, (55) €£'P~1 with the eigenvalue A, = p?+1,
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where —00 < p < 00. In the presence of the é-function mass, we can construct
Fy(€g) by matching the function Fi9(¢g) outside the bubble wall (éz > R) to a

linear combination of them inside the wall (g < R). The junction condition is

de(fE)

- (4F(Ee) )
lim (___P__ ~ ZRoE) = msFp(£E) (5.11)
‘Then the eigen-function Fj,({g) is given as
s (R< &g < ),
F _ ' : 2ip 5.12
P(fE) §E2p—1 1-— T_n_s__’@ 1 - .ﬁ_ (O < §E < R), ( )
2ip {e)

with A, = p? +1. On the other hand, the equation for Xpim(TE) has following two

independent solutions,

1 - . —1-1/2 . -
Xpim(TE) = Ny (blpip—l%z(— sinTg) + szip..11//2 (—sin TE)) ,  (5.13)

where Py(z) and Q(z) are the associated Legendre functions of the first and
second kind, respectively, and b; and e are constants to be determined by the
boundary condition. Here we follow Ref. [39] as for the definition of the Legendre
functions. We can determine the coefficient constant by and b, by using a wonderful

transformation formula given by Gerlach [40];

1k
152 N Ay
e ﬂ_][(/ﬂ)

1 T D(~ip+1+1)P; ¥~ sinT) N (5.14)
T on / P V2cosTg S ' ’
—0Q

for g > 0 and —sinTg > 0. Since the above expression is just that of gg(z)
outside the wall, one readily finds by = 0 and the appropriate form of by as
D(~ip+ 1+ kP12

by = : 1
1 T (

ot
—
<t
S




Combining the above results, we obtain
T apT(=ip+ 1+ 1) P17~ sin Tp)

gl@)= [ 5 J2c0sTs

-0

FEy(Ep)kP 2 ¥, (Q), (5.16)

where Fy,({g) is the one given by Eq.(5.12). Now, using the inverse transformation

formula;
—1-1/2 00
I‘(zp +1+1)P (—sinTg)
ip-1/2 u'Pe S TE jy(y cos T 5.17)
e Ts / Ji E) (5.17)
0

which exists for —sinTg > 0, we can rewrite Eq.(5.16) as

RQ/EEZ
1k -
gp(x) = - ekrjz(k7')+0(R2—§E2)m;R / due’””]z(kru) Y1 (9),
' 1

(5.18)
. _ . : —1-1/2, \ _ p—=l-1/2
where we have used an identity, Py /2 (z) = P—zp H /2( ), and the integral repre-

sentation of the step-function,

1 T &P
eip? _
9(4)_%/@ —. (5.19)
—00

The above expression of gg(x) is the desired formula. We can directly check that

it satisfies the Euclidean field equation.

To find the mode function in the Lorentzian region normalized properly, we
follow the prescription described below. Consider another set of mode functions
fr(x) besides gr(z) in the Euclidean region which satisfy the same field equation

but with a different boundary condition,
fr(z) — exp(—wg 7)Y (2). (5.20)
Then we can easily normalize gi(z) and fi(x) at 7 — —o0 to satisfy the relation
/(1333 (fk(l')argk'(l‘) - arfk(:l‘)gkr(:lf)) = Op k- (5.21)
Since both g () and fi(x) satisfy the same field equation, this relation is conserved
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in the Euclidean time evolution. Now define a function @ (z) in the Lorentzian
region by the analytic continuation of fi(z). If vz (), which is the analytic con-
tinuation of g («), happens to be c0111plex,'conjugate to i’zk(a:), modulo a constaﬁt
factor independent of k, then we can easily find the orthonormalized mode func-
tions in the Lorentzian region, because the relation (5.21) continues to hold in the
Lorentzian region and gives the proper normalization condition. As is clear from
the expression (5.18), if one defines the function fr(z) by replacing 7 with —7 in
it, it also satisfies the field equation but with the opposite boundary condition at
T — —0; fr(z) — ‘e—"'TYk(m'). Then these functions satisfy the normalization
- condition (5.21), and fi and gg become complex conjugate to each other when
analytically continued to the Lorentzian region. Thus the present caée corresponds

to the special case described above.

Thus the orthonormalizéd mode function in the Lorentzian region is given by

R/
k 2l . sR‘ —i uw
up(z) = \/; e~ (kr) + 0(R? —52)% / due~* 5, (kru) | Yim(Q), .
1

(5.22)
where £ = v/r2 — ¢2. Note that this reduces to the Minkowski positive frequency
function outside the bubble, é.e., the quantum state outside the bubble is the
trivial Minkowski vacuum as it should be, since an observer there would not know
if a bubble is nucleated or not. We also note that ;uk(a;) takes the form of a
linear combination of the Minkowski positive frequency functions. Hencé one might
wonder if the state inside the bubble is really non-trivial or not. However, the
essential pOint is that the coefficients of the linear combination are spacetime-

dependent, and this fact leads to the non-triviality of the state inside the bubble.

Here, we mention a delicate issue associated with this mode function. In the
expression (5.22), one finds that the mode function is well-defined only outside the
light cone; €2 = 12 — 12 > 0, and it becomes singular at € = 0. This problem is
originated from the irregular behavior of the mode function gg(z) at t = = 0.
Therefore some regularization is necessary in order to make the analytic continu-

ation possible and to make the expression (5.22) meaningful inside the light cone.
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We can avoid this problem by the following way. Namely, we perform the analytic
continuation at an infinitesimally small time ¢ before 7 = 0 as shown in Fig.4.
With this analytic continuation, the regularity of the mode function is recovered;
i.e., it is smoothly continued to the region inside the light cone and the orthonor-
mality condition is properly maintained. Note that in terms of this procedure the
| transformation formula (5.14) can be continued to the Lorentzian region. Then we
may compute any physical quantities in the Lorentzian regi‘on with the regularized
mode functions and only after the completion of a calculation we take the limit

g — 0.

As for the ill behavior of ug(z) on the light cone, we do not have a rigorous
answer why this happens. However, it is not because of the oversimplification of
our model, but because of a breakdown of the WIKB approximation at the turning
point and the O(4)-symmetry of the background. In our case, the “tuining point”
corresponds to the spatial configuration of ¢ on the hypersurface 7 = 0. However,
because of the O(4)-symmetry, the configuration at points other than 7 = 0 should
not be related to the breakdown of the WIKB approximation. In other words, the
only fixed point under O(4)-transformétions is € = 0 and it is the only point which
remains on the “turning point” hypersurface for any choice of another observer.
In any case, the WKB approximation breaks down at this point (also at the light
cone), therefore we should not stick to this problem, which lies beyond the scope

of our formalism.

Finally, we mention the fact that in our model in which ¢ interacts with ¢ only
on the bubble wall, it can be shown that our mode functions ug(x) are equivalent
to the ones obtained by Vachaspati and Vilenkin [28] in which they used different

coordinates to express the mode functions.

5.2. EVALUATION OF THE QUANTUM STATE INSIDE THE BUBBLE

As we have obtained the mode function, which describes the quantum state
of the ¢-field, we now investigate the state after the bubble nucleation carefully.

Let us start considering the symmetric two-point function (Hadamard’s elementary
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function). Since we are interested in the quantum state inside the true vacuum
bubble, we concentrate on the case in which two points are both in the vacuum
bubble. As noted before, our mode function is a spacetime-dependent linear com-

bination of the Minkowski positive frequency function. Therefore we can write

GWV(z,2') = ($(@)d(z) + (z')d(2))
= ug(2)up(z) + (z = 2') |
32 (stenits) )

=DMN(z — 2
B B/ (5.23)
n m;R / D(l)(u:l: — 2')du + / DO (z — va')dv
' 1 1
, B[CRYC
+ (m;R) / / DB (uz — va')dudv,
11

where ( = 2% = —t2 472, (' = 22 = —t"2 + 12, and

1 1 -
D(l)(’B — :'C,) = -2—;1'-2—(_’1,—:7’)7’ ('{)24)

is the Minkowski two-point function for a massless field [41]. Then we find

W (z,z)
R*/¢ R/

1 {1 + msR(/ du + / dv )
Tor2) 2 2 w2 — 92 7 12 — o, 1

| € / Cu nu+ ¢ J C'v n -+ ¢ (5.23)

, Bl¢ R’
+ ms It / du / dv !
2 Cu? — 2nuv + ¢'v? |
1 1

where = 2 - 2/ and e* = a* — 2.

To obtain more specific information of the quantum state described by the

above two-point function, let us consider the coincidence limit of it. In the limit
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e* — 0, the integrals in the above expression can be explicitly performed (see
Appendix B). Then regularizing the result by separating out divergent terms, we

obtain

1
(8(2)?),0g =5 Crea(, )

_ 1 |mgR 2 o
T o4n?| 2 RP-¢ | (5.25)
4 (R 2i1n(1— 52)2 Ci +Co

where Cy and C3 are arbitrary constants which come from the divergent terms. One

finds (¢?) ca diverges on the bubble wall (£ = R) and on the light cone (£ = 0)

Iy
if Co # 0. The former divergence is due to the oversimplification of our model in

which ¢ has the é-function mass at the bubble wall. Hence it will disappear if a
more realistic model is considered. However, the divergence on the light cone is
real (at least in the sense of the WKB approximation) and unless there is a good
reason to put Cy = 0, it cannot be removed in any other models as discussed in

the end of previous subsection.

The situation becomes clearer when we consider the expectation value of the
energy momentum tensor {(7#”), which we now turn to evaluate. A possible rea-
soning to get rid of the divergence on the light cone is discussed in the end. For
the time being, we circumvent the difficulty by focusing on the spacetime region
between the light cone and the bubble wall; 0 < ¢2 < R2. In order to obtaiﬁ a
regularized expression for (T#"), it is customary to use the point-splitting method.
However, the manipulation is quite involved, while it turns out that the same result
can be obtained with a much simpler method. This method takes a full advantage
of the fact that the resulting (T*"),, should be Lorentz-invariant and it should
satisfy the energy momentum conservation law. Hence we present it in the follow-
ing. For completeness, the point-splitting regularization of (T#¥) is described in

Appendix B. First we decompose T}, into the trace and traceless parts;
T}.u/ = pr/ + 7}“115, (526)

—37-



with

) 1
S/.w = (b,p@,y - Zﬂ,uu(gb,a)z;

1

— 2 _ _rra2va
§ 1= ~1(6) = —5(6D)%,

(5.27)

where 7, is the Minkowski metric and we have used the field equation; % =
0, in the last equality in the expression for S. Note that the only independent
component of Sy, is the (&, £)-component, because of the Lorentz invariance. That

is, introducing the coordinates,
ds? = —€2dT? + d€? + €2 cosh® T, d0?, (5.28)

where T = arctanh (¢/7) (see Fig.5), the (£, )-component is written as

dzt ox¥ i akined
S¢ = See = Sy (’a?) (a—§> R (5.29)

Taking this into consideration, we can express ), as

1 aHa? .
™ = -5 (nﬂ” — 42 5; ) S, (5.30)

where Sg and S are functions of only £&. Then the energy momentum conservation

law gives
(§4S§)’£ = —£45 . (5.31)

Here we take the expectation value of the energy momentum tensor. As (S) can be
expressed in terms of (¢2) from Eq.(5.27), inserting the explicit form of (qb(;v))reg

in Eq.(5.25), we get
_ msR R? (msR)2 1

(5) = 472 (R? — £2)3 T 1672 (R? — ¢)2’ (532).

Note that it does not depend on regularization constant C; and C. Then, inte-

- 38 -



grating Eq.(5.31), we have

<SE> == TZ;? (R? 5252)3

(msR)? [ 2R? — 3¢2 1 % do
" Tor (£2<R2 St gt ﬁD T

(5.33)

where da is a integration constant. Combining these expressions, from Eq.(5.30),

we obtain

msR €2 data” R?
THYY — py yiy
) =5 [smmen (- ) + e

(msR)? 2R? — 3¢2 1 €22
1672 {352(32 e taalh (1 - ﬁ) }

O P DR —
n €2 (R2-—§2)2n

d1( ,, Adatz”
S\ - -
3¢ ¢

We can compare this result with that obtained in terms of the point splitting

method(see Eq.(B.23) in Appendix B):

, 2 A ot 2
(T _mR [ £ (77’”/ B 41#f.7, ) N R ;w]

reg T A2 3(R2 — £2)3 &2 (R% — 52)377
(msR)? [ 2R? -3¢ 1 €242
1672 {352(32 — 53)2 + @ ln(l - ﬁ) }

(5.35)

At v 1 o
X\ - &2 —(32—52)277

w 1 w data”
+ D %ngz(n‘ e )

where Dy and Dy are arbitrary regularization constants. We have the same result,
except for the term Din,,. D1 is just a cosmological constant which appears in
any theory, while D5 is an integration constant whose appearance is a new feature

in the present model. The latter arises because the background has only the
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Lorentz invariance but not the Poincare invariance. In fact, this term corresponds

oy iy (b2
to the Ca-term in (¢ )reg |
that the Ds-term is traceless and satisfies the conservation law by itself; i.e., it is

and diverges badly on the light cone. It should be noted

transverse-traceless.

Since one has no definite theory to predict the value of the cosmological con-
stant, We set Dy = 0 as usual. If we also set Dz = 0, we find the rest of (T""),,
" is perfectly regular inside the bubble wall, hence it can be extended to the region
inside the light coné without any problem. On the other hand, if we were to retain
the Do-term, the conventional WKB picture of false vacuum decay breaks down,
because the diverging energy momentum tensor indicates a significant effect of
backreaction onto the background field. Although we cannot deny this possibility,
however, the WKB approximation of our formalism breaks down at this point as
noted before. Therefore we take a conservative stand point and forcus on the kpart
that does not depend on the regularization constatnt, setting Dy = 0, and then

put forward the discussions.

5.3. CREATION OF A HOMOGENEOUS AND ISOTROPIC OPEN UNIVERSE

The above result shows that the resulting quantum state inside the bubble is_
highly non-trivial, implying the importance of the effect of fluctuating fields dur-
ing and after the bubble nucleation, if not leading to the breakdown of the WKB
picture. Now let us discuss the cosmological implication of this result. The spacé—
time inside the light cone (¢ > r) is most conveniently expressed in the following

coordinates;

ds? = —dT? + T2dx? + T?sinh? y dQ?, (5.36)

where T? = 2 — 12 = —¢2 and x = arctanh (r/¢) (see Fig.5). It is the hyperbolic
time-slicing of the Minkowski spacetime and represents a cosmological model of the
universe with vanishing energy density, called the Milne universe. In this region,

137
(T )reg
natural to assume msR = 4a0t/e > 1 under the thin-wall approximation. Then

is given by Eq.(5.35) with €2 replaced by —72. As mentioned before, it is
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the energy momentum tensor at sufficiently late times 7" > R is given by

1 2 oLl
'(T“”)I_eg o~ (r;zgf?) [3—% In(T?/R?) (é—% + 17’“’) - 311—477’_”’] . (5.37)
This implies that the energy density on the T = const. hypersurface is homoge-
neous and isotropic, and behaves almost like radiation, namely, which decreases
as p  1/T* and has the nature of quasi-traceless. This suggests that the bubble
nucleation may be interpreted as the creation of a homogeneous and isotropic open
universe with radiation, provided that the bubble nucleation rate is exponentially.

small so that the probability of bubble collision is negligible.

Here let us discuss the cosmological generation of entropy. Suppose that AM
is the mass scale corresponding to the potential diffefence between true and false
vacua; £ = (AM)* and that the true vacuum has vanishing vacuum energy.
Then the false vacuum is in the de Sitter phase with the Hubble parameter H? =
8TGE[3 = (AM)*/m2,
constant. Within this de Sitter phase, there appears a true vacuum bubble, inside of

where m,y is the Planck mass and G is the gravitational

which is a homogeneous and isotropic open universe with radiation energy density
Pini = ('m.sR)2 / R* with the initial scale factor (i.e., the curvature radius) a(t;n;)‘z
R. Now, since the bubble radius cannot be greater than the Hubble radius; R S
H~1[19], and the initial energy density is presumably smaller than the false vacuum

energy density; pin; S £, we have

2 2 .
m 9 o m .
E 2 Pini = E;- 2 miH? ~ Eg (5.38)
P .

Hence R ~ H™1 for m, =~ M. In this optimal case, the total entropy within the
initial curvature radius is

Myl

3 .
TN > 1 forAM < my (539)

Stot = (pini R*)*/* o (m R)3? ~ (

Thus inside the bubble is a homogeneous isotropic open universe with high entropy.
Does the created open universe describe our universe? Unfortunately, no. The cre-

ated universe is a curvature-dominated one from the beginning in the present case,
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because pini/m% S H® $ R™? and the radiation energy density decreases as a(¢)™*

while the curvature term as a(t)~2. Therefore, this model is not a good one for our
universe. Nevertheless, it is very intei‘esting that the isotropy and homogeneity
of thus nucleated universe is guaranteed by the O(3,1) symmetry of the resultant
quantum state and that the process is completely causal since the created universe
is inside the light cone. Because we have investigated the quantum fluctuation on
the fixed flat Minkowski background, the above discussion is unsatisfactory. The
investigation taking the gravity into consideration is necessary to provide a definite

answer.



6. Toward generalization of the Initial Condition

So far, we have investigated the tunneling associated with the ground state in
the false vacuum. Here we consider a tunneling that is not in the ground state in
the false vacuum , and discuss the false vacuum decay in the presence of excited
particles before the tunneling [42,43,44]. As a first step for this purpose, we consider
a simple quantiun mechanical tunneling of two dimensions with a potential, shown
in Fig.6. Then we examine the quantum state of a particle penetrating the potential
barrier from the local potential minimum on the left hand side of the figure to the
classically allowed region on the right hand side. This is just the case D = 1'in
§2. Introducing coordinates y and 7 instead of ¢° and ¢! as shown there, we can
regard y as the tunneling degree of freedom and 7 as that coupled to the tunneling

sector.

6.1. WAVE FUNCTION

To specify the system to be considered, we write the Lagrangian as, |
L == £y + ﬁ]}, (6.1)

with

"1 )
,Cy = 'zljz - U(lj),
1o, 1 5 |9

(6.2)

where m2(y) describes the coupling of y and 7. Fig.6 shows the potential of the
total system: V(y,7) := U(y) + m?(y)n?/2, where the local potential minimum is

located at (y,m) = (yrar, 0).

Here we derive the wave function that describes the tunneling from the excited

state as the following [30]. To find the tunneling wave function, we should solve
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the Schrédinger equation

with
; n® 92
VTS + U(y),
R K2 92 1, 2' (6-4)
n = ‘2_’3?+§m (y)n*.

As it is clear that the tunneling path lies on the y-axis, we take the following ansatz

for the wave function

U(y,n) = eSOty ). 65)

Keeping in mind that y and 7 are the variables of the order 7i° and A/, respectively,
. because y traces the classical trajectory and 7 describes the fluctuation around it,
we have the following equations from the Schrodinger equation in the order of ho_

and 5, respectively,

2
10%)—Um=—%,

2\ dy (6.6)
hd*S dSo90(y, ) | »
2 Oy, m) + L v H,0(y,n) = E10(y,n).

Here we have set £ = Eg+ E1, with Eg = O(#°) being classical part and Ey = O(h)

due to quantum fluctuations. The first equation in (6.6) is the Hamilton-Jacobi
equation of the lowest WIKB order. Setting the relation '
dSo d

- 6.7
” dTy(T), (6.7)

it leads to the classical equation of motion with the imaginary time,

Py(r) U

- =0 6.8
dr? dy 0 (6:8)
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Combining these equations, we get

T

So(y(r)) = / 2 (Uly(7")) = Eo) dr'. (6.9)

The second equation of (6.6) determines the wave function at the next WKB

order. If we define

CI)(U,T) Y
O(y(7),n) =: , 6.10
) ) - B 10

we obtain the equation for ®(n, ) as

E@(na’r) = EI(I)(U, T)a (611)
where
. - o n2a 1, 0 .

» Apparently one may regard this equation as the Schrédinger Equation for # with
the Euclidean time [27]. As is expected from the results in §2, we can write a

solution as

EiT/h :
¥(n7) = e~ 50007), (6.13)
with |
a(r) = 47 O (6.14)

where the dot denotes 7-differentiation, and function g(7) follows -
d? 5 -
— —m*(y(1))|g(T) = 0. (»6.13)

dr?

The boundary condition for g(7) is determined from the matching condition of
the wave function near the local minimum. Then, combining (6.3) with (6.1Q), we
obtain a wave function in the forbidden region :

A e=So(D)/h
2(Uy(r) - E)*

U(y(r),n) = &(n,7), (6.16)

wlhere a normalization constant A is attached.
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The matching condition is discussed in the same way as that in §2. Around
the local potential minimum (y,7n) = (yrar,0), one can approximate the potential
as

1 1
V(y,n) = 5@y — yrau)” + 50’ (6.17)

where the tunneling wave function is approximately\ given by

owl/4 1 N P
T(y,m) = [;‘2“] exp [—ﬁw(y —yrm)" — SEYT | - (6.18)
To match (6.16) and this wave function, we should set
) .
E, = §(w+w), (6.19)
and impose the boundary condition for g(7) as
(1) = e, (6.20)

Where c1 is a nomalization constant. As noted before, information of the quantum
state of the subsystem 7 is described by the Gaussian factor Q(7) in Eq.(6.13),
and the boundary condition for g(7) ensures the exponential decrease of the wave
 function away from the tunneling path. Note also that () does not depend on the
normalization of g(7) as is clear from (6.14). If we fix the normalization constant
¢1, the matching condition determines the normalization constant of the the wave
function A.

Using the discussion of Gervais and Sakita [30], it is easy to extend this wave
function to that includes an excited state of n before tunneling. First, define the

operator, } _
Al = e“”{f(r)—a% + f(r)n}, (6.21)

where we have introduced the function f(7) along the tunneling path, which sat-

isfies the same equation as ¢g(7), but behaves as
f(7) = ce™7, (6.22)
at 7 — —oo(near the local potential minimum), where ¢y is some constant. Then
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we can observe the following commutation relation by a straightforward computa-

tion,

[L, A'] =wAl (6.23)

This relation implies that A! ®(n, 7) is a solution of the Eq.(6.11) with Ey replaced
by E1+w, or generally {.Af}"®(n, 7) is also a solution with £ replaced by E1+nw.

Thus we have the following WKB solution of the Schrodinger equation

e=Sa(r)/h
U(y(r)) -

U(r,n) =A= ANV ®(n, 7). (6.24)
g By A 07 |
The above consideration is suggestive of the roll of Al as the creation operator. In

fact, AT has the following asymptotic form at 7 — —00
) 3
t~ - _ 6.25
A c2 (57] wn) ) (6.25)

which is proportional to the creation operator of the harmonic oscillator. This
implies that the solution (6.24) is matched to the harmonic oscillator wave function
of the n-th excited state in the 77¥cli1'ecti011 at the local potential minimum

1/2

w L/4 | 2 w | 1/2 2
U, = [_} e~ @(y—yra)/2 [m] =W /ZHII(\/EU), (6.26)

-

"

where H,(z) is the Hermite Polynomial. Once we obtain the wave function in
the forbidden region, the remaining task is to find the out-going part of the wave
function in the allowed region beyond the turning point. We will work out. this

procedure for simple specific models in the following.
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6.2. SIMPLE MODEL(1)

First let us consider the following potential with

1 1 2 1
_—Q2w4 .’UZ— 59 ’ y-<———__a :
Uy) =4 ® ( @' ) Qlw (6.27)
>
0 } y - Qw’
and
m*(y) = V2 (1 + 0. QPw?y® + B.Qwy). (6.28)

A sketch of the total potential V(y,n) = U(y) + m?(y)n?/2 is shown in Fig.7. The
local minimum is located at (y,7) = (—ye,0), where we have defined y. := 1/ Qw.
w? is the curvature of the local potential minimum in the direction of 1 , 1/Q% is
the height of the potential barrier. The curvature of the poténtial along n-direction

depends on y, and is given by V21 + e F B¢) at ¥ = Fye, which we denote by

w? = A1 + ac — Be), v? = 121 4 e + Be). (6.29)

Here we only consider the case w?,v* > 0. The WKB approximation is valid
if 1/Q% > @, w and v. Then the solution of classical trajectory (6.8) is easily
obtained as '

oy

y(7) = e ta1111(7), , (6.30)
and we have

wT.

5 )}g(r) = 0. (6.31)

([2 2 2 WT
—_— =V (1 + o tanh - + f. tanh

The solution that decreases exponentially, i.e., g(7) — ¢“7 (we set ¢; = 1 1n
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Eq.(6.20)) at 7 — —oo is found analytically [27],

g(r) =e"(1+e"")*F(a, 8,6, —e "), (6.32)
where ‘
e 6i=1+22,
w7 w w

w v 1 1 V2 (6.33)
fi=———+k, K=z 4+ 7 +H4ac—. '
w W 2 4 w

F(a,B,8;—e®7) denotes Gauss’ hypergeometric function. On the other hand, the
other solution that behaves as f(7) — e ™7 at 7 — —oo0 (we set ¢ = 1 in

Eqs.(6.22)) is also found to be

f(r)y=e "1+ e F(d, 5,8 —e*T), (6.34)
where
a'—-—%——g—+f£, 5':1—2—3—,
, e v - (6.35)
f=-—+—=+=k
w w

Applying the results in the previous subsection, we can write the wave function

in the forbidden region as

k ,—S50(7) 9 . n _(wtw)r/2 Q( ) 2\
€ wT € )
PR A N — - ’ e ev -
¥, = N, 7 {e (1 + fom) | e (-2,

[2U(y(7))] g9(7) 2
(6.36)
with
So(T) = /QU(y(T'))dT’, (6.37)

Here N, is a normalization constant and we have chosen Ey to be equal to U(—y.) =
0. This wave function should be matched to the n-th excited state of the harmonic
oscillator wave function near the local potential minimum. Let us check this by con-

sidering the asymptotic form of this wave function. Taking the limit of 7 — ~00,
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from the Eq.(6.30), we have y =~ yc(—1 + 2¢®7), which leads to 2U ~ (4/Q?%)e*="
and Sp =~ w(y+y.)?/2. With these expressions, Eq.(6.36) has the asymptotic form

U, ~ N, [%—] 1/26_’”(“%)2/2 {—aa—n - wn}n w2, » (6.38)
Thus this is properly matched to thé harmonic oscillator wave function excited
with respect to p-direction, because the operator 8/0n — wﬁ is proportional to
the creation operator. Comparing this with the normalized wave function of the

harmonic oscillator, Eq.(6.26), we determine the the normalization constant as -

(6.39)

ww22] 1/4 1
[

[, =
Ny l:ﬂ-Z Q2 2-nn!wn]1/2 ’

Now let us rewrite the expression (6.36) as follows. Since the explicit n-multiple
operation of the creation operator in (6.36) gives rise a polynomial of 77 of at most
n-th order, we can expand it in terms of the Hermite Polynomials of up to n-th

order. We find (see Appendix C)
n .
Tn(y(r),m) = > Tur(r,m), (6.40)
k=0

where

\IJ,nk(T, 77) =‘NnDn,k

e—S()(T) ew(rl-}:l/2)7+wr/2( W )"
ROTA 5 \Jag)

Q (n—k)/2 . (6.41)
X (1 - ;fg) Hi.(VQn) exp (—59772> ,
with D, i for even n given by |
(n - 1)” (n—k)/2 .
TR0 Clras k: even,
Dn,k = (l" - 1)” /2RI (642)
0 , L odd,
and D, . for odd n by
0 _ , k. even,
Dop=9 nll & (6.43)
—ﬁ Z(l k)/2 (n—l)/‘ZC(k—l)/Zv k. odd.

Here we take (—1)!! = 1. Thus the wave function can be written by the summation
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of the mode U Asweset e = co = 1in Eqs.(6.20) and (6.22), we have
f(7)g(7) =1 and Q(7) = w in the limit 7 — —o0, when only the £ = n mode
survives. This is just the n-th excited state. However, for y(7) away from the
potential minimum, f(7)g(7) deviates from unity to generate other k-modes. Note

also that odd(even) k-modes never appear for even(odd) n.

In fact at this stage, we can understand the rough behavior of the wave function
continued into the allowed region. To show the asymptotic form of ¥, near the
nucleation point, we use the asymptotic formulas of the functions g(7) and f(7)

at 7 large enough,

N I2v/@)(1 + 2w/w)
9(r) = Nw/w+v/w+k)I(l+w/w+v/w - k)
':: ge et + O(e—vr)’
—~ F(QU/W)F(]. B 2&)/&7) uT —-uT
f(r) = MN—w/w+v/w+ k)l —w/w+v/w — k) e+ 0(e™)

=: fo e"" + O0(e™"7).

e‘UT + O(G—UT>

(6.44)

Assuming w,w and v are quantities of the same order of magnitude, ¢, and f. are
of order unity. Since the exponential factor, e¥, is large near the nucleation point,
the product, f(7)g(7), becomes large there. Therefore in the expression (6.41),
the smaller £ is, the larger is the amplitude of O, As the index £ represents the
number of oscillations in the n-direction, this means that the mode with smaller
number of oscillations has larger amplitude. It is expected that for such a mode
the initial oscillating energy of n-direction is transformed into the tunneling degreé
of freedom. We now investigate this point carefully carrying out the continuation

of the wave function into the classically allowed region.

Near the nucleation point, taking 7 large enough, we have y(7) =~ y.(1-2e7%7),
and it leads to 2U =~ (4/Q%)e™2"" and Sp =~ (2/3Q%°w@) — w(y — yc)?/2. Using

these asymptotic forms and (6.44), ¥ ;. becomes

) N 9. v(k)+1
g o2 Cop (—yy—i—cy > exp [
b c

[N e

w(y - ,z/c)'z} Hy.(Von) exp <—%vnz> :
(6.45)



e foford) o)

~ oot {O\Y? s (W\F2 —(nik1)/2 (n—k)/2
Cote 1= NyDp e 2/3Q (_2_> W2 (;) g ( + +1)/ (~£) n '

(6.46)

On the other hand, approximating the potential around the turning point as
Viy,n) ~ o (y—yc)?/2+v>1%/2, we can separate the variables in the wave function

as
T(y,n) = v)oln), (647

then the Schrodinger equation becomes

1 d?
— 2+ 2w (y — ye) | W) = Eyi(y),
2dy 2
2 (6.48)
2d772 9 wn) = 1;99 n).
These equations can be reduced to the form,
d? 1 22\
a2 5~ 7)) = 6.49
[d;v? + (M + 9 4 )}@(1) 0, ( )

whose solution is called a parabolic cylinder function. We write the two indepen-
dent solutions as U(—u — 1/2,2) and V(—p — 1/2,2) [45]. The decaying mode

~ solution U(—p — 1/2,2) gives the harmonic oscillator wave function,
U(=p = 1/2,2) = Du(z) ~ 272 H, (x/V2) e 14, (6.50)

where D, (z) is the Whittaker’s notation of the parabolic cylinder function [39]. -
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The definition of D,(z) is given by

—a? I'(1/2) TR
— w/2 z°[4 s
D;t(-’v). 2 e {—————F((l—ﬂ)/Q)lFl( 59 2)
) (6.51)
z I'(-1/2) 1—p 3 x
= F ( 'R o ’
T AN I\ 202 )
with the Kummer’s function 1 F1(a, b, ),
I'(b) <= I'(a +n) : _
F 6.52
1fife,0,2): Z; b-l—n)nl (6.52)
While V(—u — 1/2, x) corresponds to the growing mode,
, Tl i)
V(-p—1/2,z) = —(—M—)(— sinm(p 4+ 1/2)Dy(x) + DN<—SE))
N (6.53)
et /4 -
= e+l (.13 > 1)'

As it is clear, the #-sector of the wave function ¢(n) should be matched to the
decaying mode solution and the y-sector ¥(y) to the the growing mode solution.

Hence we find the matched wave function around the turning point,

v(k)+1
\I’nk(ya ’7) nk (5{—) (5) 2 14 (—V(l\') - 1/2, —\/5‘6—{/“—(?/ - yC)) )

x Hy(vun) exp (—%vn?) :
(6.54)

with
1
E,=v (k + 5) B, (k)

Ey:§+w(lz+ ) <k+;)—E(L)

Using the asymptotic formula of the parabolic cylinder function [43], we can extract

(6.53) .

out-going mode of the wave function in the allowed region beyond the turning point
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as
9 v(k)+1 ﬁ eim(v(k)+1)/2

wi=Cu(grz)  Se@RD
< exp [i/2B, )y - 40)| Huom)exp (~5or?).

Surely it represents the state oscillating in the n-dfrection specified by the index
k, and moving in the y-direction with the energy Ey(k), which is the difference
between the initial total energy and the oscillation energy Ey(k). The superposition
of these k-modes is a state of the system. But we must note the relative amplitude
of each k-mode. We have assumed that the condition 1/Qy/w > 1 is satisfied
so that the WKB approximation is applicable. Therefore the mode of the least

number of k, i.e.,k = 0 for even n and k£ = 1 for odd n, dominates the state.

6.3. SIMPLE MODEL(2)

We discuss another example which allows analytic treatment. We consider
the case when there is a small alternation of the potential in the previous section

adding the term

1 1
"‘GQU—J (y+—_)a lJS—“‘,
AU(y) = U Qf“’ (6.56)

In this case the potential becomes asymmetric, and Eq.(6.8) has the bounce so-
lution. If the correction is small, namely, Q% < 1, we can use-the thin-wall
approximation. Taking the thin-wall limit, we find the following equation for g(7)
and f(7) from Eq.(6.31) |

2
% — (W= 0b(r +T) + 22830(1+T))| g(r) =0, (6.37)

with the delta-function 8(z) and the step-function 6(z). Here we have defined o :=
4o 02 Jw, and set the parametrization of 7 so that the nucleation point corresponds

to 7 = 0 by using the arbitrariness of its reparametrization. In this case, the
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classical solution passes through the top of the potential barrier at 7 = —T', where
T =~ (1/w)log(1/Q%). Then the solution is easily found as follows by considering

the junction condition at 7 = -7,

g(r) = e ’ (oo <7< -T),
Ae" +B e, (-T < 7<0), .
and
in={ < (~o0 <7< =T),
T) =
' Ce"+De™", (-T < 7<0),
where
= v+w—ge(v_w);ﬁ Bo V=Wt 0 ()T
2v . ) ! 2u 9
C = we(U‘FW)T D= vtwHt Qe—(v—-w)T'
2v ’ 2v

Inserting these solutions into Eq.(6.36), we get the wave function in the forbidden
region. Since we have assumed that Q% < 1, we get e"“T > 1,if w ~w~ v. This
leads to |4| > |B| and |C| > |D|, except for some special values of @, w and v.
Then the functions ¢g(7) and f(r) are well approximated by only the first terms in

‘their expressions near the turning point 7 ~ 0. In this case we can write ,,;(7,7)

as
B, M e T H/2) =T (41/2)
e B (Vo B 1, (6.58)
X TGRE exp [Ey(k)7) Hp(V/un) exp (—:2-017 ) .
where

>—(n+k+l)/2

- V B2 —utw+ o\ furw— g
Mt := Np Dy i "/ (&}-) B T ou
Mk = Na Do v 2 2u

(6.59)
Recall that in this model the classical solution becomes bounce, which is different

from that in the previous section. Since we have chosen the parametrization of

the classical trajectory so as to arrive at the nucleation point at 7 = 0, then wé
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can extract out the out-going mode of the wave function in the allowed region by

replacing 7 by it (¢ > 0). By this procedure, we have

‘i,z}:.:t _ Mnk 6—2/3Q2w T (n+1/2) ;—vT(k+1/2)

iSL(t) _— 1 (6.60)
& " B (k) - a2
X GO ( Hk(ﬁn)exp( 2v77);
with -
t .
52l = [ a# L, ). (6.61)
/ _

Now consider the classical Hamilton-Jacobi equation with energy E,

1 /05\* '
== V(g)=E. .6
2 (5) +vw (6.:62)
The solution S(¢(t), E), which is found by setting 05/0¢ = dq/dt, is related to
another solution with the energy F 4+ AE as

a5

S(¢.E + AE) ~ S(q,E) + AES2 |
(0, B+ AB) > 5(g, B) + AEF5 (6.63)

= S(q, E) + AE t + (constant).

Thus $°4 can be interpreted as the state with additional energy AE = Ey(k) =
w/2 +w(n+1/2) — v(k + 1/2) transferred into the tunneling degree of freedom.
Because of the condition e¥T > 1, once again we find the large suppression factor
e~ YTk in the above expression of \Ilf;‘,tt Hence the mode of least number of &
dominates in the allowed region, which is the same as the case discussed in the

previous model.

Summarizing this section, we have investigated the quantum mechanical- tun-
neling in the two dimensional system where the tunneling degree of freedom is
coupled to the other excited oscillator, constructing the tunneling wave function
explicitly. From the consideration of the above specific models, we obtained the

following result. If the condition e*7 >> 1 is satisfied, that is, if the 'duration’ for
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tunneling 7" becomes longer than the period of the coupled oscillator 27 /v, it is
expected that the state after tunneling is dominated by the one in which the iﬁitial
excitation energy in the oscillator is transferred as much as possible to the tunnel-
ing degree of freedom and used to excite the motion in that direction, irrespective
of the initial excitation. This result is interpreted as follows. Since it becomes eas-
ier to escape away from the local potential minimum by getting the more energy in
the direction of tunneling. Therefore such a mode dominantly contributes to the

tunneling.

This result is applied to the field theory directly, when we consider a field
coupled to another tunneling field which undergoes the decay of a false vacuum
homogeneously in the entire universe, as discussed in §4. Because the spatial haf-
monics expansion separates the system mode by mode, and the problem essentially
reduces to that in this section. Then the number of excitation n in the 7-direction
corresponds to the number of particle of the field coupled to tunneling field before
the false vacuum decay. Our result is consistent with those of Rubakov [27] and
of Kandrup [42], which report the particle annihilation during the false vacuum
decay. In contrast with their approach, we have constructed the wave function
explicitly under the tunneling boundary condition, therefore the prescription was
clear, and the information in the classically allowed region was obtained in our

formalism.



7. Summary and Discussions

In this thesis, the whole attention is paid for the aspect of quantum state of a
field during and after the false vacuum decay through the tunneling effect. First
we shall summarize our analysis. We started from constructing the quasi-ground
state wave function which describes the tunneling in a metastable system with finite
degrees of freedom. It is based on the WKB approximation introducing a classical
tunneling path in the configuration space, which is developed by Gervais and Sakita
[30]. We gave the alternative construction of it in the cbvariant manner in §2. This
covariant formalism will be useful when gravity is taken into account. Extension
to the field theory was done formally, then we obtained the wave functional which .
describes the quantum state of a field during and after the false vacuum decay. F01:
definiteness, we introduced the fluctuating field ¢ coupled to the other tunneling
field o thatl undergoes a false vacuum decay, and focused on quantum state of the
¢-field on the tunneling background field. We showed that the resultant quantum
state of ¢-field can be interpreted in the language of conventional second quantized

picture, and gave the method to construct appropriate mode functions.

This is done as follows. First we find the Euclidean classical tunneling solu-
tion og(z, 7). Then we solve the linearized field eqﬂation for ¢ in the background
of classical tunneling solution with the condition that the field vanishes expo-
nentially as the Euclidean time 7 goes to —oo, and construct a set of Euclidean
mode functions gz (). The Lorentzian mode functions vg(x), which describe the
quantum state after tunneling, are obtained by the analytic continuation of gz ()
with 7 — it and by taking their complex conjugates. As these Lorentzian mode
functions are not in general orthonormalized, if necessary, construct a new set of
orthonormalized mode functions ug(z) by a suitable linear transformation of the
original ones. The resulting quantum state after tunneling is most conveniently
described in the Heisenberg picture. That is, if we represent the field operatof
as ¢(x) = i (Gpug () + (‘LLLL};(m‘)), the state is identical to the “wacuum” state
annihilated by the operator ag, but it is not true vacuum state in general. This
formalism was applied for the specific examples of the false vacuum decay in §4

and §5.



The false vacuum decay that occurs homogeneously in a closed universe was
considered in §4, to demonstrate how non-trivial the resulting quantum state can
be after the decay. The resulting spectrum of excitation has some similarity with &
thermal spectrum with its temperature given by a Euclidean duration of tunneling
that is related to alcertajn mass scale associated with the tunneling field. Here,
the high momentum distribution is more suppressed. As a result, the generated
total energy density is determined not by the mass scale of the tunneling field but
by the difference of before and after the tunneling. In this model, there exists an
asymptotic region and the concept of a particle is definite, then we showed that

our approach gives the same results as that of Rubakov [27].

The false vacuum decay with an O(4)-symmetric bubble was analyzed in §5, in-
troducing a simple model of the coupling between ¢ and o, in which the mass term
of the ¢-field is non-vanishing oniy at the bubble wall. We explicitly constructed
the mode functions which describe the quantum state after the false vacuum de-
cay, and found that the constructed mode function were singular on the liglit
cone. We argued, however, that the appearance of the singularity is inevitable for
any model with an O(4)-symmetric bubble under the WKB approximation. We
then presented a method to avoid the singularity during calculations of physical
quantities and evaluated the coincidence limit of the twojﬁoint function as well
as the expectation value of the energy momentum tensor. We found that both
of them, even after the usual regularization of divergent terms, became singular
on the light cone. However, this singularity depends entirely on the choice of a
regularization constant, and we argued that it should be removed in order to retain
the presumed consistency of the WKB approximation. The resulting regularized
expectation value of the energy momentum tensor has been shown to be perféctly
regular everywhere inside the bubble wall. We found that there existed a family
of hypersurfaces (the hyperbolic time-slicing) over which the energy density'waé
constant, as a consequence of the Lorentz invariance of the state, and that the

expectation value of the energy momentum tensor behaves like radiation.

Hence we pointed out that the bubble nucleation process can be interpreted as

creation of a homogeneous and isotropic open universe with high entropy. Unfor-
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tunately, however, the created universe in this model is a curvature dominated one,
then it is not a realistic model of our universe. Nevertheless, we emphasize that
there exists another mechanism, instead of inflation, which gives rise to a homoge-
neous and isotropic open universe with high entropy by a quantum coherénce, and

that it may give rise alternative solution to the horizon and flatness problemﬁ.

This certainly provides us with a motivation for investigation of a more general,
and realistic model. In particular, because we investigated the problein on the fixed
flat background, investigation taking gravity into consideration, which is essential
in cosmoldgy, is necessary. The first step would be to carry out a similar analysis

in a non-trivial curved background spacetime.

Another important issue is the fluctuation of the o-field itself. Because of the
difficulty of zero-mode whose appearance is expected there, this problem has never

been considered strictly so far.

In §6, we attempted to generalize our investigation on the initial state, i.e., the
false vacuum decay from an excited state in the metastable vacuum [42,43,44]. As
a first step for this problem, we considered the quantum mechanical tunneling in
very simple systems with only two degrees of freedom. We regarded each ‘degrée of
freedom as the tunneling one and the other one coupled to it, which was set to be in
an excited state before the tunneling. We showed a very inte'resting phenomenon,
that is, the state after the tunneling is dominated by the one in which the initial
excitation energy of the oscillator is transferred as much as possible to the tunneling

sector to excite the motion in its direction, irrespective of the initial excitation.

Application of this consideration to the field theory was discussed. When a
false vacuum decays homogeneously as considered in §4, the problem essentially
reduces to that of two degrees of freedom, because the spatial harmonics expansion
separates the system mode by mode. QOur result implies that the particles anni-
hilate during the false vacuum decay, which is the same result with the previous

works of Rubakov [27] and Kandrup [42]. Due to the independence of the initial

% In this counection, we mention that Linde [46] discussed the possibility of creating a non-flat
(but long-lived) homogeneous and isotropic universe in the context of the self-reproducing
universe scenario, provided that the creation probability is exponentially suppressed.
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state, they conclude that the spectrum of the number of created particles after the
tunneling can be always “thermal”, in the model of a homogeneous decay, irrespec-
tive of the initial state (even if the field contains many particles initially). It will
be interesting to consider the generalization on the initial state in the case when a

false vacuum decays nucleating a vacuum bubble.

Finally, in connection with this, we comment on a good point of our formalism.
The prescription for the tunneling phenomenon using the Euclidean path integral
is excellent method to evaluate a tunneling rate from the ground state, but it does
not suit to investigate a tunneling from the excited state. Our formalism which
explicitly constructs the wave function can treat this problem, and will be useful

when we consider effects of an excitation on tunneling.
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APPENDIX A

In this Appendix, we show that our estimate of the particle creation given-in
§4 agrees with the result obtained in Rubakov’s approach [27]. We omit the details
and show only the resulting expression for the particle number in his approach. In

Rubakov’s formalism, the number of created particlés is given by

: D2
’ = —_—a ’ .‘A.-l
M (1—D2>kk’ —

where D is a matrix given in Eq.(3.19) of [27]. In the case of spatially homogeneou'é
decay of false vacuum, each k-mode decouples and the matrix D becomes diagonal.
Hence we can treat each mode separately. Since our mode function gg corresponds
to Rubakov’s mode function g, defined in Eq.(3.8) of [27], we find the diagonal

component of D with the wavenumber k is expressed in terms of gg as

G — w0 W —wr (A.2)
Ok + w0k |,=g W Hwt

where W := 0- g1/ gk|,_,- For the model of §4, we have

_ Ap— By

W= B

Hence the number spectrum of created particles in Rubakov’s formalism, Eq.(A.1),

is calculated to be

W w5 (A3)

Ny = = .
kT T W, A2 B!

This is exactly in agreement with the result given in Eq.(4.11).



APPENDIX B

In this Appendix, we evaluate the expectation value of the energy momen-
tum tensor explicitly by regularizing the divergence in terms of the point-splitting
method. That is, we operate the following derivative operator on G()(z,z") to

form a bitensor,

1 (a1 1 o
O [60w,)] 5= (8362 = S

y g 0 + g 0
Oz 0x'? 9zl daB

(B.1)

} cW(z, 2,

and take the coincidence limit, 2'# — 2.

We begin by separating the terms linear and quadratic in m in the integral
form of the two-point function, Eq.(5.23). For notational simplicity, we normalize

the unit by setting R = 1 in the following. Then,

Wz, ") = 211? {eiz + %591 + (%)2 gz} , (B.2)
where
i du e dv
G1:= 1/ Cu? - 2nu + (' + 1/ (o2 =2nu+ (¢’ (B.32)
/¢ 1/¢
Gy = / du / a’vcu.2 — 27;“] SO (B.3b).
1 1

The first divergent 1/€2 term in the above is simply the Minkowskian contribution,
which will give rise to a cosmological constant in (T%"),, . Hence we focus on
the G; and Go terms. We will encounter various forms of divergences also in' Gy
and G, but since the two-point function is manifestly Lorentz-invariant, these
divergences are also formally Lorentz-invariant. Hence, we concentrate on finite
terms in them. Possible forms of <Tf”’),.eg which may arise from the divergent

terms will be discussed in the end.
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In order to carry out the integrals in Eqs.(B.3), one needs to specify the relative

magnitudes among ¢ (= z?), ¢'(= 2%) and n(= z - 2'). In what follows, we assume

2 ' 2 2 '+ 2
e=('-1)">0, X*:= 5 > 0,

(B.4)
D =X’ — (X -e?=¢{ —n*>0.

However, it can be shown that the resulting expression for (%), is independent

of the above choice.

First, let us consider the linear term, Eq.(B.3a). We find

y=1/¢
Cy—n

1
gl = :/_-_5 arctan ( \/_5 ) .

Then using the addition theorems,

+(¢ = (). (B.3)

1

o
arctan o + arctan 3 = arctan ] +£3 (| arctan o + arctan | < m/2),
1
arctan o + arctan 253 (a > 0),

1t reduces to

vD VD
arctan T -+ arctan e -7

S~

3 (B.6)
T 147 (14+9)° — 67 5

= — -+ D+ 0O(D
vD n(l—mn) 331 -n) (D7)

Now, disregarding the first divergent term, m/ VD, and operating Oy, on the rest

of terms, we obtain

R 1 2 Ty 1 —
;L'l’l-l—l‘l;v O“,, [gl] = (EEZ + W) (ﬂ,w — 41%; ) + (1 — 62)377/“, ) (B()

One can easily check that the above contribution to (T4}, satisfies the energy

momentum conservation law by itself, as it should.
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Next we turn to the quadratic term, Eq.(B.3b). It can be transformed as

1/¢
du —nu ¢ - 'nu)
e — | arcta n — arctan ————
\/ / u ( uvD uv D

¢ \
1 dz "2 — 7 z— 77)

—_ [ — cuctan - arctan ———
\/DI/ z ( vD vD

In¢ ( ¢¢'=n C‘?)
=——= | arctan ——— — arctan
vD VD vD
' <
/d* n(z/¢') iz Inz
“(z=n)?+D J “(¢=m?+D
C'
1 ¢¢' = ¢—n ¢ — "7)
=—— | In(¢¢") arctan — In(¢) arctan —In(¢’") arctan
75 (66 e S50 @ utan 8 - (@) aan L)
¢’ q 1
nz
- Iz — | dz | ———=——
/ ‘ / “lGE=n2+D
¢ 1

_ 1 Noean G =0 Gy G
_\/I_)<111(C()alc’éa11 75 In(¢) arctan 75 In(¢") arctan \/5)

~ F(¢¢) + F(¢) + F(¢) - F(1),

‘ (B.8)
where F(z) is an indefinite integral given by

v D
F(z) ._/d~ Inz W(: —7 T D

=1

4 1 |
= / dz’ (ln N+ In (1 -+ ;)) 71D (B.Q)

<=1

Inn :—7 (=" A\ 1
_N et o > = ‘
—\/_a,1c,tan 75 + / dz - (7}> 1D

n=1

The final integral term in the last line of the above equation can be further trans-
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formed as

- o0 ; n
1" [ 1
/dzl Z ( ) (_) =
n n) z¢+D
n=1
-'_ ) f: L :/-—1) o 2m ds' . i 1 777 o ?m+1 dZ,
T “om n d2+D " L oam+1 n Z2+D
o0 m=1 r 2m—2r—1 7
1 -D)'(z — —-D)y™ —
= — — 1 Z ( I ) —I—( ) arctanz 7
— 2m nim o 2m —2r —1 VD VD
- B.10
N i 1 1 le (_D)r(z _ n)2m—2r ( ‘ )
(2m + 1) p2mHl 2m — 2r
m=0 r=0
—Dym ‘
+ g——i—)—-hl ((z—-n)2 +D)}
1 n? + D) -1 o VD
=—02¢In|{ ——— ] arctan +1In{(z — + D) arctan —
2@{(,,72 bt (s = 0+ D) avetan ¥
+ H(z),
where we have introduced the function H(z) defined by
00 m—1 r 2m—2r
1 1 (=D) (= —n)*" "
H(z):=
(=) mz.—_:o (2m + 1) n?m+1 { _'Zz(:) 2m — 2r
(B.11)

' _ i _1_ 1 ""Z_l (-—D)"(: _ 77)2:71—2:-—1
L 2mapm 2m —2r —1 '

.,.=0

Since we only need to know terms up to O(e?) in G2, so in H(z). Then up to this

order we have
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where we have used the following series formulas,

*® " 11—z
—_— =11 —In(1 -2
2—31 n(n+1) ( R H %)) ’
= (B.13)
Zl—n—l __1__+_1_+1+ —1——1 hl(l-—al')
“n(n+3) 3 la? 2w 3 \a® o

Inserting Eq.(B.10) in Eq.(B.9), we find

n2 - z—n)?
F(=) :% {11_19_7\/_%_.22 arctan M\/—ﬁﬂ + e ((N \/’g‘ s D) arctan }/—77_—5} (B.14.)
+ H(z)

with H(z) given by Eq.(B.12).

Substituting = = ¢¢’, ¢, ¢, and 1 into the above expression for F(z), inserting

them in the last line of Eq.(B.8), and using the equalities,

In ((¢¢" = )* + D) = ¢’ +n ((1 - n)° + D),
ln ((¢" - n?+ D) =In¢+ e,
I ((¢ =%+ D) =In¢ +ne. |
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we finally find

¢'—n 1-— n}
arctan — arctan ——
{ ARTD /D

- In ((>1 -n)%+ D) )—1— arctan ?

1 1
g2 =g2,sing + '2' ln(CC’)Tﬁ

vD
+H(¢)+ H(¢) - H(¢C) - H(1) (B.15)
2 . X)2 ’
=g2,sing - ,’27 - 717111(1 - 7])2 — 567—72— - (63'75)

4 —16p+11 1 ) ~
—In(1-n)?tD
{'%Wl—nﬂ RETR + O,

where G2 sing is the singular part of Gs;

D
arctan —\{7: In €2

1
g2,sing :ﬁ .
(B.16)

_1 nt f . ¢-n =1
2111(4’/()\/5 {alctan 75 arctan 75 }

As in the case of Gy, disregarding the singular part and operating Oy, on the

finite terms of Go, we obtain

: 1
2,00 102} = =5 g

(B.17)

5 2 — 3¢2 1 e [ Tyly
+ 1864 + 662(1 —g2)2 + 6e* In(1 - &%) Nuw — 4 & ,

~ which also satisfies the energy momentum conservation law by itself.

Now we discuss the possible contributions to (I#¥),,, which may arise from

reg
the singular terms in Gy and Gp. First of all, they must be in the Lorentz-invariant
form. Moreover, since both of the regular parts of {T#"), Eqs.(B.7) and (B.17),

satisfy the conservation law, those from the singular terms, after regularization,
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should also satisfy the conservation law by themselves. Hence, let us consider an

effective action of the form,

Sreg = / VoIERL(C); €= € = guata”, (B.18)

where g,.,, is the metric which should be set to 7, after taking the variation. Note
that Syey has the Lorentz invariance but does not have the coordinate invariance
for general g,,. Now, taking the variation with respect to g,, and evaluating the

result at g, = 7., we obtain

55, dL .
ATH = 28 =2—ztz" + " L. 1
AL reg | 5g#,, v dC.T " +n L (B 9)
Then requiring AT}y, = 0, we find
CEL LI (B.20)
acz T T -
which is easily integrated to give
_ I 1 U
L—D1+D2C—2—D1+D2f_4, (B.21)

where D; and D, are arbitrary constants. Consequently we have

1 - t\
AT‘lltel;/ = D177’w + DZEI (77111/ - 4ﬁ> . (B22)

This is the contribution from the regularization of the divergent terms. Comparing
it with Eqgs.(B.7) and (B.17), we find that there are terms of the same form as the

Ds-term in the latter. Hence we absorb them in the Da-term. Then, recovering
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the prefactors for the expressions (B.7) and (3.17) (see Eq.(B.2)), we finally obtain

. , £2 w Aztz? 1 v
(T eq ;Z_z [3(1 gy (nl _ 'ngw ) + a _52)37% ]

mg [( 2-3¢ | 1 In(1 — 62)2>

T on? |31 =& T 3¢k

L dgra 1,
< (v - )"(1—&%2””]

, 1 Atz
o+ D (- ),

(B.23)




APPENDIX C

Here we consider the expansion of the following expression in terms of the

Hermite polynomials,
9 . Q) .
il e SVALNE, C.1
{10 +jem} e (<25 (1)
First we set
a ‘I n ] an B n | an
{fa—n + fn} exp ( 5 ) =: kgozn,ka(\/Qn) exp (—-7 : (C-.2)

Then using the relation §f — f g = 2w, and the recursion relation,

f£+f' 2anz He(VQn) o
877 n ard n kL1 n)exp 2

n+2 Qﬁz (CS)
= Z Zn+2,ka('\/§77) eXp (__2—') ) ‘
k=0 ‘

we obtain for even n,
Znsomsr = F2Zun (n=0,2,4,-)
Zngon = (40 +2)BF Zpp + F2 Zyn—2 (n=2,4,--)
Znaop = 4k +2)(k + V)BYF2Z, jaa + (4 + 2)BF* Zy g + F2 Zp s
(n:4,6,---,k:71—’2,77,—4,---,2)
Zny20 =8B F2Zy2+2BF*Z, ¢ (n=24,-)
Zoo =1, Zyo = 2BF?,
and for odd n,
Znaans2 = F2 Znn (n=1,3,5---)
Zntan = (40 +2)BF2Zyp + F2Zy nes (n=3,5---)
Zgak =4k +2)(k+ 1)B2F? Zy pya + (4k + 2)BF2Zjo + F2Z jooa
(n=235-,k=n—-2n-4,---,3)
Zpya) = 4B F2Z, 3+ 6BF2Z, 1 (n=33,-)
Ziq = -1, Z31 = —6BF3,



where we have defined

w Q .
F = —, Bi=[(1-— . C4
Vg ( wfg) ' (C4)
If we set
Zn = F*BOPD, 4, (C.5)

the above reduction formulas are rewritten as, for even n,

Dutan42 = D (n=0,2,4,--)
Dpton=@n+2)Dypn+ Dy p-s (n=2,4,---)
Doyor =4k +2)(k+1)Dn g2+ (4k +2)Dn g + Dy -2

(n=4,6,---k=n—-2,n—4,---,2)
Dy42,0 =8Dn2 + 2D,,,0 (n=2,4,--+)

Dop =1, D2g =2,
and for odd n,

Dyt2nt2 = Dnpn (n=1,3,5,--)
Dpton = (404 2)Dpy + Dy p—2 (n=23,5,---)
Dpyor =4k +2)(k+1)Dy py2 + (4k + 2) Dyt + Dy p—2

(n=23,5,-,k= n—2,n—4’,--‘-,3)
Dyy21=24Dy 3+ 6D, 1 (n=3,5,--")
Dii=-1, -D3;=-6.

In principle, we can obtain a solution with arbitrary numbers of n and & by follow-
ing these reduction formulas. We obtained the solution numerically by the aid of
computer machine, and arranged the results carefully, then we found the general

form of the solution for even n,

n— 1N e/
. ﬁg( /2, ko even,
0 , k: odd,

(C.6)



and for odd n,

0 , k: even,
Dpr = -l (C.7)

’ “Eﬁ o(n=H)/2 (n—1)/2c(k—1)/2, k: odd.

Here ;C, stands for {!/m!({ — m)!. This solution satisfies the above reduction

formula properly.
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