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Abstract

The orbital magnetic moment and related phenomena in the 3d and 5f electron systems
are examined by the Hartree-Fock approximation (HFA). We will show that the faithful
treatment for the exchange interaction is crucially important in describing the orbital mag-
netism in solids.

First, the atomic ground states of magnetic ions are summarized and the applications
of HFA are given to examine its validily in describing magnetic quantities. It is shown that
HFA reproduces Hund’s first and second rules in the 3d and 4f systems. The third rule is
not reproduced in the less than half filling case. In the 3d ions, however, the crystal-field
effect, i.e., some kind of the solid-state effect, makes HFA to be a good approximation. In
the uranium ions, where the 5f spin-orbit interaction is so large, HFA gives their ground
state fairly reasonably. »

Encouraged by these results, we apply the tight-binding HF method to the insulating
CoO in order to study its possible antiferromagnetic structure and orbital state. CoO is
well known to exhibit the second kind of antiferromagnetic structure, which is in general
described by the four wave vectors {Q;}. It is still an open question whether the single-
() structure or multiple-Q) structure is realized in CoQ. Our calculation, which takes into
consideration the 3d spin-orbit interaction and the intra-atomic full 3d-3d multipole inter-
action, shows interesting results; in addition to a collinear single-Q structure, a noncollinear
quadruple-Q one, both of which are compatible with the neutron diffraction experiment,
are obtained as stable HF solutions. The magnitude of the Co orbital magnetic moment
is shown to be as large as ~ lup. Relationship between the orbital magnetism and the
band-gap formation is explained.

In free atoms, their ground states have no relation to the monopole Coulomb interaction
represented by the Slater integral F'°, and the other multipole terms determine their mag-
netic state. In solids, however, the orbital magnetic moment shows strong dependence on
FP, even in metallic phase. By considering simple systems, the enhancement mechanism of
the orbital moment through FP is discussed in detail.

Finally, the electronic structure of the ferromagnetic compound US is examined. The U
5f spin and orbital magnetic moments are calculated on the basis of the extended Hubbard
model and HFA. QOur tight-binding model includes the U 6p, 5f, 6d and 7s orbitals and the
S 3s, 3p and 3d ones, and the intra-atomic 5f-5f multipole interaction and the spin-orbit
interaction in the 5f state are taken into account. Most of parameters involved in the model
are determined by fitting with the energy of Bloch electrons in the paramagnetic state ob-
tained by a first-principles calculation based on the local density approximation (LDA). The
calculated magnetic quantities are in good agreement with available experimental results.
The magnetic circular dichroism spectrum at the U 3d—5f x-ray absorption is also calcu-
lated and agrees with the recent experiment. It is shown that the exact exchange potential,
gained by HFA, can mix the spin up and down states and enhance the effect of the spin-orbit
interaction. This feature is not seen in the LDA potential, and the problems of LDA in the
estimation of the orbital moments are discussed.
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Chapter 1

Introduction

In recent years, orbital-related phenomena in the 3d, 4f, and 5f electron systems have
been attracted much attention. One of the examples is the orbital ordering in manganites,[1]
where the orbital degree of freedom of the 3d electrons is coupled with that of the lattice
and further considered to be related to the spin ordering. In magnets, the spin-orbit inter-
action induces the orbital magnetism that is disclosed in phenomena such as magnetocrys-
talline anisotropy, magneto-optical effects, and x-ray magnetic circular dichroism (MCD).
MCD, using the synchrotron-radiated x-ray, becomes a powerful tool for studying ferromag-
netic substances, after the discovery of the so-called orbital and spin sum rules.[2, 3] The
atomic orbital and spin magnetic moments (14, and Mspin) are considered to be the funda-
mental gquantities in magnets, whereas the conventional bulk magnetization measurement
Jjust probes the total magnetic moment. The MCD experiment[4, 5, 6] combined with the
sum rules enables one to measure the individual contributions of the spin and orbit to the
specific-site total moment in ferromagnetic compounds though there are some limitations
in the application of the sum rules.[7, 8, 9]

In a free atom or ion, pepin and per, are typically comparable in magnitude. It is known
that from Hund’s rules one can predict the ground-state electron-configuration for atoms
with an unfilled shell. According to them, the total spin angular momentum S and orbital
angular momentum L of the open shell are described by the following three rules:

1. S has the largest value consistent with the Pauli exclusion principle.
2. L has the largest value consistent with the Pauli exclusion principle and the first rule.

3. The spin-orbit interaction couples the vectors L and §. The coupling is antiparallel
way for the less than half filling case, and parallel for the more than half filling case.

The first and second rules are considered to be a consequence of the Pauli principle and
Coulomb interaction.. The Pauli principle states that the probability of finding two elec-
trons with the same spin direction must vanish as they approach each other because of
the antisymmetry of the wavefunction under exchange. Hence electrons with parallel spins
tend to be farther apart from each other. The Coulomb repulsion also favors this tendency.
The energy cost due to the Coulomb interaction is lower for the longer distance between
electrons, resulting in the first rule. The maximum L is considered to be due to the multi-
pole Coulomb interaction. The exceptional cases of the Hund rule LS-coupling scheme are
heavy atoms, including the actinides, where the spin-orbit interaction is so strong that the
77 coupling or intermediate coupling has priority. At the present day one can perform full
quantum mechanical calculations for light atoms without any simplifying approximations,
and it is found that g and por, follow Hund’s rules quite well. For heavy atoms such
complete calculations are infeasible because of the large number of electrons. However we



4 Chapter 1. Introduction

alternatively have good approximate results for heavy atoms. Thus the formation of the
atomic magnetic moments are well understood.[10]

In solids, the number of electrons involved is tremendously large and complete calcula-
tions like those for free atoms are never possible. Therefore it is convenient to have simplified
models or methods that describe magnetism inr solids to first approximation. Density func-
tional theory (DFT), proposed first by Hohenberg and Kohn,[12] is in principle a rigorous
theory for a system of interacting electrons, based on the electron density distribution n(r),
instead of the many-electron wave function W(#q,rs,...).[11] DFT states that the exchange-
correlation energy of electrons Ej., which 1s, in the atomic case, the driving force of the
spin and orbital polarization that leads to Hund’s rules, is to be expressed by a functional
in terms of n(r). This allows one to substitute the many-body problem for dealing with a
non-interacting electron system which gives the exact n(r). The true functional E;.[n(r)]
is, however, not known, and this is the point where the major approximation is needed
to proceed with DFT. Usually the so-called local density approximation (LDA) is applied
with being guided by the results of analytical or Monte Carlo calculations for a homoge-
neous interacting electron gas. Thus, in the itinerant limit, LDA gives exact results. The
standard procedure of this approximation is as follows. At each point in space the exchange-
correlation properties are assumed to be determined by the local charge density of electrons.
The exchange-correlation energy density e, i1s simply assumed to be given by that of a ho-
mogeneous electron gas with the same charge density. The total exchange-correlation energy
is gained by integrating over all space: Ey;c = [ n(r) egc(n(r))dr. Extension to the spin-
polarized case is gained analogously and known as the local spin density approximation
(LSDA). In this case, the exchange-correlation energy density is assumed to be determined
by the local spin-magnetization density m(#) = nq(r) — n)(7) in addition to the charge
density n(r) = n1(v) + n(r): ez0(r) = €. (n(r), m(r)). As the explicit form of ¢, again,
the results of analytical or Monte Carlo calculations for a homogeneous electron gas, with
the spin polarization, are usually referred to.

With the progress of computer facilities, the first-principles band-structure calculations
based on L(S)DA, where there is no free parameter, have been carried out for several decades.
It has been shown that LSDA yields good results about the electronic structure and pspin
of itinerant magnetic materials containing the 3d transition-metal elements.[13] In the 4f
and 5f systems, the contribution of per, to the total moment is comparable with pgpin in
magnitude, even in solids. To handle the orbital magnetism, the effect of the spin-orbit
interaction (SOI), i.e., one of the relativistic effects, has been included in the calculations,
but still based on LSDA (hereafter we denote this scheme as LSDA+SOI). Such attempts are,
however, not necessarily encouraging. In most cases, the calculated orbital moments are too
" small compared with experiments.[14, 15, 16, 17, 18, 19, 20, 21] Even in the 3d systems, where
liork 18 typically quite small, LSDA+SOI seriously underestimates its contribution.[14, 15,
16, 17, 18] Among the bf systemns, ferromagnetic uranium compounds are rather extensively
studied.[18, 19, 20, 21] Due to the less than half filling in the 5f state, piorp, and pepin of U
site are aligned in the antiparallel way, and porp is typically larger than Hspin 1IN Magnitude,
even in metallic substances. In the LSDA+SOI calculations for uranium compounds, the
condition |porn| > |pspin| is successfully reproduced, but the calculated pory is usually still
small, leading to a too small magnitude of the total magnetic moment, |porp| — |pspinl,
compared with experiments. .

Why does this method, LSDA+SOI, fails to describe the contribution of the orbital
moment? It is supposed that the following reasons are crucial:

1. The homogeneous electron-gas picture, on which L(S)DA is based, clashes with the
existence of the orbital moment. The orbital angular momentum comes from the
rotational movement about a nucleus, whereas, in the homogeneous picture, there is
no nucleus and hence electrons are unbounded.



2. The correlation of different orbital states, which leads to Hund’s second rule in the case
of free atoms, is considered to be nonlocal effect. The orbital state is characterized by
the rotational properties of the electronic wave function about the nucleus. In other
words, one needs to know the charge density of the electrons around the nucleus, and
not just at the single point in question. On the other hand, in L(S)DA, it is a local
potential that has been used to describe every exchange-correlation effect.

3. LSDA is based on the spin DFT, where the total energy is minimized with respect to
n(r) and the spin-magnetization density m(r). Even if an exact functional is known,
which is able to include implicitly all effects related to the orbital magnetism, DFT just
guarantees the densities used in the variational process are to be reproduced exactly,
in this case, the total and spin densities; not the orbital moment. So long as we are
based on the spin DFT, there is no guarantee that the orbital-related quantities can
be reproduced.

From these reasouns, it can be said that, in LSDA, there is no theoretical framework
to determine o, self-consistently. Extension of LSDA, or another framework is necessary
for describing the itinerant magnetism including the orbital contribution. The correlation
needed here is atomic one, opposite to the homogeneous electron-gas picture.

Historically, discussions of the itinerant ferromagnetism, based on the band picture,
go back to the pioneering work by Slater.[22] He stood in the tight-binding Hartree-Fock
(HF) method, and showed that one can deduce the exchange splitting of 3d bands from
the intra-atomic Coulomb interaction. In his theory the orbital magnetic effect was not
taken into account; he considered only the spin polarization. It is supposed that the orbital
polarization should be also related to the intra~-atomic Coulomb interaction, not only driven
by the relativistic spin-orbit coupling.

The effect of the Coulomb interaction between electrons is to be classified into the follow—
ing three categories: (i) the classical Coulomb interaction; (ii) a correlation effect between
electrons with the same spin orientation, which is a quantum-mechanical effect gained by
Hartree-Fock approximation (HFA); (iii) the remaining correlation effect, which cannot be
managed by HFA. For the sake of clear distinction, the effect (ii) is called the “exchange
effect”, and (iii) the “correlation effect”. HFA is a well-known and well-defined approxi-
mation, where the many-body wave function is expressed by a single Slater determinant.
By definition, although it cannot describe the correlation effect, one can obtain an exact
exchange potential by HFA. In L(S)DA, both of the exchange and correlation effects are
taken into consideration to some extent, but not completely, by referring to the homoge-
neous electron gas, and there is no guarantee that those effects in L(S)DA correspond well
to the real ones.

The aim of this thesis is to examine the effect of the atomic correlation for the orbital
magnetism in solids, featuring the effect of the exchange interaction based on model cal-
culations. OQur model is the so-called extended Hubbard model, where we consider the full
degeneracy of relevant orbitals, the spin-orbit interaction, and the intra-atomic multipole
Coulomb interaction which is treated within HFA. It is shown that the faithful treatment
for the intra-atomic exchange interaction is crucially important for good descriptions of the
orbital magnetism in the 3d or 5f systems.

Organization of this thesis is the following. Chapters 2-4 give introductory explanatlons
concerned about the models and concepts used in this thesis. In Chap. 2, principles of
HFA are represented in detail. In Chap. 3, we formulate the intra-atomic interactions and
deduce the corresponding HF Hamiltonian. Atomic ground state is examined by HFA to
investigate its validity and accuracy in describing the magnetic quantities. It is shown
that HFA reproduces Hund’s first and second rules for the 3d and 4f atoms and that it is
a fairly good approximation for uranium atom where the spin-orbit interaction is strong.
Limitations of HFA are also given. In Chap. 4, the tight-binding method, which is used in
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this thesis to represent the electron kinetic energy, is explained. Using the tight-binding HF
model, the orbital-related magnetic quantities and effects in solids are discussed in Chaps 5-
7. In Chap. 5, possible magnetic structure of insulating CoO is discussed. Both of the facts
that the orbital moment of the 3d state in CoQ is so large and that CoO is an insulator,
indicate that LSDA calculation is not suitable for CoO. We obtained interesting results by
the present method. In Chap. 6, the orbital moment in the metallic 3d systems is discussed.
It is shown that the monopole Coulomb interaction, to which the magnetic quantities in
the free atoms are independent, plays an important role to enhance the orbital magnetic
moment, not only in the insulating phase but also in the meiallic phase. Finally in Chap. 7,
discussions about the uranium 5f state and the role of the exact exchange potential are
given with taking US as an example. US is known as an itinerant ferromagnetic compound,
but its orbital moment is quite large. It is shown that the exact exchange potential will
enhance the effect of the 5f spin-orbit interaction and mix the spin up and down states.
MCD spectrum and a detailed comparison between the potentials in LSDA and HFA are
also given.



Chapter 2

Hartree-Fock approximation

2.1 General principle

Mean-field approximation is often used as the first approach to understand interacting-
electron system. It provides us a simple picture that each electron is moving independently in
the one-electron potential which comes from the averaged interaction with all other electrons.
The Hartree-Fock approximation (HFA) is one of the well known approach in this direction
and is based on the variational method. In HFA, the ground-state wavefunction for N-
electron system is expressed by a single Slater determlnant

Pi(®1)  pa(®1) - Yn(z1)

‘I,HF:_l_ wl(:”?) ¢2(:332) ’/’N(:mz) 2.1)

Pi(en) valen) - vYn(zy)

The single-electron states ¢x(2)’s (k = 1,..., N) are to be determined by the variational
method. Here in Eq. (2.1), #; stands for both of the coordinate in the real space =, and
the spin variable o, of the j-th electron. t(#)’s include the spin function and they are
orthonormalized with each other;

/ﬁ(w)djk:(m) dz = byp. (2.2)

We consider the following Hamiltonian which consists of 2 parts:

H= Zh(mz)—l- ZZ o(s, 3;), (2.3)

= 1i=Yizg)

where h includes any kind of one-body Hamiltonian, for instance, the kinetic energy, the
spin-orbit interaction, the Zeeman energy, the potential energy in the periodic crystal lattice,
etc. The second term represents the Coulomb interaction between electrons, v(®y, ®y) =
1/|r1 —r2}. The expectation value of (2.3) in the ground state (2.1) is calculated as follows:

N
(OHF | g |gTFy = Z klhlk) + 5 Z Z {(kE |olkk"Y — (kk'|v|kk)} (2.4)

k=1k'=1

where we have used the relation (2.2) and defined the following expressions,

(kIAlk) = [ vi(@h(@)n(e) da (2.5)
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and
(ko] K, / / Wh(@ )l (2o, o i, (2) e, (') deda (2.6)

The interaction matrix elements in Eq. (2.4), (kk'|v|kk’) and (k&'|v|k'k}), are called the
Coulomb integral and the exchange integral, respectively. The minimization problem of
(THF| |¥HF) in terms of 1’s under the condition of (2.2) yields the following equation
with Lagrange’s undetermined multiplier ¢;j:

a N N
e (WP || — Z Z €kl (Vr, Y0y ) | = 0. (2.7
k ki=1k=1

This becomes

h(2)r () + Z{ / ()P (e, @) da’ (i)
ki=1
N
- / B (Yol o' W (&) da’ B (@)} = 3 e (). (2.8)

k'=1

For the summation over k' in the left-hand side of this equation, the term of k¥’ = k, which
means the self interaction, is automatically excluded by the canceling out between the
Coulomb and exchange parts. This is one of the important aspects of HFA; nonphysical self
wteraction is automatically removed tn HFA. The one-body density matrix in the ground
state (2.1) can be defined as follows:

N
plm,a') = di(x)n(a’). (2.9)
k=1
Making use of this expression, Eq. (2.8) is rewritten as
N
{h(2) + ver(z) — A(2)} () = Z rpp (), (2.10)
k=1

where veg(2) and A(x) are defined by
verr(@) = /v(a:,:c’)p(a:',w') da', (211
A@)p(z) = /v(m,m')¢('w')p(z',m) dz’. (2.12)
The operators in the brackets of Eq. (2.10), which act on ¢}, are the Hermitian operators

and independent of k, so that we can take ¢ as the eigenfunction of these operators Then
€xge in the right- hand side becomes zero for k& # k', namely,

{h(2) + verr(®) — A(x) } i (@) = xdp(z). (2.13)
This is called "Hartree-Fock equation’. More explicit form like (2.8) is given by

h(x)yr(® Z [/v(w 2"y (&) dw]’ﬁk( )

k=1

N
- Z [/v(w z" i (2 )k (a') d$'] Y (@) = e (=), (2.14)
k=1
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The single determinant ¥HF is constructed by these eigenfunctions w3’s (k=1,..., N) of
Eq. (2.13), which are in order of the energy from the lowest eigenvalue ¢. In general,
this procedure of HFA is rather difficult because veg and A in Eq. (2.13) contains p’s
(k=1,..., N) and this is a-nonlinear problem by nature. Usually, the following iterative
way is employed to deal with this problem. First, assuming an appropriate form for veg
and A, one will solve Eq. (2.13). Then with this solution ¥;’s one will calculate veg and
A and examine whether the obtained veg and A are the same as the assumed ones or not.
If the agreement 1s not obtained, one should go further with the calculated v.g and A to
get new solution ¢¥;’s and recalculate veg and A. This cycle is to be iterated until the
sufficient convergence is seen for veg and A. Thus converged potential, v.g plus A, is called
"self-consistent field’.

Equation (2.14) multiplied by ¢ () from the left side and integrated with respect to =
yields the one-electron energy of the state &;

N . ‘
er = (klhlk) + > {(kk'|o]kk") — (kE[v|k'k)} . (2.15)
k=1

The total energy, Eq. (2.4), can be rewritten with this one-electron energy €, as follows:

W = (U1F | g |oHF) = Zek - Z }: L(RE u|kk'y — (BE'Ju|k'k)}, (2.16)

klk’l

where it should be noted that the second term prevents the double-counting of the electron-
electron interaction.

2.2 Second quantization

In general, the second-quantization method is more convenient than using the Slater de-
terminant. In this section, we would formulate the Hamiltonian by the second quantization
and examine its form in HFA. This procedure provides us with an insight about what is
missing in HFA and it can help us to go further into a higher order approximation. We
consider the following Hamiltonian which is the same as Eq. (2.3) but is expressed by the
second quantization,

1 ,
H=> (klhlk"YaF ap + 5 S (kaksolkd ks Vaf af ay iy, (2.17)
k&' ka,ka, k1’ ko’

here note that there is no restriction about the single-electron states k’s except that they
construct an orthonormal complete set. af (a;) is the creation (annihilation) operator of
the k-th state. We express the HF ground-state wavefunction for N-electron system as

U = af af ---af |0), (2.18)

where |0} represents the vacuum state. We should try to minimize (¥HF|H|®HF) which is
calculated as follows:

W o= (¥F|H|gHT)
N

D (k| hlks)

=1

This is the same as (2.4) and the states &’s should satisfy the HF equation (2.13) from the
condition of minimizing W. The HF ground state ¥HF is realized by filling these states

Il

l\DlH

N N
ZZ (kik;|vlkiks) — (kikj|v|kik:)} - (2.19)
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with NV electrons in order of the energy from the lowest eigenvalue €. The story up to now
is completely the same as the previous one discussed in sec. 2.1.

Let us examine the original Hamiltonian (2.17) in detail, provided that the states k’s in
(2.17) satisfy the HF equation (2.13). It is convenient to stand in the hole picture for the
occupied states in the HF ground state WHF;

b, = af, bf =a,, {by,, b} = b bF + b by, = 845, (2.20)
namely, b; (b,) represents an operator to create (annihilate) a hole in the state k. Here-
inafter the occupied states of ¥HF are labeled as & < kp, and the unoccupied states, k > kp,
and we would stand in the hole picture for & < kp with using operators b}: and by, while
electron picture for £ > kp with a,‘: and a,. Then

ap ¥ =0 (k > kp), b =0 (k < kp), (2.21)

namely, WHF behaves like vacuum state for the operators a and b.

Utilizing this new scheme of the electron-hole picture, we would rewrite the Hamilto-
nian (2.17) in terms of ¢ and & and furthermore in terms of the normal produci. After a
cumbersome procedure, the Hamiltonian becomes as follows:

H=Y_ (lc[h]lc)+% > {(kk |u|kk) — (kK |v)k'k)} (2.22)

E<kp kk<kr

+ Z(azak: - bZ'bk)
kK

® [(kIRIK') + D {(kka|olk k) — (kkyJolkik')} (2.23)
ki <hkr

+ D (ot +beay)
kK

o |k + YD (kb blh) - (kb | (224
k1<kr

[(12}v134)aT o 6] &F
1,2,34
+ {{(12|v|34) — (12[v]|43}} (af ad b a5 + aF b} b3 b,)
+ (12|v|34) (af af agaz + 6T b3 b b,)
— 2{(12|v|34) — (12|v]43)} aT bF b,as
+ {(12|v|34) — (12|v|43)} (af byayas + bj’blb2a3)' ,
+ (12|v|34)b, boayas), (2.25)

[ SR

where it should be noted that the summation over k is to-be taken as k > kp when % is the
subscript of a or @™, while £ < kg for bor b*. In (2.23) and (2.24), one can recognize that the
equation within the square brackets [ ] is the matrix element of the mean-field Hamiltonian
of (2.13) between the states k and k’. Since the state &’ satisfies the HF equation (2.13),
this matrix element becomes €;8;z/. The equation (2.24) is, however, to be zero since the
subscript of @ should be different from that of 5. The equation (2.22), which is a constant
term, is equal to the ground-state emergy in HFA, namely, Eq. (2.19). Hence the original
Hamiltonian (2.17) can be written in the form '

H=W+> alafa, —biby)+ Hs, (2.26)
k
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here Hs represents the interaction term, which contains four operators, and is described by
Eq. (2.25). The characteristic feature of (2.26) is that the one-body term, which contains
two operators, is already diagonalized. Operating H to ¥HF leads to

H\I’HF — VV‘I’HF i HQ\IIHF

1
= Wq:HF+-2- > (12v[34)af af b b3 U, (2.27)
1,2,34

1959

here note that we have utilized Eq. (2.21). The second term becomes the summation over
the excited states, in which two electron-hole pairs are excited from ¥HF. To go beyond
HFA, we should take into account this term.



Chapter 3

Atomic ground state

In this chapter, we summarize the magnetic ground state of an atom or ion, which has
an incomplete shell such as 3d, 4f, or 5f orbital outside closed shells, and examine how
properly the HF method can describe the magnetic quantities of such system. In Sec. 3.1,
we prepare an appropriate Hamiltonian for an isolated ion. In Sec. 3.2, a corresponding
HF Hamiltonian is derived. Magnetic quantities, to which we should pay attention, are
introduced in Sec. 3.3. Calculated results and discussions for the 3d, 4f, and U ions are
given in Sec. 3.4, 3.5, and 3.6, respectively. Sec. 3.7 is devoted to conclusion.

3.1 Hamiltonian

The ground state of an ion with an incomplete shell nl (n and { are the principal quantum
number and the azimuthal quantum number of the atomic orbital, respectively) may be
described by the following Hamiltonian:

H:Hee+Hkin+Hso+Hcry+Hm, (31)

where H,. is the electrostatic Coulomb interaction between the equivalent electrons in the
nl shell; Hyi, is the kinetic energy; Hyo is the spin-orbit interaction; Hery is the crystalline
field; Hy, is the infinitesimal molecular field, which is added to lift degeneracy and obtain a
magnetically polarized solution.

The one-electron state of the nl shell can be specified by the orbital magnetic quantum
number m and the spin magnetic quantum number o:

|V> - Inlm0> = Rnl(r)Ylm(gﬁs)Xm (32)

where v is the abbreviation for all of the one-electron quantum numbers; R, is the radial
wave function; Yi,, is the spherical harmonics; x is the spin function. For R.;, we would
use the ab initio HF numerical result with multiplet-averaged configuration and limit our
discussion to only the angular and spin parts. This simplification has been justified by a
number of calculations based on the same approximation. With fixing R,i, Hyn becomes
constant and we will omit it from the following discussions.

The interaction term H.. is written as follows:

1 N N
-2-22 ’U(:l:i,wj) (33)
i=1 _7:1(1_*(_]) ’

1
5 Z ()/11/2|UII/3I/4)ajlaj2a,“(1,,3, (34)

V1,V2,V3,V4

Hee

il

12
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where N in the first line is the electron number in the nl shell, and we have used the
second-quantization method in the second line. The interaction matrix element is given by

<V1V2I0|V3V4> = 60103602045m1+m2,m3+m4
X Z F(Imy, img) c*(Ima,lmz) F*(nl). (3.5)

k=0,2,4,..,21

Here, ¢* and F* are called the Gaunt coefficient and Slater integral, respectively, and their

eXpliCit forms are
ck(lm l'm/) = —/dQ Y }rk , j’l’ , (36)
) \/ 2% 1 imik(m—m)Lfi'm’,

k42
Frnt) = [ drsdry S RGP Rt 6
>

where ro (r>) denotes the smaller (larger) of ry and ro. As can be seen from Eq. (3.5),
the electron-electron interaction within an atom is in general mulfipole interaction. The
monopole part (£ = 0 term) is trivial in the case of an isolated atom because it only gives a
shift in the total energy according to the electron number and has no effect on the magnetic
quantities or wavefunction. In the interaction matrix element, the monopole part is

(nwlvlvsva)(p=0y = 80500504 0my+ma,mstmaC (my,Im3) ®(Imy, lmy) F°(nl)
= 60103502046mlm36mzm4FO(”l)

= 6V1V36V2U4F0(nl)’ . (38)

where we have used the relation ¢°(Im,Ilm’) = 6,,,,. Then the monopole part of the
interaction Hamiltonian (3.4) is

— lpo + 4+
Hee (k=0) = §F (nl)‘zy:Za,,aU,a,,:a,,

1 .
= §F0(nl) Z Ay Ny
v#uv!

- %FO(nl)N(N —1, (3.9)

here 7, is the number operator; 71, = afa,. The other multipole parts (k # 0 terms)
determine the ground state of an isolated ion.! In the case of solid, #° plays an important
role as will be discussed in the following chapters.

The spin-orbit interaction and molecular field are written as

N
Hyy = (ot le‘ - 8; = (i Z(Vlll - 8lvada)t a,, (3.10)
i=1 ViVz
N
Hn = Am)_si:=A0n Y (nls.|w)d],a,,, (3.11)
i=1 Yiva

where {,; is the coupling constant and Ap, is infinitesimal. I; and s; are the orbital and
spin angular momentum operators, respectively, of the i-th electron. The parameter values

1Tn HFA, however, a finite F® larger than an appropriate critical value, usually several electron volts, is
needed to converge calculations even for an atom. In the mean-field approximation, it is necessary to draw
a distinction between occupied and unoccupied states, and FO takes the role of it. Once F° goes beyond
the critical value, calculated results for an atom do not depend on the value of F°.
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that we encounter in (3.1) and the explicit form of the crystal field Hery will be given later
in the course of each calculation.

The exact eigenfunction of the Hamiltonian (3.1) can be obtained numerically with
the configuration-interaction (CI) method. For a given electron configuration, setting up
all the possible many-body bases, i.e., all the possible Slater determinants, we calculate
the Hamiltonian matrix in this space and diagonalize it numerically. For instance, in the
case of 3d® configuration, there are 10C3 = 120 Slater determinants as the bases and we
should construct the (120 x 120) Hamiltonian matrix to be diagonalized. The ground-state
wavefunction ¥ is given by a linear combination of these 120 bases.

3.2 HF Hamiltonian

The Hamiltonian for an isolated atom (3.1) is solvable within the CI scheme, whereas we
shall apply HFA and derive the explicit form of the mean-field Hamiltonian in accordance
with the prescription of Sec. 2.1.

The HF ground-state wavefunction is written by a single product

OHF = af of ---af 10), (3.12)

where N is the electron number in the incomplete nl shell. From the variational method,
the HF equation has been derived as Eq. (2.14) to determine the one-electron states k’s :

N

i)+ Y | [ o, @) (&) e (o)

k=1

N
3 [[etm i) ) e = ane, 61)

k=1

where h(z) is sum of the one-body Hamiltonian, namely, it corresponds t0 Heo + Hery + Hr
in the present case, but note that the sum over the electron index i (=1,...,N) has been
dropped and we would formally represent this point as follows:

h(z) = HP(2) + HY (=) + HY (). (3.14)

Since we are dealing with atomic orbitals, each one-electron state & can be represented by
a linear combination of the spin-orbit function v defined by Eq. (3.2);

dr(z) = Crvu(@). (3.15)

The matrix form of (3.15) is

(wkm-“:wkm):(¢V11~<-3¢VNI) C, (316)

where C is a unitary matrix whose size is Ni x N;. N is the degeneracy of the nl orbital,
N; = 2(21 + 1). From this relation between 3 and ¢,, we can define the following creation
and annihilation operators;

al = Z Cryal, a;= Z Crp @y, (3.17)
v v

or
af =Y Craf, a,=) Coa. (3.18)
k k
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In the HF equation (3.13), there appear summations over k. Using the relation (3.15), these
summations is rewritten as

N
>l
k=1

{l

N *
Z (Z Ckl/¢l/) (Z Ckv’¢u’)
k=1 v v’
N
= Z [Z C]:ycku'jl éiﬁbu’ (319)

vyt Lk=1

N
P HCIINEIEDY [Z ckycky} (=) (). (3.20)

vy!

In Eqgs. (3.19) and (3.20), the summation over k in the square brackets has a significant
meaning in HFA. To see this, let us consider the following expectation value:

(a'l-ll-all’> = <\IIHF|ajau’|‘I’HF>
N, Ny
= <\IIHF‘ (Z CZVG:) (Z Cklylakl) III’HF>
k=1 E=1

It

I l
Z Z Ck,,Ck/ ' F|a ar I‘IJHF> (3.21)

k=1k'=1

where we have used Eq. (3.18) in the second line. The expectation value (¥HF|a}tq,, |WHF)
becomes zero unless k = k' and £ < N. Then

N
a,) =Y Ci,Cpr. , (3.22)

Now we recognize that the quantity in the square brackets in (3.19) and (3.20) happens to
be the ground-state expectation value of a pair of operators (¢} a,,). This is called HF order
parameter. Rewriting Eq. (3.13) with making use of the HF order parameter, we get

h(®)yr(x) + zj(aj1 ayi)/v(m,m/) dz’

% [0, @) (@ u(@) — 6, (g (@)n(a)] = anta(a).  (3.23)

The insertion of (3.15) yields

h(w)ZCk,,rgb,, (&) + Z aj a, /v(w,az’) da’

vy

XY Crw [qﬁil(w Vv (2 )by () — ¢, ()4, ()0 (=)
= & E Chror by (). (3.24)

By multiplying ¢} (2) from the left side and integrating with respect to @, one can obtain
the following secular equation:

D) Crt

v
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Y (afa,) Y (wmbly'v]) — nfoli')] G

I
12944

= Y Chrur (3.25)

This equation reduces to a matrix form:

HY C, =¢.Cy, (3.26)
with
(HHF)V‘V’ = (Vlhl’/)
+ Z a) a, Y (v [v|v'v]) — (v o)y V)] (3.27)
and ) ,
Cr=%...,Crp,...). (3.28)

The matrix HF is the HF Hamiltonian matrix in the v space, whose size is Ny x N;. An
alternative form of the HF Hamiltonian can be written as follows by using the creation and
annihilation operators:

F:: j{: aj’a

vv!

x < (vih|') + Z aulaul Y (v |vlv'v)) — (v ol v)] 3 - (3-29)

1/11/1

Obviously this is a mean-field Hamiltonian, which contains only one pair of creation and
annihilation operators. Self-consistent iterative procedure to solve Eq. (3.26) is as follows:
Furnishing appropriate order parameters (a} a,.} as an initial input, one will construct the
Hamiltonian matrix in the v space, (3.27), and numerically diagonalize it. From the obtained
eigenvector C}’s, new order parameters are computed by Eq. (3.22), and with them, a new
Hamiltonian matrix is calculated for the next step. One should iterate this cycle until a
sufficient convergence is obtained for the order parameters.

The total energy given by Eq. (2.16) reduces to the following simple form with the order
parameters:

W = <§F11F|}¥|§P}IF>
= Eek— -ZZ {(kk |v|kE'Y — (kE'|v|k'k)}
k=1k'=1
= Zek — —ZZ {a} a o) L |vly'vh) — (v vlvi/)}

(3.30)

3.3 Magnetic quantities

In examining the ground state of an ion, we concentrate on the resultant spin angular
momentum § = 53 s;, the resultant orbital angular momentum I = SN U, the total
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angular momentum J = S+ L, and their squares, §2, L% and J?. Note that these momenta
and their squares are operators; for instance,

S = Z(u|s|1/)aja”, (3.31)

vu!

S = S4SI4S)= L(SpS. 4SS0+ (3.32)

where
S = Se+iSy = (vlse +isy)afa, =D (vsylv)ata, (3.33)
S. o= Sp—iSy =) (vlse —isylv)aFa, = (vls_|v)aTa,. (3.34)

We should calculate the ground-state expectation values of them such as (¥[S,|¥) or
(THF|S, |WHF) . The spin magnetic moment (#epin) and orbital magnetic moment (ge,.,)
are related to the spin and orbital angular momenta by

”spin = —QJU‘B<S>a Porp = —NB<L>o (335)

The other important magnetic quantity is the so-called spin magnetic dipole

T = é [s,- ~ 37 (Lr—;"—)] . (3.36)

With defining the following function

1
D) =[5 I —Yim (09), (3.37)

each component of T is rewritten as

T, = Zaj’a,,, WP sy — V6 Ps_ + 6 Vs, 1)

vy'

T. = Zaja@(zd ~ V6 Dy + cPs_ =6 s, v

vy!

T, = Ea;"a,,,(yl - \/g c(_21)5+ + \/g c(lz)s_ -2 c(oz)szlu'). (3.38)

vu!

The expectation value (T") gives an insight about the anisotropy of the spin magnetic field
when the atomic cloud is distorted due to the spin-orbit interaction or crystal field effect. -
If the system is in cubic symmetry, a nonzero value of (T') is driven only by the spin-orbit
interaction.

In HFA, the ground-state expectation values of those operators given above are easily
calculated if one knows corresponding one-body matrix elements in addition to the converged
HF order parameter. For instance, the expectation value of the spin angular momentum 5,
(3.31), turns out to be

(S)HF —_ (\DHFISI\IIHF)
= > (vlspMa}a,). (3-39)

vu!
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Terms in Eq. (3.32), such as S;S5_, need attention because they contain four operators;

SiyS_ = ZZ A AT |y2)a,,1ay/a,,2a,,,

l/1U i!gll
Z Z(V1|S+|V{><V2|S—|V§>
viv] vavl
Ny N N N

* Z Z Z Z C;:llek(lU{C;2y2Ckl2Vé az—lak;a;’zak,27 (3.40)

ki=1 k’1:1 ko—=1 ké:l

where the relation (3.18) has been used. We should concentrate on G = (az.'lak, a};ak,)HF.
1 2

Since the HF ground-state wavefunction is a single product in terms of {k} (k = 1,... N),
nonvanishing value of (G is restricted to the following k-combinations:

(i) ICl = ]L‘i and kz = ,I{,"Q

(ii) k’l = k’lg and kg = k'g

Then the set of operators comes to be the number operators 7. In the case (i), G reduces
to :

G = (ﬁklﬁk2>HF

_ { 1  if both k; and ks belong to occupied states

0  otherwise. (341)

For the expectation value of (3.40), the term corresponding to (i) is

N N
(SeSTF | = 30 Sl velso 1) 3 Chy Cront S ClaryCrany

viv] vavy, k=1 ko=1

Il

> (nlselvidada) | | Do (vals- (el a,)

i !
vivy Yok,

= (S4)HF (S)EF. (3.42)
In (ii), using the commutation relation, G becomes

G = (A, (1—7ag)""
{ 1 if &; is being occupied and k2 unoccupied (3.43)

0  otherwise,

where note that a case k; = ki = ke = k), is not considered here because it can be included
in (i). A schematic diagram for the process (ii) is depicted in Fig. 3.1. The correspondlng
term in the expectation value of §,5_ is

N N,
(S48 )Ty = D02 lselidwals-lh) D Y ChiuyCran(CianyCrun
Vv vavl k1=1 ko=N-+1
N N;
_ zzwnsnuzxuﬂs_nua[zc;:l,,lckly;][ S Gl iCin
vivy vav) k=1 1 Lk;=N+1

= ZZ(W!SH’/U(WIS—M)

! i
vy vav)
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Figure 3.1: One of the processes that appear in the calculation of the HF ground-state
expectation value of Eq. (3. 40) ay akgazr a, . The hatched area represents occupied states
in the HF ground state.

N .
Z C';:lulcku/;} I:Z Ckquckz,, Z Ckz,,zc’kz,, :l

k=1 ko=1 ka=1
= 30 D tlsr i) als ) ad ) [Suusy — (afia)]
1/11/ I/2V2
= Y (ulses- ) a,)
llll}’
= 3 Y talss ) (nls- el o)t ), (3.44)
illlll J/:zl/

where we have used the relation

ZC;;VCR:V’ = by, (345)
k

which is derived from the following relation for the complete system:
bz —a') =) di(@(e) =) ¢5(2)s, (). (3.46)
k v

Thus we obtain

<S+S—)HF = <S+>HF HF + Z V1|5+3—|V2><au1a1/'>

I/1V

- Z > wilsy ) wals_vh){ad o, ) (aF, a,). (3.47)

l/]_l/ {121/2

In the CI scheme, to calculate the expectation value of magnetic operators we need not
only (af,a,,) but also {a} a,,af a,,), and in the course of calculating these quantities we
need to pay attention to signs that originate from the commutation relation.
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3.4 3dion

We survey the ground state of ions with having a 3d orbit as an incomplete shell. First,
the free 3d ions, with the crystal field Hery being either zero or spherical, are investigated.
Numerical CI calculation shows that their ground states are described by a simple picture;
the spin-orbit interaction among 3d electrons is weak compared with the Coulomb interaction
(the Russell-Saunders case) and a perturbative treatment for the spin-orbit interaction is
justified (LS-coupling limit). In addition to the spherical case, we will discuss the 3d ions
under the crystal field with Oy, symmetry, to simulate the solid-state effect. For each case
we give results gained by the CI scheme, and they are compared with those by HFA. It is
shown that HFA reproduces the atomic Hund rules.

3.4.1 Freeion — the Russell-Saunders case and LS-coupling scheme

First of all, we deal with the 3d ions with spherical symmetry. The Hamiltonian with-
out the spin-orbit interaction commutes with all components of L, S, and J. Hence this
Hamiltonian has no matrix elements between the states labeled by two different sets of
eigenvalues of 52, L? J?, S,, L,, and J,. For the sake of labeling states, we introduce
quantum numbers S, L, J, Mg, My, and M according to the following scheme

S =S(5+1) S = Ms
I =L(L+1) I =M (3.48)
JY=JJ+1) I =M,

where the prime stands for manipulation to take precise value of these observables.

The electrostatic interaction produces the energy difference among terms, which are
characterized by S and L, the LS multiplets, but leaves these terms degenerate with regard
to [J and M], or, [J, Mg, and Mz]. The ground-state S and L are given by empirical Hund’s
rules; S takes the maximum value (Hund’s 1st rule); among the maximum-S multiplets the
term of largest L is lowest in energy (Hund’s 2nd rule). The maximum S is well understood
as a consequence of the exchange interaction to align the spin of each single electron. The
maximum £ is on the basis of the multipole Coulomb interaction represented by the Gaunt
coeflicient (See Eq. (3.5)).

For a given LS multiplet, the total angular momentum J can take the following value
from the principle of coupling of two angular momenta:

J=|L-8), |L-8]+1,---,L+8S. (3.49)

The degeneracy among J’s is lifted by the spin-orbit coupling. We shall treat it by a
perturbative manner. In the Russell-Saunders case the energy interval between different
LS multiplets is large compared with the spin-orbit interaction, and we can ignore its off-
diagonal matrix elements connecting different LS multiplets. Then an effective Hamiltonian
in a specific (L, .5) space can be written in the form

(HSO)LSEHLSZ/\L-S. (350)

For the Hund-rule LS multiplet, the coupling constant A becormes

Cut/N if N < N;/2
A= ~Cui/(Ni = N) N > N/2 (3.51)
0 otherwise,

here N; = 2(20 + 1). The Hamiltonian (3.50) commutes with J. Even if we go back to
the original Hamiltonian (3.10), it also commutes with J. This permits the levels to be
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Figure 3.2: Vector-model analysis of the component of L + 28 in the direction of J, under
the LS-coupling limit.

labeled by J. It should be noted that § and L do not commute with His and that these
are no longer good quantum numbers. However, in the weak spin-orbit coupling limit, it is
permissible to label states by a set of quantum numbers SLJM. The Hamiltonian (3.50)
reduces to '

Hrs = AL. S
A
_ Marsiorios

= %[JQ_—LQ—SZ’],

and its matrix element within a given SLJ term is given by
(SLIM|Hys|SLIM"y = % U+ D)= L(L+1) ~ S(S + D]oaar.  (352)

For the individual levels separated by Hps, we use the standard notation 2+1L;  The
sign of the coupling constant A determines the lowest J term in energy. In the Hund-rule
LS multiplet the coupling constant A given by Eq. (3.51) is positive (negative) for the less
(more) than half filling so that the ground-state J-value is |L =8| (L+85).

Finally the degeneracy about M is lifted by the infinitesimal molecular field (3.11); either
M = —J or M = J term will be lowest in energy.

Under Hys, the angular momenta S and L interact with each other; they offers a twisting
force to one another. In consequence, they show precession around J and components of
them perpendicular to J vanish if we take the time average. Hence the magnetic moments,
Mspin = —2p5(S}), phorp, = —pg (L), and p = Hspin + o, are proportional to J and can be
written by '

(’1')'7 - (“spin + uorb)-] = ~4gy ip J
(Bspin)s = —g5pp J (3.53)
(”’orb)J = = g.‘; HB J,

where the proportional constants are given by

_ 3, S(S+L)=L(L+1)
g5 = 3+ 27(T+1)
95 = 14 HSH-LULAD (3.54)

J(J¥1

o = 1_ S(S+)-L{L+1)
957 = 3 :

37 (I+1)

These factors are easily obtained by making the scalar product between Eq. (3.53) and J
(See Fig. 3.2). The factor g, is known as the Landé g-factor. :
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Table 3.1: Parameter values used in the calculation for the 3d ions. F¥ and (34 were obtained
by Cowan’s ab initio atomic HF program with relativistic correction.[23] This calculation
was done for the average of the 3dV configuration with all lower shells filled. The Slater
integrals were reduced to 80% of their ab initio values, to account for intra-atomic Cl. (The
listed ones have already been renormalized.) All values are in unit of V.
34" I? G Am
d* (T*F)y — — — 0.019 1.0x107*
d? (V3h) 8.1018 5.0825 0.027 1.0x10~*
d? (Cr3*) 86210 5.4029 0.035 1.0x10~*
d* (Cr®*)  7.7193 47997 0.030 5.0 x 10~
d® (Mn?*) . 82523  5.1292 0.040 1.0 x 10-*
d®  (Fe**) 87720 54507 0.052 1.0 x 10~
d’ (Co®*) 92837 57655 0.066 1.0 x 10-*
(
(

d®  (Ni®*) 97868 6.0770 0.083 1.0 x 10~*
d®  (Cu®t) 10,2840 6.3838 0.102 1.0 x 10-4

Table 3.2: Calculated results for the 3d ions with spherical symmetry, based on the CI
method. The second column ” Term”, such as 2D3/2, is representing the ground-state mul-
tiplet deduced from the LS-coupling scheme. S, L, and J are evaluated by calculating (52)
etc. and solving equations such as S(S 4 1) = (8%). The magnetic moments U, fspin, and
Horb are in unit of pp. R, is the ratio of Horb 10 fspin; £y = forn/ phepin. One can see that
these results fit in well with those resolved by the LS-coupling scheme.

3d” Term S L J [ Mspin Lorb R, (J:) (T;)
dt (Ti3+) 2D3/2 1/2 2 3/2 —120 060 -—1.80 —3.00 3/2 —060
d? (V'H') Sy 1 3 2 —133 134 -267 —=32.00 2 -0.26
F(C™) TRy, 3/2 3 3/2 060 181 940 —133 3/2 019
d* (Cr**) 5D, 2 2 0 0.00 0.00 0.00 — 0 0.00
& (Mo™) ©5, 5/2 0 5/2 500 500 000 000 <52 000
& (FF) D, 2 2 4 600 400 200 050 =i 0o
d’ (C02+) 4F9/2 3/2 3 9/2 6.00 .3.00 3.00 1.00 -9/2 0.10
a8 (Ni2+) 3F, 1 3 4 500 2.00 3.00 1.50 -4 —0.17
®(Cw"™) "Ds; 1/2 2 5/2 300 100 200 200 —5/2 039

Calculated results and discussions — Numerical calculations based on the CI scheme
show that the LS-coupling scheme well holds in the 3d jons with spherical symmetry. Used
parameters are given in Table 3.1. Figures 3.3-3.8 show comparison between the CI and
HF results as a function of the occupation number of the 3d orbital. Numerical values of
calculated quantities are listed in Table 3.2 for the CI method and in Table 3.3 for the HF
method. In all calculations the quantization axis was taken as » axis.

Figure 3.3 demonstrates the energy difference between the HF total energy and the true
eigenvalue of the ground state gained by the CI method. It can be seen that the HF result
agrees well with the CI one for the more than half filling case. On the other hand, significant
deviations are observed in the less than half filling (N=2, 3, and 4). Figure 3.4 shows the
calculated S and L. They are evaluated by calculating (S?) etc. and solving equations such
as S(S+1) = (8?). Excellent agreements are seen between the CI and HF results, showing
that the HF method can reproduce the Hund-rule S and . The calculated J displayed in
Fig. 3.5 shows that HFA overestimates J in the less than halffilling case. Figure 3.6 gives the
total magnetic moment y = Hspin + forb and the individual moments’ ratio Ry = porb/ tspin
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Table 3.3: Results of the HF calculation for the free 3d ions. The second column AFE is the
HF total energy in unit of meV, measured from the ground-state energy gained by the CI
method. The other columns are the same as Table 3.2.

37 AE § L J T
T (Ti5F) 0 1/2 2 3/2 -1.20 060 —180 —300 3/2 =060
(V) 126 1 3 233 —100 199 —3.00 —150 7 0.8
&(Cr°f) 175 3/2 3 213 —0.00 300 -3.00 —100 3/2 013
dT(Cr™*) 156 2 2 154 3.00 400 —2.00 —050 0 030
d°(Mn™) 0 5/2 0 5/2 500 500 000 000 =52 0.00
@ (Fe’™) 01 2 2 4 600 400 200 050 4 097
d7 (Co™) 0 3/2 3 9/2 600 299 300 100 —9/2 010
& (Ni?T) 0 1 3 4 500 200 300 150 -4 =017
4° (Cu?™) 0 1/2 2 5/2 300 100 200 200 =52 =029
20
15¢
5
E 104
&
5L

"123456789
3N

Figure 3.3: The HF total energy of the free 3d lons, measured from the ground-state eigen-
value obtained by the CI method.

Similar tendency of these quantities, as a function of the number of 3d electron, can be seen
between the CI and HF results, although noticeable disagreement appears in the less than
half filling. The individual moments themselves, fispin and porp, are given in Fig. 3.7. {J,)
and (T.) are in Fig. 3.8. (J,) in HFA is completely identical with that of the CI method.
Asfor (T}, deviation is small. However, pgpin and porp in HFA show serious deviation from
those of CI in the filling N = 2, 3, and 4. '

'To see the reason why some of the HF results deviate from CIs in the less than half filling
case, we demonstrate the way of electron occupation into the me basis in Fig. 3.9. First,
in more than half filling case (N > 5) we can see that the HF results are wholly or almost
the same as those by CI; the down-spin states are fully occupied, and the up-spin states
come to be occupied from the smallest m basis as we increase the electron number. Since
the LS-coupling constant A, defined in Eqs. (3.50) and (3.51), is negative for N > 5, S and
L are coupled in a parallel way so as to realize the maximum J. This leads to a stretched
state where (S;) and (L.) take minimum values, — S and — I, respectively, which are
obtained by the way of occupation demonstrated in the lower panel of Fig. 3.9; one-electron
states specified by me come to be occupied one by one from the down spin state and further
from the smallest m state. Such a stretched state is represented by a single determinant,
which is achievable by HFA. This fact results in the excellent agreement between the CI
and HF results. Secondly, let us examine the less than half filling case (N = 2, 3, and 4).
In the CI scheme the electrons are distributed not only in the down-spin states but also
in the up-spin states, to realize the minimum J resulting from the positive value of A, In
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[--SICh
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Figure 3.4: Calculated S and L of the free 3d ions. Solid and broken lines correspond to
the results by the CI and HF method, respectively, although they are overlapping so that
we can not tell one from another.
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Figure 3.5: Calculated J of the free 3d ions.

HFA, however, the stretched states still hold as in the case of the more than half filling;
the electron population is restricted to the down-spin states. The Hund-rule 1S multiplets,
deduced by H.. alone, degenerate by (25+1)(2L+1)-fold. Among them, single-determinant
states, which are accessible by HFA, are limited to only a few states: [IMs| =S, |M¢| = L]
states, namely, the stretched states. In the Russell-Saunders case the Coulomb interaction
is large compared with the spin-orbit interaction. Thus the HF procedure selects one of the
stretched states as the lowest state in energy, even if it loses some energy from the spin-orbit
interaction.

In summary, when the Coulomb interaction is so large compared with other one-body
interactions, HFA is not a good approximation of the electronic state of the free 3d ions
with less than half filling. In the real crystal, however, a large crystal field should act on
the 3d electrons and moreover the 3d orbital should hybridize with orbitals of surrounding
atoms. Hence it is expected that, in the real crystal, the description by HFA will be closer
to the true one. In the next section, we will make a close study of this point by introducing
a crystal field Hamiltonian with O, symmetry.
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free 3d ions. Solid line is by the CI method, and broken line by HFA.
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Figure 3.9: The way of electron occupation in the me basis, for the free 3d ions. In each
configuration the upper panel represents the result by the CI method, and lower by the HF
method; the shaded or hatched area shows the probability of electron occupation of each

mo state.
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3.4.2 3d ion under O, crystal field

In ionic crystals, 3d ions are often surrounded octahedrally by negatively charged ions
such as O?~ (See Fig. 3.10). In such cases, 3d electrons feel a crystal field with O}, sym-
metry, and the five-fold degenerate orbital states of a single 3d electron split into three-fold
Tyy state (¢oy, ¢y., and ¢,,) and two-fold E, state (dy2_,2 and ¢3,2_,2). Functions in
parentheses, such as ¢, are called the cubic harmonics which is given by an appropriate
linear combination of the spherical harmonics Ys,,. The crystal-field splitting of one-electron
state, e(£y) —e(T2,), is denoted by 10Dq. The explicit form of H_py is given by the following
matrix whose basis is the orbital magnetic quantum number m (m=-2,..., 2y

Dg 0 0 0  5Dg
0 —4Dg 0 0 0

Hery = 0 0 6Dg 0 0 |. (3.55)
0 0 0 —4Dg 0
5D¢g 0 0 0  Dyg

Typical value of 10D¢q is about 1 eV for insulating oxides. This order of energy 1s
smaller than that of the multipole interaction, but fairly larger than that of the spin-orbit
interaction. We represent this situation by the following conceptual relation: [ Heel >
|Hery| > |Hgo| (Note that this relation has no strict meaning). When this condition holds,
the ground state of the 3d ion is approximately given by a simple picture. To begin with,
He, realizes the Hund-rule S and Z as in the case of the free ions. Then Hry reduces the
orbital state L to several irreducible representations of the Op, point group. The term energy
of each irreducible representation can be gained by the method of equivalent operator.[24]
For these procedures, a considerable knowledge of group theory is needed. We just show
the outcomes of these processes. Fig. 3.11 manifests the way of splitting of each L, and in
the following, the eigenvalues and eigenfunctions of the crystal field Hamiltonian effective
for the Hund-rule LS multiplet are given:

zZ
. E,
y 3‘d‘<—: -
x ——
T,
2
(a)

(b)

Figure 3.10: (a) Octahedral coordination. (b) Splitting of the 3d one-electron states due to
the O, crystal field.

~

344, 349 2
(L=2)

E

Figure 3.11: Splitting of the Hund-rule L state due to the O, crystal field.
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L =2 '
¢xy = %(Y}Q - Y22)
e=—X0c Ty byz = ﬁ(yz—l + Y1)
AR 550
1
pl_y2 = 53 Y—z +Y22)
e=183c E { Gatoy ﬁ( >
5P ¢ ¢3,2_r2 = Yoo
L =3
¢ = 188¢ Tiu
bo(507—3r2) = —% [V3 (Ya-1 — ¥Ya) — V5 (Y33 — Yas)]
by(sy2—arzy = =5 [V3 (Va1 + Yar) + V5 (V-3 + Ysa)]‘
‘752(522—31'2) = YBO
€= —68c Ty 357
bu(y2—22) = ~% [VB (Yay — Ya1) + V3 (Y33 — Ya3)] (3.57)
by(s2-22) = 3 [V3 (Va1 + Ya1) — V3 (Y3 + Ys3)]
¢z(32—y2) = %(YZS—Q + YBZ)
€= —-368c Asy

Poys = %(Ysa - Y32)

Note that the used spherical harmonics in these expressions is the eigenfunction of the
total orbital angular momentum L and is not necessarily corresponding to the genuine
wavefunction of the 3d" electron system, which is given by a linear combination of Slater
determinants. The factors ¢ and 8 are defined as follows:

= %l(mnq) (3.58)

2 {75(25 — 5) + 15} (5 — 15)
63 (L—D(2L—-1)(2L-3)

Here the upper sign refers to N < 5, and lower, N > 5.

Finally, Hyo is taken into account by a perturbative treatment in the space of the Hund-
rule spin S and the split orbital states. As shown in Fig. 3.11, the lowest orbital state
in 3¢° and 3d® configurations has no degeneracy. Its eigenstate, |0), is given by a real
function because Hee and Hery, both of which have an origin in electrostatic interaction,
are represented by real functions. On the other hand, L is a pure imaginary operator and
the expectation value (0|L|0) is also pure imaginary. This contradict the fact that L is a
Hermitian operator and its diagonal element should be real. Then (0|L|0)=0, i.e., quenching
of the orbital moment occurs when the crystal-field splitting state of the lowest energy has
no degeneracy. This quenched moment will be partially recovered by Hg, perturbation
higher than or equal to the second order. When T} or T is lowest in energy, both of which
degenerate by three-fold, the first order perturbation of Hy, is enough to induce the orbital
moment, and this can be done by the method of pseudo orbital. See Refs. [25, 26] for details.

In the following, calculated results, obtained by a numerical calculation but not by the
perturbative treatment described above, are summarized. Used parameters are 10Dq =
1.5 eV and A, = 0.02 eV. F* and (34 are the same as those in Table 3.1. Figure 3.12
shows the way of electron population into the cubic basis. Compared with the free ion
case, the agreement between the Cl and HF results is fairly good for all electron filling.
It should be noted that in the 3d* and 3d° configurations the displayed state degencrates

f=+ (3.59)
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Table 3.4: Magnetic quantities of 3d ions under the crystal field with Oy symmetry, calcu-
lated by the CI method. 10Dg = 1.5 eV and Ay = 0.02 eV. The second column ”'Term”,
such as ?Th,, is deduced by Hund’s rules and the point group theory. S, L, and J are
evaluated by solving equations such as S(S+ 1) = (8?). Magnetic moments p, fspin, and

Korb are in unit of pp. R, = porb/ Hspin-

3qN Term S L J H Hspin Horb Ru <Jz ) (TZ>

A (I5F) 713, 1/2 2 193 —000 1.00 —1.00 —100 050 0.14

d? (V1) 3T 1 293 278 056 2.00 -145 -0.73 045 —0.13

F(CT) %A, 3/2 3 344 291 300 —009 003 —14l 0
& (CrF) SE, 2 2 295 392 399 008 -0.02 -192 030
&5 (Mn?") 55, 5/2 0  5/2 500 500 000 000 —5/2  0.00
& (F?T) ST, 2 2 374 453 367 086 023 —260 —0.02
d(Co™) %1, 3/2 295 42 343 237 105 044 -224 001
& (NF) %4,, 1 3 339 221 199 022 011 —131 —0.00
£ (Cu?ty ?E, 1/2 3 222 125 100 026 026 —0.76 —0.26

Table 3.5: Same as Table 3.4, but calculated by HFA. The second column AF is the total
energy in unit of meV, measured from the ground-state eigenvalue by the CI method.

3dN AF S L J # Hspin Horb Ru (Jz> (Tz )
d' (Ti®+) 0 1/2 2 193 -0.00 1.00 -1.00 -1.00 0.50 0.14
d? (V°1) 86.8 1 2.83 2.56 0.15 200 -—-1.86 —0.92 085 -—0.16
& (CrH) 02 3/2 3 345 201 300 —0.09 -003 —14l 0
d* (Cr*t) 02 2 2 2.95 392 400 -0.08 =0.02 -192 0.30
d®> (Mn**) 0 5/2 001 5/2 5.00 5.00 0.00 0.00 —5/2 0.00

d® (Fet) 78 2 2 354 5.00 4.00 1.00 026 —3.00  —0.15

d" (Co*t) 1113 3/2 286 4.09 5.00 2.99 2.01 067 -3.51 0.09
d® (Ni?T) 10 1 3 3.36 221 2.00 0.22 011 -121 -—-0.00

d® (Cu®t) 0 1/2 2 222 1.25 1.00 0.26 026 -0.76 —-0.26

With (¢py@ys¢s2)>(¢n2_y2)! state. This is related to the recent topic of the orbital ordering
in manganites. Figures 3.13-3.17, which display various calculated quantities, also indicate
that the ground-state properties of the 3d ions are well described by HFA. Numerical values
of the calculated quantities are listed in Tables 3.4 and 3.5.

In summary we have introduced the Oy crystal field as an additional one-body term to
examine the solid-state effect. The agreement between the CI and HF results has been im-
proved compared with the free ion case. This suggests that HFA increases its accuracy with
reinforcement of the one-body term. In Sec. 3.6 we would confirm this point by exploring
the ground state of free uranium ion, where the one-body term is only Hs, but the condi-
tion |Hee| 3> |Hoo| is no longer satisfied. As for the real crystal, there exists hybridization
(electron hopping) between orbitals of different atoms. This contributes considerably to the
one-body term, especially in metals, prompting an expectation that HFA becomes a good
approximation in crystals. In metallic substances, however, there is an another problem
concerned about F°, which has nothing to do with the present ionic case. Discussion about
it will be given in the next chapter.



30

C1

32
¥yt

HF

327
oyt

C1

37-¢

2]

zZx

HF

32-r

2]

zX

xy

yz

xy—

up down

zx
24
xy

up down

zx

¥z
xy

up down

3d°

327

2|

zx

xy

3z’-/

27|

zZx

xy

327
2y

zx
xy
up down
32-F
£y

Zx

xy

3d°

324

yz

up  down

32.7

zx

377

zx

27|

0z
P
xy

|

xy

32-r
oy

x

327

27|

zx

xy

yz

xy

yz

Chapter 3. Atomic ground state

up down

37-F

324

2]

x

¥z

32-F

|

x

xy

Xy i

»

up down

up down

Figure 3.12: The way of electron occupation in the cubic basis, for the 3d ions in the O
crystal field (10D¢ = 1.5 eV). In each configuration the upper panel represents the result
by the CI method, and lower by the HF method; the shaded or hatched area shows the

probability of electron occupation of each state.
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Figure 3.13: Calculated S and L of the 3d ions in the O, crystal field (10Dg = 1.5 V).
Solid and broken lines correspond to the results by the CI and HF method, respectively.
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Figure 3.14: Calculated J of the 3d ions in the Oj crystal field (10Dg = 1.5 eV).
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Figure 3.15: Calculated total magnetic moment p = ptopin -+ pors (thick line with circle) and
R, = plorb/phspin (thin line with triangle) of the 3d ions in the Oy crystal field (10Dq =

1.5 V). Solid line is by the CI method, and broken line by HFA.
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Figure 3.16: Calculated pspin (thick line with circle) and porp, (thin line with triangle) of the

3d ions in the Oy crystal field (10Dg = 1.5 V). Solid line is by the CI method, and broken
line by HFA.
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Figure 3.17: Calculated (J,) (thick line with circle) and {(7}) (thin line with triangle) of the

3d ions in the Oy crystal field (10D¢ = 1.5 €V). Solid line is by the CI method, and broken
line by HFA. ;
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Figure 3.18: The HF total energy of the 3d ions in the O crystal field (10Dg = 1.5 eV),
measured from the ground-state eigenvalue obtained by the CI method.



35. 4f ion 33

3.5 4f ion

We examine the ground state of 4f ions. In the spherical symmetry, the situation is
completely the same as that of the 3d ions. The condition |Hee| > |Hso| holds, and the
ground state is described by Hund’s rules and the LS-coupling scheme. Thus determined
ionic 4f states are usually valid even in solids in most cases. Even if we can not ignore
the effect of the crystal field, it is considered to be very small compared with the spin-orbit
interaction; the condition |Hee) > |Hsol > |Hcry[ is satisfied in most cases. The effect of a
weak Op crystal field is examined.

In either spherical or Oy symunetry, the degree of appropriateness of HFA is investigated.

3.5.1 Spherical symmetry

The 4f ions are being in the Russell-Saunders case as in the case of the 3d ions. Their
ground state is represented by the quantum numbers SL deduced from Hund’s rules, and
J from the LS coupling. HFA gives precise results in more than half filling but fails in less
than half filling.

Figures 3.19-3.24 show the calculated results based on the CI and HF method. Numerical
values of the calculated quantities are given in Tables 3.7 and 3.8, and used parameters are
listed in Table 3.6.

140

120
100}

AE [meV]

910111213

Figure 3.19: The HF total energy of the free 4f ions, measured from that obtained by the
CI method.
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Figure 3.20: Calculated S and L of the free 4f ions. Solid and broken lines correspond to
the results by the CI and HF method, respectively, although they are overlappmg so that
we can not tell one from another.
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Table 3.6: Parameter values used in the calculation for the 4f ions. F* and (s were obtained
by Cowan’s ab initio atomic HF program with relativistic correction.[23] This calculation
was done for the average of the 4f" configuration with all lower shells filled. The Slater
integrals were reduced to 80% of their ab initio values, to account for intra-atomic CI. (The
listed ones have already been renormalized.)} All values are in unit of eV,

ifn F? Fr Fo Caf Am
T (Ce) — — T 0.087 10x10°°7
F2 (Pr3*) 97808 6.1355 4.3538 0.102 1.0x 107*
F2 0 (Nd3) 101789 6.3869 4.5496 0.119 1.0x 107*
F4 (Pm®F) 105574 6.6243 47173 0136 1.0x 107*
£5  (Sm®+) 109187 6.8518 4.9171 0.155 1.0x 107*
F5  (Eu®+) 112668 7.0703 5.0468 0.175 2.0x 107°
F7 0 (Gd3) 116040 7.2816 5.2079 0.197 1.0x107*
£8  (Tb%*) 11.9324 74875 5.3661 0221 1.0x107*
F9 (Dy3*) 122530 7.6880 5.4422 0.246 1.0 x 107*
F10 (Ho®t) 12.5664 7.8832 5.5965 0.273 1.0 x 107*
1 (Er%+) 128736 8.0744 57452 0.302 1.0 x 107?
712 (Tmd+) 13.1761 8.2633 5.8871 0.333 1.0x 107*
F13 (YbP+) 134745 8.4480 5.9922 0.366 1.0x 107!

Table 3.7: Calculated results for the free 4f ions, based on the CI method. The column
»Term”, such as 2 Fy /2, is the ground-state multiplet deduced by the Hund rules and LS-

coupling scheme. S, L, and J are evaluated by solving equations such as S(S+1) = (87).
The magnetic moments g, fspin, and florp are in unit of pg. R, = Horb/ Hspin. It is seen

that the LS-coupling scheme holds well as in the case of the free 3d ions.

4f N Term S L J H Hspin Horb Ry (J2) <Tz )
1 {Ce3h) 2F5/2 1/2 3 5/2  -214 071 -286 —4.00 5/2 —0.5b7
F? (Pr3+) SH, 0.98 497 4 —3.23 154 477 -3.10 4  -0.67
2 (Nd3) 419/2 o147 597 9/2 330 240 570 -2.38 9/2 -0.39
f (Pm3+) 51, 1.97 597 4 -2.43 315 —=hbHT7T -—-1.77 4 0.03
f° (Sm3+) 6H5/2 246 495 5/2 075 350 —-426 -—-1121 5/2 0.39
Vi (Eu3+) “Fa 292 292 0 0 0 0 — 0 0
7 (Gd*) 85'7/2 347 007 7/2 6.97 6.93 0.03 0.005 -7/2 0.01
& (Tb3+) “Fe 295 3.07 6 8.94 5.89 3.06 0.52 -6 0.24
f° (Dy3+) 6H15/2 243 5.09 15/2 9.92 483 5.08 1.05 —15/2 0.13
1% (Ho'T) 51 1.93 6.09 8 992 3.83 6.08 1.59 -8 —-0.14
1 (Er3+) 4115/2 1.48 6.04 15/2 897 2.93 6.03 2.06 -15/2 —0.31
2 (Tw™t) SHs 0.99 5.01 6 6.99 1.98 5.01 2.53 -6 . —0.41
13 (Yb3+) 2F7/2 1/2 3 7/2 4 1 3 3 -7/2 -0.33
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Figure 3.21: Calculated J of the free 4f ions. Solid line is by the CI method, and broken
line by HFA.
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Figure 3.22: Calculated total magnetic moment g = pigpin + plorb (thick line with circle) and

Ry.= porb/ftspin (thin line with triangle) in the free 4f ions. Solid line is by the CI method,
and broken-line by HFA.
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Figure 3.23: Calculated i, (thick line with circle) and pon, (thin line with triangle) of
the free 4f ions. Solid line is by the CI method, and broken line by HFA.
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Figure 3.24: Calculated (J,) (thick line with circle) and (T}) (thin line with triangle) of the
free 4f ions. Solid line is by the CI method, and broken line by HFA.

Table 3.8: Calculated results for the free 4f ions, based on HFA. The second column AF is
the deviation of the HF total energy from the CI ground-state energy, in unit of meV. The
other columns are the same as Table 3.7.

I AFE S L J H Hspin Horb R, (J.) (Tz>
fr (C63+) 0 1/2 3 5/2 —2.14 071 -2.86 —4.00 5/2 —0.57
2 (Pr=*) 216 096 494 406 -310 180 —490 -2.72 4 —-0.63
3 (Nd3+) 459 147 596 468 -—-3.06 289 ~5.95 —2.06 9/2 -—-0.34
72 (Pm3+) 673 198 597 434 -2.03 393 -597 -152 4 0.02
f° (Sm3+) 87.1 246 496 3.11 -0.06 490 —495 -—1.01 5/2 0.33
Fo (EU3+) 1284 294 295 182 293 586 =293 -0.50 0 047
fr (Gd3+) 0.3 347 0.07 3.50 6.97 . 6.93 0.03 0.005 -7/2 0.01
3 (Tb"“") 49 295 3.06 6.00 8.95 5.89 3.05 0.52 —6 0.24
F& (Dy3+) 6.5 244 5.09 750 9.92 485 5.08 105 —15/2 0.13
FIo (H03+) 05 193 6.09 8.00 9.92 3.83 6.08 1.59 -8 —=0.14
F (EI"H—) 0.0 148 6.04 7.0 897 293 6.03 206 —-15/2 —-0.31
2 (Tm3+) 0 099 5.01 6 6.99  1.98 5.01 2.53 -6 —-041
J (Yb3+) 0 1/2 3 7/2 4 1 3 3 ~-7/2 -0.33
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Figure 3.25: Electron population in the mo basis, for the 4f ions with spherical symmetry.
In each configuration the upper panel represents the result by the CI method, and lower by
the HF method. The shaded or hatched area shows the probability of electron occupation
of each mo state.
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3.5.2 4f ions in O, symmetry — Weak crystal field

We consider the effect of a small crystal field with Oy symmetry on the 4f ions. Fig-
ure 3.26 demonstrates the assumed crystal field, where the splitting energy is represented
by only one parameter B for simplicity (‘This corresponds to an approximation that the
sixth-order of r in the crystal field is ignored). The explicit form of the assumed Hery
is given by the following matrix whose basis is the orbital magnetic quantum number m
(m=-3,...,3)n

3 0 0 0 15 0 0
0 -7 0 0 0 5 0
B 0 0 1 0 0 0 15
Hcry:§ 0 0 0 6 0 0 0 (3.60)
V15 0 0 0 1 0 0
0 5 0 06 0 -7 0
0 0 V150 0 0 3

For the numerical calculations we take B = 2.0 x 1072 eV and A, = 1.0 x 10~% ¢V. The
other parameters are the same as in Table 3.6. Then the condition |Hee| > |Hso| > |Heryl
is satisfied and we can simulate a realistic situation of the 4f ions in solid. The calculated
results are displayed in Figs. 3.27-3.33, and listed in Tables 3.9 and 3.10. One can see that
the HF results for the magnetic moments pgin and jiopp considerably deviate from those by
the CI method, for all configuration except N = 1, 7, and 13. The crystal field applied now
is not sufficiently large for HFA to be a good approximation. Since the present parameter
set is a realistic one, it can be said that HFA is not suited for describe electronic structure
of crystals which contain rare-earth atoms.

T

4f

A, |6

\

Figure 3.26: Oy, crystal field splitting of the 4 f one-electron orbital state.
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Table 3.9: Magnetic quantities of 4f ions under the crystal field with O, symmetry, cal-
culated by the CI method. See text for the explicit form of Hey. B = 0.002 eV and
Am = 1.0 x 107% eV. Conceptually speaking, the present parameter set corresponds to
|Hee| > |Hso| > [Heryl. The column ”Term” represents the free-ion’s ground-state multi-
plet. S, L, and J are evaluated by solving equations such as S(S+1) = (§?). The magnetic
moments g, pspin, and o, are in unit of pg. R, = porh/ fhspin.

4fN Term S L J H Hspin Horb Ru (Jz> (Tz >

f1(Ce’) *F5/0 1/2 3 5/2  —0.71 026 -097 -3.71 0.864 —0.19

f? (Pr3%) SHy 098 4.97 4 —~0.08 004 -0.12 -3.04 0.10 —-0.02

NS %L, 147 597 9/2 —147 107 —253 -238  2.00 —0.17

APty L 1.97 597 4 —1.53 199 -353 -1.77 2.53 0.02

f5(Sm®y ®H,,, 246 495 5/2 —023 137 -161 —1.17 092 014

f° (Eu®t) "Fo 292 292 0 0.01 003 -001 -0.50 0.00 0.00

2 (Th3+) Fe 295 3.07 6 220 145 0.75 052 -—148 0.06

(
(
fT(G&F) 85, 347 007 7/2 697 693 003 0005 —7/2 001
//
(
(

FS(Oy*F)  ®Hyy, 243 509 15/2 645 315 831  1.05 —488 008

1P (Ho®*) I 193 6.09 8 8.73  2.60 4.13 159 -543 -0.09

JE(ET) Iy, 148 604 1572 562 184 378 205 —470 —0.20

S (Tm®T) 3Hg 099 5.01 6 044 0.13 0.32 252 —-0.38 —0.03

By TR, 172 3 7/2 136 034 102 3.00 —1.19 —0.11

Table 3.10: Same as Table 3.9, but calculated by HFA. AE, the energy difference between
~the HF and CI methods, is in unit of meV.

4fN AFE S L J M Hspin Horb Ru <J2> <T2>

7T (Ce) 0 1/2 3 5/2 —071 026 —097 —371 084 —0.19

f? (Pr3%) 23.2 096 494 406 -310 1.80 —-490 -2.72 4.00 -0.63

77 (Nd*H) 457 147 596 468 —3.05 289 -595 -208 450 -0.34

fP(Pm®F) 1299 197 597 4.65 —-1.04 391 -496 -—-127 3.00 0.01

F? (Sm*®T) 93.0 246 496 311 —0.05 490 -4.95  -1.01 2.50 0.33

f° (BEu”h) 1253 294 295 182 293 586 -293 -0.50 -0.00 047

77(GdF) 02 347 007 7/2 697 603 003 0005 —7/2 001

2 (Th3H) 113 295 3.06 6 895 5.89 3.05 0.52 —6.00 0.24

7 (Dy*%) 67 244 5.09 15/2 992 485 5.08 1.06 —15/2 0.13

FI7 (HoF) 06 193 6.09 8 992 3.83 6.08 159 -8.00 -0.14

7T (ErT) 59 148 6.04 15/2 897 293 603 206 —15/2 —031

S (Tm3T) 89 099 5.01 6 699 1.98 5.01 253 —6.00 -0.41

J5B(YB3) 0 1/2 3 7/2 136 0.34 1.02 3.00 -1.19 -0.11
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AE [meV]

Figure 3.27: The HF total energy of the 4f ions in the weak Oy, crystal field, measured from
the ground-state eigenvalue obtained by the CI method.
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Figure 3.28: Calculated S and L of the 4f ions in the weak O crystal field. Solid and
broken lines correspond to the results by the CI and HF method, respectively.
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Figure 3.29: Calculated J of the 4f jons in the weak O crystal field.
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Figure 3.30: Calculated total magnetic moment g = figpin + forp (thick line with circle) and
R, = porb/ phspin (thin line with triangle) of the 4f ions in the weak Oy crystal field. Solid
line is by the CI method, and broken‘line by HFA.
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Figure 3.31: Calculated pspin (thick line with circle) and porb (thin line with triangle) of

the 4f ions in the weak Oy, crystal field. Solid line is by the CI method, and broken line by
HFA.
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Figure 3.32: Calculated (J,) (thick line with circle) and (7} ) (thin line with triangle) of the

4f ions in the weak Oy crystal field. Solid line is by the CI method, and broken line by
HFA.
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Figure 3.33: The way of electron population in the cubic basis, for the 4f ions in the weak
Oy, crystal field.. In each configuration the upper panel represents the result by the CI
method, and lower by the HF method. In the figures, z, y, and z denote the bases of T},
representation; X, Y, and Z are the 75, bases; xyz is the A, basis. The shaded or hatched
area shows the probability of electron occupation of each state.
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3.6 U ion

The ground state of uranium ions, which have the 5f shell as an incomplete shell, is
investigated in this section. Radial wavefunction of the 5f orbital, Rs;(r), has a distinct
difference from the 4f one; Rs; spreads rather outside with possessing one node, in order to
satisfy the orthogonalization with the core-state’s R4p. Consequently, the Slater integrals are
smaller than those of rare-earth elements (For comparison, see Tables 3.11 and 3.6). As for
the coupling constant of the 5f spin-orbit interaction, {s¢, however, due to the large atomic
nucleus, it has a large value with the same order as that of the rare-earth elements, {4;. As
a result of these facts, the situation in the U ions do not pertain to the Russell-Saunders
case; the condition |He| > |Hso| is not gratified sufficiently. In the limit of strong spin-orbit
interaction, ground state is described by the jj-coupling scheme; individual electrons have
resultant angular momentum 7 = [+ 8 with the aid of Hg,, and then the multipole Coulomb
interaction H.. forms total angular momentum J = j; + j5 + ---. Unfortunately, neither
the LS-coupling scheme nor jj-coupling scheme explains the actinide system (this situation
is known as intermediate coupling), and an analytic theory as in the case of the 3d and 4f
lons is not feasible. We should rely on a numerical calculation to get the ground state.

On the analogy of the calculation of the 3d ions in Op, crystal field, discussed in Sec. 3.4.2,
a good result is expected for HFA since the one-body term Hy, of the U ions is rather strong.
Figure 3.34 shows the way of electron population in mo basis, calculated by the CI and HF
methods. In contrast to the case of the free 4f ions (see Fig. 3.25), HFA well describes
the extension of the population into the minority spin states. Tables 3.12 and 3.13 give
the calculated magnetic quantities. One can see that the agreement between the CI and
HF results is fairly good; the deviation is less than 15% for all quantities. In conclusion,
HFA can be a good starting point to describe the U 5f ground state as far as the magnetic
moments are concerned.

Table 3.11: Parameter values of the U ions in unit of eV. F*’s and (s are from Ref. [27],
but F*’s are scaled to 80% of their bare values, to account for the intra-atomic correlation
effect.

5FN F* F* F* Csp Am
f? (U*F) 7.611 4979 3.6556 0.261 1.0x 10~°
Y (U%+) 7.086 4598 3.363 0235 1.0x 107

Table 3.12: Calculated results for the free U ions, based on the CI method. S, L, and J are
obtained by solving equations such as S(S+ 1) = (52). The magnetic moments , figpin,
and porh are in unit of pg. Ry = flork/ thepin -
5fN S L J H Hspin Horb Ru (Jz) (Tz>
FP(U*) 093 489 4 =330 140 -470 -3.36 4 -0.81
F2(U3) 138 585 9/2 -341 218 -559 —256 9/2 —0.63
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Table 3.13: Same as Table 3.12, but calculated by the HF method. Deviations of the HF
result from the CI one are represented in parentheses by percentage. The second column
AFE is the energy difference between HF and CI, in unit of meV.

5fN AE S L J I3 Hspin Horb Ry {J:) (TZ)
Uy 151 090 485 4.01 -326 148 —-474 —3.21 4 -0.81
(=3) (=1 (0 (=1 (6) (1) (6)  (0) (0)

f3 (U3+) 52.3 135 581 458 -—-325 249 -575 -230 9/2 —0.60
» (=2) (=D (2) (=5 (14 (3) (-10) (0) (=5)

up down

5f2 (U*) 56 (U

Figure 3.34: Electron population in the mo basis, for the free U ions. In each configuration
the upper panel represents the result by the CI method, and lower by the HF method. The
shaded or hatched area shows the probability of electron occupation of each state.
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3.7 Summary

We have investigated the atomic ground state of the 3d, 4f, and U isolated ions, and
examined the validity of HFA.

The 3d and 4f ground states in spherical symmetry are given by the Hund rules and
LS-coupling scheme. In the more than half filling case, their wavefunctions are expressed
by a single Slater determinant, whereas multi-determinants are needed in the less than half
filling. Consequently, HFA, i.e., single-determinant approximation, gives precise results for
the more than half filling case but fails in the less than half filling.

Under the realistic Op, crystal field, HFA comes to be a good approximation for the 3d
states, even in the less than half filling case. This shows that HFA increases its accuracy
with sufficiently strong one-body interaction.

The U 5f states do not belong to the Russell-Saunders case. Hy, is so strong that it can
mix different LS multiplets deduced from He.. Because of this strong one-body term, HFA
gives a good result for 5f2 and 5f° configurations.

The radial wavefunction of the 3d and 5f orbitals spread rather outside so that consider-
able solid-state effects, such as hybridization effect and crystal field effect, are anticipated in
crystals. It seems reasonable to conclude that HFA is expected to provide a good description
for 3d or 5f substances.
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Tight-binding method

The tight-binding approximation for solids has been developed by Slater and Koster.[28]
Originally this method was proposed as an interpolation method since the first-principles
band structure calculation with using elaborate technique needs huge computing power;
accurate calculations were done only for some points of high symmetry in the Brillouin
zone, and they were interpolated by the tight-binding method throughout the Brillouin
zone. Owing to the great progress in computational facilities, the interpolation scheme is
no longer required, at least for the usual band structure calculation. However, the tight-
binding approach is still useful to studies where tremendous computing power is necessary,
for instance, large unit cell crystals, defects, disordered materials, surfaces, interfaces, and
phonon spectra. Furthermore it is often applied to model calculations to treat excited states
or strong electron-correlation effects, which can not be handled by LDA. Although there are
some limitations and shortcomings in LDA | it often gives good results as far as ground-state
properties or interaction strengths are concerned. Parameters relevant to models are often
extracted from converting an LDA band structure into the tight-binding scheme.

In the tight-binding method, the one-electron wavefunction in crystal is approximately
expressed by a linear combination of atomic orbitals (LCAO). As in Eq. (3.2), an atomic
orbital located at site ¢ can be expressed by

i L
bur = 9 = Bia (= i) Yo (T2 e (41)
‘ |* — p;]
where v is the combined label of n, I, m, and ¢. From these functions one can construct
linear combination

. N |
uk (r) = 7= 3 ek BtPIg (r — R, — py), (4.2)

where R, is a translational vector stretching from the zero point to the w-th unit cell; p;

is the position vector of the site 7 within a unit cell (See Fig. 4.1); N is the number of unit

cells in a large box, which is utilized for the periodic boundary condition. The function uz-",i

satisfies Bloch’s theorem
uk (r + R) = P B K (), (4.3)

where [T is any translational vector. Wave vector k has a meaning as the crystal momentum,
which is an irreducible representation in periodic system. Eigenfunction of crystal Hamilto-
nian H, is to be labeled by k and the band index n, and expressed by a linear combination

ofuk’.

\Ilk T) - Z Cr’?zy zu (44)

46
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Table 4.1: Two-center tight-binding energy integrals, expressed in terms of the Slater-Koster
integrals and the direction cosines I, m, n ({* + m® + n? = 1). The entries not given
in the table can be found by cyclically permuting the coordinates and direction cosines.
Interchanging the order of the indices has no effect if the sum of the parities of the two
orbitals 1s even, but changes the sign if the sum of the parities is odd.

E, (ss0)
E; o I(spo)
Es o (ppo) + (1 = I)(ppm)
Ez y Im(ppo) — lm(ppr)
E; . In(ppc) — In(ppn)
E; oy V3 Im(sdo)
E, g2y 13 (12 — m?)(sdo)
B 3,22 [n? — (1% + m?)](sdo)
Ee, 2y V3 Pm(pdo) + m(1 — 21%)(pdr)
By yz V3 Imn(pdo) — 2lmn(pdnr)
Ey 2o V3 Pn(pdo) + n(1 — 21?)(pdr)
Ey g2_y2 V3 2 — m?)(pdo) + I(1 — 2 + m?)(pd7)
Ey z2_y2 5v3 m(I2 — m?)(pdo) — m(1 + 12 — m?)(pdr)
E, z2_y V3 n(I? — m?)(pdo) — n(l? ~ m*)(pdr)
E, 3,22 [ 24 +m2) (pdo) ~ V3 In? (pd7r)
Ey 3,22 m[n? — (1% + m?))(pdo) — V3 mn?(pdr)
Evz7 3222 Tl['l’l - '(12 +m )](pda) + \/?_’ n(lg + mz)(pdﬂ')
Ery 2y 312m?(ddo) + (I + m® — APPm?2)(ddr) + (n? + 1?m?)(dds)
By, ys 3lm*n(ddo) + In(1 — 4m?)(dd7) + In(m? — 1)(dd$)
Euy 2z 3*mn(ddo) + mn(1l — 412)(ddr) + mn(I? — 1)(dd$)
Eoy, p2yo 2im(l? — m?)(dde) + 2lm(m? — I2)(ddr) + 3im(1? — m?®)(dds)
By, z2_ye smn(i? — m?)(ddo) — mn[l + 2(1? — m?)](ddn)
+ mn[l+ 1(1* — m?)|(dd6)
B,y p2oy2 Snl(I? — m?)(ddo) + ni[l — 2(12 — m?))(ddr)
—nl[1— £(1% — m?))(dds)
By ax2—p2 V3 Im[p? — 3(1? + m?)|(dde) — 2+/3 Imn?(ddr)
+ 34/3 Im(1 + n?)(dds)
Ey. 352-_p2 V3 mn[n? — (1% + m?)](ddo) + V3 mn(I® + m? — n?)(ddn)
- %\/5 mn(l2 + m?)(dds)
E.p, 322-r2 V3 ln[ (% + m2))(ddo) + V3 In(1? + m? — n?)(ddn)
\f ln(z2 + mz)(ddé) '

Egay2 gooye (2 —m?)? (dda) + [12 +m? — (17 — m?)?](ddn)
| fn el (12 m?)?(ddo)
Epo_y2 322 V3 (P - 2 12+ mz)](dda) +/3 n?(m? — lz)(ddﬂ')
1\f (1+n )(12 )(dd&)
Egzz__,.z, 322_p2 [ 2 %(lz “+ m* )] (ddO’) + 3n (12 +m )(ddﬂ')
+32 + m2) (ddé)
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0

Figure 4.1: Position of a unit cell and site.

Note that the surnmation over i is taken within a unit cell. It is not assured that the bases
u;,’s are orthogonal with each other, since two atomic orbitals, ¢;, and ¢;,, usually have
an overlap if they are located on different atoms (¢ # j) in a close distance. Such an overlap
is often ignored for simplicity, as in the case of this thesis, but we will continue to formulate
the tight-binding method with the more general case of non-orthogonal basis.

Matrix element of the crystal Hamiltonian H can be written as follows on the basis of

uk
Hiy,ju(k) = <uzl?/IH|quu>
= /uzkf,*('r) o uJ’-cu('r) dr
= Zexp {Zk : (Rw +Pj "Pz‘)} Eiu,ju(Rw)a (4'5)

w

where we have used the periodicity of the Hamiltonian, H(r + R.) = H(r), and introduced
a following matrix:

BiujulBu) = [ 607 (r =) H dy,(r = R~ py) i (4.6)

this matrix represents the interaction between electrons localized at position p; and R, +p;-
On the same way, let us define the following ” overlap matrix” between the bases:

Sivjulk) = (u{f,|u]kﬂ)
- f ok () b, (r) o

= > exp{ik-(Ry+p; —p))} Swvju(Bu), (4.7)
where
Siz/,ju(Rw) = /¢z‘u*(7‘ -p;) ¢jp(7‘ - R, — Pj) dr. (4~8)

Having defined these matrices, the Schrédinger equation, H\Iflf = E.(k) \IIT’f, reduces to a
secular equation

S Hivgulk) — En(k) Siju(k)]CE, =0 | (4.9)

Ju
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or

= E, (k) S(k) cie (4.10)

for each k in the Brillouin zone. This is a generalized eigenvalue problem with the overlap
matrix, and is solvable by using appropriate computer program.

The main subject in the tight-binding scheme is to determine the atomic-orbital matrices
(4.6) and (4.8). The crystal Hamiltonian H, involving a periodic potential, can be written
as the sum of a kinetic energy operator, and a potential, which is approximately a sum of
spherically symmetrical potential wells located at all the sites of the crystal; H = ~§7%V2 +
> gt Vilr — Ry —py). Hence the matrix (4.6) is a linear combination of integrals of a product
of an atomic orbital ¢;," located on the site at position p;, another atomic orbital $;, on
the site at R, + p;, and a spherical potential function located on still a third site. It is
convenient to express them through on-site integral, two-center integral, and three-center
integral.

Ew,];z Ewp,ézﬂswo
+]¢w =) Vi(r = B =py) 61,00~ R =) e

+Z, [ o -po vitr - R, Cp) biulr —Bu—py) . (411)

The first term, E;,, represents the ”on-site energy” or ”orbital energy”, and the other terms
represent the electron hopping. The primed summation in the third term means that either
the case of R, +p; =p; or R, +p, = R, + p;, namely, the on-site integral or two-center
integral, is not included in this sum.

For practical reason, this rigorous expression is simplified by ignoring the three-center
integrals, and further retaining only a few two-center integrals; for instance, those between
nearest- and next-nearest-neighbor atoms. Since the potential function is assumed to be
spherical, the two-center integrals are expressed by a small number of ” disposable” param-
eters. If we consider the vector R, + P;j — D;, stretching from one site to the other, to be
an axis like that of a diatomic molecule, we can express each of the function ¢ as a sum of
functions quantlzed with respect to the axis. From this rotation of the axis, a two-center
integral becomes a linear combination of numerous integrals. However the property of the
spherical harmonics permits only a few integrals to be non-zero — only when two atomic
functions have the same m (magnetic orbital quantum number) the integral can have a
finite value. The non-zero components are labeled by o, 7, §, and ¢, for m = 0, £1, £2,
and +3, respectively (these are called Slater-Koster integrals or SK parameters). Now one
can express the two-center integrals'in terms of a few ”disposable” SK parameters and the
direction cosines I, m, n of the vector R, + p; For convenience, the relations for all
combination of s, p, and d orbitals, taken from Ref [28] are reproduced in Table 4.1. These
relations are also applicable to the overlap integrals.

In SK Table 4.1, relations including f orbitals are not given. Qur interest in this thesis
1s the electronic structure of uranium compounds where the 5f orbital plays an important
role. In spite of using Table 4.1, we will derive the same relations numerically, based on
the rotation of the spherical harmonics. This method can be applied to all combinations of
atomic functions with any orbital angular momentum.
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Rotation of a cartesian coordinate system (x, y, z) can be specified by the Euler angles
a, 3,70 <a<2r 0<8<m0<v < 2r). These angles relate a final rotated coordinate
system (z', 3/, z’) to the initial one in the following three steps: :

1. The 2y, ¥, z1-axes are rotated about the z-axis throﬁgh an angle o counterclockwise
relative to z, y, z. (The z and z;-axes coincide.)

2. The z2, y2, z3-axes are rotated about the y;-axis through an angle 3 counterclockwise
relative to z1, 41, z1. (The y;1 and ys-axes coincide.)

3. The final rotation is through an angle vy counterclockwise about zs-axis, yielding the
x', y, 2’ system. (The zy and z’-axes coincide.)

=7

Figure 4.2: Rotation about z through angle «

Spherical harmonics viewed from the new coordinate system z’, ¥/, 2/, can be related to the
one in the original system by a unitary transformation:

Yim (0'¢") =Y Vit (85) Dy (0, B, 7), (4.12)

where the unitary matrix D is defined by

I+m
V/(EX DY (EXTgi ey
D (2, ,7) Z( )kk'(l “O+m—k)(m —m+ k)
24+m—m' =2k m’ —m+42k
Qe (cos g) (— sin g) gmim'e (4.13)

Note that this rotation matrix is a general one in the sense that it can be applied to any
angular momentum j with integral and half odd integral values (j = 0, 5,1, 2, ...). Angular
part appearing in a two-center integral can be considered as the following snnpliﬁed form:

T r— R
/Y; ) Yo (=550
= [Yim"(99) Yium.(Opep) 42 (4.14)

where one spherical harmonics is located at zero-point, and the other at position R. We
would make a new coordinated system (z’, y', 2’) or (v', ¥, ¢©') so that the z’-axis coincides
with the vector R. In the new system the azimuthal angles of two vectors » and r — R
come to be identical (See Fig. 4.3). Using Eq. (4.12), the angular integral reduces to the
one expressed by the new coordinate system
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Figilre 4.3: Polar and azimuthal angles of vectors r and » — R, in the new coordinated
system.

It

/ (ZYhm;(ﬁ’w’) D“fnlm;) (ZYIW;(WR@') D e | A

mi ml .
= Z Dmlm’Dbmzm ‘/le m} (19 ¥ )Y}zm (ﬂRSO )dQ, (415)
m 77'22
The integral will be zero unless m) = mj, because of the integral over ¢'. Then the

expression reduces to
> D DlzlmZ/YIﬁm(ﬂ’w')Yzzm( R )Y (4.16)
m

Having known this point about the angular part, the two-center integral in (4.11) can be
written as a linear combination of disposable parameters

Bugu(B) = [ 6" =p) Vil = R =) dju(r — R =) dr
_ ZD .,m(""Q) zn., vinul “(Q) Dlumm#(wQ), (4.17)
with
Q=R.+p;,—p (4.18)

inglujngl, _ ’
Vil Q) = /Rz‘nyu(r) Vi(lr = Q) Rjn,u, (Ir — Q1) rdr
®4r / Y,”;m(ﬂ'go’)YI#m(ﬂ'Q<p')dQ'. (4.19)
Here wgy represents a set of the Euler angles, which describes the rotation to make the new

coordlnate system where the z’-axis coincides with' Q. The matrices Vj,,’s correspond to
the SK integrals such as pdo.
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Tight-binding Hartree-Fock method

The tight-binding Hamiltonian described above, Hrp(k), is considered to represent well the
electron kinetic energy. In this thesis, in addition to Hrgp(k), we would separately treat
the on-site Coulomb interaction, at least for an orbital most relevant to magnetism, by
the self-consistent HF procedure. Furthermore the spin-orbit interaction should be added
for the discussion of orbital magnetism. These intra-atomic interactions are essentially the
same as those of isolated atoms discussed in Chap. 3, but a slight modification is needed for
the application to solids. We shall show it in the following, by featuring a simple example
where there is only one site in the unit cell and only a single orbital is taken into account.
Extension for a general case is straightforward,
The Hamiltonian for a one-electron state with the crystal momentum k may be expressed
by . '
H(k) = Hrp(k)+ Heo + HET, (4.20)

with

so - Z Z (.UV’Cl SI(.UI/ wu Aoy’ (421)

vy!

HE + +
Hee - Zzawyawu’ Z(awulawu{>

w ! vy}
X [{wv,wrpolwvwr]) — (wr, win jplwr], wr')]. (4.22)
Here, |wv) represents an atomic orbital ¢, localized at w-th unit cell. The on-site matrix
elements have no w-dependence. Furthermore, since we will deal with homogeneous solution,

for example, magnetically ordered state, the HF order parameter {a +.a,,) do not have w-
dependence. Then the expressions become

Hy = Z(VICl ! SIVl> Z a’zuawu’ (423)

v’

nr __
H: Z Z aUlaul

vy! II1V

X [(vnll' Vi) — (v o))y atay,. (4.24)

w

It is necessary to unify the basis of each Hamiltonian. The basis of Hrp(k) is the Bloch
orbital

k 1 .
u, (r) = — exp (ik - R,) ¢,(v — R,). 4.25
)= /5 Lewlik - R) bu(r - o) (125)
The inverse transformation yields

¢u(r —R,) = -\/}ﬁ Zexp (-ik-R,) u,’,c(r) (4.26)
k

or

1
+ (il +
oy = ﬁ Ek exp (—ik - R,) ar - (4.27)
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Using this relation, the basis of Hy, and HEF | i e., the atomic orbital basis, can be converted
into the Bloch basis:

ta

wy Pwe!

1 "y
-—Zli Zexp( —ik - R, )a } l:ﬁ%;exp(zk ~Rw)ak,,/}
= Z azyak,y, (-—%{;Zexp {—i(k—FK')- Rw})

kk'
= Z (Lzuak;y, (Skkl
kk'

=Y 6} o, (4.28)
k

Then the on-site interactions are rewritten as follows

Heo =3 (v[Cl- sl }: af ap.. (4.29)

2

HeI_‘IeF ZZ<Q”1 ”1

vu! yvy

x  [{vvi|vlv'vy) — (v jvlpir')] Z azuakw. (4.30)
k

The HF order parameter (a}a,,) is to be calculated from the eigenvectors of occupied
states. As previously described, the eigenfunction of H, labeled by %k and the band index
7, is given by a linear combination of Bloch orbitals:

k() = 30k k() (431)

v

Inversely the Bloch orbital is given by

)y =S"ck" vk (4.32)
or ‘ %
at =3 "ckaf (4.33)
Then
(afa,) = (aézaoU )
= N Z ak’u’
ki’
_ 1 N TR A
= NZZ Cnl/ Cnly.‘ (aknakln,).
kk’ nn’
(4.34)

Since we are based on the single-determinant approximation, the ground-state expectation
value of a,';n aps becomes zero unless the following conditions are satisfied.
n



54 Chapter 4. Tight-binding method

e the state kn is an occupied state (Ep,, < EF)

Thus we get
1 3 k* o~k
+ —
(au GU:> = '-]\7 Cnl/ Cnu" (435)

kne occu



Chapter 5

Antiferromagnetic structure and
orbital magnetism in CoO

Part of this chapter has been published in J. Phys. Soc. Jpn. 67, 2637 (1998) by Tatsuya
Shishidou and Takeo Jo.

Abstract

Possible magnetic structures of CoO, which is known to be the second kind of
antiferromagnet, are discussed for the cubic phase on the basis of the extended
Hubbard model including the 3d spin-orbit coupling and the intra-atomic full
3d-3d multipole interaction in the framework of the Hartree-Fock (HF) approxi-
mation. In addition to a collinear single-Q structure, a noncollinear quadruple-Q
one, both of which are compatible with the neutron diffraction experiment, are
obtained as stable HF solutions. The magnitude of the Co orbital magnetic
moment is shown to be as large as ~ lug. Relationship between the orbital
magnetism and the band-gap formation is explained.

5.1  Introduction

Electronic structures of transition metal (TM) monoxides NiQ, CoO, FeOQ and MnO,
which show antiferromagnetism (AF), have been the subject of continuous debates. Since the
insulating property of monoxides both below and above the Néel temperature was pointed
out to not be explained by a band model,[29] the importance of electron-electron interaction
has been discussed. It is generally agreed that the large Coulomb interaction causes the
insulating properties.[30, 31] The electronic structures have also been discussed in terms of
the recently developed first-principles band structure calculation on the basis of the local
density-functional approximation (LDA); LDA does not give the insulator as long as we
assume paramagnetism. Even if we assume AF, the insulating band gap obtained from
LDA is known to be too small compared with the experimental result.[32]

Among the monoxides, the magnitude of the orbital magnetic moment pom of Co and
Fe ions in CoO and FeQ, respectively, is well known to be on the order of 1pp.[33] The large
Horb in CoO and FeO was pointed out by Kanamori[26] to cause the large magnetostriction
and by the present authors[34] to be reflected explicitly in the isotropic Ly 3 x-ray absorp-
tion spectrum. Although LDA is successfully applied to discussions of the magnetism of TM
systems, success depends on the experimental finding that poqp is almost quenched in TM

55



56 Chapter 5. Antiferromagnetic structure and orbital magnetism in CoO

systems; CoO and FeO are examples of exceptions. In LDA, there is no theoretical frame-
work for calculating pior1, self-consistently and we must be satisfied with a perturbational
calculation which is known to cause an underestimation of per,. Since pior, s comparable
with the spin magnetic moment pgyin in 4f rare earth and 5f actinide systems, various ex-
tensions of LDA, which include current-density-functional formulation,[35, 36, 37, 38] have
been attempted. The first-principles calculation of pops with the same level as that of pepin
is, however, infeasible at the present stage.

The TM 1ons in NiO, CoO, FeO and MnO exhibit the second kind of AF structure
on the fcc lattice which is, in general, described by the four wave vectors determining the
magnetic modulation: @; = w/a(1,1,1), Q, = 7/a(—1,~1,1), Q3 = 7/a(l,—1,—-1) and
Q, = n/a(—1,1,-1). For NiO, FeO and MnO, it is generally agreed that the single-Q
structure is realized, where the magnetic moments within the (111) plane are parallel and
they are antiparallel with each other between the adjacent (111) planes. In the case of CoO,
which shows tetragonal distortion with ¢/a < 1 below the Néel point, the magnetic structure
is still controversial. According to van Laar,[39] a noncollinear magnetic structure is also
compatible with the neutron diffraction experiment, in addition to the single-Q structure.
The purpose of this work is to discuss possible second-kind AF structures of CoQ on the
basis of Hartree-Fock (HF) approximation for an extended Hubbard model where the full
3d orbitals of the Co atom, the Zp orbitals of the O atom, the multipole 3d-3d intra-atomic
interaction and the 3d spin-orbit interaction are taken into account.

HF calculation based on the tight-binding model has been applied to discussions of
the electronic structures of TM monoxides[40] and insulating Mn perovskites,[41] and it
is known to describe their insulating properties. For systems where porp and Hspin are
comparable with each other, the HF calculation is shown to give a reasonable value of the
ratio florh/ pspin for TM oxides and uranium compounds.[42] We therefore adopt the present
model, since the magnitude of pg1, of Co in CoO is expected to affect the stable magnetic
structure including the direction of the magnetic moment relative to the crystal axis. The
present subject can only be discussed by using a realistic model, taking into account the full
orbital degeneracy. Realistic calculations of magnetic quantities have been performed by
the first-principles LDA approach, but its main object was a ferromagnet[13] and magnetic
properties of noncollinear structures and antiferromagnets have been discussed by only a
limited number of researchers.[43, 44] The discussion on possible multiple-Q structures with
a large piorp,, which is not reproduced by LDA, therefore seems to be a unique subject.

We first give a brief review on the second kind of AF structure on an fec lattice. We pick
out, from an fcc lattice, a tetrahedron composed of four atoms which are nearest neighbors to
one another. This fcc lattice is regarded to be a simple cubic (SC) lattice of the tetrahedron.
The second kind of AF on the fcc lattice is described by an ”antiferromagnetic” arrangement
of the magnetic structure of the tetrahedron.[45] A general structure of the second kind of
AF is therefore given by an arbitrary arrangement of magnetic moments of the four atoms
within the tetrahedron, which is described by the modulation wave vectors @, ~ Q,, i.e.,
the multiple-Q structure :(see Fig. 5.1). If we assume a classical Heisenberg model, each
multiple-Q structure is degenerate to one another. The degeneracy is removed either by a
" quantum effect, which prefers a collinear structure, or the four- and more-spin-interactions
beyond the two-spin one in the Heisenberg model.[46] The quantum effect is important in
the case of a small spin, e.g., s = 1/2, while the four- and more-spin effects are for a larger
spin. The present HF calculation includes the four- and more-spin effects, which seems to
be appropriate for discussing the magnetic structure of the Co ion w1th a spin magnetic
moment of ~ 3up.

A phenomenological discussion of the relative stability among multiple-Q states on an
fec lattice has been given by Jo and Hirai.[46] Although they did not consider any effect of
the spin-orbit interaction, the deduced results seem to be useful for carrying forward our
discussion. In a general structure of the second kind of AF, the magnetic moment of each
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Figure 5.1: A general magnetic structure of the second kind of AF on an fec lattice. Within
. a tetrahedron, which is composed of four atoms (sites 1, 2, 3, and 4 shown by open circles),
the direction of magnetic moments of each -atom is arbitrary, while that of each atom of the
tetrahedron with four closed circles is coupled antiferromagnetically to the one with open
circles. Then a general structure is given by placing these two types of tetrahedrons alter-
nately at the corners of a simple cubic lattice. See Ref. [46] for a more detailed explanation.

site Ry can be expressed by
1y, = A exp(iQ; - Rp)+ Az exp (iQ, - Ry)+ Az exp (iQs - Ri)+ Asexp (1Q, - Ry). (5.1)
To put it another way, this multiple-Q state is formally expressed by

A1|Q1) + A2]Q2) + As|Qs) + A4|Qa). ' (5.2)

Here A; denotes the vector amplitude of the modulated state |Q);}; the direction of A; spec-
ifies the direction of the magnetic moment of one sublattice and |A;|? represents the weight
of the state |Q;) in the superposition. Magnetic moments of the tetrahedron’s four atoms,
located at Ry = (0,0,0), Ry = (2/2,a/2,0), Rz = (0,a/2,a/2), and Ry = (a/2,0,a/2) as
shown in Fig. 5.1, are represented by

1ty 11 1 1 A
ABEREEIE: o
1 -1 1 1 -1 A,
Alternatively, {A;} is given by a linear combination of {g, }:
| Ay 1 -1 -1 -1 I
A o

A4 1 1 1 -1 By

Jo and Hirai expressed the energy of the system in terms of {A4;} with a consideration of
symmetry of the system, and they showed that only limited kinds of superpositions are
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candidates within the lowest-order expansion of {A4;} to remove the degeneracy. They are
the single-Q, a triple-Q, a collinear quadruple-Q and a noncollinear quadruple-Q state. The
single-Q is a familiar structure and is sometimes called the ” A-structure”, and the collinear
quadruple-Q is known as the ”B-structure” according to the literature.[47]

5.2 Formulation

We assume the Hamiltonian given by

H:HTB+HSO+Hee, (55)

Hyg = Td(Egd, IODQ) + Tp(Egp) (56)
+Tpq + Top + Tya,

Hy, = CSdZ Z(I/]lﬂ : 3|V2>d3/1diy27 (57)

i Vi¥o

Hee = Y > [o(vivavsva) — g(vivavavs)] (5.8)

§ ViVoP3ly

®(df d;, Vdi d;

vy Civg Yy, Wiy
with
— I/3V4> . (59)
Hrp represents the kinetic energy. T3 and T, describe the 3d and 2p orbital energies,
respectively, where we consider point-charge crystal-field splitting (10Dgq) for the 3d level.
Tpd, Tpp, and Ty, stand for 2p-3d; 2p-2p, and 3d-3d electron hopping, respectively. Hs,
represents the 3d spin-orbit interaction with coupling constant {s4. The operator d;, denotes
the annihilation of a 3d electron in the v state of Co site i. The symbol v is the combined
index of the spin and orbital magnetic quantum number. H.. represents the intra-atomic
3d-3d multipole interaction, which is treated within the HF approximation. The matrix
element g(v;vov3iy) is written in terms of the Slater integrals and Gaunt coefficients. For
the parameter values of the Hamiltonian, we adopt those listed in Table 5.1. Here (g is
obtained by ab initio atomic HF calculation, and the other parameters are from Ref. [40].
For the 3d-3d multipole interaction, we calculate the expectation values not only of 10
number operators but also 15Cs = 45 off-diagonal operators to maintain the rotationally
invariant property of the interaction operator. Due to the presence of pom, the direction
of atomic magnetic moment obtained as the HF solution is restricted. In the iteration
process of the HF calculation, we determine the magnitudes of Hspin and for, and their
directions simultaneously in the following way. First we give the quantization axes of both
spin and orbital moments and the expectation values of the above-mentioned operators as
input parameters. Then we obtain, as output values, the new expectation values. With
these, we obtain the expectation values of the spin components S, Sy and 5. and the
components of orbital angular momentum L., L, and L, in the 3d state under the given
quantization axes; we obtain the directions of pgpin and e In the next step of iteration,
we adopt the obtained directions of Hspin and porh, as the new quantization axes of pgpi, and
Horb, Tespectively. We repeat the iteration up to several thousand steps until the sufficient
convergence is obtained; the directions of ftspin and piory, can be different from each other.

!](V1V2V3V4) = <V1V2

5.3 Results and Discussions

Single-Q structure
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Table 5.1: Parameter values used in the calculation. Except (34, these are from Ref. [40],
where the Coulomb interaction parameter were represented by the Racah parameters, 4 =
FO—49F1/441, B = F?/49 — 5F* /441, and C = 35F*/441. The energy difference between
the 2p and 3d levels is deduced from the charge transfer energy in Ref. [40] defined by A =
Esg — Fay +nUgq, where n is the 3d-electron number in TM2¥ ion and gy is the multiplet-
averaged 3d-3d Coulomb interaction Uyg = A — 14B/9+ 7C/9 = F° — 2F?/63 — 2F*/63.
All in units of eV.

Parameter MnO FeQ CoO Ni1O

pdo 1.3 1.3 1.3 1.4
pdw —0.6 —-0.6 -0.6 —0.63
ppo 0.55 0.55 0.5b 0.60
P —0.15 —0.15 -0.15 —-0.15
ddo -0.23 029 -0.25 —0.23
ddw 0.025 0.030 (.058 0.10
ddé ~0.006 —0.004 -0.006 -0.01
By —FEsg 113611 27.027 32314 41.9156
10Dq 0.70 0.70 0.70 0.70
Fo 4474  6.172 5.956 6.440
F? 8.750 9.730 10.640  10.570
Ft 5.166 6.048 6.804 7.560
(34 0.041 0.052 0.067 0.083

We first start from the “A-structure” obtained for 3d spin-orbit coupling {sg = 0, where
the modulation is given by the wave vector @, = 7/a(1,1,1) and the direction of Hspin 18 1N
the [001] direction and por, = 0. By turning on the 3d spin-orbit coupling, o, increases
with changing its direction within the (110) plane. This causes a similar reorientation of
fispin. We obtain a stable HF solution after several thousand iterations. Figure 5.2 displays
this relaxation process. We take the polar axis to be in the [001] direction and specify the
direction by (4@, ¢) using the polar and azimuthal angles 9 and ¢ in units of degrees. The
solution has the single-Q structure, where, for one of the sublattice, pspin = 2.81pp and its
direction is (36.1, 225) and porp, = 0.84up and its direction is (35.9, 225). For the other
sublattice, the directions are obtained by inversion. We note that the [112] direction within
the (111) plane corresponds to (35.3, 225). The directions of fspin and piorp in our solution
are almost in this direction. At present, it is not clear whether the difference between the
angles in our solution and-35.3 is significant or not. Even if we start our iteration from the
[110] direction, the same solution is obtained. We also note that Solovyev et al.. recently
obtained, by the LDA+4U approach (essentially the same calculation as the present one), a
solution with nearly (35, 225) and with similar values for pgpin and pork-[48]

Quadruple-Q structure

In the phenomenological discussion by Jo and Hirai[46] on the relative stability among
multiple-Q states, in addition to the single-Q structure, the two kinds of quadruple-Q states
which are superpositions of the 4 kinds of single-Q) states with an equal weight, are found
to be stable in a wide parameter region. Following (5.2), we define the state |B) given
by Ai= 1/2(0,0,-1), Az= 1/2(0,0,1), As= 1/2(0,0,1) and A4= 1/2(0,0,1). We also
define the state |C) given by A;= ﬁu, 1,1), Ap= ﬁ(l,l,q), Az= ;1=(~1,1,1) and
Aa= 5—\1/—5(1, —1,1). Then |B) and [(") or their equivalent states are the two kinds of stable
quadruple-Q states. The former corresponds to the “B-structure” (collinear one) and the
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Figure 5.2: Relaxation process to the new equilibrium magnetic state with switching on the
spin-orbit interaction. Growth of the orbital magnetic moment (solid line) and deviations of
the spin (white squares) and orbital (black squares) magnetic moments from the [001] axis
are displayed. No significant change can be seen for the magnitude of pin (not shown) in
course of the iteration.

latter to the other one where the magnetic moments of four atoms of the tetrahedron are
directed towards its center of gravity (see Fig. 5.3).

 We next start from the HF solution assuming a “B-structure” with pepin in the [001] direc-
tion for (35 = 0. Then by switching on (34, port, again increases and we obtain, after several
thousand iteration steps, a HF solution, where |pepin| = 2.81pup with ¢ = 33.8 and | ttorb] =
0.92up with 9 = 35.5 for a tetrahedron. We assume the four atoms of the tetrahedron are at
R1=a/2(0,0,0), Re= a/2(1,1,0), Ra= a/2(0,1,1) and Ra= a/2(1,0,1). Then ¢ is 45 for
R4, 225 for Ry, 135 for R3 and 315 for R4 (see Fig. 5.4). The magnetic moments of atoms
on the nearest-neighbor tetrahedrons are given by inversion. We consider the quadruple-Q

state given by 1/2/3|B) +/1/3|C”), where |C”) is a noncollinear quadruple-Q state defined
by A1 =+/1/8(1,1,0), A2 = /1/8(1,1,0), As = 4/1/8(1,—1,0) and A4 = /1/8(-1,1,0).

Table 5.2: Calculated results assuming the single-Q or multiple-Q structure. ' ngy is the
3d-electron number. Magnetic moments are in unit of up, and angles in degree.

nad Hspin ﬁspin ¥spin “ | Horb Yorb Yorb
Single-Q '
Caa=0 = 71719 282 0 — - - —
(3¢ 7 0 7.1715 | 2.81  36.1 225 0.84 353 225
Multiple-Q :
Cza =0 7.1705 | 2.82 0 — — — —
Caa # 0 7.1702 | 2.81 33.8 45,225,135,315 { 0.92 35.5 45,225,135,315
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(b)

Figure 5.3: Magnetic moment arrangement within a tetrahedron in (a) the single-Q state
(so-called A-structure), (b) the collinear quadruple-Q state (B-structure), and (c) the non-
collinear quadruple-Q state where the moments are directed towards the center of gravity
of the tetrahedron.

Then ¥ is equal to 35.3 at Ry ~ R4 for both pgpin and piem and ¢’s for the four atoms
in tetrahedrons are the same as those of our solution, where the atomic magnetic moment
is in the [112], [112], [112] and [112] directions for Ry, Ry, R3 and Ry, respectively. Our
solution almost corresponds to this structure. At present, it is not clear whether the small
difference in ¥ between our solution and the structure \/2/3|B) + 1/1/3|C") is significant
or not.- According to van Laar,[39] the neutron diffraction experiment is compatible with
the structure 1/2/3|B) + 1/1/3|C") with ¥ = 35.3 replaced by ¥ = 27.4 in the tetragonal
phase. Furthermore, according to Solovyev et al.,[48] the single-Q structure with ¥ ~ 35
in the cubic phase is, by tetragonal distortion, changed to that with & ~ 27.5. Although
we have not performed a calculation including the tetragonal distortion, we expect that our
solution in the cubic phase corresponds to that pointed out as a candidate by van Laar.

, Orbital magnetism

Although a definite value of por, is not yet experimentally determined, the magnitude
of ~ 1up is consistent with the results of various experiments. The calculated magnitude
of the total magnetic moment is consistent with the results of experiments.[49, 50, 51] A
partial quenching of pior, iie., large residual gop, of Co?t in the octahedral crystal field, is
discussed by Van Vleck,[52] and calculated explicitly in Sec. 3.4.2 of this thesis. Its relation
to the branching ratio and spectral shape of the Co Ly and Lz x-ray absorption spectrum
is also discussed by the present authors on the basis of a single-ion model, where an in-
tuitive discussion is given for the preferential occupation of specific 3d magnetic quantum
numbers.[34] In the present HF calculation based on the lattice model, although each state
with specific symmetry has a finite bandwidth, the essence of the discussion based on the
single-ion model is not altered. Namely, due to the fact that our system is a Mott insu-
lator, the occupation of an orbit with a given symmetry raises the energy of orbits with
other symmetries to above the band gap through intra-atomic Coulomb repulsion. Solovyev
emphasized the F° dependence of the orbital moment in solids, by picking up CoO as an
example (See Fig. 2 in Ref. [48]). But the scenario of the orbital magnetism in CoO is a
simple one as described above; for a sufficiently large F° enough to open the band gap, the
system is well described by the ligand-field theory and the triply degenerate orbital state
under the Op crystal field is the reason for the large value of the orbital moment. Thus
‘the case of CoOQ seems to be an exceptional one and a more general discussion is desirable.
In the next chapter, by dealing with a metallic 3d system, we will examine the role of the
monopole Coulomb interaction in the orbital magnetism.
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Figure 5.4: The noncollinear multiple-Q structure obtained as a HF solution. The z com-
ponent of each moment is in the positive z direction. .

Relative stability among two solutions

We performed a preliminary calculation of the energy difference between the single-Q and
quadruple-Q states obtained as the HF solutions. The electronic energy of the single-Q state
is lower than that of the quadruple-Q state by 0.0066 eV per formula unit. The obtained
number of 3d electrons is 7.1715 for the single-Q state and 7.1702 for the quadruple-Q state.
Since the present system is an insulator, we calculated the difference in Madelung energy
between the two solutions, assuming the observed lattice constant and the positive charge of
1.8285 (= 9.0—7.1715) for the Co ion for the single-Q state and of 1.8298 (= 9.0—7.1702) for
the quadruple-Q state; negative charge to guarantee charge neutrality is assumed for the O
ion. The result shows that the Madelung energy of the quadruple-Q state is lower than that
of the single-Q state by 0.056 eV per formula unit. If we simply sum the electronic energy
and the Madelung energy, the total energy of the quadruple-Q state is lower than that of
the single-Q state. In the present calculation of the Madelung energy, however, we assume
the point-charge model which seems to overestimate the absolute magnitude of Madelung
energy. In the present HT calculation, the electron charge distribution is coupled with our
Hamiltonian only through the intra-atomic 3d-3d interaction. In the actual system; the
spatial charge distribution is coupled with the Hamiltonian of electrons through intra- and
inter-atomic interactions, the inclusion of which is required in order to discuss the energy,
but which is beyond the capacity of the present model. We therefore cannot definitely
coniclude that the quadruple-Q state is lower than that of the single-Q state at the present
stage.

Since our single-Q solution is almost the same as that obtained by the LDA+U approach,
our results, including those for the quadruple-Q state, are expected to be independent to
the details of the adopted model. In fact, even if we vary the value of (34 near the adopted
value, the obtained magnetic structure is the same as that shown above. At present, we
have not obtained HF solutions other than the single-Q and quadruple-Q solutions, which
are also attained from the initial states of HF iteration other than those discussed above.
According to the phenomenological discussion of stable multiple-Q structures, a specific
triple-Q structure may be possible under certain conditions. In the present HF iteration,
mixing of the triple-Q state is not seen. :
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5.4 Conclusion

In conclusion, we have shown that, in addition to the well-known single-Q) state, the
noncollinear quadruple-Q) state shown in Fig. 5.4, both of which are expected to be com-
patible with the neutron diffraction experiment, is a promising candidate of the magnetic
structure on the fce lattice of NaCl-type CoQO, on the basis of the HF calculation. We ex-
pect that future experiments will yield a conclusive answer. On the theoretical side, more
quantitative discussions on the relative stability among candidates including the tetragonal
lattice distortion will be needed.



Chapter 6

Orbital magnetism in metallic
3d systems

6.1 Introduction

Nowadays, it is a rather easy task to include the effect of the spin-orbit interaction in the
modern first-principles band-structure calculation based on the local (spin) density approx-
imation [L(S)DA]. In most cases, however, LSDA seriously underestimates the contribution
of porn, as discussed in Chap. 1. As far as the spin polarization is concerned, LSDA gives
good results for itinerant magnetic materials. But it seems that LSDA has no thearetical
framework to determine poypp self-consistently. A clear explanation for the mechanism of the
orbital polarization (OP) in solids has been desired. »

In free atoms, the Hund second rule deséribes the orbital angular momentum L of
valence elecirons; L has the largest value consistent with the Pauli principle and with the
Hund first rule (maximum total spin $). As explained in Chap. 3, this is the consequence
of the multipole Coulomb interaction, which is written in terms of the Slater integrals other
than the monopole part FO. A hypothesis, that is, the mechanism of the OP in solids is
essentially related to the atomic Hund second rule, has been made by Brooks.[20] From the
interpretation of the Hartree-Fock (HF) total energy of atoms with open shell, he derived
an explicit OP functional form as an additional term in the LSDA total energy. For the 3d
shell, it is —3B(L)* with the Racah parameter B (= 7z F? — 7 F*) and the expectation
value of L. Its application to several metallic substances shows encouraging results[53] but
fails in some cases.[54]

Solovyev et al.[48] have pointed out that the Brooks interpretation of the open-shell HF
energy is incorrect and proposed a different theory for the OP mechanism. By examining
the HF total energy of some simple cases, they analytically showed that, for the propor-
tional constant of (L)?, in addition to B, there exist F® and other Slater integrals. They
criticize the success of the Brooks theory in some metallic magnets as follows: F° is strongly
renormalized due to the screening effect in metals and F°-dependent term will be almost
canceling out via other terms, with leaving only the B term alone. Thus the OP mechanism
proposed by Brooks is one of the limiting cases of general mechanism and they argued that
the “hidden parameter” responsible for the orbital enhancement in solids is the renormalized
FO.

To emphasized this concept, they demonstrated the F° dependence of po of CoO and
showed that the orbital magnetism (the magnitude; direction, and localization of the orbital
moment) is directly related with the appearance of the band gap caused by the large FU.
The offered example of CoO, however, seemis to be rather exceptional case for the purpose of
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Table 6.1: Parameter values used in the calculation. All in units of eV. Parameters for
the intra-atomic interactions, (ag, 72, and F'* are obtained from the ab initio atomic HF
calculation with assuming the Fe configuration (3d)®(4s)?. The Slater integrals, F? and F'4,
are renormalized to 80% of their ab initio values. ,

ddo ddr ddé (aq F? F4
—0.3780 0.170b —0.0211 0.050 8.5066 b.2724

examining the OP mechanism in solids, because its result is concerned with the discontinuity
of the magnetic quantities in the course of the metal-insulator transition. Once the band
gap opens, fiorp of the 3d electrons is well described by the ligand-field theory and it takes
a large magnitude, which can be deduced from the orbital degeneracy in a given crystal
field and the spin-orbit interaction. In order to make a more general discussion about the
mechanism of OP in solids, a detailed examination in metallic phase seems to be desirable.

In this chapter, we would investigate the role of F® in the orbital magnetism in solids,
by using the tight-binding HF method with preparing metallic 3d bands. For simplicity,
we consider an fcc lattice with single site in the unit cell. As the valence band, only a 3d
orbital is taken into account. Hence no valence fluctuation occurs; the occupation number
of the atomic 3d orbital of a specific site, ngq, 1s always integer. It is shown that pgp, is very
sensitive to F'° even in metallic phase.

6.2 Model

‘We consider an idealized crystal, whose structure is fec and unit cell contains single site.
The valence band is constructed by a 3d orbital alone. The Hamiltonian is given by

H:HTB+H50+Hee; (61)

where Htp is the tight-binding Hamiltonian that expresses the 3d-electron hopping in the
fec lattice; Hyo and Hee are the on-site interactions, i.e., the 3d spin-orbit interaction and the
multipole 3d-3d Coulomb interaction treated by the HF approximation, respectively. For
the explicit form of each Hamiltonian, we refer to the previous chapters. Parameter values
used in the calculation are summarized in Table 6.1. Hrp alone, with the listed hopping
integrals, reproduces the typical fcc feature in the density of states (DOS), as shown in
Fig. 6.1. As for the parameters concerned about the on-site interactions, we took them from
those of the neutral iron atom. For a given F° and nag, the Hamiltonian (6.1) is solved

states/eV/spin

‘0

-3 -2 - 1]
Binding energy [eV]

Figure 6.1: Density of states reproduced by Hrp for the single-site fcc structure. The Fermi
level, denoted by the vertical broken line, is for nag = 7.
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in the momentum representation, with assuming the ferromagnetic order. The quantization
axis is taken as the z axis (cubic ¢ axis).

6.3 Calculated results

6.3.1 nygg=7

First of all, we would show the calculated results for nzgg = 7. Figure 6.2 shows the
spin-resolved DOS obtained for different values of F°. In all cases, the down-spin states
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Figure 6.2: Spin-resolved DOS for several F® values, with assuming n3; = 7. Solid and
broken lines refer to the minority(up)-spin DOS- and majority(down)-spin DOS, respectively.
The Fermi level is denoted by the vertical broken line.

are well pushed below the Fermi level (EF) and fully occupied. Between the two results
of F® = 0 and 1 eV, no significant change is seen in the shape of DOS except that the
down-spin states in F? = 1 eV located lower in energy than those of F® = 0 eV. When
FO exceeds 1 eV, a pseudo gap begins opening in the vicinity of Ep, though there exists a
small but finite state density at Ep and it is still remaining for the value of F° being up to
several electron volts.

Calculated S and L with sweeping F° are shown in Fig. 6.3(a). They are obtained by
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Figure 6.3: Calculated magnetic quantities for nzg = 7, with sweeping F° (a) S (open
squares) and L (filled squares); (b) gspin (open squares) and porp (filled squares).
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Figure 6.4: The way of electron occupation in the mo basis (m is the orbital magnetic
quantum number), for nzgg = 7 and for several values of F 0. The shaded or hatched area
shows the probability of electron occupation of each mo state.

calculating the expectation values, (§?) and (L?), and from the relations S(S+1) = (8%
and L(L + 1) = {L*). As far as the system keeps the well-metallic behavior (FO <1 eV),
i.e., in the case there is no pseudo gap, L is rather insensitive to the change of FY. Once
the pseudo gap opens (F° > 1 eV), L begins to increase toward the atomic Hund rule value
L = 3. The orbital magnetic moment g, = —pp(L;), displayed in Fig. 6.3(b), shows a
behavior different from that of L. Even in the region of F'® < 1 eV, where L is almost
constant, forp is very sensitive to the change of F° and strongly enhanced with increasing
F9. This clearly indicates that one of the major factors for the orbital polarization in solids,
even in the metallic phase, is the enhancement mechanism through the monopole Coulomb
interaction. ‘

In the present case, where the electron filling is more than half and the majority-spin
states are fully occupied, pepin s constant and pior, is determined by the way of electron
population in the fivefold minority (up)-spin states. From Fig. 6.4, one can recognize that the
symmetry breaking in the electron population among the up-spin states becomes stronger
for the larger value of FU; the states with m = —2 and —1 come to be occupied preferentially
(m is the orbital magnetic quantum number). To see in detail what happens in the course
of sweeping F'°, partial components in the minority-spin DOS, with m = —2 substate and
its counterpart m = 2, are displayed in Fig. 6.5 for several values of FU. In the case of
FO = 0 eV, both sub-DOS’s are distributed broadly in the wide energy range and overlap
with each other, resulting in a considerable cancellation of the orbital moment. In turning
on and increasing the value of F'°; a remarkable change is seen in each sub-DOS while the -
total DOS does not change its shape greatly. In the limit of the large F'°, most part of the
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Figure 6.5: Partial DOS specified by the orbital magnetic quantum number m = —2 (thick
solid line) and m = 2 (thick broken line) in the minority-spin state density (thin solid line),
for nzg = 7 and for several values of F°.

m = 2 sub-DOS is well pushed up above EF, while that of the m = —2 state is located
below Ep. A pair of sub-DOS’s with m = 31 exhibits almost the same trend.

6.3.2 ngg =2

Calculated magnetic quantities, with assuming nz; = 2, are represented in Fig. 6.6, as a
function of F°. Due to the less than half filling, the directions of piepin and porb are opposite.
As enlarging the value of F'°, the magnitude of pgy, which is fairly smaller than fispin for
moderately small F° begins increasing and finally overcomes the contribution of Pspin- L
and porp show the analogous behavior to the case of nzg = 7. In the range 0 < FU < 1 ¢V,
the value of L is rather insensitive to F*, whereas g, shows the significant change. From
Fig. 6.7, one can recognize that the this energy range of F?, 0 < F° < 1 eV, corrésponds to
the situation that the system reveals the well-metallic behavior, i.e., there is no pseudo gap
at E'p. Again, the change of p,q, is interpreted as the redistribution of sub-DOS’s between
the positive and negative m states while the majority-spin DOS itself, which is the sum of
each m-state density, is kept almost unchanged. (See the right hand side figures in Fig. 6.7.)

In the present calculation all of the minority-spin DOS is located above Er. The mixing
of different spin states never occurs. This feature is retained to the infinite limit of FU.
The atomic electronic structure; which is discussed in detail in Chap. 1, must be recalled
here. We have seen that the ground-state electron-population in the me basis shonld be
distributed into both spin states, for the free 3d ions with the less than half filling.”Atomic
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Figure 6.6: Calculated magnetic quantities for ngy = 2, with sweeping F°: (a) S (open
squares) and L (filled squares); (b) pspin (0pen squares) and porp (filled squares).

HFA fails to describe this spin mixing. In the present solid case, the result for the large F°
limit is clearly wrong; the calculated magnetic quantities do not approach the corresponding
atomic ones. Obviously this is due to the shortcomings of HFA and the many-body effect
beyond IIFA is necessary to obtain the true ground state. In the range of small F°, however,

it is not clear whether the present calculation that shows no spin mixing is well describing
the real system or not.
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Figure 6.7: Calculated DOS’s in the ngy = 2 case for various values of F°: from the top-side

panel, F¥ =0, 1, and 1.5 eV, respectively. The left hand side figures are the spin-resolved

DOS’s with solid (broken) line representing the majority (minority)-spin. DOS. In the right

hand side figures, the majority-spin DOS’s are decomposed into the substates with m = +2

(thick solid line) and m = —2 (thick broken line).
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6.3.3 Another filling case

Calculated results for all filling cases are summarized in Figs. 6.8 and 6.9. Here we
have just presented the orbital-related quantities, L and pow. The spin-related ones are
insensitive to the change of F¥, and we would not show that. The result for n3; = 8 shows
almost the same one as n3g = 7, and n3s = 3 case is similar to ngy = 2 case.
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Figure 6.8: Orbital-related magnetic quantities in the more than half filling case. Solid and
broken lines refer to the orbital angular momentum L and the orbital magnetic moment
Horb, Tespectively.

n =1 n =2 n =3 n =4
3 3d R s 3d R 3 34 3 N 34 s
e P
- ’p"'
2 e 2 Y . 2 — 2 2 - 2 2
ey ) = = o £ ,_..__._——-—-I‘.:_h
= i 2 o~ £ ~ 2 ~
Eh ES ] = - 2
-1 1 1 b, =z it 1 : 1 1} L] 1
’ = d ==
- = . =,
o id ° ol ° il ] e il 0
E3 3 o 1 7 3 ° i 3 3 ke i z 3
F vl B {eV] ¥ jev] lev]

Figure 6.9: Same as Fig. 6.8, but in the less than half filling case.

6.4 Discussions and Conclusions

From the calculations in this chapter, it becomes clear that ji., in solids is very sensitive
to the value of F¥, even in the metallic phase. It is well known that, among the intra-atomic
interactions, the spin-orbit interaction in solids is not so different from the atomic one, and
that the screening effect on the Slater integrals is rather week except F°.[55] On the other
hand, the monopole Coulomb interaction, expressed by F°, is to be greatly screened in
solids due to the many-body effect, especially in the metallic phase.[56] The degree of this
screening effect is expected to have a strong material-dependence. This effect is to be
directly reflected in the orbital moment through its strong sensitivity to the value of F9. It
can be said that “the way of renormalization of F® due to the electron-correlation effect” is
one of the significant mechanisms for the enhancement of g, in solids, which differs every
material.

Is it possible to give an intuitive discussion about the F-driven orbital-enhancement
mechanism? If we had treated the present Hubbard model within the many-body scheme,
the scenario is rather easy. Roughly speaking, F'°/W, where W is the band width, governs
the degree of localization of electrons. In increasing F°/W, the time scale, for which an
electron stays in a specific site, becomes longer. In this period the electron will suffer the
spin-orbit interaction and move around the nucleus, resulting in making the orbital moment.

Then the question is whether or not this scenario can be still verified in the mean-
field scheme. In our calculations based on HFA, porn actually depends on the value of F©.
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This suggests that the electron-localization mechanism due to F® may be reproduced in
HFA at lease to some extent. In HFA, the exchange interaction is treated exactly, and
“the nonphysical self-interaction”, which exists in LDA scheme, is completely excluded. As
a result, the electrons in the occupied states feel the electrostatic potential from N — 1
electrons other than himself, while the electrons in the unoccupied states feel the potential
from total NV electrons. This differentiation of Coulomb potential seems to be essential in
describing the electron localization in the mean-field scheme.
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Chapter 7

Electronic structure of US

Part of this chapter is based on a manuscript by Tatsuya Shishidou, Tamio Oguchi, and
Takeo Jo, accepted for publication in Physical Review B 59 (1999).

Abstract

The U 5f spin (pspin) and orbital (piors) magnetic moments in the ferromag-
netic compound US are calculated on the basis of the Hartree-Fock approxima-
tion (HFA) for an extended Hubbard model. Qur tight-binding model includes
the U 6p, 5f, 6d, and 7s orbitals and the S 3s, 3p, and 3d ones, and the intra-
atomic 5f-5f multipole interaction and the spin-orbit interaction in the 5f state
are taken into account. Most of parameters involved in the model are determined
by fitting with the energy of Bloch electrons in the paramagnetic state obtained
by a first-principles calculation based on the local density approximation (LDA).
The calculated ratio of the moments port,/ Hspin 0f —2.1 and pop of —3.2up are
in good agreement with available experimental results. The calculated magnetic
circular dichroism spectrum at the U 3d—5f x-ray absorption also agrees with
the recent experiment. It is shown that the exact exchange potential gained by
HFA mixes different spin states strongly and enhances the effect of the spin-orbit
interaction. Problems of LDA in the estimation of Horb are discussed in detail.

7.1 Introduction

In magnets, the atomic spin (fspin ) and orbital {ftorb) Magnetic moments are basic quan-
tities and their separate determination is therefore important. As methods of their exper-
imental determination, the traditional gyromagnetic ratio measurement,[57] the magnetic
form factor measurement in the neutron scattering[58] and the magnetic x-ray scattering[59]
are known. In addition to these, the recently developed magnetic circular dichroism (MCD)
in the core-to-valence x-ray absorption combined with several sum rules[2, 3] has attracted
much attention as a method of site- and symmetry-selective determination of Hspin and florp-
On the theoretical side, the first principles local density approximation ( LDA) or local spin-
density approximation (LSDA) (Ref. [13]) is known to be a typical method of calculating
magnetic quantities and has been successfully applied to various substances. It is, however,
known that there are limitations or problems in LSDA.[60]

One of major known problems related to magnetic quantities in LSDA is seen in the
underestimation of giop, in magnets. Even in 3d transition metals (Fe, Co, and Ni) where fiorp
is quite small compared to pepin, the LSDA underestimates the contribution of torb by about
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a factor of 2 especially in Co.[14, 15, 16, 17] The problem becomes more serious in 5 f systems,
i.e., actinide compounds, where the spin-orbit interaction (SOI} among 5f electrons is much
stronger and popp is generally larger. Recent LSDA calculations for uranium compounds
seem to underestimate pop.[19, 20, 21] In LSDA, the Kohn-Sham equation is described
by a local potential including the spin-dependent electron density. The electric current,
which describes pom, is, however, not included in it. This means that although pepin is self-
consistently determined in LSDA, there is no framework to determine pq, self-consistently.

In an atom, its ground state of valence shell is, according to Hund’s rule, specified by
the maximum of the total spin of valence electrons S and the maximum of the total orbital
momentum L among the maximum S multiplets. The maximum S is well understood as
a consequence of the exchange interaction to align the spin of electrons. The maximum L
arises from the multipole exchange interaction represented by the the Gaunt coefficient[61]
without relying on the SOI, which determines the relative direction between S and L.
The local exchange-correlation potential in LSDA seems to be insufficient to describe the
maximum I, which is considered to be one of causes of the underestimation of perb in solids.

Numerous attempts have been made to estimate posb, which are roughly classified into
two categories. One is based on the so-called current-density-functional theory[35, 36, 37]
that intended to extend the density-functional theory to include the orbital current as an
extra degree of freedom, which describes por,. Unfortunately an explicit form of the con-
tribution of the current density is at present unknown. Its application to the ferromagnetic
Co with the use of a simplified form is, however, not necessarily encouraging.[38] The other
category includes the orbital polarization (OP),[20, 53, 54, 62] self-interaction correction
(S1C),[63] and LDA+U (Ref. [48]) approaches, which intended to calculate piorh, practically.
For a better description of g, the OP functional form of —3B(L.)? with the Racah pa-
rameter B has been deduced[20] from an atomic multiplet ground state without SOI, whose
S and L are given by Hund’s rules.  However, the OP method does not assure us that
it will give a good description when the SOI is included and thus S and L are no longer
good quantum numbers. A serious problem can be seen in its application to Ce.[54] The 4f
ground state of magnetic Ce®¥ ion is, if an infinitesimal magnetic field is applied in the 2
direction, given by (4, j.)= (5/2, 5/2), whose wave function is given by a linear combination
as /6/713,1) — /1/712,1), where |m, ) denotes the 4f state with the magnetic quantum
number m and spin ¢. . The OP result for a large volume limit (i.e., the atomic limit) shows
that the (m = 3, ¢ =|) subband is filled leaving all the other 4f states empty; the OP
method fails to describe the mixture of the spin states. The same situation is observed in
the application of the SIC to Ce.[63] Furthermore, the uncertainty in the application of the
OP method to solids is discussed by Solovyev et al. with examining the Hartree-Fock (HF)
total energy in detail.[48] In solids, as discussed in Chap. 6, fiors is very sensitive to and de-
pendent on the magnitude of the monopole Coulomb interaction F' 0 while such mechanism
is not taken into account in the Brooks formalism.

In the recent LDA+U approach with the correction term U to LDA, which has the
same form as the HF potential and satisfies the rotational invariance,[48] on the other hand,
Solovyev et al. have succeeded in reprbducing a large magnitude of pig, for Fe and Co atoms
(~ 1up) in the antiferromagnets FeO and CoQ, respectively. We have also, by the same HF
calculation on the basis of an extended Hubbard model for CoO, succeeded in reproducing
porp of Co.[64] This means that a faithful HF calculation can be, if an appropriate multi-
orbital tight-binding Hamiltonian is prepared, a promising practical method to reproduce
the magnitude of g in systems with a large orbital moment. At present, the role of
exchange interaction in discussing the magnitude of popn, however, does not seem to be
discussed from a general point of view.

The purpose of this paper is to investigate how important the exact treatment of the
exchange potential is in realizing correct large orbital magnetism in itinerant ferromagnets.
For this purpose, ferromagnetic U compounds are the most suitable substances for a severe



76 Chapter 7. Electronic structure of US

test becanse ptory is quite large as mentioned above compared with 3d compounds. We choose
US as a prototype of itinerant U ferromagnets and investigate its magnetic ground state and
Horb under the HF approximation. Our model is the so-called extended Hubbard model,
where we consider all the relevant valence-band orbitals and full degeneracy of them. The
SOI among the 5f electrons is explicitly included and the intra-atomic multipole Coulomb
interaction between the 5f electrons is treated within the HF approximation.

US is a ferromagnet with Curie temperature being 178 K. Despite rather simple NaCl-
type cubic structure, a strong magnetic anisotropy favoring the [111] alignment has been
observed.[65, 66, 67] A bulk magnetization measurement[68] shows the ordered moment is
1.55up per unit formula and a neutron scattering measurement[69] shows a slightly larger
value of 1.70up, which is assigned to the 5f magnetic moment. These values are far smaller
than that expected for the free ion, indicating that some sort of “solid-state effect” takes
place on the 5f states. From several experimental results (for instance, photoemission,[70]
electrical resistivity,[71] pressure dependence of Curie temperature[72] and specific heat
measurements|[73, 74]), the 5f electrons of US are considered to be itinerant. On the the-
oretical side, Kraft et al have performed an LSDA calculation with the SOI in a second
variational treatment for ferromagnetic U monochalcogenides (US, USe, and UTe), and have
shown that the magnitude of the calculated pop is larger than that of ftspin and they cou-
ple in an antiparallel way to each other.[19] However, the magnitude of the total magnetic
moment (ispin + porb) is too small compared to the experimental data, indicating that the
calculated pio, is not large enough. In addition to LSDA, the OP approach[20] and a kind
of HI calculation[75] have also been performed for US, about which we will discuss later.
We will show that the HF calculation including the expectation values of the off-diagonal
operators as well as the number operators with the |m, ¢) basis in the exchange interaction
is crucial in describing the magnetic quantities and wave function.

In Sec. 7.2, we formulate our multiband tight-binding HF model. In Sec. 7.3, calculated
results and discussions are presented. To confirm the validity of the 5f magnetic state in
our model, we also calculate the x-ray MCD spectrum at the U My 5 edge (U 3d — 5f
‘dipole transition) and compare it with the recent experimental result.[27] The difference
in the exchange potential between the HF and LSDA is discussed in detail. Section 7.4 is
devoted to conclusions.

7.2 Formulation

7.2.1 - Hamiltonian

We consider a realistic multiband Hﬁbbard model defined by
H=H°+E"+ 7+ Hy, (7.1)

~where HY stands for the electron-hopping energy, which is expressed by the tight-binding
method, and the orbital energies other than the 5f state. We consider all the valence-band-
related orbitals and the full degeneracy of them. We take into account 6p, 5f, 6d, and 7s
orbitals for the U atom, and 3s, 3p, and 3d ones for the S atom. The hopping integrals are
treated within the Slater-Koster two-center approximation.[28] Other terms in Eq. (7.1) are

defined as follows: »
Eo = Z Z Elq' fi-II_‘.'yafz'I"ya’ (72)
il'o y(eT)

Z = (55 Z Z(il/l‘l . S|i1/2>f;1fiz/27 (7.3)
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1
Hp = 52 > gvavsva) 5 Fiv Fiuy (74)
k3 VyVaelalyg .

EP describes the 5f orbital energy, where ¢ stands for the bare on-site energy of the 5f
state with the orbital symmetry T' (I' = T14, Tou, Azu). 5 is the sub-basis of T'. The
operator fir.,, denotes the annihilation of a 5f electron with the orbital state I'y and the
spin o on the ith U site. Z is the SOI among the U 5f electrons with a coupling constant
¢s5. The symbol v specifies both of the orbital magnetic quantum number (m) and spin
one {o); 'y is a linear combination of m. Hy represents the intra-atomic 5f-5f multipole
interaction on the U sites. The interaction matrix element g(v var31y) is written[61] in
terms of the Slater integrals F*’s (k = 0,2,4, 6) and the Gaunt coefficients ¢*(Iym1,lsm2)’s

as follows:
V3 >

k Lk k
- 601,03 602»04 6m1+m2,m3+m4 Z F* ¢ (3 my, 3 m3) ¢ (3 my, 3 m2)‘
£=0,2,4,6

12

g vovar,) = <V1 vy

(1.5)

We employ the HF approximation to the interaction term as

HFF =37 3" [g(nvavara) — g(vivavavs)] (£, Fu ) 5, v (7.6)

i V1VaV3Va

The expectation value (f;} f,/) is the HF order parameter which should be determined self-
consistently. Hereafter we assume a ferromagnetic ordering and drop the site index i from
(f1 f.,1). We take into account not only the 14 diagonal order parameters but also 91
(= 14C,) off-diagonal ones. The inclusion of the spin-off-diagonal parts of the HF order
parameters and the form of the exchange potential in Eq. (7.6) play an important role in
describing the 5f state as will be discussed later. '

7.2.2 A test of HF approximation in the atomic limit

Before applying the present model to US, we discuss the validity of the HF approxima-
tion in describing the 5f magnetic ground state. In the limit of the hopping integrals in
H" being zero, the system becomes isolated atoms (or ions) and we can easily examine the
single-determinant HF approximation in the following way. For the electron configuration
of 52 (U%t) or 5f3 (US+), we solve the HF Hamiltonian of a U atom, Z + HEF| by the
self-consistent iteration to obtain a polarized solution by including a small magnetic field in
the first cycle. On the other hand, we can straightforwardly and exactly solve the original
Hamiltonian without the mean-field approximation Z + Hy by the configuration-interaction
(CI) scheme setting up all the possible many-body bases (all the possible Slater determi-
nants) for a given electron configuration and by performing a numerical diagonalization.
Due to the strong SOI, the ground state is not given by the simple Hund rule LS coupling
but a mixture of more than one LS multiplet of a given J, i.e., the intermediate coupling:
The used parameters[27] and the calculated fispin, ftorb, and the z component of the mag-
netic dipole (T) (T = 3", [.sz- — 3ri(r; - si)/rﬂ, where s; and r; are the spin operator and
position vector of the ith 5f electron, respectively) are listed in Table 7.1. The positive di-
rection of the quantization axis is taken as along the direction of pgpin. Relative deviations
of the HF result from the CI one are shown to be less than 15% for all magnetic quantities
even though the HF approximation does not consider any correlation effects. Obviously, the
HF approximation can be a good starting point for describing the U 5f magnetic ground
state. ‘
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Table 7.1: The 5f magnetic state of a free U ion with the 5f2 or 53 electron configuration,
calculated by the configuration-interaction (CI) method and HF method. pepin (pors) rep-
resents the spin (orbital) magnetic moment, and psf = fispin + gorb. (T%) is the expectation
value of the z component of the magnetic dipole. The upper panel shows the results for
the 5f2 configuration, and the middle 5f3. Deviations of the HF result from the CI one
are represented in parentheses in percentage. Magnetic moments g5y, popin, and pop are in
units of up. Used parameters (Slater integrals F*’s, coupling constant (57 of the SOI) are
also shown in the lower panel in eV.

5f2 (U4+) Hs5f Hspin Horb ﬂorb/ﬂspin (Tz>
CI —-3.30 140 —-4.70 —3.36 —0.81
HF —3.26 148 —4.74 -3.21 -0.81

(-1 (6) (1) () (0)
5f3 (U3+) K55 Hspin Forb #orb/ﬂspin (Tz>

CI -341 218 -559  ~256 063
HF -3.25 249 575  -230  —0.60
(=5) (14) (3) (—10) (—4)

F? i L Gss
5F% (UTF) 7611 4979  3.655 0.261
5f3 (UH) 7.086 4.598 3.363 0.235

7.2.3 Determination of the parameter values

Let us discuss our method to determine the parameters that appear in the Hamilto-
nian (7.1). It is well known that one can estimate F*’s (except F°) from ab initio atomic
HF value with an appropriate reduction factor[hb, 76] around 0.8 which stems from the
intra-atomic correlation (configuration-interaction) effect and that thus the obtained F*’s
are usually usable even in solids. The ordinary ab initio atomic values of "F*’s and Csf
were obtained from Cowan’s HF program with relativistic correction,[23] where (57 was
calculated by the Blume-Watson method.[77, 78] The assumed electron configuration was
the neutral atomic one, 5f26d'7s2, since it may be suitable rather than ionic ones due to
the fact that US is a good conductor. Norman[55] has evaluated the reduction factors for
each F*’s in U** ion in a semiphenomenological manner assuming the Yukawa screened
Coulomb interaction. Expecting that such factors will hardly change between the neu-
tral and ionic configurations, we set the reduction factors of our case around Norman’s,
namely, 0.65, 0.85, and 0.9 for £=2, 4, and 6, respectively. Thus determined parameters
are F?2 = 5.530, F* = 4669, F® = 2.881, and ¢s; = 0.226 in units of eV. Even if we
adopt a common reduction factor around 0.8, the essence of calculated results is found to be
unchanged. As the monopole integral F®, which is associated with the multiplet-averaged
effective Coulomb interaction Usy by Us; = FU—4F?/195—2F*/143—100F® /5577, is hard
'to be evaluated due to a strong screening in solids, we leave it as an adjustable parameter.

H® and E° in Eq. (7.1) contain a number of parameters which are related to the: elec-
tron kinetic energies: the hopping integrals and orbital energies. These parameters are
determined by fitting with the energy dispersion in the paramagnetic state without the SOI
(hereafter we call this the P state) obtained by a first-principles LDA calculation with the
full-potential linear augmented plane wave (FLAPW) method.[79] We have mentioned the
problems about the LDA, but such problems will be suppressed in the P state, where there
1s no spin or orbital polarization, and we suppose that the LDA will give a good description.’
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Table 7.2: The determined orbital energies and Slater-Koster two center hopping integrals
in units of eV. Note that the U 5f orbital energy is not a bare one, i.e., the listed value
includes the LDA 5f-5f potential. See text for details.

orbital energy

1.1760

U 6p —2.8632 (Tiw)
Usbf 14.1689 13.9655 13.6751 (Thy Tou Azy)
U 6d 17.6525 18.7905 (To, Ey)
U 7s 19.0819 (A1)
S 3s —0.6562 (A1)
S 3p 10.6073 (T1u)
" S3d 22.3455 26.4753 (TayEy)
1st neighbor 2nd neighbor
o o 6 ¢ g e 6 @
U6p—Uébp 0.2777 0.1475 —1.1020 —0.0099
Ubf-Ubf 0.0728 —=0.0366 - 0.0364 —0.0161 .
U 6d-U6d —0.4291 —0.2321  0.0027 -0.2881  0.0598 0.0372
U7s—U7s —1.0413 0.1603
S 35—8 3s 0.4011 0.3336
S3p—S3p —0.0082 —-0.1497 —0.2205 —0.0499
S 3d-S 3d 0.2779 0.6844 —0.2751 1.1180 0.5992 0.0803
U7s—U6p  0.0569 0.7437
U7s—U 6d ~0.8546 0.2269
UTs=Ubf 0.3891 0.2523
U 6p—U6d —0.1994 —0.2928 0.5572 ~ —0.2317
U 6p—Ubf —0.2049 —-0.3951 - ,
U 6d—-Ubf. 03006 0.1199 . —0.0058 0.00563  —0.1009 - 0.0413
S3s—S3p —0.2414 0.3784
S38s-53d  —0.7523 —0.2572
S3p—S3d . —-0.2674 0.4882 -1.3945 0.0573
S 3s—U Ts 1.2161 0.1338 .
S3s—U6bp —1.2198 0.1983
5 3s—U 6d 0.4495 —0.4976
S3s—Ubf —0.1444 0.5565
U 7s—S 3p 1.5471 0.2284
U 7s—5 3d 1.8403 , —0.1833
U 6p—S 3p 1.2666 . 0.6178 —-0.2784  0.2641
Ubp—S3d —4.7589 —0.4079 —0.5586 —0.3287
S3p—U6d —2.3538 0.5853 0.2697 0.0386
S 3p—U 5f 0.8317 —0.4441 —0.0445 —0.0217
U 6d—-S3d —1.3566 19167  —0.6830 —0.2243 ~ 0.3985 —0.1864
S3d-U5f —0.6893 —0.4226 0.0573 ~ —0.0589  0.0170
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Figure 7.1: Band structure in the paramagnetic state without the SOI (the P state). The
left hand side is the band dispersion along the highly symmetric lines of fcc. The solid line
shows the FLAPW dispersion and the dotted line represents the fitted one. The vertical
axis is the energy measured from the Fermi level in unit of eV. The right hand side is
the calculated density of states based on our tight-binding model and also on the FLAPW
method. The shaded area represents the U 5f partial DOS. See text for details.

To carry out the fitting, we consider the following Hamiltonian in place of Eq. (7.1):

H =H°+E, (7.7)
here note that Z and H; are dropped and that the term of the 5f orbital energy E differs
from E° of Eq. (7.2) in the point that £{ is replaced by ep.. Since the symmetry is completely
cubic in the P state, the potential energy for the 5f state arising from the intra-atomic 5f-5f
interaction is diagonal in the representation Iy and is included in ep; the original el is the
bare on-site energy in the sense that the mean field coming from the interaction amoung the
5f electrons is not counted, whereas e includes that. H' is fitted to the FLAPW result for
the lowest 20 bands (without spin) at irreducible 29 k points in the Brillouin zone and also at
47 k points along the highly symmetric lines of fcc. A nonlinear least-square fitting problem
is solved by the Taylor-series expansion method.[80] The fitted energy dispersion of electrons
is shown in Fig. 7.1 and the obtained parameters are listed in Table 7.2. For simplicity, we
have ignored the overlap of the atomic orbitals of the tight-binding basis. Nevertheless the
fitting quality is rather good. The calculated density of states (DOS) displayed in Fig. 7.1
reproduces the result of FLAPW reasonably. We shall explain the electronic structurein the
P state briefly. In the DOS, three lumps can be seen below the Fermi energy (£r). Each
one is mainly composed of the U 6p, S 3s, and S 3p states, from the deeper binding energy
toward Ep, respectively. The sharp structure around Ey is derived from the U 5f state,
which is embedded in the rather broad U 6d DOS and well hybridized with this itinerant
state. Although the nearest-neighboring (NN) atom of U is S, the hybridization between U
5f and S 3p is relatively weak because the energy position of S 3p state is detached far from
Er. (However, the U d state is well hybridized with S 3p state.) This clearly indicates that
the itineracy of the 5f electrons originates from the hybridization with the U 6d orbitals of
the next-nearest-neighboring (NNN) U atoms. The atomic radius of the chalcogen governs
the NNN distance and thus the degree of localization of the 5f electrons. This picture
explains the experimental fact that for the larger atomic radius of the chalcogen (S, Se, and
Te) the saturated magnetic moment becomes larger (1.55, 1.8, and 1.9up per unit formula,
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respectively), that is, the degree of localization becomes stronger.

For dealing with the ferromagnetic state with the SOI, we should determine the bare 5f
orbital energy € by subtracting the LDA potential energy, which is arising from the intra-
atomic 5f-5f interaction, from ep. This procedure is to prevent us from double counting
the f-f interaction in the subsequent HF calculation. The LDA potential energy of the
f-f mteraction L can be divided into two parts; Lt = Cp — V, where CT is the classical
Coulomb part (i.e., the Hartree part) and is exactly the same as that of the HF [the first term
of Eq. (7.6)]. It is written in terms of the order parameters (f;f f,,) in the P state, which
are already known from H’, and the Slater integrals F*’s, which are already determined
except F'?. This means that once we choose a specific value for ° we can readily evaluate
Cp. The term —V stands for the exchange-correlation part and we assume that it has
no I' dependence. This quantity is hard to be evaluated and we treat it as an adjustable
parameter. Moreover, in the ferromagnetic state with the SOI, ¢ will differ from that of
the P state to keep the charge neutrality. This change of €2 will not be small because the
SOI for the 5f state is very strong. We impose such change of the 5f orbital energy on the
unknown parameter V.

Finally our Hamiltonian for US in the ferromagnetic state is given by

H=H’+ EYF° VY+ Z+ HI(F), (7.8)

where E%(F°, V) denotes Eq. (7.2) with eX = e, — Cp(F°) + V, and HIF(F?) is given by
Eq. (7.6) and depends on the unknown parameter F'°. There are two adjustable parameters,
F® and V. To determine them we simply assume that the 5f electron number ns; shows
no change between the P and the ferromagnetic state, and we choose V for a given F° so
that ns5; = 2.88, which coincides with that of the P state obtained from H’. The FLAPW
calculation shows a little change in ns;, namely, it increases by only 0.2 from the value in
the P state. Even if we choose V' which gives a difference in ns; between the P state and the
ferromagnetic one, our main results are found to be insensitive to the choice of V. Then we
choose F? so as to set the 5f magnetic moment to be the experimental value —1.70up.[69]
Thus we can determine F° and V and examine the individual moments of the 5f state,
ttspin and piorn. The adopted assumptions and treatments might be rather reasonable ones
for qualitative discussions on whether or not the large poy, can be obtained with using the
HF exact exchange potential and what is absent in the usual LSDA calculation. We believe
that the employed assumptions will not affect the essential physics.

Computational details in the self-consistent calculation is as follows. For a given set of
parameters, the Hamiltonian (7.8) is solved in the momentum representation. Uniformly
spaced 1000 £ points are sampled in the Brillouin zone. Interpolation between meshes is
done by the tetrahedron method.[81] The convergence of the HF order parameters is that
the root mean square sum of the differences of each order parameter between the last two
steps is less than 1077, The quantization axis is taken as along the [111] direction, i.e., the
experimental easy axis except for a discussion on the magnetic anisotropy.

7.3 Results and Discussions

7.3.1 Magnetic ground state

Before determining the value of FU, variation of the calculated quantities with sweeping
F? is studied. Figure 7.2 displays (a) the 5f magnetic moment psg, (b) the ratio of por
to pspin of the 5f moment, (¢) the individual fispin and pors, (d) the expectation value of
the bf magnetic dipole (7.}, and (e} the constant potential V for the 5f orbital. For a
given F% V has been chosen so that the 5f electron number nss becomes 2.88. As shown
in (c), the absolute values of the individual pspin and por, increase as a function of F¢, but
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Figure 7.2: The calculated quantities with sweeping F¥. From the top side of panels, (a)
the 5f magnetic moment, (b) the ratio fiorn/pispin of the 5f moment, (c) the individual
moments fispin (open circle with broken line) and pior, (closed circle with solid line), (d) the
5f magnetic dipole (T3 ), and (e) the constant potential V.

Pspin 18 rather insensitive to F°, and pem, almost determines the change of pern/ Hspin- This
tendency is the same as the metallic 3d systems discussed in Chap. 6; again, porp has a
strong FY-sensitivity. For F® = 0.76 €V, pss becomes —1.70pg [indicated by an arrow in
(a)], which coincides with the result of the neutron scattering,[69] and thus we use this value
of FO according to our prescription mentioned in the last section. At this point, piorn/ fhspin 18
—2.14, and the individual moments are pepin = 1.49u8, forb = —3.19up, and (T,) = —0.36,
and the constant potential V = 1.505 eV.

For comparison, we list up results of previous band structure calculations for US in
Table 7.3. The results based on the conventional LSDA with the SOI through a second
variation reveal a too small absolute value of us; compared to the experimental —1.7ug
and the magnitude of porh/ptspin is smaller than our HF result.[82] Brooks[20] applied the
orbital polarization (OP) method and obtained a large magnitude of g, and a considerable
improvement in ps ;- However, they have stated that the individual magnitudes of pepin
and por, are considered to be too large from the analysis of the magnetic form factor.[75]
To improve the OP method, Severin et al. examined a spin(s) and magnetic quantum
number(m)-diagonal HF exchange potential and scaled it to the size of the corresponding
LSDA exchange potential.[75] Their results have a strong resemblance to ours, although
they have ignored the spin-off-diagonal elements, which are fully taken into account in our
method. This enigma will be discussed later. In the results of the neutron scattering
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Table 7.3: Magnetic ground state of the 5f orbital by various band structure calculations.
Magnetic moments fisf, fspin, and oy are in units of up.

Method Author Py Porb/flepin  Mspin  Horb
LSDA+S0I3q  FLAPW Oguchi (Ref. [79]) —0.55 -1.33 1.66 —221
LSDA+SOLnq  ASW  Kraft ef al. (Ref. [19]) 1.1 ~1.73 15 26
LSDA+S0Isq¢  LMTO Brooks (Ref. [20]) -1.1 -1.52 2.1 -3.2
0} LMTO Brooks (Ref. [20]) -1.8 —-1.82 2.2 —4.0
OP (scaled HY) : Severin et al. (Ref. [75]) =~ —1.61 -2.07 151 —3.12
HF TB present (=1.70) —2.14 1.49 -3.19
spin-diag. HF TB present —1.56 ~1.87 1.78 —-3.34
neutron measurement Wedgwood (Ref. [69]) -1.7  (-2.3) (1.31) (-3.0)

measurement by Wedgwood[69] in Table 7.3, the values in parenthesis are taken from an
analysis by Severin et al{75] Our individual moments are in a qualitative agreement with
these values.

US is'well known to show the largest magnetic anisotropy among cubic materials.{65, 66,
67] It strongly favors a [111] alignment and its saturated moment is about 1.7 times as large
as that of the hard axis [001]. We try to examine this anisotropy in the present framework.
Table 7.4 shows calculated results (the 5f electron number, 5f magnetic moment, and total
energy) for various quantization axes with the same parameters; F° and V are fixed to
those determined for the magnetization in the [111] direction. ps; is strongly dependent
on the axis and the calculated tendency about the easy and hard magnetization axis is
in accordance with the experimental results, although the change of ns; is less than 0.03.
The calculated total energy for each axis shows that the [111] direction is the easy axis as
expected from the calculated tendency of psy. Even if we determine the value of V' so as
to give ns; = 2.88 for the magnetization in the [001] direction, the tendency of ps; and the
total energy shown in Table 7.4 is found to be unchanged.

Table 7.4: The quantization-axis dependence of the 5f electron number, 5f magnetic mo-
ment, and total energy. The total energy is measured with referring to the energy for the
[111] axis.

axis ns;  psp [pp] total energy [meV]

[111]] 2.88 —1.70 0
[110] 287 —151 75
[001] 285 —1.28 12.6

7.3.2 U M,;s MCD spectrum

To see ‘whether or not our model describes the magnetic ground state of US, we . in-
vestigate magnetic circular dichroism (MCD) in x-ray core-photoabsorption spectroscopy
(XAS). Discovery of the so-called orbital[2] and spin[3] sum rules, which directly relate
(S:) (= —popin/2u8), (L) (= —poro/pp) and (T} of a specific site to simple integrations
of measured spectra, have led MCD into a powerful technique for studying ferromagnets.
Recently, Collins et al- have measured the MCD spectrum of US at the U My 5 edge (U 3d
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core — Bf photoabsorption) by using hard x-ray.[27] Their spectra show some characteristic
features: (i) pairs of 3d core spin-orbit-split peaks (M4 and Ms edges) are separated by
about 170 eV, which is sufficiently larger than the magnitude of the 3d-5f exchange inter-
action, (ii) the XAS spectrum shows a simple line shape with no clear multiplet or satellite
structure, (iii) in both of the M, and Mjs regions, the MCD shows positive signals in almost
entire photon energies, (iv) the MCD intensity in the AMs region is very small compared. to
the My, (v) finally, in the M5 region, a small negative splinter is observed just above the
large positive peak in the MCD spectrum.

The feature (1) indicates that the total angular momentum of the 3d core spin-orbit
multiplet (7. = 3/2 and 5/2) is a good quantum number in the photoexcited final states.
The feature (iii) is considered to be due to the large magnitude of pop since the same feature
has been seen in the Pt Ly 3 MCD of CrPts, where pio, dominates the Pt 5d magnetic
moment.[83, 84, 85] An atomic multiplet calculation[27] can well reproduce the features (ii),
(iii), and (iv), but may not explain the feature (v), indicating that some “solid-state effect”
takes place in the 5f state: According to the sum rules,[2, 3] the branching ratio of MCD
spectrum in d — f transition is related to the ground state magnetic moments by

Jag deo (171 =171

(L:)
Fiven = L T

(L:) —2(5:) — 6(T%)

where I* denotes the absorption coefficient with the photon helicity % (k = £1). If the (T})
term is negligible in Eq. (7.9), one can directly determine piorm,/ptspin from the éxperimental
integrated intensity ratio Rmcp and examine our theoretical value of yior /pspin, but unfor-
tunately, (7%} is generally very large in U systems. Therefore, it could be a sever'e‘cheéyk‘for
our HF ground state whether our framework can reproduce the value of Rycp itself and
the line shape of the U My 5 MCD spectrum, especially the feature (v). The XAS spectrum
with the photon helicity £ and energy w can be calculated as

I“(W)— = D Y Walt* 1) 6 (B — B —w), (7.10)

E . >E, ¢

5 |
ot =1 {7
: , (7.9)

where 1, . is the HF one-electron valence state with momentum %, band index n and energy
E,,, and 9, is the U core 3d state with energy E,, which is split into j. = 3/2 and 5/2, and
the operator ¢* denotes the intra-atomic 3d — 5f dipole transition with the photon helicity
«. Here, we have ignored the photon energy dependence of ¢*. The summation about ¥, is
taken over all unoccupied states. We have also ignored a core-valence interactior in the final
state, which in general leads to a multiplet structure in the spectrum. In our case, however,
the feature (ii) indicates that such an interaction is very week. In fact, the multipole Slater
integrals F*(3d,5f) and G*(3d,5f) are very small,[27] justifying our approximation. .
Figure 7.3 shows the calculated XAS and MCD spectra. They have been convoluted
by using Lorentzians with FWHM of 4.0 eV, which represent the 3d core hole lifetime
broadening.[27] The XAS spectra show a simple peak structure, and the MCD spectra reveal
positive sign for almost entire photon energies. Note that the intensity of the Ms MCD is
multiplied by 5, namely, it is fairly small compared to the My region. More noteworthy is the
appearance of a small negative splinfer in the Ms MCD, as experimentally observed as the
feature (v), which cannot be obtained by the atomic multiplet calculation. All experimental
line shape features can be reproduced well by our present calculation. The experimental
branching ratio of the MCD defined by Eq. (7.9), Rmcp = Ms/M,, is 0.13 £70.03,‘while
our result is 0.169. Reasonable agreement for both of the line shape and branching: ratiois
obtained between our calculation and the experiments by Collins et al.[27] It is interesting
to clarify the origin of the characteristic features in the MCD line shape, the small branching
ratio and the small negative splinter in the M region. Both of them can be ‘understood
qualitatively by inspecting the 5f partial DOS which is projected into the total ‘angular
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Figure 7.3: Calculated XAS and MCD spectra of US at the U My s edge (3d — 5f). Thin
line denotes the polarization-averaged XAS spectrum, (I™! + IT1)/2. Thick line represents
the MCD spectrum, I~! — I*1. The left (right) side of figures corresponds to the Mj (M)
region. The zero point of the photon energy of each figure is set to Ep — E;_. Lorentzian
convolutions with FWHM of 4.0 eV are used to include the core lifetime broadening. Note
that the MCD spectrum in the M5 region is multiplied by 5.
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Figure 7.4: The 5f partial DOS projected into the j bases: (a) the solid line denotes the

5f DOS of j = 5/2 and the broken one that of j = 7/2, (b) among the j = 7/2 states, the
individual j, = 7/2 (7. = —7/2) DOS is represented by the solid line (shaded area).

momentum of the 5f state, j = 5/2 and 7/2, and the transition probability of the d — f
dipole excitation. The 5f DOS is displayed in Fig. 7.4(a). Although j is not a good quantum
number for the 5f states, most of the j = 7/2 states are well pushed up.above EF and the
magnetic 5f state is almost determined by an electron population among the sixfold j = 5/2
states. Figure 7.5 shows the distribution of the electron population in the j basis. Among
the 7 = 5/2 bases, j, = 5/2, 3/2, and 1/2 states have large occupations, which leads to
the large magnitude of pqr that is coupled antiparallel to pgpin. Figure 7.6 shows the
jz dependence of weights of the transition probability in the d — f photoabsorption. In
the 3ds;, (Ms) edge, we have a large weight of transition into the j = 7/2 states, which
are almost unoccupied by electrons, and large absorption intensity is expected for both of
I=! and I'*!, and the magnitude of their difference |[I=* — I7?| becomes small. The small
negative splinter in the Ms MCD can be explained by considering the energy position of
each DOS among j = 7/2 bases. In Fig. 7.4(b), the j, = —7/2 (+7/2) state has the largest
weight of transition with £ = —1 (+1) photon. DOS for all other bases which have negative
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Figure 7.5: The bf electron occupation projected into the j bases. The left side is for
7 = 5/2 (hatched rectangle), and right, j = 7/2 (solid rectangle).
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Figure 7.6: The j, dependence of weights of the transition probability into the f states |jj,)
in the d — f photoabsorption by the photon helicity & (x = &1) for each of the core ds;;
and d3/, branches. ‘

(positive) j,, has a strong resemblance to that of j, = —7/2 (+7/2). A difference in the
energy position between negative and positive j, DOS causes an asymmetric dispersive MCD
line shape; the small negative splinter appears just above the positive peak. Next, in the
3d3/o (My) edge, we have a large weight of transition into the j = 5/2 states where j, = 5/2,
3/2 and 1/2 are mainly occupied and others are almost empty. In Figs. 7.5 and 7.6, we can
expect that the absorption with x = —1 is strong because the states with the large weight
of transition are almost empty, and that, on the other hand, the absorption with k = +1 is
week because vacant seats for the transition are quite few. The MCD, I=! — It in the M,
edge, then, becomes large. Thus the obtained characteristic features in the MCD spectrum
are qualitatively understood.

7.3.3 HF and LSDA

We shall discuss in detail the difference between the HF exchange potential and that of
the LSDA. From Egs. (7.5) and (7.6), the exchange part of the HF Hamiltonian can be
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Table 7.5: Upper: the absolute values of the spin-off-diagonal matrix elements of the ex-
change part of the converged HF Hamiltonian in units of eV. Lower: the spin-off-diagonal
matrix elements of the spin-orbit interaction among the 5f electrons in units of (5;/2. The
basis of matrices is the spin state ¢ and the magnetic quantum number m of the 5f state.

T
-3 -2 -1 0 1 2 3
1 -3 0 0 0.01 0 0 0 0
-2 006 0 0 0.01 0 0 0
-1 0 0.14 0 0 0.02 0 0
0 0 0 0.12 0 0 0.01 0
1 004 O 0 0.31 0 - 0 00
2 0 007 0 0 0.25 0 0
3 0 0 0.04 O 0 024 0

rewritten as

ELX - - EE: <7n17n2

mimamim,

1
;;‘mlzm’1> Z(f7-7t202fm;01>fﬂt101 m/102 (711)

0102

with carrying out the integration in the spin space. Two important aspects about the HF
exact exchange potential can be revealed from Eq. (7.11). In the first place, it has a spin-
off-diagonal element (spin-flip term) o1 # 03, that is, the exchange interaction may mix the
spin-up and spin-down states. Since we are considering a situation with the SOI, the self-
consistent one-electron state will be a combination of the different spin bases. Insuch a case,
the HF order parameter in Eq. (7.11) in general have a finite value even for o1 # 5. Table 7.5
shows the spin-off-diagonal matrix elements of the converged Hx. Here we simply displayed
the absolute values of them although they are actually complex numbers. It can be seen that
the columns and rows with larger matrix elements well correspond to those where the spin-
off-diagonal matrix element of the SOI has a finite value (the matrix elements of the SOI are
displayed also in Table 7.5) and that their magnitude (0.1— 0.3 eV) is comparable to that of
the SOI, V12 Csf/2 ~ 0.4 €V. Thus the exact exchange potential clearly enhances the effect
of the SOI and mizes strongly the spin-up and spin-down siates. This feature is not seen
in the LSDA exchange potential, since it is a spin-diagonal potential. Needless to say, the
effect of the spin-off-diagonal elements, i.e., the correct exchange potential is not taken into
account in LSDA, which causes an insufficient mixing between the spin-up and spin-down
states. In order to emphasize this point, we shall artificially remove the spin-off-diagonal
elements from the HF potential and see what happens. With this restriction and with the
same parameters, we calculate again the ground state self-consistently. The results are as

follows: ngp = 2.85, psp = —1.56uB, forb/pspin = —1.87, pepin = L.78B, fors = —3.34us,
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and (T,) = —0.22. A great change can be seen in (T}), that is, its magnitude is about 60% of
that of the exact one. psy, pspin and port are quantities which are obtained by the diagonal
summation in o and m basis so that they are relatively insensitive to the extinction of the
spin-off-diagonal exchange potential. (T} is, on the other hand, considered to be sensitive

to that, because it has a form of 7, = 3, {\/3/2 [c(lz)(r,-)si_ - c(_zg(ri)sH] - 2c§)2)(r,-)siz}
with ¢ (r;) = \/37/(2k + 1) Yim(r;) with the spin-flip terms. Thus (T}) will reflect the

extent of the spin-up and spin-down mixing in ¥,. This change in (T}) readily influences
the branching ratio of MCD. In fact, Rycp becomes 0.292, which is far larger than the
experimental result 0.13 4 0.03. Even if the parameters F and V are chosen so that ns; =
2.88 and ps; = —1.70up, the results of (7.) and Rmcp are not improved; (13) = —0.24
and Rpycp = 0.302. Severin et al seem to have obtained fairly reasonable results for ps;
and individual moments[75] although they have not considered the spin-off-diagonal terms
in the exchange potential. It is debatable whether the character of each one-electron state
or (T,) is appropriately described in their framework.

In the second place, there is a strong orbital dependence in the exact exchange potential.
In the LSDA, the spin-up and spin-down states are split more or less uniformly, because the
exchange potential for the spin o state has a rather simple form as ne! 3(r), where n,(7)
is the total charge density with the spin o, and the corresponding matrix elements within
the f states hardly have an orbital dependence. The diagonal matrix element of Eq. (7.11)
with respect to m and ¢ is (Hx)mo, mo = — 9 (mm’ll/rlglm’m)(f:;,afm,g) and it Is m
dependent. In fact, the converged Hx for the U 5f state of US shows that for the minority
spin it varies from —0.3 to —0.4 eV, whereas for the majority spin it varies widely from
—0.7 to —1.8 €V, showing the strong m dependence. This is essential in realizing the large
orbital magnetic moment.

We conclude that these characteristic features of the exact exchange potential, which
are missing in the LSDA, are crucial in the estimation of pon. We may say that the
underestimation of g, in the LSDA approach arises from its insufficient treatment of the
exchange interaction and not from its insufficiency in describing the correlation effect.

7.4 Conclusions

We have calculated pepin and po, of the 5f state and the MCD spectrum in the U
3d — 5f x-ray absorption for ferromagnetic US on the basis of the HF approximation for
an extended Hubbard model. The model includes the U 6p, 5f, 6d, and 7s orbitals and
the S 3s, 3p, and 3d orbitals, and the intra-atomic 5f-5f multipole interaction and the
5f spin-orbit interaction, most of parameters of which are determined by fitting with the
result of the first-principles LDA calculation in the paramagnetic state. The calculated ratio
Porb/ phspin of —2.1 and por, of —3.2up are in good agreement with available experimental
results. The calculated MCD spectrum in the U 3d — 5f absorption also agrees with the
recent experiment, ,

We have shown that, for the 5f electrons specified by the magnetic quantum number
m and spin o, the m-dependent potential and the spin-off-diagonal matrix element, both
of which arise from a faithful HF approximation, are crucially important in estimating
especially piorp, and (73) and in obtaining the reasonable wave function. By a comparison
between the present HF calculation and LSDA, an insufficiency in describing the exchange
interaction in LSDA is pointed out to be a major cause of its underestimation of gy, which
is seen not only in U compounds but also in transition metals such as Co. Although our
model contains the adjustable parameters F° and V, we expect that the obtained results
are not sensitive to details of adopted models.

In this work, we have not discussed the electron-correlation effect, which is not considered
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explicitly in the present calculation. In our calculation, we have set the Slater integral
FY% = 0.76 eV so as to obtain us; = —1.70up. The adopted F© value, however, seems to
be too small. Even itinerant 3d transition metals such as Fe and Co are considered to have
FU ~1 eV for the 3d-3d intra-atomic interaction.[86, 87] It is well known that the stability
of magnetic solution is much emphasized in the HF approximation and that the electron-
correlation effect is expected to be a suppression of this tendency.[88, 89] With the correlation
effect, the driving force for the polarization will be suppressed and we will need a larger
value of F* so as to obtain ps; = —1.70up. Kanamori has discussed the correlation effect
in metal considering the multiple scattering between two electrons in bands.[56] According
to his argument, the bare intra-atomic Coulomb integral U is strongly reduced by the
correlation effect Ueg ~ U/(1 + U/W), where W is the band width, and the renormalized
Ueg cannot exceed W. Then the relatively small value of fitted F* is not so surprising
because our F° is the renormalized effective one, on which all correlation effect is imposed,
and the intrinsic 5f band width in this case is only about 1.5 eV (see Fig. 7.1). Of course a
detailed calculation, in which the correlation effect is explicitly considered in some manner,
is preferable and must be interesting, but it is out of the present paper and a future problem.
Even if such correlation effect is included, we believe that the role of exchange interaction
in obtaining the correct ratio porb/ftspin, Which is discussed above, is unchanged.

The experimental total magnetic moment per formula unit of US is —1.55up and the
difference from the 5f moment 0.15up is supposed to be a contribution from the U 6d spin
moment, which is coupled parallel to the 5f pspin.[90, 91] In our calculation, since the 5 f-6d
exchange interaction is neglected, the 6d state contributes only 0.02up. In U chalcogenides,
the Kerr spectrum due to the 5f-6d optical transition has been observed,[92] which will be
a future subject of this study by including the 5f-6d interaction.
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