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Abstract

The transition of a quantum state associated with the false vacuum decay of a

metastable system is investigated based on the WKB wave functional approach. In

a covariant manner, we reformulate the WIくB wave function for a multidimensional

tunneling system with finite degrees of freedom, which describes the quasi-ground

state of the svstem. Then we extend the formalism to the case of a field theory

and develop a systematic method to construct the wave functional which deter-

mines the quantum state after the false vacuum decay. A clear interpretation of

the resulting quantum state is given in the language of the conventional second

quantized picture. Using this formalism, we investigate the quantum state during

and after the nucleatiーon of an O(4)-symmetric bubble. We find that the quantum

state inside the nucleated bubble is Lorentz-invariant but very different from the

Minkowski vacuum. There exists a family of hypersurfaces oil which the energy

density is constant as a consequence of the invariance of the state, and the expec-

tation value of the energy momentum tensor behaves like radiation. Then we五11d

the possil)ility of creating a homogeneous anC1 isotropic open universe through thet/

nucleation of an 0(4)-symmetric bubble. To extend this investigation to more gen-

eral cases, we study tunneling phenmenon in simple qua山um mechanical svstems

with emphasis on the interaction between the tunneling mode and that coupled to

it. Analysis using the WIくB wave function shows that the energy is transferred to

the tunneling mode, and implication to a false vacuum clecay in the presence of

fielC1 excitations beforでthe tunneling is discussed.

-3-



CONTENTS

page

1.Introcluction　一・・一　　　　一一・.・一一・・・一一、‥'‥　8

2. Construction of a Multidimensional Tunneling Wave Function

3. Field Theoretical Description　・・・　　　　　-　　　　　　　^

4.HomogeneousDecayofaFalseVacuum　一一・ I ・一・ ・一一蝣・26

5. FalseVacuumDecaywithan O(4)-SymmetricBubble・・・・・・蝣・・30.

5.1 Construction of the mode function　　　　　　　・　　　　31

5.2 Evaluation of the quantum state inside the bubble一一一一・ 35

5.3 Creation of a homogeneous and isotropic open universe　∴ - 40

6. TowardgeneralizationoftheInitialCondition　一一・ ・ ・一日43

6.1WaveFunction一・一一一-一一・一一一・一一一一43

6.2SimpleModel(l)一一一一-一一-・---∴-・-48

6.3SimpleMムdel(2)一一・一一　　一一一・・・一一一　54

7.SummaryandDiscussions一一・∴・一一・-一一・一・一・ 58

AppendixA一一一一一一-一一-一一一・----62

AppendixB一・一一一一一・一一-一一・一一・・一・、・63

AppendixC　一一一--一一一・・.一・・一・-一一71

References　一　　一一-・一一・・一　　---・!74

-4-



1. Introduction

The quantum tunneling is an old problem as the quantum mechanics itself. At

present, it is important in many areas such as nuclear physics [1], the scanning

tunneling microscopy [2,3], mesoscopic device in solid state physics [4,5], chemical

reaction [6,7,8] and biology [6,9]. In the field of cosmology, too, a tunneling pro-

cess is important )ecause it is believecl that there were several epochs at which

the universe underwent phase transitions at its early stage. Among such phase

transitions, most in且uential ones are those caused by the decay of a false vacuum,

i.e., a first-order phase transition of a.inetastable vacuum to a more stable state

through the tunneling. The particular interest is taken in the false vacuum dec云・y

during an inflationary stage of the universe [10], which wads recently revived as the

extended inflation model [11] and subsequently in several other scenarios [12,13].

The false vacuum decay is a tunneling phenomenon in field theory, whose cly-

namics was first studied by Voloshin, Iくovzarev and Okun [14], and a method to

calculate the bul}ble nucleation rate and to descrilje the dynamics of a nucleated

bublDie was given lDy Coleman [15] and by Callan and、Coleman [16], using the Eu-

cliclean path integral. Subsequently, a numloer of efforts were made to stu〔ly false

vacuum decay in various situations [17-28]. One of the most important results is the

fact that the decay rate is predominantly given by the path integral around a Eu-

clidean classical solution with 0(4)-symmetry, called an O(4)-symmetric lDounce.

In particular, in the situation when the effect of gravity can be neglected, it was-

provecl rather generally that the 0(4)-symmetric bounce solution has the minimum

action among the Euclidean classical solutions [17] aユid has a unique negative mode

around it [IS]. The 0(4)-symmetric ljounce solution has a bublDie-like structure,

with the field value approaching to that of the false vacuum at the Euclidean in-

finitv outsiC:le the but)I)le and close to that of the true vacuum inside the bul沌1C.
ヽノ

When this solution is analytically continued to the corresponcling Lorentzian solu-

tion, it clescril)es the motion of a nucleated bubl)le. Because of the 0(4)-symmetr.y

of the lDounce solution, it has the 0(3, 1)-invariance, i.e., Lorentz invariaiice, and

expands with a hyperl)ohc trajectory.
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However, this description of a false vacuum decay and the subsequent motion of

a vacuum bubble is merely the lowest-order WIくB picture of the system, as is clear

from the fact that it entirelv owes to the classical solution of the field equation.

What one would expect is that the quantum state with the other in五nite degrees

of freedom would be significantly affected by the drastic change m a vacuum state

and becomes highly non-trivial after the false vacuum decay.

study of such a higher order effect was initiated by Rul〕akov [27] and Vackas-

pati and Vilenkin [28]. They introduced a system consisting of two interacting reチ・l

scalar fields a and 6 iu the Minkowski loackground, and studied the e庁ect on the

quantum state of ¢ due to the false vacuum decay of the a-field. Although their

approaches are very interesting, neither is satisfactory. Rubakov stuclied it us-

ing the unjustified method of non-unitary Bogoliubov transformation, and focused

on evaluating the number of particles created during the false vacuum decay by

defining a particle in terms of the instantaneous Hamiltonian diagonalization. The

latter procedure is time- and observer-dependent, and the concept of particle'is

quite ambiguous in the presence of interaction. In pa-rticular, the 0(4)-symmetry

of a bubble is not respected in his method. On the other hand, Vachaspati and

Vilenkin discussed the quantum state I)y solving the functio王Ial Schroclinger equa-

tion with full respect to the symmetry of the bubble. However, it is not clear if

their lboundary condition for the wave functional corresponds to the false vacuum

state lbefore its Clecav. Further, their analysis focuse〔1 0n the quantum state outsiClet/

the bul)ble, while a matter of more importance is that insi〔:le the bulDble.

In the present paper, in order to improve the investigation of this problem,

we construct Clifferent formalism. We start with the Schroclinger equation m a

multidimensional tunneling system with finite Clegrees of free〔lorn, and reformulate

the methoC:l to. construct the WIくB wave function [29,30,31,32いvhich clescribes

the quasトgrounC1 state of a meta-stable system・ Here the quas卜giounCl state means

the lowest energy state sufficiently localized at the meta-stable vacuum minimum.

Keeping in mind that gravity should I)e consistently taken into account ultimately

iii the cosmological context, we clevelop the formalism in a covanant manner so

that it would -)e applicable to that case as well. We then exten〔 the result to the
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field theory, and develop a general framework to find the quasi-ground state wave

functional,中in both the classically forbidden and allowed regions. In the field

theory we give a・n interpretation ofせin the second quantized picture, and develop

a systematic method to construct the mode function which describes the quantum

state after the false vacuum decay. We emphasize that our formalism can give a

clear answer to the prololem, as we are dealing with the wave functional) itself

and the boundary condition is explicitly taken into account.

This thesis is organized as follows. In §2, we give a derivation of the WIく白

wave function in a multidimensional tunneling system (multidimensional tunneling

wave function)[32]. In §3, we formally extend our formalism to field theory, and

develop a systematic method to construct the mode functions which determine the

quantum state after the tunneling. Then the result is interpreted m the language

of the conventional second quantization picture. For simplicity, we here introduce

the tunneling field a and the other field 0 coupled with that, and examine the

effect on the quantum state of ¢ due to a false vacuum decay of a-field. In §4,

we consider a spatially homogeneous decay of a false vacuum as an example of the

field theoretical case, and show that the quantum state after the tunneling gener-

ally contains a spectrum of field excitations. The model considered there is much

simplified, lDiit contains the essence. The resulting spectrum of the excitation is

similar to the thermal spectrum. The same problem was examined by Rubakov,

aユad justification of his peculiar approach is descril)ed lone且y in Appendix A. In

§5, we consider the false vacuum decay associated with 0(4)-symmetric l〕ubble

nucleatioii [33]. A specific model under the thin-wall approximation allows us an

analytic treatment, and we丘nd that the resulting state is Lorentz invariant (i.e.,

0(3, l)-invariaユIt) 1〕ut is different from the Minkowski vacuum, as expected. We

calculate the two-point function and the expectation value of the energy momen-

turn tensor inside the vacuum bubble, with full use of the 0(3, 1)-symmetry: An

alternative, more explicit evaluation of the energy momentum tensor by the point-

splitting method is also given in Appendix B. Then we find the field excitation in

the vacuum bublDie from the energy -lomentum tensor that behaves like racnation

at late times. Due to the Lorentz invariance, there exists a family of hypersurfaces
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over which the energy density is constant. Hence we point out that the nucleat-

ing process of the <9(4)-symmetric vacuum babble can be regarded as the process

creating a homogeneous and isotropic open universe filled with radiation, and dis-

cuss the possibility to provide a model of our universe [34「In §6, attempting to

generalize these investigations, we study the qua叫m tunneling from a general

excited state in very simple two-dimensional quantum mechanical systems. The

final section is devoted to the summary and discussions of the results and the is-

sues that should be solved. In Appendix C, a solution of mathematical reduction

formulae is explained, associated with that in §6. We note here that the signature

。f L。rentzian(Euclidean) metric is taken as - + + + (+ + ++)・
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2. Construction of a Multidimensional

Tunneling Wave Function

Let us begin with the construction of the WKB wave function in a multidimen-

sional tunneling system (multidimensional t血neling wave function). Our approach

is essentially based on the Gervais and Sakita's formalism, which introduces the

concept of the tunneling path, i.e., a classical trajectory in the configuration space,

and evaluate the且uctuation of the next order wave function along the tunneling

path. we reformulate the multidimensional tunneling wave function in an alterna-

tive covanant manner, which will be useful in the future investigation taking the

gravity into consideration.

We develop the丘)nnalism in the system which has the Lagrangian

弓瑚(紳bβ-v(4>)　α-0,---,」>), (2.1)

where ¢ 's are the coordinates of the (D + 1)-dimensional space of dynamical

vanalDies (i-e., superspace) and gaβ(4>) is the superspace metric. We assume that

the signature of the metric is positive definite. The potential V(<p) is supposed to

have alocal minimum at ¢0 -境M. Figure 1 is the case D - 1. We callit thel

local potential minimum or the false(metastable) vacuum minimum throughout

this thesis, and use the convention that Greek and Latin indices run from 0 to D

and from 1 to D, respectively. The Hamiltonian operator is obtained by replacing

the conjugate momentum of the Hamiltonian with the differential operator in the

coordinate representation. Though there is ambiguity of the operator ordering

ill this system, we chose it in such a way that the resulting Hamiltonian takes a

covariant form;

k -一誓納)∇av/3 + -′′(0),　　(2.2)

where qaβ(0) is the inverse of‰β(4>). Note that this is a Hcnnite operator, if we

define the inner product using the integration associated with the invariant volume

element.
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Now let us begin with the construction of the wave function. Following the

WKB ausatz, the wave function is assumed to have the following form in the

classically forbidden region,

せ- e-Uww+nww+-)

As the static potential is assumed, we should solve the Schrodinger equation,

HV=」ォ.

(2-3).

(2.4)

We solve this equation order by order with respect to ft. The equation in the lowest

order ofたIbecomes

一芸gop∇αw^∇βw<ョ+榊-恥　　(2.5)

Here Eq is the zeroth-order part of the energy eigenvalue E. This is the Hamilton-

Jacobi equation with potential, -V, and energy, -Eq. The minus sign appears

lbecause we are considering classically forbidden region, and taking the ansatz (2.3).

Introducing a parameter r in terms of

堅田:= gαβ∇βw<-¥
dr

d2¢a(r)

dr2 + r-,pi的7 - gαβ∇βV,

(2.6)

(2.7)

(2.5) reacts

where TQ3 is the connection coefficient of the superspace metric ‰β [35]. This is

nothing but the classical equation of motion with an imaginary time. Thus r is

called the Euclidean time.

As we consider the case Eq is chosen t0 -3e V(4>lM), there exist solutions of

the Eucliclean equation of motion which start from the false vacuum minimum

and reach the region outside the potential barrier. Among the solutions, there is

solution that gives the minimum Euclidean action, which we call the tunneling
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solution,節(r), and its trajectory the tunneling path or the dominant escape path

(hereafter DEP). It is the path of least resistance [29] or the most probable escape

path [30]. In our case in which Eq is equal to V{¢呈M), the tunneling solution i弓a

half way of the bounce solution [15]. We can set parametrization of the Euclidean

time so that the仙nneling solution leaves the false vacuum minimum, ¢α - ¢呈M,

at T一一∞, and reaches the turning point at r - 0, without any loss of generality.

Usually, the tunneling process is described by this tunneling solution. Inte二

grating the equation derived from Eqs.(2.5) and (2.6);

dWW

dr
- 2{V(<f>) - Eo), (2.8)

the tunneling" rate can be naively evaluated by the ratio of the squared amplitude

at the turning point to that at the false vacuum origin as

r -exp (2 [w<0)(-∞) -W<o>(O) ).

JNext let us turn to the second order Equation;

-gop∇QWw∇βw�"+芸gQP∇o∇βw<-> -些h

(2.9)

(2.10)

Here E¥ is O{Ti) part of the energy eigenvalue E. If solutions of the Euclidean

equation of motion (anCI also T/JA-)(¢α)) are known with a sufficient numl蝣)er of

integral constants in the vicinity of the tunneling solution, we obtain a congruence

of solutions in the superspace. Then we can introduce a set of new coordinates

f入a} :- {r, A"} which have one-t0-one con・espondence to the original coordinates

{</>"}, where (A"} are the coordinates labeling different or15its of the congruence.

Using these new coorてIinates, we丘nCl

-∇βd
w(o)-^log

drde儒)ヰ

-ll-
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where s/g is the determinant of gaβ. Then Eq.(2.10) is integrated as

WM-ilogdet(器V9　筈r.+constant. (2.12)
Therefore the wave function is, to the second lowest order, formally given by

detl欝)
exp蝣[-W<->(入a)錘+ Elr/h¥.  (2.13)

This wave function is a general one and we need to choose a congruence of or-

bits parametrize〔I by A" in the vicinity of the DEP which satisfies an appropriate

boundary condition at r一一∞ For this purpose, we first expand the wave func-

tion (2.13) around the DEP introducing the orthonormal basis along it, and then

we require the thus-expanded wave function to have the correct asymptotic behav-

lor at r一一∞, so that it is correctly matched to the ground state wave function

at the local potential minimum.

The first step can -3e achieved by using a technique similar to the Fermi-Walker

transport of a vector and by deriving an equation similar to the geodesic devia-

tion equation [35,36]. Consider a set of orthonormal bases ejj^r) along the DEP;

cJ^eUeU - viM'wliere M nms throllgh the ranァe ->l>"- D. For notational

convenience we introduce another set of indices (0, a) to denote [/-i]. We choose e昌

to -De the unit vector tangent to the DEP ;

'。‥=三下'

where

・a :-筈- gαβ∇βwョ¥

N2 := NaNa = ∇誹パ0)∇αW(0) - 2(V- Eo).

If we 〔lefine a differential operator Df/∂r for a vector Aα as

(2.14)

(2.15)

計=-芸xα+芸xp芸Nβ-掌芸NQ, (2.16)
where D/dr - Nα∇ is the covariant derivative tangent to the DEP, it is easily

seen that Dpea/∂t - 0. Hence we can choose all the basis vectors e琵along the

-12-



DEP to satisfy

芸e琵E】 - 0・ (2.17)

(The basis vectors thus defined satisfy the relation e。aeg - 0 along′ the DEP

[30]) Then introduce coordinates around the DEP. 、At each point q on the DEP,

we can find a hypersurface perpendicular to the DEP, ∑(q), which is spanned

by all possible geodesies tangent to linear combinations of e芸at q at least in a

su氏cientIy small neighborhood of q (see Fig. 2). Then it is known that there

exists an exponential map from the tangent space at q of ∑(q) to the hypersurface

∑((?) [36], on which we can introduce the Riemann normal coordinates rya with

the identification e芸∂/鋤Q - ∂/∂rja; i.e., the bases eJ becomes coordinate っases.

Hence we have

∂It∂'I ¥if=O

-Wョ¥aez -Nae芸-0,

¥。cp芸e」 -: ^ab,

(2.18)

where the semicolon denotes covariant differentiation with respect to the metric

gQβ(<f>). Consequently W(-¥入Q) is expanded as

Wm(xa) - W{q¥t) +芸fiab?7V +　　　(2.19)

Now we show how the matrix f2ab is determined in the above expression. First we

set

~-　　- ∂¢α

/'蝣　∂¥p

(2.20)

Then a straiglit-foi・warCl calculation yielCIs the following equation for zaj-t along the

DEP,

aDT帯

QT2-/<tf-f

O-鞠/V^JV7-^-

(2.21)

where we follow the convention of [36] for the RiemJaim tensor. The secon〔:l equation

is similar to the geodesic Cleviation equation, except for the first tei-n on the r.h.s.
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This is because the DEP is the solution for the equation of motion in the space

with the potential, which makes the DEP to be different from the geodesies. In

deriving this equation, we used the Euclidean equation of motion (2.7), which now

should read

旦聖ニー¥":o =I).
∂T ∂T

(2.22.)

Next we rewrite Eqs.(2.21) in terms of the ordinary partial derivatives along the

DEP, we considerthe components ofz㌔ (n.- l, 2, - , D) projected in the direction

ofe"

z n蝣- eaz㌔ -: K%(t)x㌔　　　　　　(2.23)

where x㌔ is a r-independent matrix introduced as a normalization factor of A'ab(r).

Then it is straightforward to find the equations for z¥ along the DEP;

孟-a - a-ryαis4z㌔ - ftab-㌔　　　(2.24)

芸瑞- V.ah;㌔ - ZN-2V.,融- N'RaobQZ㌔　(2.25)
where

vah :-鈷βeg,

Va:-　芸V;α,

Ra。b。 '蝣- e芸4rα.fhN'W.

(2.26)

The first tei・m in the r.h.s. of (2.25) is the effect due to the change of the potential

curvature along the DEP, the second is the effect how the DEP is bent in the

configuration space, and the third is the effect due to the nonflatness of the space.

Note also that the matrix K¥ define〔1 in Eq.(2.23) satisfies exactly the same eqiia-

tions as z㌔ does. Using Eq.(2.24), we express flah in terms of K¥; multiplying

the both sides of the equation by the inverse ofニ㌔ we find

・'ab - -a/i¥了1)昌- A-ae(A'当。b, (2.27)

where the clot denotes r-clifferentiation. It is worth noticing that there exist arbi-

trariness of constant matrix fs to determine the matrix $lab'
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Next we express clet |dダ/∂入β巨n terms of K¥. In order to do so, we write

down the superspace line element in the coordinates {入'} - {r,入元} in two different

ways;

ds2 -鋤器霊dWd入- - 0%β + e^a/?)器霊d入物5
- N2dr2 + 5&hz%z¥d大元d入ih.

Then equating the volume elements in the two expressions, we find

y/9 det(器) -A^ clet瑚

2{V{∂α(T)トEq) | det/f*b(r)|| detxc訂

(2.28)

(2,29)

Substituting Eqs.(2.29) and (2.19) into (2.13), we arrive at a desired expression,

C e-w^(T)/tieEIT/h

2(1′(か(T)ト」o) detA'ab(r川detxl元 )

1/2

(2,30)

・ exp 「^Nftwr)
ど

Now let us turn to the next step, and consider the matching condition for

the wave function. As we are interested in the quantum tunneling decay from

the false vacuum state in the local potential minimum, we consider construction

of the quasi-ground state wave function, which descril〕es the state of the lowest

energy sufficiently localizeC1 at the false vacuum minimum. Here, we assume that

the system can be well approximated by a collection of harmonic oscillators near

the false vacuum minimum and quasi-grounC:l state wave function there can be

a・pproximated I:>y the grounCLstate wave function for this collection of harmonic

oscillators. This type of matching for the tunneling wave function is explicitly doneヽ

in the Refs.[32,37. Specifically we assume that the potential and the superspace

metric have the following asymptotic forms near　α - ¢aLM-

V'6年Eo一芸M.β。¢0 - <plm)(¢β - ^lm).  (2.31)

鋤-a{0)

respectively. Here xjA is a constant positive definite metric an〔1 Ljafj is assumed t0
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be a positive definite matrix. As we can set g^ - ∂。β without loss of generality,

we do so. The ground-state wave function for this system is

中-fdet^1

V7T./′exp孟母(¢α一鮎)(¢β-4m)¥(2.32)

which should be matched to the WICB wave function (2.30). From the assumption

(2.31), the Euclidean equation of motion (2・22) at r -I-∞ takes the following

form,

芸¢叫U! ').β(¢β - 4m)-　　　(2.33)

Hence with the boundary condition that ¢α(T) - ¢呈M as r一一∞ the relevant

solution which deseriloes a congruence along the DEP is given by

¢α一芸M-(<?　β, (2.34)

whereCβaresomeconstantsandarerelatedtothearbitrarinessoftherepaJrametn-

zationofr.Integratingtheequation∂iy(0)/鋤α-∂軒/∂T-a;.β(¢β-<?iiv/)>we

get

-V(o){¢つ-主軸(¢α-<Plm)(<PP-¢0)

LMh(2.35J

wherewehavesetTF(0)-0atthelocalpotentialminimum,α-vlm-This

alsoimpliesthatfiab-瑚e芸ei-:c^abfrom(2.18).ThenfromEq.(2.27),the

asymptoticboundaryconditionthat/v'abshouldsatisfybecomes

K¥-(eQr)',.c
Kb' (2.36)

where /ccb is a constant matrix. This con〔litiou requires that A'ab decreases expo-

nentially at the local potential minimum. This condition is the necessary condition

to obtain the wave function which decreases away from theぐassi〔・al tr判ectorv DEP

all(1 to match it with the harmonic oscillator wave function at the local potential
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minimum. Taking the trace of the equation, K*{K 1)呂- o;ab, we find

孟孟(det/v) -TrゐI
Further, using the facts that

eg岬持前瑚両β -芸芸IogiV^
1

Tr由- Trw - e旨wa/?e{),

we can show that the following equality holds in the asymptotic region,

d

NdetKdr

Integrating this equation, we get

(NdetK) - Tvlj.

2(V紳(r)) T Jo)|detATab(r)| - C e,Trw t

(2.37)

(2.38)

(2.39)

(2.40)

where C comes out of the integration constant, and reflects the arbitrariness to

normalize the matrix A'」. Substituting (2.35) anC:l (2.40) into (2.30), and comparing

it with the harmonic oscillator wave function (2.32), we丘nd

El -芸Tew, - (。et冨)1′ cA′　(2.41)

Thus Ei is the vacuum且uctuation energy of the false vacuum. Finally we ol3tam

the WKB quasi-ground state wave function to the second lowest order, which

is matched to the ground state wave function at the false vacuum minimum了aS

follows,

丁

・ exl〕(一芸! dT12{V(4>a(r')) -Eo) + -Tv山T)
-し>⊃

・ exp(一芸nab(r)7?V) ,

(2.42)

whe`re A - C/1/ ilab is expressed in terms ofA-ab by (2.20: and it is determined
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by solving Eq.(2.25) with the boundary condition (2.36), i.e., the exponentially

decreasing solution as r一一∞ If we fix the normalization of matrix K¥, then

that of wave function, A, is determined. Though we do not fix it here, and keep

the arbitrariness of the normalization of the matrix K¥, for later convenience.

We have found the quasi-ground state wave function in the forbidden region.

But we want to know the quantum state of the field after the tunneling. We

therefore must obtain the wave function in the region beyond the turning poi叫

i. e. , classically allowed region (hereafter, following the conventional terminology,

we call the classically forbidden region the Euclidean region and the classically

allowed region the Lorentzian region). The construction of the general for聖of

the Lorentzian wave function is not much different from that of the Euclidean

wave function. That is, the procedure is to construct classical trajectory of leading

WKB order first, and evaluate the second order wave function along the classical

trajectory. The essential issue is the matching condition at the turning point

at which the WKB approximation breaks down. Nevertheless, in the case that

the potential varies slowly in the direction of tunneling (r-direction) around the

turning point, the matching problem reduces to that of one-dimensional quantum

system [38]. Note that since the wave functional # is the・eigen-function of the

quasi-ground state, it is real everywhere. Hence, when it is analytically continued

to tIie Lorentzian region, it consists of the outgoing and incoming wave parts

which are complex conjugate to each other. However, since we are interested in

the wave functional which represents tunneling 、out of the barrier from the false

vacuum, we focus on the outgoing part. Then the Lorentzian wave function will

simply be given by the analytic continuation of the Euclidean wave function, i.e..

replacing the Euclidean time parameter r by the Lorentzian time * with r - it・

The matching problem for a general case has not been formulated so far and 、、ie

hope to come back to this issue in future.
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3. Field Theoretical Description

In this section, we consider the application of the formulation developed in

the previous section to the field theory. For simplicity, we introduce a field a

which undergoes a false vacuum decay and another field (p that is coupled to it,

then investigate the effect of the false vacuum decay on the latter field. In the

beginning, we construct the tunneling wave functional of this system following the

procedure in the previous section, and derive the two point correlation function

from it as an example of the observables after the tunneling. Then we show that

it is possilDie to interpret仙e results in the conventional second quantized picture.

Now we write the Lagrangian of the system as

c-ca+x¢

・, :--ノdrx -(<V)2+U(a)

L¢:-- Id3訂i(W十芸-2(a)(p2

where

(3.1)

(3.2)

Here we have assumed that the potential U(a) has the form as shown in Fig.3,

and that the false vacuum (a - a_) decays to the true vacuum (a - a+) through

the tunneling effect. As is assumed in the previous section, the origin of U(a) is

chosen so that U(a_) - 0 (i.e., the quasi-grouncl state of the false vacuum has the

vanishing energy at the lowest WICB order; Eq一三0). The function ra2(or)'describes

the interaction lbetween the two fields. The Hamiltonian of the system is given I)y

H- cf弔芸+芸(∂蝣iff)2+U(a)

・ / d3x詣+i(9ォ0)2+¥-2{a)<f>2
(3.3)

Then the quasi-ground state WIくB wave functional of the system satisfies the
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following functional Sckrodinger equation,

H申-El中, (3.4)

where'E¥ is the correction to the energy in the first WKB order (which in reality

diverges in field theory, but we will not go into the problem of regularization and

renormalization here).

In this system the tunneling path(DEP) isわund by the classical solution of

the fields, i.e., for the tunneling field the half way of the bounce solution in the

classically forbidden (Euclidean) region, which we denote by cro(a>, r), and its an-

alytic continuation r - it(t > 0) in the classically allowed (Lorentzian) region,

and for the ¢-field <p(x) - 0. To avoid comple豪ity, we neglecte the且tictuation of

tunneling field a. We only埴e the one degree of freedom in it, i.e., the tunneling

solution (Jo, which is parametrized by one parameter r, then investigate the quan-

turn負uctuation of the 0-field.. This is the same approximation as that adopted by

Rubakov [27] and Vachaspati and Vilenkin [28],

As the tunneling degree of freedom and the fluctuation degrees of freedom is

orthogonal from the beginning, we have the following correspondence, to apply the'

previous formalism to the field theory,

節(T) - ao(a?,r),

T7a - (j)(x).

(3.5)

Thus, as far as the fluctuating degrees of freedom are concerned, the extension to

the field theory is clone by replacing the su伍x a with the spatial coordinates x. To

hd the quasi-ground state wave functional, we have to solve the matrix K%(t),

which we denote in the field theory by K(x,y;r). The equation for it is derived

as follows. Interpreting the potential of the system as

V-cf帝dm?+U(ao)¥

/蝣
+d亜cpf+>Vo)02

-20
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V& and l左b in (2.25) are read as

=0

<7-<To ,卓-0

♂=Jo ,¢=0

^ab - [-△x + -2(ao(x,T))¥6(x - y),

then Eq.(2.25) now,

堤+△x --2(ao(x,r)) K{諾,v,ry- O,

(3.7)

(3-8)

with the boundary condition that it decreases exponentially at r一一∞. Here

instead of directly dealing with K(x,y, T), we express K(x,y; r) in terms of a

complete set of functions g^x. r) which satisfy the same field equation (3.8) with

the same boundary condition, together with a complete set of orthonormal spatial

harmonics lfc(2/j;

K(訂,y¥r) - ∑9k(*,T)Yk(y).
k

The boundary condition ofg^x.r) at　一一∞ is

9k(x, T) - exp(wfcr)Yfc(aj),

where uた,、-

of Yi

(3.9)

(3.10)

k2 +m_ , m_ - limr一一∞m2(ao(x,t)), and -k'2 is the eigenvalue

(△。 + fc2) yfc(a0 - 0. (3.ll

In what follows, we usex,y,・・蝣to denote (a;,r), (y,r) -, for notationalsimplicity.

According to the result` obtained in the previous section, the quasi-grounC1 state

wave function in the Euclidean region is written as

せ- A e-So(r)/ft-S,(r)軸CO, *!;

可<ft-),r -
・EI T/ti

detA(aj,2/; r) exp仁去d3xd3y(t){x)ft(x,y]T)(p(y)
(3.12)
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where A is a normalization factor,

T

50(r) -W(-¥t) - f dr'cE[ao;r'}, 5i(r) -左Iog|」」[0-0;r]|,
一一〇〇

n(x,y,T) - d3zdTK(x, z; r)K-1(z, y, T),

(3.13)

and the Euclidean Lagrangian CE is defined as JE[o¥ r] :- -Cff[a; ir¥. Using (3.9),

fl(x, y; r) caii.be e坤ressecl in terms of gk(%) as

∩(訂,y¥r) - ∑血(*)9k (v),
k

(3.14)

where g]~ (y)'is the inverse of gk(x) such thatく

k　　　　　　*痛1(x)gp(x)-6kp. (3.15)

Thus, to obtain the Euclidean wave functional, all we need to know are the mode

functions #&(#)・

One important point to note here is that the wave functionalせin Eq.(3.12) can

-;>e regarded as being composed of two distinct parts; namely, the part e-So/h-Si

which describes the background tunneling wave function, and the rest輔(0, r
which describes the負uctuation of the 0-field. Our wave functional is related to

the formalism developed by Rubakov [27]. To solve the Schrodinger equation (3.4),

Rubakov put an ansatz that the wave functional is written as a product of the WKB

wave function for the tunneling system and the one for the且uctuating system as in

Eq.(3.12). With this ansatz, he showed that the wave functional for the fluctuating

system軸(・), r] satisfies the Eucli〔lean version of the Schrodinger equation, with

チ - -IT. In our case, we can also show that軸(・),r] satisfies the Euclidean

Schrodinger equation as

一芸軸),'] - (鶴-」i) s[0(-),r],

_　つり　_



where

鶴:- d*弔蒜+芸(∂;o)2+---Vo(a:,T))02
Thus the ◎-part describes the且uetuation of theかfield. In particular, all the

information of the quantum state is contained in the function Q(x,y;r). It is

also worthwhile to note that the boundary condition of #&(∬), Eq.(3.10), cor-

rectly reproduces the - (quasi-)ground state wave functional before tunneling be-

cause fi(ai,y;r) - ∑kukYk(x)Yk 1(y) as T - -∞・

Once we o13tain the Euclidean wave functional, the remaining task is to derive

the Lorentzian wave functional toy matching these two at the turning point r - 0.

This matching procedure can be quite complicated in general. But, as noted in

the last oHhe previous sectio工i, when the potential varies slowly in the direction

of tunneling (r-direction), the matching problem reduces to that in the case of one

dimensional quantum systei可38「In this case, we can obtain the IJorentzian wave

functional,申l, which represents tunneling out of the barrier form the false vacuum,

by the analytic continuation ofせwith r - it. Then introducing a function f^(可

in the Lorentzian region, the complex conjugate of which, v拒), is the analy。tic
continuation ofQkix) with r一紙we finCl

申l -,F(#)exp H!(l3赫(訂)nL(-Mv) ,

oL(訂,扉) - -t∑vftfaK"1^)-
k

witll

(3.16)

(3.17)

where F(it) is a function of t that appears by the proceClure of continuation anCl

the clot denotes t-differentiation.

Now we investigate the nature of the quantum state descril:>ed I)y ^l- As we

are interested in onlv that of the ¢-fiel〔I, let us consider the equal-time two-j.〕omt
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correlation function, which is expressed as

G(1W) - /#(・)鳴く¢(∬), ㊨(!/)}申L

/#(・)里中L

(ty(軸)+fl」(a?,y;t)) +(x -v),

(i∑転(璃¥y)-i∑瀞H-Hv))'+(訂　y)-
k k

(3.18)

This蝕pression, as it is, does not give us much information. The reason is that

although the functions Vk(x) form a complete set, they are not properly orthonor-

malized in genera-1. Hence, in order to rewrite Eq.(3.18) in a more comprehensible

form, we introduce a set of normal mode functions uq(x), each of which is a linear

combination of Vk(x) ,

%(#・).- ∑ Aqたvk{x),
k

with cletAq　≠ 0, and are normalized as

-?: l (pz¥uq(z)uq,(z) - uq(z)uq,(z)j - 8qq>.

(3.19)

(3.20)

We note that言n principle, these functions can lDe constructed I)y Schmidt s oト

tkogonalization procedure. Contracting the both sides of the above normalization

condition l}y the inverse of uq(x) and u^,(y), we find

-i∑(榊,*-1(y)サx)iiq(y)) -∑ -1(sK-%). (3:21)Q　　　　　.　　　　1

since ∑kW*K (v) - ∑qiiq(x)u*ql(y), the equal-time two-point function is

expresseC:l in terms of uq(x) as

<&Hこ:i",y) - ^2[ uq(x)ug{y) + uq(x)ug(y)　　(3-22)

This expression coincides with the one for the Heisenl>erg state匝) defined bv

a S)-0,　for∀q,
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where the丘eld operator如) is expanded as

p(x) -幹uq(x) + cJqug(x) (3.24)

using the annihilation (creation) operator aq (cig) associated with the mode func-

tion uq(x) (uq{x)). Summarizing the results, the quantum state of ¢-field after the

tunneling can toe described by a "vacuum" whose positive frequency mode function

is given by uq(x), as is clone in the second quantization of a field. Note that this

mode function iiq(x) is generally different from the true positive fr-equency func-

tion after tunneling, say wq(∬), if it can be defined. Then uq(x) and wq(x) are

related to each other by a non-trivial Bogoliubov transformation. This implies the

quantum state after tunneling contains a spectrum of excitations of the field ¢・ We

will see this in the following sections considering specific models of false vacuum

decay.
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4. Homogeneous Decay of a False Vacuum

Iii this section, we consider a specific example of the tunneling in field theory

discussed in the previous section. In particular we consider the case when the

decay of a false vacuum occurs homogeneously in the entire universe. The aim l弓

to demonstrate the signi五cance of our formalism and to show how non-trivial the

resulting quantum state after tunneling will be, as well as to clarify its relation to

the previous work by Rubakov [27]. A false vacuum decay that occur畠homoge-

neously can I:>e realized if we consider a spatially closed叩iverse [21], or it may

be regarded as the limiting case of a sufficiently large vacuum bubble compared to

the scale of interest.

For simplicity, we choose the potential of the tunneling field.as,

u(o)-ア(o*-**y-E竺豊(e>o), (4.1)

and assume that e is small enough, so that the true vacuum and the false vacuuip

are approximately given l}y a{x) - ac and a(x) - -<rc, respectively, and that

the energy difference′between these two state is small compared to the height of

the barrier, i.e., U(0) -人at/8 ≫ e. This assumption enables us to use the thin二

wall approximation as in the inhomogeneous vacuum decay with 0(4)-symmetric

1)ul)1}le([15],see also next section). We also assume that the background universe

is the static spatially closed universe of a radius Rq, neglecting the gravity. The

classical solution of the tunneling五eld in the Euclidean region can be written as

&o{t) - octanh
菰<7c(T + T)

(-∞<r<0),　(4.2)

where T - (1/s/¥ac) log(Xaf/e). The classicd solution passes through the top of

the potential lcarrier at r - -T.

As for the coupling lDetwe占n cr-fiel。1 anCI 0-field, we take the following model,

m (a) -in呂+β蝣O,　　　　　　　(4.3)

here we only consider the case m2{a) > 0 all the time. If we introduce the spherical
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harmonics on a unit three sphere 53,

[&n3 +j(j +2)]Yjlm(x) - O,

i-0,1,　/-0,1,　　　m--I,一蝣・,1,

(4.4)

where △fij is the Laplacian operator on the unit three sphere, the advantage of

the model of homogeneous decay becomes clear. That is, each mode of ¢-field

decouples with each other, and we find the equation for gk(x)

堤+k2-I-呂
+β。J tanh

with the lDoundary condition at　一一∞,

誼c(r+T)

gk(∬) → ,¥A2+mo-βc<?cTyk(x),

gk(x) - 0,　(4.5)

(4.6)

where we have defined k2 - j(j +2)/Rq and denoted k - (j,l,m). Here, to

make the problem simpler, we take the limit of thin-wall. That is, ta,king the

limit T ≫ 1/＼爪ac, we approximate the classical solution ac{r) by using the step

function. Then Eq.(4.5) can be easily solved to give,

9kW-

witll

rYk(x)　　　　　　　ト∞ <r < -T),

(Ak<P+T+Bke-"+T)Yk(x)トT<t<0),

U)+ + co-

%J.'+

U)+-U-

2u+

(uJa. -UJ- )T

e-(U++uJ- )T

where we have cleniied u土:-

(4・-7)

(4.8)

k2+ml and m主:- m呂士β;<7C. Once we obtain

a wave function in the Euclidean region声hat in the Lorentzian region is obtained

by the continuation, r - it, as discussed in the previous section. Fortunately,
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in the present model, we find the following mode function uj-{∬) that is properly

normalized in the Lorentzian region,

Ake-^ + Bkeiw+t

20;+(塞- Bl)

where wk(x) is the usual positive frequency mode function,

wk(x) -芸Yk(x).

(4.9)

(4.10)

In this model, since the field after tunneling is a simple massive scalar field, there

is no ambiguity in the definition of a particle. This allows us to compare our result

with that of Rubakov [27]. The number of created particles is definitely estimated

in terras of the Bogoliubov coe氏cient of w*k(x) in the expression (4.9) as follow云

Nk- 12-n-2
-{k.IJk

(u+ -u_)2

(w+ +u-)2e4u+T - (to+ - u-Y

(4.ll)

In Appendix A, it is shown that this agrees with the result obtained in Rubakov s

formalism. Here, we note that the al;>ove particle spectrum di庁ers from that in the

case of particle creation due to a sudden change of the mass in the real Lorentzian

spacetime. The latter would be the case if the false vacuum decay were considered

in the classical picture and were assumed to occur suddenly at, say, t - 0, in which

the number of created particles would be given by Nk of Eq.(4.ll) with T - 0.

Let us consider some implications of Eq.(4.ll). First note that Ntたdecreases

exponentially as the a-osolute )alue of T lbecomes large. In particular, in the limit

LJ. ≫u>- oru+ ≪U-,whichholdsifml. ≪ m¥ andk2 ≦m¥,orml ≫可and
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k2 S ml, respectively, N^ takes the same form as the thermal distribution with

temperature 1/4T,

Nk~
e^+T- 1

(4.12)

However, the behavior in the large momentum limit differs from the thermal spec-

trum as

:V,空

(4*7△m2)^ e4u,+T - 1
for ka ≫ mァ (4.13)

where△m2:22
-m+-int.

Togainal)itmoreinsightintothequantumstateaftertunneling,letuscon-

siderthecasewhenthemassdifferencebetwe占nthetrueandfalsevacuaissmall;

l△m2I≪蝣mi.Then,thenumberofcreatedparticlesbecomes

-u--.≒

aucl the energy density due to the created particles of the ¢-field is given by

△f空 dr kv+Nk

竺△m4 e-Am+T
x(∫+2xq) -4x

m

(∬+goY

(4.14)

(4.15)

where xq :- m+T. Thus, the energy density generated through the tunneling is

of O{△m4) forュ:o ≦ 1, while it becomes negligibly small for xq ≫ 1. Since 1/T is

relateCI to a certain mass scale M associated with the tunneling field a, the particle

creation is expecteCl to IDe rather significant for models with m+ ≦ Ml ule note

that this conclusion qualitatively holds for genei・al values of the masses m皇as well,

though it has l)een derived by assuming ¥Am　≪ in+蝣
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5.FalseVacuumDecaywithan0(4)-SymmetricBubble

Inthissection,weconsiderthecasewhenafalsevacuumdecaysbynucleating

an'0(4)-symmetricbubbleintheMinkowskispacetime,assumingthefollowing

potentialforthetunnelingfieldagain

v{c)-芸{-2--D'-*豊(6>0),(5.1)

withthin-wallapproximationU(0)>e,forsimplicity.Introducingthecoordinates

iiitheEuclideanregionas

誓2+dr2+r2dn2

2dTE+d」E2+」e2c。s2Tedn2(-00<r<0)

7T
(--<te<。),(5.2)
wherer-^sinT^andr-」ecosTe,thetunnelingsolutionofclassicalfieldis

descriloeclbyahalfwayofthebouncesolutionandisapproximatelygivenmthe

0(4)-symmetricformas[15]

<to(牀e) - -vctaiih
モE-Ii

AR=
1

yxac

(5.3)

with

Since R/△R・ -入04je - 8tf(0)/E ≫ 1 toy assumption, the solution describes an

o(4)-symmetric bul3ble of radius R with very thin wall of thickness △月. The

name, thin-wall approximation, comes form this fact.

As for the mass term of the ¢-field, we adopt the following form,

mz{a) -α(*c'-O,

which in the thin-wall limit reduces to

-¥aQ)-ms8(」E-R); -x:-4芸・

(5.4)

(5.5)

Thus ¢-field interacts with cr-field only on the bul)I)le wall, which allows analytic

calculations. Note also that lDecause of the thin-wall assumption, msR - Aaaき/e -

4(α/A)(R △R.) ≫ 1 unless a ≪入.
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5.1. Construction of the mode function

Now let us find the mode function </fc(.r) for the above model. We have to solve

the Euclidean五eld equation,

匿+△-rns6(」E-R) 9kix) -0,
with tIie following boundary condition at r一一∞,

9k&)-e"
--hr 榊r^n,

(5.6)

(5.7)

where j/(ヱ) is the spherical Bessel function, 1うis the spherical harmonic function

on the unit two sphere, and we have chosen the spatial harmonic function Y^x) to

be that in the spherical coordinates for later convenience (the eigenvalue k denotes

(k, l, m) in this case). Using the 0(4)-symmetric coordinates (5.2), we rewrite the

Euclidean field equation as

I ^^^^^hA

cos2 TE dTE cos2TE孟) +孟孟&孟)
+

△o

cos2 TE
-^E-ma8^E-R) 9k(x) -0,

(5.8)

where △ft is the. Laplaciau operator on a unit two sphere. Then it is apparent that

9k can lDe expressed in the form,

gk(ユ'蝣)-∑xptm{TE)Fp(4E)Yim(Cl),

plm

wherethefunctionsxpim(TE)andFp((e)satisfy

l孟孟&d

d(E主^E2-ME-R)+KFpUe)-0,

d

cos2 TE dTE cos2TE孟-Ap-
1(1+1)

xplm(TE) - 0,

(5.9)

(5.10)

respectively, with入p IDeing the eigenvalue of the function Fp(」e)- Ijl "ie alDsence of

interaction, i.e.,間- 0,onehasFp (&) - &ip-1 withtheeigenvalue入-y+l,
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where -∞ < p < ∞ In the presence of the c-function mass, we can construct

Fp(」e) by matching the function Fp '(&) outside the bubble wall (」e > R) to a

linear combination of them inside the wall (」# < R). The junction condition is

hm
∂ー0

dFp{SB ) dFp te )

」e=R+6　(%E 」b-R-6
- msFp(^E) (5.ll)

Thentheeigen-functionFp(」e)isgivenas

Jeip-1

FpitE)-{zeip-112ipUe)(R<Ze<

(o<&<芸),(5.12)

with入-p2+l.Ontheotherhand,theequationforxpimC^E)hasfollowingtwo

independentsolutions,

Xplm(TE) -
い・os TV

bip;ip7P~̂ (-sinT^+hQ-;:^-sinTjj)), (5.13)

where P」{z) and Q締) are the associated Legendre functions of the first and
second kind, respectively, and 61 and &2 are constants to be determined by the

boundary condition. Here we follow Refつ39] as for the definition of the Legendre

functions. We can determine the coe氏cient constant b¥ and &2, by using a wonderful

transformation formula given by Gerlach [40] ;

去　dp
rトip+l + ^p-^i-sinTE)

/2 dos TE
zeip-1たip-1/2,

(・5. 1.4)

for Je > 0 and -sinTg > 0. Since the al)ove exprでssion is just that of #&(こLl)

outside the wall, one readily finds 62 - 0 and the appropriate form of b¥ as

h i.-
rトip + l + l)k'i>~1/'2

ノ豆2 7r
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Combiningtheaboveresults,weobtain

/¥デーZ-1/2
dpT(-ip+l+l)p-^/2トsinTE)9k(x)-j

-Co霊

¥/2 cos TE
Fpte)*?*-1/ y/m(ft), (5.16)

where Fp(」e) is"the one given by Eq.(5.12). Now, using the inverse transformation

formula;

rdp+i+DPrl-^2トsmTE)アdu tか-UsinT只_.′　叩、　′r.一、

=/卦V'^MucosTe), (5.17)
0

v/2 cos Te

which exists for -sinTg > 0, we can rewrite Eq.(5.16) as

・kJiT,

9k^)-¥/^¥ekTJi(kr)+e(R'-i畔

#w

/JiTU
dueji(kru

ラ)

Im",

(5.18)

wherewehaveusedanidentity,Piv_i/22{z)-p-i}l{%(z),andtheintegralrepre

ip-1/2^'-x-ip-1/2^-

sentationofthestep-function,

0〇
e{z)-去dp-oipz

p(5.19)

-oc

Theaboveexpiでssionofgk{x)isthedesiredformula.Wecandirectlycheckthat

itsatis丘estheEuclidean丘eldequation.

TofindthemodefunctionintheLorentzianregionnormalizedproperly,we

followtheprescriptiondescribedbelow.Consideranothersetofmodefunctions

fk{x)besidesg^ix)intheEuclideanregionwhichsatisfythesamefieldequation

butwithadifferentboundarycondition,

fk(x) - exp{-LOkT)Yk{x). (5.20)

Then we can easily normalize gk(x) and /&(;?') at　一一∞ to satisfy the relation

cf㌶ /*(*)∂T9k'{x)-dTfk{x)gk,二　-6k,k'　　　(5.21)

Since both g^こr) and fk(x) satisfy the same field equation, this relation is conservect
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in the Euclidean time evolution. Now de丘ne a fun¢tion石k匝) in the Lorentzian

region by the analytic continuation of /&(#)蝣^ v芸(x), which is the analytic con-

tinuatiou of (/^(.r), happens to be complex conjugate to v^x), modulo a constant

factor independent of k, then we can easily find the orthonormalized mode func-

tions in the Lorentzian region, becaふse the relation (5.21) continues to hold in the

Lorentzian region and gives the proper normalization condition. As is clear fro王p

the expression (5.18), if one defines the function fk(x) by replacing r with -r in

it, it also satisfies the field equation but with the opposite boundary condition at

T一一∞; /*(*) - e-kTYk(x). Then these functions satisfy the normalization

condition (5.21), and /*. and Qk become complex conjugate to each other when

analytically continued to the Lorentzian region・ Thus the presen七case corresponds

to the special case described above.

Thus the orthonormalized mode function in the Lorentzian region is given by

uk(x) -

R2/モ2

・e(R2 -?)竿! due-tktuji(kru)
1

Yim(tl) ,

(5.22)

where 」 - √雪~二戸Note that this reduces to the Minkowski positive frequency

function outside the bubble, i.e., the quantum state outside the bubble is the

trivial Minkowski vacuum as it should be, since an oljserver there would not know

if a bubble is nucleated 。r not. We also note that uk(x) takes the formムf・a

linear coml)iiiation of the Minkowski positive frequency functions. Hence one might

wonder if the state inside the but)I)le is really non-trivial or not. However, the

essential point is that the coe氏cients of the linear combination are spacetime-

dependent, and this fact leads to the non-triviality of the state inside the I)ul>ble.

Here, we mention a delicate issue associated with this mode function. In the

expression (5.22), one finds that the mode function is well-defined only outside the

light cone; 」2 - r2 -t2 > 0, and it becomes singular at f - 0. This prol)lem is

originated from the irregular -jehavior of the mode function #fc(∬) at t -。r - 0.

Thereforをsome regularization is necessary in order to make the analytic contmu-

ation possible and to make the expression (5.22) meaningful inside the light cone.
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We can avoid this problem by the following way. Namely, we perform the analytic

continuation at an innnitesimally small time e be氏汀e t - 0 as shown in Fig.4.

With this analytic continuation, the regularity of the mode function is recovered;

i.e., it is smoothly continued to the region inside the light cone and the orthonor-

mality condition is properly maintained. Note that in terms of this procedure the

transformation formula (5.14) can be continued to the Lorentzian region. Then we

may compute any physical quantities in the Lorentzian region with the regularized

mode functions and only after the completion of a calculation we take the limit

EDO

As for the ill behavior of u^x) on the light cone, we do not have a rigorous

answer why this happens. However, it is not because of the oversimpli負cation oft/

our model, but lbecause of a breakdown of the WIくB approximation at the turning

point and the 0(4)一声ymmetry of t顛e background. In our case, the "turning point

corresponds to the spatial configuration of a on the hypersurface r - 0. However,

because of the 0(4)-symmetry, the configuration at points other than 、r - 0 should

not be related to the breakdown of the WIくB approximation. In other words, the

only fixed point under 0(4)-transformations is 」# - 0 and it is the only point which

remains on the "turning point" hypersurface for any choice of another observer.

Iii any case, the WKB approximation breaks down at this point (also at the light

cone), therefore we should not stick to this problem, which lies beyond the scope

of our formalism.

Finally, we mention the fact that in our model in which 4> interacts with a only

on the bublule wall, it can be shown that our mode functions %(こr) are equivalent

to the ones obtained by Vachaspati and Vilenkin [28] in which they used cli庁erent

coordinates to express the mode functions.

5.2. Evaluation of the quantum state inside the bub】〕LE

As we have ol)tained the mode function, which descrilDes the quantum state

of the ㊨-field, we now investigate the state after the limbble nucleation carefully.

Let us start considering the symmetric two-point function (Haclamard s elemei中ry
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function). Since we are interested in一七he quantum state inside the true vacuum

bubble, we concentrate on the case in which two points are both in the vacuum

bubble. As noted before, our mode function is a spacetime-dependent linear com-

bination of the Minkowski positive frequency function. Therefore we can write

G^¥x,x') :- (<t>{x)<Kx') + <l>(x')的)

-写uk{x)u%(x')+(∬ - x')
-D^¥x - x')

・誓#1

1'
DW{・ux - x')du +

R2 /Cl

ノ、
1

・(群'D^¥ux-vx')dudv,
1　1

whereE-ユ:2--ま2+r2, ′-x12--t'2+ J2 and

pW(x-x′) :-

1　　1

2tt2 (a; - x')2'

is the Minkowski two-point function for a massless field [41]. Then we find

GM(x, x')

- i主寺.
R2/

∫.

1

du

Cォ2 -2iju+C

,-R7C-R7

+(**)/*/'dv

l1

R2/

+く

dv

CV - 2?7・U+C)

- 2i]uv + (/V2

(5.23)

(5.24

(5.23)

where tj-x蝣x′ and e'J -xp -x'サ.

To oIDtain more specific information of the quantum state described by the

aloove two-point function, let us consider the coincidence limit of it. In the limit

-36-



EIL - 0, the integrals in the above expression can be explicitly performed (see

Appendix B). Then regularizing the result by separating out divergent terms, we

obtain

(柚2)reg芸Gill(x,x)

4tt2M
msR

2　R2-Zコ (5.25)

・(翠)2吉In¥R2)+Ci+C2き,

whereC¥andCiarearbitraryconstantswhichcomefromthedivergentterms.One

finds(¢2)re.divergesonthebubblewall(」-R)andonthelightcone(」-0)

ifCii=-0.Theformerdivergenceisduetotheoversimplificationofourmodelin

which<fihastheo-fimctionmass′atthebubblewall.Henceitwilldisappearifa

morerealisticmodelisconsidered.However,thedivergenceonthelightconeis

real(atleastinthesenseoftheWIくBapproximation)andunlessthereisagood

reasontoputC-i-0,itcannotberemovedinanyothermodelsasdiscussedin

theendofprevioussulDsection.

Thesituationbecomesclearerwhenweconsidertheexpectationvalueofthe

energymomentumtensor(TV),whichwenowturntoevaluate.ApossilDierea-

soilingtogetridofthedivergenceonthelightconeisdiscussedintheenc1.For

thetimebeing,wecircumventthedi氏cultvl}yfocusingonthespacetimeregion

lbetweenthelightconean。1thebubblewall;0<」2<R2.Inordertoobtaina

regularizeclexpressionfor(J'/IV)itiscustomarytousethepoint-splittingmethod.

However,themanipulationisquiteinvolved,whileitturnsoutthatthesameresult

canbeobtainedwithamuchsimplermethod.Thismethodtakesafulladvantage

ofthefactthattheresulting(THre-should
'regl〕eLorentz-invariantanditshould

satisfytheenergymomentumconservationlaw.Hencewepresentitinthefollow-

ing.Forcompleteness,thepoint-splittingregularizationof(J>fXV)isclescrilDec!in

AppendixB,FirstwedecomposeT^uintothetraceandtracelessparts;

・-Hiノ　cJ"ノ+蝣%〝S,
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with

1

ofxu '・一柚リー盲tyuty,α)2,

S:-一芸(毎r-一芸(舵,

(5.27)

whereり,↓〃 is the Minkowski metric and we have used the field equation;蝿≠

0, in the last equality in the expression for S. Note that the only independent

component of S^ is the (冒)-component, because of the Lorentz invariance. That

is, introducing the coordinates,

ds2 - -fdT2 + di2 + 」2cosh2Ts dtf,

whereTs-arctanh(t/r)(seeFig.5),the(冒)-componentiswrittenas

cs-9-C(dxfl¥等-」x*xv

fiV

Takingthisintoconsideration,wecanexpressT,l〝aS

・〃U-一言Sjlrfv-4:翠+v〃us,

(5.28)

(5.29)

(5.30)

where S} and S are functions of only 」. Then the energy momentum conservation

law gives

(?si) - -?s4.　　　　(5.31)

Here we take the expectation value of the energy momentum tensor. As (S) C去ii be

expressed in terms of (02} from Eq.(5.27), inserting the explicit form of (<p{x))r。g

in Eq.(5.25), we get

nuR R2　　　{msRY

(S)=一房
▼

(# -*2VJeyi67T2(R2-e)
(5.32)

Note that it does not depend on regularization constant C¥ anc:l C2. Then, inte-
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grating Eq.(5.31), we have

ヰ
msR r

4tt2(R2-?)2¥3

コR- -35-

・H-fi +翠,

(5.33)

where (fa is a integration constant. Combining these expressions, from Eq.(5.30)-

we oIDtain

z(r2 - e2)3 vtpv一撃) +
2R2 -3C 1

+

3」2(J?2-」2)2　3」4

・[---蝣-÷

-‡封∴一宇I-

a*

(i?2 - e5)3

(#2 - 」2)2

(5.34)

We can compare this result with that obtainecl in terms of the point splitting

method(see Eq.(B.23) in Appendix B):

('veg.
reg 3(i?2 - 」2)3

・2Ki - ze

3」2(f?2 - 」2)2

Kl

・去Infi¥2'(-p

(5.35)

・Dm・n/<〝 +D^ If,ノー芋釣

where D¥ and D-i are arbitrary regularization constants. We have the same result,

except for the term Diq^. D¥ is just a cosmological constant which appears in

any theory, while D-i is an integration constant whose appearance is a new feature

in the present model. The latter arises because the background has only theLA
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LorentzinvariancebutnotthePoincareinvariance.Infact,thistermcorresponds

totheCVtermin(0)anddivergesbadlyonthelightcone.Itshouldbenoted
freg

thattheZVtermistracelessandsatisfiestheconservationlawbyitself;i.e.,itis

transverse-traceless.

Sinceonehasnodefinitetheorytopredictthevalueofthecosmologicalcon-

stant,_wesetD¥-0asusual.Ifwealsoset」>2-0,wefindtherestof(T^)reg

isperfectlyregularinsidethelxibblewal日IenceitcanI:>eextendedtotheregion

insidetheUgh甘conewithoutanyproblem.Ontheotherhand,ifweweretoretain

theZ?2-term,theconventionalWIくBpictureoffalsevacuumdecaybreaksdown,

becausethedivergingenergymomentumtensorindicatesasignificanteffectof

backreactionontothebackgroundfield.Althoughwecannotdenythispossibility,

however,theWIくBapproximationofourformalismbreaksdownatthispointas

notedbefore.Thereforewetakeaconservativestandpointandforcusonthepart

thatdoesnotdependontheregularizationconstatnt,settingD<i-0,andthen

putforwardthediscussions.

5.3. Creation of a homogeneous and isotropic open universe

The alDove result shows that the resulting quantum state inside the but)lDie is

highly non-trivial, implying the importance of the effect of fluctuating fields Clur-

ing and after the bubble nucleation, if not leading to the breakdown of the WKB

picture. Now let us discuss the cosmological implication of this result. The space-

time inside the light cone (t > r) is most conveniently expressed in the following

coordinates;

ds2 - -dT'+T'dx'+T2smh'xdn2 (5.36)

where T2 - t2 - Jl・2 - -(2 anc叛- arctanh(r/O (see Fig.5). It is the hyperbolic

time-slicing of the Minkowski spacetime and represents a cosmological model of the

universe with vanishing energy density, ca・lied the i¥・lilnc uni、でrse. In this region,

(THreg isァiv(?n I)y Eq.(5.35) with J replaced I)V -T2. As 1-1entioned lbefore, it is

natural to assume nisR - 4αg碧/E ≫ 1 uncler the thin-wall approximation. Then
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the energy momentum tensor at su氏ciently late times T ≫ R is given by

(-* /reg竺

(m3R)'

1 67T2 zT4 ln(T2/R2)¥等+り　　　(5.37)

This implies that the energy density on the T - const, hypersurface is homoge-1ノ

neotis and isotropic, and behaves almost like radiation, namely, which decreases

as p oc 1/T4 and has the nature of quasi-traceless. This suggests that the bubble

nucleation may be interpreted as the creation of a homogeneous and isotropic open

universe with radiation, provided that the bul}ble nucleation rate is exponentially

small so that the probability of bubble collision is negligible.

Here let us discuss the cosmologicaユgeneration of entropy. Suppose that △〟

is the mass scale corresponding- to the potential difference between true and false

vacua; S - (△M) , and that the true vacuum has vanishing vacuum energy.

Then the false vacuum is in the cle Sitter phase with the Hubble parameter H2 -

8汀G」/3竺(△Mf/m芸,, where mpi is the Planck mass and G is the gravitational

constant. Within this de Sitter phase, there appears a true vacuum bubble, inside of

which is a homogeneous and isotropic open universe with radiation energy density

Pit　竺(nisR) /R with the initial scale factor (i.e., the curvature radius) a(ti,,.蝣)竺

R. Now, since the I)uloble radius cannot I:>e greater than the Hubble radius; R ≦

H~ [19], and the initial energy density is presumably smaller than the false vacuum

energy density; pir　≦ E, we have

f≧pit,掘紳2璃ど　　(5.38)
Hence R= H 1 for ms - mpj. In this optimal case, the total entropy within the

initial curvature radius is

stct^(pini&f4空(visR)3'2竺(豊)3≫1 for△lJV≪-pl. (5.39)

Thus insi〔:le the but)ble is a homogeneous isotroj)ic open uni、蝣crsc with high entropy.

Does the created open universe describe our unil erse? Unfoi・tunately, no. The ere-

ated universe is a curvature-dominated one from t・llC lbeginning in the present case,
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because pini/m岩′ ≦ H2 ≦ R~2 and the radiation energy density decreases as a(t)-4

while the curvature term as a(t)~2. Therefore, this model is not a good one for our

universe. Nevertheless言t is very interesting that the isotropy and homogeneity

of thus nucleated universe is guaranteed by the 0(3, 1) symmetry of the resultant

quantum state and that the process is completely causal since the created universe

is inside the light cone. Because we have investigated the quantum且uctuation on

the fixed fiat Minkowski background, the above discussion is unsatisfactory. The

investigation taking the gravity into consideration is nee窯ssary to provide a definite

answer.
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6. Toward generalization of the Initial Condition

So far, we have investigated the tunneling associated with the ground state in

the false vacuum. Here we consider a tunneling that is not in the ground state in

the false vacuum , and discuss the false vacuum decay in the presence of excited

particles before the tunneling [42,43,44]. As a first step for this purpose, we consider

a simple quantum mechanical tunneling of two dimensions with a potential, shown

in Fig.6. Then we examine the quantum state of a particle penetrating the potential

lDarner h・om the local potential minimum on the lefi‖land side of the且gure to the

classically allowed region on the right hand side. This is just the case D - 1 in

§2. Introducing coordinates y and 77 instead of <fr and ¢　as shown there, we can

regard y as the tunneling degree of freedom and 77 as tli瓦t coupled to the tunneling

sector.

6.1. Wave Function

To specify the system to be considered, we write the Lagrangian as,

c-cv+c'?'

」y =- of-U(y),

-1]蝣尋2尋!(y)り2,

witll

(6.1)

(6.2)

where m2(y) describes the coupling of y and?/. Fig.6 shows the potential of the

total system: V(y, i]) :- U(y) + mz(y)if/2, where the local potential minimum is

located at (y,tj) - (//lm,0).

Here we Clerive the wave function that descril)es the tunneling from the excited

state as.the following [30]. To五nd the tunneling wave function, we should solve
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the Schrodinger equation

1＼・it i

{Hy +鶴}*(y,り) - E*(y,り),

2%2
+ U(y),

誓蒜+芸-¥y)り2・

∂d(y, n)空埜/,q)+h響

(6.3)

(6.4)

As it is clear that the tunneling.path lies on the y-axis, we take the following ansatz

for the wave function

#(*/サり) - e-s-^he(y,v).　　　　　　(6、5) -

Iくeeping in mind that y and 77 are the variables of the order h- and ftl'2, respectively,

because y traces the classical trajectory and 77 clescril}es the且uctuation around it,

we have the following equations from the Schrodinger equation in the order of h

and h, respectively,

芸(豊　U(y)--Eo,　　　(6.6)
+HllQ(y,r]) - Ele(y,n).

2dy2〉＼　　　dy dy

Here wehave set E - Eo+Ei, with E0 - 0{Tf) beingclassical part anc:l Ex - 0(h)

due to quantum且uctuations. The first equation in (6.6) is the Hamilton-Jacobi

equation of the lowest WKB order. Setting the relation

- Zy(T)I

it leads to the classical equation of motion with the imaginary time,

塾坦_竺=O.
ch2　　dy
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Combining these equations, we get

T

So{y(T)) - J2 (U[y(r')} - Eo) dT'. (6,9)

The second equation of (6.6) determines the wave function at the next WIくB

order. If we cle丘ne

Q(y(r),rl) -:

we obtain the equation for ′◎(t), t) as

where

%

◎(V,r)

[2 (C/(y(r)) - Eo)]1/4'

L◎(叩,r) - EiS(ti,t),

d nz d2

(6.10)

(6.ll)

L :-怯+Hn-犠-i示+妄m¥y{r))り　　(6.12)
Apparently one may regard this equation as the Schrodinger Equation for 77

the Euclidean time [27]. As is expected from the results in §2, we can writeよ

solution as

S{V,t) -

&r/h

W)}1'2 exp一品n(r)772),

fi r):-

(6.13)

(6.14)

1蝣Vlt ll

where the clot denotes r-di茸erentiation, and function g(-r) follows

l芸--2{y(T))¥g(T) - 0. (6.15)

The boundary condition for cj(t) is determined from the matching condition of

the wave function near the local minimum. Then, combining (6.5) with (6.10), we

obtain a wave function in the forbidden region

yi'{y{r),v) -

A e-So(r)//i

[2 (U(y(r)ト^。)]1/4

where a normalization constant A is attached.
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The matching condition is discussed in the same way as that in §2. Around

the local potential minimum (y, t]) - (yiA/, 0), one can approximate the potential

a,S

v(y,り)尋iy-ULM) +芸u>y,　(6.17)
where the tunneling wave function is approximately given by

v(y,ri)-闇1′ exp去訂(y-vlmY去-q　(6.18)

To match (6.16) and this wave function, we should set

E1-芸(G7+W),

and impose the boundary condition for g(r) as

9(r) - cie"

(6.19)

(6.20)

where c¥ is a nomalization constant. As noted before, information of the quantum

state of the subsystem t] is described by the Gaussian factor fi(r) in Eq.(6.13),

and the lboundary condition for g(r) ensures the exponential decrease of the wave

function away from the tunneling path. Note also that Q(t) does not depend on the

normalization of g(r) as is clear from (6.14). If we fix the normalization constant

ci, the matching condition determines the normalization constant of the the wave

function.4.

Using the discussion of Gervais and Sakita [30], it is easy to extend this w唱VQ

function to that includes an excited state of r¥ before tunneling. First, define the

operator,

A†:-er f{r)芸+f(r)n¥,　(6.21)
where we have introduced the function /(r) along the tunneling path, which sat-

isfies the same equation as g{T), 1Dut behaves as

f(r) - C-26 (6.22)

at T一一∞(near the local potential minimum), where C2 is some constant. Then
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we can observe the following co血mutation relation by a straightforward computa-

tion,

[U AI]-uAf・ (6.23)

This relation implies that Afァ(r], t) is a solution of the Eq.(6.ll) with E¥ replaced

by Ei+u, or generally {.4†)n軸, r) is also a solution with E¥ replaced by Ei+nu.
Thus we have the following WKB solution of the Schrodinger equation

せ(r,rf) -A
eSo (r)/ft

[2(U(y(r)) - Eo)}
w軸,r). (6.24)

The above consideration is suggestive of the roll of AI as the creation operator. In

fact, Af has the following a・symptotic form at r一一∞

A;空C2 (芸- LOT]　　(6.25.)

which is proportional to the creation operator of the harmonic oscillator. This

implies that the solution (6.24) is matched to the harmonic oscillator wave function

of the n-th excited state in the ^-direction at the loca-1 potential minimum

申to

7T1/4,-&{y-yL¥i)2/2 e-^''2Hn{ 、有り),　(6.26)

where Hn(z) is the Hermite Polynomial. Once we obtain the wave function in

the forbidden region, the remaining task is to find the out-going part of the wave

function in the alloweC1 region lbeyond the turning point. We will 1、蝣ork out this

procedure for simple specific models in the following.
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6.2. Simple Model(I)

First let us consider the following potential with

U(y)-芸Q2-4 v2-義)2,
1

I/≧京・

m''(y) -サ2(i +αcQ2ロv +βcQロy)・

and

(6.27)

(6.28)

A sketch of the total potential V(y,rf) - U{y) +rrr{y)り?/2 is shown in Fig.7. The

local minimum is located at (y,77) - (-yc,0), where we have defined yc :- 1/Q這・

蝣w2 is the curvature of the local potential minimum in the direction of y, 1/Ql is

the height of the potential barrier. The curvature of the potential along 7?-directiori

depends on y, and is given by v2(l +αC芋β:) at y-刊占whichwedenote by

LO -v¥¥+αe-βC),  ・vl - z/(l+αC+β0-　　　(6.29)

Here we only consider the case uj2,v2 > 0. The WKB approximation is valid

if 1/Q2 ≫ to, lo and ′v. Then the solution of classical trajectory (6.8) is easily

oIDtained as

・(/(r) - yctanh(^-),

and we have

(6.30)

dr2-'(1+αtanh等+βtanhTJ9(t)-0. (6.31)

The solution that decreases exponentially, i.e., g{r) -　(we set c¥ - 1 m
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Eq.(6.20)) at r一一∞ is found analytically [27],

g(r) - eサT(l +en"F(α,β,<5;-O,

し」　　　V

(I :ニー÷-+h-、
てロ　訂

.1:=土-⊥+/、・.
=丁　　、i=7

where

8-:=1+2里,
ロ

1

バ‥=亘+

l鵜　I

J+40.・手

(6.32)

(6.33)

F(a, β, 6; -e訂r) denotes Gauss'hypergeometric function. On the other hand, the

other solution that behaves as f(r) - e-〕T at T → -∞ (we s占t c2 - 1 in

Eqs.(6.22)j is also found to be

f(r) - e-(1 +eTJT)代F(α′,β ,o ;-e万つ,

u V
hK,

てロ　　　てロ

CJ V

-+-+K.
wV L.C

6′=1-2望,
CT

(6.34)

(6.35)

where

Applying the results in the previous sul^section, we can write the wave function

in the丘)rbicMen region as

申-N
-1サn

wit ll

eSo{r)

[2U(y(r))Y/4 (/W孟+/(r)n

So r　-

1- ,(w+万r/2

2U(y(r'))dT/] (6.37)

Here Nn is anormalization constant and we have chosen Eq to be equal to U(-yc) -

0. This wave function should be matched to the n-th excited state of the harmonic

oscillator wave function near the local potential minimum. Let us check this by con-

sidering the asymptotic form of this wave function. Taking the limit of r一一00,

-49-



fromtheEq.(6.30),wehavey空yc(-1+2e訂r),whichleadsto2U竺(4/2^2Q2)e町T

and5b竺可y+vcf/2.Withtheseexpressions,Eq.(6.36)hastheasymptoticform

せ"*""[ァ1/29--(サ+ye)2/2{芸-ur)0--f/2(6.38)

Thusthisisproperlymatchedtotheharmonicoscillatorwavefunctionexcited

withrespectto^-direction,becausetheoperator∂/drj-ujx]isproportionalto

thecreationoperator.Comparingthiswiththenormalizedwavefunctionofthe

harmonicoscillator,Eq.(6.26),wedeterminethethenormalizationconstantas

[7T2Q2J

211/4

[2nnlun]V2
(6.39)

Now let us rewrite the expression (6.36) as follows. Since the explicit n-multiple

operation of the creation operator in (6.36) gives rise a polynomial of叩f at most

n-th order, we can expand it in terms of the Hermite Polynomials of up to n-t

order. We find (see Appendix C)

1t

vMt),v) - ∑壷nk(T,り),
fc=O

e-So(r) gw(n+l/2)r+甘丁/2

[2U) l!ア　、β

0
×　1

壷nk(r, v) -NnDn,k

x(ト L)

¥(ォー*)/2/1

fg)Hk(¥/nv)exp--fi?72

(6.40)

(6.41)

where

with Dutk for even n given by

(72-1)!!

Dn,k -

and Dn& for odd n I)y

Dn,k -

(

fc-1 !!

0

2(n-k)/2 ,-/2Q72-

ヽ

0　　　　,

I器o(n-k)/2　r　-

k: even,

k: odcl,

ん: even,

k: odd.

(6.42)

(6.43)

Here we take (-1)!! - 1. Thus the wave function Call I)e written I)v the summation
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of the mode壷nfc. As we set a - c2 - 1 in Eqs.(6.20) and (6.22), we have

/(r)(/(r) - 1 and Q(t) - u inthe limit r一一∞ when only the k - n mode

survives. This is just the n-th excited state. However, for y(r) away from the

potential minimum, f(r)g(T) deviates from unity to generate other fc-mocles. Note

also that odd(even) fc-modes never appear for even(pdd) n.

In fact at this stage, we can understand the rough behavior of the wave function

continued into the allowed region. To show the asymptotic form ofせnk near the

nucleation point, we use the asymptotic formulas of the functions g(r) and /(r)

at r large enough,

9{r)竺
r(2u/防)r(i + 2w/g7)

IW訂+′V/Vu +k)T(1 +U)/町+v/w - /i)

-: ge evT + 0(e~vT),

f(r) :竺
r(2t車フ)r(i - 2w/防)

evT + o(e-VT)

rトLO/W+vJ打+可r(i -lu/vj+v/防-K)
evT+ o(e-

(6.44)

-: fc evT+0(e~Uつ.

Assuming訂,oj and v are quantities of the same ordei・ of magnituc:le, gc and fc are

of order unity. Since the exponential factor, eP is large near the uucleation point,

the product, /(r)</(r), becomes large there. Therefore in the expression (6.41),

the smaller k is, the larger is the amplitude ofせnk- As the index k represents the

numl)er of oscillations in the ^-direction, this means that the mode with smaller

number of oscillations has larger amplitude. It is expected that for such a mode

the initial oscillating energy of ^-direction is transformed into the tunneling degree

of freeclorn. We now investigate this point carefully carrying out the continuation

of the wave function into the classically allowed region.

Near the nucleation point, taking r large enough, we have y(r)竺yc(ト2e-訂つ,

and it leads to '2U空(4/QV訂T and So zご(2/2>Q'トG7(.リ　VcY/2. Using

these asymptotic forms and (6.44),壷,llつbecomes

せnit Cnk
y+yc サ{k)+lexp i,<-　H,(-" T"

(6.45)
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wh ere

v{k):-去 U¥71+芸-v¥k+芸)),

Cnk :-NnDnike-2′3Q2- Q> / un/2岩.*/2 -(、n+k+l)/2/-f¥(n-k)/2

On the other hand, approximating the potential around the turning point as

v(y, v)空打iv-VCY /2+v2り2/2, we can separate the variables in the wave function

aS

甘(y,り) - wymv),

then the Schroclinger equation becomes

冒蒜+ ¥tu2(y- ycfj'<p(v) - E<My):
1cf

-喜市+ ・p(V) - Evv(り)I

These equations can be reduced to the form,

[芸+[1-1+呈- ,.2> (x)-0,

(6.47)

(6.48)

(6.49)

whose solution is called a paralDolic cylinder function. We write the two indepen-

dent solutions as U{-(.i - 1/2,x) and Vト/< - 1/2,x) [45]. The decaying mo。te

solution Uト1.1 - 1/2, x) gives the harmonic oscillator wave function,

U{-サーl/2,x) - Dll(x) - 2-^2H^(x/s/2) e-*V4　　(6.50)

where DJx) is the Whittaker's notation of the parabolic cylinder function [39].
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The definition of D^(x) is given by

Dft(x) :- 2^2 e-x'/4
r(1/2)

r((i - aO/2) in{　2'2'2/

∬ r-i/2)

iFi(a,b,x) :-蒜。E.

・^1'1-fi3x

-2'2'2>y

with the Kummer's function iFi(a, b,∬),

[′_ ,‥_、_　r(6)昌T(a+n)Jn

T(b+n) n¥

While V(-/I - 1/2, x) corresponds to the growing mode,

V(-什1/2,x) -響-仁sin7r(yu+ 1/2)榊) +Dfl(-x))
(E≫1)I

(6.51)

(6.52)

(6.53)

As it is clear, the //-sector of the wave function 99(77) should Toe matched to the

decaying mode solution and the y-sector ,0(y) to the the growing mode solution.

Hence we find the matched wave function around the turning point,

症-)空C,t趨v(k)+l芸)1′2V(サ1′2,-y/2-(y-yc)J

xHk(向exp一芸・vrj
(6.54)

with

En-v k+芸)
-:」 (*),

Ey-写+尋十芸)-・v[k+芸-:Ey(k).

(6.55)

Using the asymptotic formula of the parabolic cylinder function [45], we can extract

out-going mode of the wave function in the allowed region beyond the turning point
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aS

壷outr~i

nk-L'nk

u(k)+1 1斤,ォr(i/(fc)+l)/2

2T{v{k) 2+1)

yc) Hk{^vr})exp芸叩2)

Surely it represents the state oscillating in theワ-direction specified by the index

k, and moving in the y-direction with the energy Ey(k), which is the difference

between the initial total energy and the oscillation energy En(k). The superposition

of these fc-modes is a state of the system. But we must note the relative amplitude′l°

of each fc-mode. We have assumed that the condition 1/Qv伝≫ 1 is satisfied

so that the WKB approximation is applicable. Therefore the mode of the least

number ofk, i.e.,k = 0 for even n and k - 1 for odd n, dominates the state.

6.3. Simple Model(2)

We discuss another example which allows analytic treatment. We consider

the case when there is a small alternation of the potential in the previous section

adding the term

・U(y)- -eQvjy+q-y　譜(6.56)
In this case the potential becomes asymmetric, and Eq.(6.8) has the bounce so-

lution. If the correction is small, namely, Q e ≪ 1, we can use・the thiiトwall

approximation. Taking the thin-wall limit, we find the following equation for g(r)

and ∫(丁) from Eq.(6.31)

[芸-(u/2-qs(t+T)+2v2(3c9(t+T)) 9(t)-0, (・6.57)

with the delta-function S(z) and the step-function S(z). Here we have defined o :-

4acv2/uj, and set the parainetrization of r so that the nucleation point corresponds

to r - o by using the arbitrariness of its reparametrization. In this case, the
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classical solution passes through the top of the potential barrier at r - -T, where

T竺(1/訂) log(l/Q2e). Then the solution is easily found as follows by considering

the junction condition at r - -T,

9(t) -

∫(r) -

allCl

where

AevT+Be

CevT+De-

V+uJ-Q

2JU

V u-p

2v

・{v-u)T B -

・(v+v)T　　-　D-

(-∞<T≦-n

(-T≦r<0),

ト∞くT≦-T),

(-T<t<0),

V-uJ+Q

2U

v+U+Q

2-日

-(v+u)T

-(U-u)T

Insei・tingthesesolutionsintoEq.(6.36),wegetthewavefunctioninthefor!)idden

region.SincewehaveassumedthatQ2e≪1,wegete'vT≫1,if訂-u)-v.This

leadsto国≫¥B¥and¥C¥≫¥D¥,exceptforsomespecialvaluesofw,uand,U.

Thenthefunctionsg{r)and/(r)arewellapproximatedbyonlythefirsttermsin

theirexpressionsneartheturningpointr-0.Inthiscasewecanwriteをnk(r,r))

aS

中nk竺Mnke',ォT(n+l/2>e-し蝣T(k+1/2)

eSo(r)

where

exp [Ey(k)r] Hk{ y/vrf) exp I --vif

血‥- NnDlhkujn'2 (岩,*/2
JV+bJ+Q

2V )

n-k) 2
v+u一夕

2r )

-(n+fc+1)/2

(6.59)

Recall that in this model the classical solution becomes ljounce, which is di庁el・ent

from that in the previous section. Since we have chosen the parametrization of

the classical trajectoi・y so as to arrive at the nucleation point at r - 0, then we
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can extract out the out-going mode of the wave function in the allowed region by

replacing r by it (t > 0). By this procedure, we have

壷zt - Mnke-2/ZQ2zopu>T{n+¥/2), ~vT(k+l/2)

・iSL(t)

eiE,(k)tHk( yfiir}) exp {一芸VI]

SIV) - dfcy(y(t')).

(6.60)

(6.61)

with

Now consider the classical Hamilton-Jacobi equation with energy E,

2¥dq)
+V(q)-E. (6.62)

ThesolutionS(q(t),E),whichisfoundbysetting∂S/∂q-dq/dt,isrelatedto

anothersolutionwiththeenergyE+AEas

s(q,E+△E)竺S(q,E)+△FdS
EIE(6.63)

-S(q,E)+△Et+(constant).

Thus軸can lDe interpreted as the state with additional energy △E - Ey(k) -

G7/2 + u(n + 1/2) - v(k + 1/2) transferre。I into the tunneling degree of freedom.

Because of the condition evT > 1, once again we find the large suppression factor

e vTk in the alDove expression of中-|.¥　Hence the mode of least number of k

dominates in the allowed region, which is the saJne as the case discussecl in the

previous model.

Summarizing this section, we have investigated the quantum mechanical'tun-

neling in the two dimensional system where the tunneling degree of freedom is

coupled to the other excited oscillator, constructing the tunneling wave function

explicitly. From the consideration of the above speci丘c models, we obtainec:1 the

following result. If the condition evT ≫ 1 is satisfied, that is, if the 'duration'for
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tunneling T becomes longer than the period of the coupled oscillator 2-k/v, it is

expected that the state after tunneling is dominated by the one in which the initial

excitation energy in the oscillator is transferred as much as possible to the tunnel-

ing degree of freedom and used to excite the motion in that direction, irrespective

of the initial excitation. This result is interpreted as follows. Since it becomes eas-

ier to escape away from the local potential minimum by getting the more energy in

the direction of tunneling. Therefore such a mode dominantly contributes to the

tunneli工1g.

This result is applied to the field theory directly, when we consider a field

coupled to another tunneling field which undergoes the decay of a false vacuum

homogeneously in the entire universe, as discussed in §4. Because the spatial_11aト

monies expansion separates the system mode by mode, and the problem essentially

reduces to that in this section. Then the number ofexcitation n in the ^-direction

corresponds to the number of particle of the五eld coupled to tunneling五eld before

the false vacuum decay. Our result is consistent with those of Rubakov [27] and

of Iくanclrup [42], which report the particle annihilation during the false vacuum

decay. In contrast with their approach, we have constructed the wave function

explicitly under the tunneling boundary condition, therefore the prescript1011 ¥¥てaS

clear, anC:l the information in the classically allowed region was obtained in our

formalism.
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7. Summary and Discussions

In this thesis, the whole attention is paid for the aspect of quantum state of a

field during and after the false vacuum decay through the tunneling effect. First

we shall summarize our analysis. We started from constructing the quasi-ground

state wave function which describes the tunneling in 良 metastable system with finite

degrees of freedom. It is based on the WKB approximation introducing a classical

tunneling path in the configuration space, which is developed by Gervais and Sakita

[30]. We gave the alternative construction of it in the covariant manner in §2. This

covariant formalism will be useful when gravity is taken into account. Extension

to the field theory was clone formally, then we olDtainecl the wave functional which

describes the quantum state of a field during and after the false vacuum decay. For

definiteness, we introduced the丑uctuating field 4> coupled to the other tunneling

field a that undergoes a false vacuum decay, and focused on quantum state of the

かfield on the tunneling background field. We showed that the resultant quantum

state of 0-field can lDe interpreted in the language of conventional second quantized

picture, and gave the method to construct appropriate mode functions.

This is done as follows. First we find the Euclidean classical tunneling solu-

tion ao(x, T). Then we solve the linearized field equation for <p in the background

of classical tunneling solution with the condition that the held vanishes expo-

nentiallv as the Euclidean time r goes to -∞　and construct a set of Euclidean

mode functions g^回. The Lorentzian mode functions ・vk(x)> which descril)e the

quantum state after tunneling, are olstained by the analytic continuation of gk(x)

with r - it and by taking their complex conjugates. As these Lopentzian mode

functions are not in general ortlionormalized, if necessary, construct a new set of

orthonormalized mode functions ,uk(x) ^y a suital〕le linear transformation of the

original ones. The resulting quantum state after tunneling is most convenientlyヽl

described in the Heisenberg picture. That is, if we iでpresent the丘eld operator

as cp(x) - ∑k(akuk(x) +心酔)), the state is identical to the "vacuum state
annihilated I;>y the operator a*., lDut it is not true vacuum state in general. This

fol・malism was applied for the specific examples of the false 、・acuum decay in §4

and§5.
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The false vacuum decay that occurs homogeneously in a closed universe was

considered in §4, to demonstrate how non-trivial the resulting quantum state can

be after the decay. Th占resulting spectrum of excitation has some similarity with a"

thermal spectrum with its temperatIire given loy a Euclidean duratio工:i of tunneling

that is related to a certain mass scale associated with the tunneling field. Here,

the~high momentum distrilDiition is more suppressed. As a result, the generated

total ener訂density is determined not by the mass scale of the tunneling field but

by the difference of lbefore and after the tunneling. In this model, there exists an

asymptotic region and the concept of a particle is de丘nite, then we showed that

our approach gives the same results as that of Rubakov [27]

The false vacuum decay with an 0(4)-symmetric bubble was analyzed in §t>, 111-

troducing a simple model of the coupling lDetween <p and a, in which the mass term

of the 0-field is non-vanishing only at the bubble wall. We explicitly constructed

the mode functions which describe the quantum state after the false vacuum cle-

cay, and found that the constructed mode function were singular on the light

cone. We argued, however, that the appearance of the singularity is inevitable for

any model with an O(4)-symmetric l⊃tibble under the WIくB approximation. We

then presented a method t,o avoid the singularity during calculations of physical

quantities and evaluated the coincidence limit of the two-point function as well

as the expectation value of the energy momentum tensor. We found that both

of them, even after the usual regularization of divergent terms, became singular

on the light cone. However, this singularity depends entirely on the choice of a

regularization constant, and we ar・gued that it should be removed in order to retain

the presumed consistency of the WKB approximation. The resulting regula・nzecl

expectation value of the energy momentum tensor has been shown to 13e perfectly

regular everywhere inside the bubble wall. We found that there existed a familyヽ・

of hypersurfaces (the hyperbolic time-slicing) over which the energy density was

constant, as a consequence of the Lorentz invariance of the state, and that the

expectation value of the energy momentum tensor behaves like radiation.

Hence we pointed out that the bul)1Die nucleation proCでss can l>c luterpiでted as

creation of a homogeneous and isotropic open univeisN-ith high entropy. Un for-
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tunately, however, the created universe in this model is a curvature dominated one,

then it is not a realistic model of our universe. Nevertheless, we emphasize that

there exists another mechanism, instead of in鮎tion, which gives rise to a homoge-

neous and isotropic open universe with high entropy by a quantum coherence, and

that it may give rise alternative solution to the horizon and且atness problem拝・

This certainly provides us with a motivation for investigation of a more general,

and realistic model. In particular, because we investigated the problem on the fixed

flat background, investigation taking gravity into consideration, which占essential

in cosmology, is necessary. The first step would be to cany out a similar analysis

in a non-trivial curved background spacetime.

Another important issue is the fluctuation of the cr-field itself. Because of the

di鮎ulty of zero-mode whose appearance is expected there, this problem has never

been considered strictly so far.

In §6, we attempted to generalize our investigation on the initial state, i.e., the

false vacuum decav from an excited state in the meta舶ble vacuum [42,43,44]. A占

a first step for this problem, we considered the quantum mechanical tunneling in

very simple systems with only two degrees of freedom. We regarded each degree of

freedom as the tunneling one and the other one coupled to it, which was set to be in

an excited state I)efore the tunneling. We showed a very interesting phenomenon,

that is, the state after the tunneling is dominated by the one in which the initial

excitation energy of the oscillator is transferred as much as possible to the tunneling

sector to excite the motion in its direction, irrespective of the initial excitation.

Application of this consideration to the field theory was discussed. When a

false vacuum decays homogeneously as considered in §4, the.prolDiem essentially

reduces to that of two degrees of freedom, because the spatial harmonics expansion

separates the system mode by mode. Our result implies that the particles anm-

hilate during the false vacuum decay, which is the same result with the previous

works of Rubakov [27] and Kandrup [42]. Due to the independence of the initial

In this connectionいve mention that Linde [46] discussed the possibility of creating a non-flat

(but long-lived) homogeiieou岳and isotropic universe in the context of the self-reproducing

universe scenario, provided that the creation probability is exponentially suppressed.
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state, they conclude that the spectrum of the number of created particles after the

tunneling can be always "thermal" , in the model of a homogeneous decay, irrespec-

tive of the initial state (even if the五eld contains many particles initially). It will

be interesting to consider the generalization on the initial state in the case when年

false vacuum decays nucleating a vacuum bubble.

Finally, in connection with this, we comment on a good point of our formalism.

The prescription for the tunneling phenomenon using the Euclidean path integr耳1

is excellent method to evaluate a tunneling rate from the ground state, 一out it does

not suit to investigate a tunneling from the excited state. Our formalism which

explicitly constructs the wave function can treat this problem, and will be useful

when we consider e庁ects of an excitation on tunneling.
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APPENDIX A

In this Appendix, we show that our estimate of the particle creation given m

§4 agrees with the result obtained in Rubakムv's approach [27]. We omit the details

and show only the resulting expression for the particle number in his approach. In

Rubakov's formalism, the number of created particles is given by

(A.I)

kk

where D is a matrix given in Eq.(3.19) of [27]. In the case of spatially homogeneous

decay of false vacuum, each fc-mode decouples and the matrix D becomes diagonal.

Hence we can treat each mode separately. Since our mode function gk corresponds

to Rubakov's mode function g。 defined in Eq.(3.8) of [27], we find the diagonal

component of D with the wavenumber k is expressed in terms of g& as

Dk--
gk - u+9k W-LJ+

r=O W+LU+

whereW ‥- ∂'T9k/9k¥T=0- For the model of §4, we have

yV=
Ak-Bk

Ak+Bk
u,+

(A.2)

Hence the number spectrum of created particles in Rubakov's formalism, Eq.(A.1),

is calculated to be

Nk-
(w -co+y

4) VLL　　4 -BZ

This is exactly in agreement with the result given in Eq.(4.ll).
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APPENDIX B

In this Appendix, we evaluate the expectation value of the energy momen-

turn tensor explicitly l}y regularizing the divergence in terms of the point-splitting

method. That is, we operate theたblowing derivative operator on G^¥諾,x') to

form a bitensor,

0- [(p¥xJ)] :-¥ Usl一芸qFL謹β)

・[孟
and take the coincidence limit, ∬′I`一㌦.

∂　　　∂

× I前石市+百万両 G^iJ,∬′),

(B.I).

We begin by separating the terms linear and quadratic in ms in the integral

form of the two-point function, Eq.(5.23). For notational simplicity, we normalize

the unit by setting R - 1 in the following. Then,

GW(x,x')-品臣等01+(笠Qi

1/'

Gi:-く
du

Cw2 -2i]u+C'

i/C i/C

&:-!du /dv

where

civ

cv　2r]v+C

- 2t]uv+C'y

(B.2)

(B.3a)

(B.31))

The first divergent 1/e term in the al30ve is simply the Minkowskian contrilDution,

which will give rise to a cosmological constant in (T^) . Hence we focus on

the Q¥ ancI Q-2 terms. We will encounter various forms of divergences also iw'Gi

and G-2, I)u吊ince the two-point function is manifestly Lorentz-invariant, these

divergences are also formally Lorentz-invariant. Hence, we concentrate on finite

terms in them. PossilDie forms of (JV'") -　which may arise from the clivergent

terms will be discussed in the end.
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In order to carry out the integrals in Eqs.(B.3), one needs to specify the relative

magnitudes among ((- x2), ('(- z'2) andり- x-x′). In what follows, we assume

e2-{x'-x)2>O, X2:-寧>O,  (B.4)
D:-X2e2-(x蝣e)2-cc'-if>0.

However, it can be shown that the resulting expression for (T^) is independent

of the al)ove choice.

First, let us consider the linear term, Eq.(B.3a). We find

Qt-孟arctan等) +((-(午

Then using the addition theorems,

arctanα+ arctanβ - arctan雷(|arctanα +arctanβ < */2),
7T

arctanα+ arctan- - -
α　　2

it reduces to

(α>0),

Q1--去Iarctan晋+arctanl-rj汀)
7T 1+77　{l+nf-Qり

、/膏　V(l-v)　3??3(1-n)*
D+O(DA).

B.5

(ノB.6)

Now, disregarding the first divergent term, 7r/～/貫and operating O^v on the rest
of terms, we ol:>tain

・i-Ohlv[Gi]一志+ 11!りノ　　5.7)

One can easilv check that the above contrilxition to (TP")　satisfies the energy

momentum conservation law I)v itself, as it should.
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Next we turn to the quadratic term, Eq.(B.3b). It can be transformed as

l/C
g2-志!du(

-arctan
u¥霊-arc-
1

-arctan
vdlzV

CC-v　_---J.J._ー<-v
- arctan

∨膏

Dfb

＼.′′万

(z-r?)2+D

In(CC′) arctan

('ccdz-

cc¥

dz

D
ln(CC ) axctan

idヱ

cc′ -ノ11

∨′万

Inz

(z-^+D
)

- ln(C) arctan霊- lii(C') arctan
¥nz

(z-V)2+D

i¥　-'/

、.・/万 - ln(Oarctan霊-ln(C′ arctan等)
-F(CC′) +F(C')+F((ト^(1),

where F(z) is an indefinite integral given by

F(z) :- dz'In z'

-V

-r*-

∨/万

(z-V)*+d

-'
In7]+In1+

卦ctau諾+[dzl差等~/¥ォ

V. 二'蝣-トD

(B.S)

(B.9)

The final integral term in the last line of the alnove equation cai月)e further trans-
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formed as

～?,云
†l=1

cc)

∑
間-il

∞

∑
(77)一il

(-1)'-
-/¥n

v. -/2+D

よ~-n　2m

l^^HI

dg/

+三
m=0

2m+1

(-D)'-(- - V)2m-2r~1
2ra-2r-1

(2?71 + l) 772m+1

+ H{z),

爪-il

∑
r=0

Z-T)
Id

(-DY(z -りi2m-2r

2m-2r

2m+l dz'

・u+D

arctan親

In{(z-りr+D)

arctan岩+In((∴9¥^/D

77)+D)arctanv

where we have introduced the function H(z) denned by

00

哩):-∑
m=0

1　　　1

(2m+ l)??2m+1

00

-∑志示_1

1　1

'alトD)r{z - v)2m-2r
2m-2/1

m-1 -D)r(z - V)2m-2i-1

-_)川-2r-1

(B.10)

B.ll)

Since we only need to know terms up to O{e2) in Go, so in H[z). Then up to this

order we have
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哩)-吉(1+吉1n芸)

D-荒)2+芸は+b菩)3斗n孟(B.12)
+0{D%

where we have used the following series formulas,

〇〇

∑
71=1

云
サ=1

xn

n(n+1)

x'l

n{n+3)

-1+呈In(l-x),

-轟+去+芸+Iz3-1HI

x)ヰ

Inserting Eq.(B.lO) in Eq.(B.9), we五n(I

ln(?/2 + D)

JD

+ H{z).

arctan岩+
In {(z-i-,)2 +D)

＼.~わ

(B.13)

(B.14)

with H{z) given by Eq.(B.12).

SulDStituting z - CC言言and 1 into the alDove exprでssion for F(z), inserting

them in the last line of Eq.(B.8), and using the equalities,

In((CC′-ilY+D) -lnCC'+ln((トnf+D)

In((C-n)2+D) -lnC+lne2,

In((C-v) +D) -luC'+lue2.
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we finally find

Ql -G2,sing +芸In(CC')-i- jarctan
CC-v

V膏

-In ((ト酌項去arctan壁n

+H(Q +H(C') -H(X′トH(l)

-Q2,sing-孟--ln(l

v
-vY-lL-

2if

- arctan

(牀蝣Xf

3t?3

・ 3t?3 ln(l-V)2}D+0(∈3),

where Q2,sing is the singular part of Q2;

y'2,sing一万¥/#,2

arctanlne
l

r7

-¥H班塙<arctan等-arctan宕).

(B.15)

(B.16)

As in the case of Gi, disregarding the singular part and operating O^p on the

finite terms of (?2, we obtain

limOhサーノ02 - -
ness

・[志+

2(1-e)2¥2

2-3^

VfiU

ee(i-e) ・志In(l-」2)2] (vpv一孝) ,

(B.17)

which also satisfies the energy momentum conservation law by itself.

Now we discuss the possible contributions to (T^tu)reg which may arise from

the singular terms in Q¥ and Q^. First of all, they must be in the Lorentz-invari云llt

form. Moreover, since both of the regular parts of (TV), Eqs.(B.7) an〔I (B.17),

satisfy the conservation law, those from the singular terms, after regularization,
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should also satisfy the conservation law by themselves. Hence, let us consider an

effective action of the form,

&reg - ヽ/二百cfxL{Q-　C-」2 - V^". (B.1.8)

where g^v is the metric which should be set to 77^ after taking the variation. Note

that Sreg has the Lorentz invariance but does not have the coordinate mvariance

for general g^v. Now, taking the variation with respect to g^ and evaluating the

result at g^u - 77^,,, we obtain

ATZ :- 2篭≡

Then requiring △Treg,u - 0, we find

9n"-りC"
- 2芸x*xv +り-L.

cdL+3dL-o

which is easily integrated to givelノ

L-Dl+D2-^-Dl+D2-i,

where D¥ and D-i are arbitrary constants. Consequently we have

AT?" -Dvfノ+D2」4 Vノー孝)・

(B.19)

(B.20)

B.21)

(B.22)

This is the contribution from the regularization of the divergent terms. Comparing

it with Eqs.(B.7) and (B.17), we find that there are terms of the same form as the

D・2-term in the latter. Hence we absorb them in the ZVterm. Then, recovering
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the prefactors for the expressions (B.7) and (B.17) (see Eq.(B.2)), we finally obtain

ms
(xlrea
reg諦

・毒mi-e?

・ (りPy一撃) -

・Drn-+D2^¥りI-一等ニ)・
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APPENDIX C

Here we consider the expansion of the following expression m terms of the

Hermite polynomials,

・W^+zM,} expf一撃　　(CM)
First we set

/i+* exp一掌)-:真znikHk(Vnr})exp(一写(C.2)
Thenusingtherelationgf-fg-2u,andtherecursionrelation,

.'t&'¥蓋ZnikHk(y/nr})exp-T)

n+2

-J>n+2,fcif*(

fc=。空-仁T),

weobtainforevenn,

zn+2,n+2-3-Zn,n(n-0,2,4,.-)

zn+2,n-(4n+2)βFZn,n+J-Zn,n-2(n-2,4,-)

zB+2,fc-4(A;+2)(fc+l)β2-7-2T'znM2+(4k+2)βTIz,-,k+TIz,-,k-2

(n-4,6,・蝣蝣,k-n-2,72-4,-,2)

zn+2,0-8β'lT2zn,2+2βF2zn,(n-2,4,

Zo,o-1,Z2,0-2&P

and for odd n,

zn+2,n+2 - 3- %n,n

zn+2,. - (4n+2)βF Zn,n +3- Zn,n-2

(n-1,3,5,・・蝣)

n-3,5,-・・)

Z,,+2]fc-4(fc+2)(fc+l)β2-T-2F'znM2+(4k+2)βT2zn,k+TZ,hk-2

(n-3,5,・・・,k-n-2,n-4,-,3)

zn+2,i-2ABzTIZ,hZ+ァBTIznA(7i-3,5,-・)

zl,l--1,3サ,1--6&Fl
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where we have de五ned

f:-蕗β:-1-n

u)fg

lfweset

zn,k-蝣I7"β(n-k)/'蝣Dn,ki

theabovereductionformulasarerewrittenas,forevenn,

Dn+2,n+2-Dnji(n-0,2,4,-・)

Dn+2,n-(4n+2)Dn,n+Aサ,n-2(n-2,4,.-.)

Dn+2,i,k+D7ljk-2

(n-4,6,・・・,k-n-2,n-4,蝣・・,2)

Dn+2,0-8」>n,2+2D;l)0(n-2,4,

A),o-1,D2,o-2,

andforoddn,

Dn+2,n+2 - Dnjn

Dn+2,n - (471 + 2)Dntn + Aサ,n-2

(n-l,3,5,---)

(n-3,5,--0

(C4)

(C.5)

Dn+2,k - 4(fc + 2)(fe + l)DnM2 + (4& + 2)A,,jfc + JDn,fc-2

(n-3,5,・・蝣,k-n-2,n-4;・蝣・,3)

L>n+2,i - 24Dn>3 + 6Dn,i　　　　　　(n - 3,5,-)

jDi.i - -1,　-D3ti - -6.

In principle, we can obtain a solution with arbitrary numbers of n and k by follow-

ing these reduction formulas. We olstained the solution numerically l}y the aid of

computer machine, and arranged the results carefully, then we founC:l the general

form of the solution for even n,

(n-1)!!

Dn,k - (k-1)l¥

0

2(n-k)/2　r

l
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k: even,

k: o〔Id,
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and for odd n,

>n,k - nil

k¥ 2(n-fc)/ (n-1)/2^(k-1)/2,

k: even,

k: odd.
(C.7)

Here /Cm stands for ll/m¥(l r m)¥. This solution satisfies the above reduction

formula properly.
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