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Abstract

The orbital magnetic moment and related phenomena in the Zd and 5/ electron systems

are examined by the Hartree-Fock approximation (HFA). We will show that the faithful

treatmenもfor the exchange interaction is crucially important in describing the orbital mag-

netism in solids.

First, the atomic ground states of magnetic ions are summarized and the applications

of王1FA are given to examine its validity in describing magnetic quantities. It is shown that

HFA reproduces Hund's鮎st and second rules in the 3d and 4/ systems. The third rule is

not reproduced in the less than half filling case. In the 3d ions, however, the crystal-field

effect, i.e., some kind of the solid-state e鮎ct, makes HFA to be a good approximation. In

the uranium ions, where the 5/ spin-orbit interaction is so large, HFA gives their ground

state fairly reasonably.

Encouraged by these results, we apply the tight-binding HF method to the insulating

Coo in order to study its possible antiferromagnetic structure and orbital state. Coo is

well known to exhibit the second kind of antiferromagnetic structure, which is in general

described by the four wave vectors {Q,}. It is still an open question whether the single-
Q structure or multiple-Q structure is realized in Coo. Our calculation, which takes into

consideration the 3d spin-orbit interaction and the intra-atomic full 3<i-3ii multipole inter

action, shows interesting results; in addition to a collinear single-Q structure, a noncollinear

quadruple-Q one, both of which are compatible with the neutron diffraction experiment,

are obtained as stable HF solutions. The magnitude of the Co orbital magnetic moment

is shown to be as large as - I^b-　Relationship between the orbital magnetism and the

band-gap formation is explained.

In free atoms, their ground states have no relation to the monopole Coulomb interaction

represented by the Slater integral F-, and the other multipole terms determine their mag-

netic state. In solids, however, the orbital magnetic moment shows strong dependence on

F , even in metallic phase. By considering simple systems, the enhancement mechanism of

the orbital moment through F is discussed in detail.

Finally, the electronic structure of the ferromagnetic compound US is examined. The TJ

5/ spin and orbital magnetic moments are calculated on the basis of the extended Hubbard

model and HFA. Our tight-binding model includes the U 6p, 5/, 6d and 7s orbitals and the

S 3s, 3p and 3d ones, andもhe intra-atomic 5/-5/ multipole interaction and the spin-orbit

interaction in the 5/ state are taken into account. Most of parameters involved in the mode]

are determined by fitting with the energy of Bloch electrons in the paramagnetic state ob-

tamed by a firsLprinciples calculation based on the local density approximation (LDA). The

calculated magnetic quantities are in good agreement with available experimental results.

The magnetic circular dichroism spectrum at the U id-5/ x-ray absorption is also calcu-

lated and agrees with the recent experiment. It is shown that the exact exchange potential,

gained by HFA, can mix the spin up and down states and enhance the effect of the spin-orbit

interaction. This feature is not seen in the LDA potential, and the problems of LDA in the

estimation ofもhe orbital moments are discussed.
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Chapter 1

Introduction

In recent years, orbital-related phenomena in the 3d, 4/, and 5/ electron systems have

been attracted much attention. One of the examples is the orbital ordering in manganites,[l]

where the orbital degree of freedom of the 3d electrons is coupled with that of the lattice

and further considered to be related to the spin ordering. In magnets, the spin-orbit inter-

action induces the orbital magnetism that is disclosed in phenomena such as magnetocrys-

talline anisotropy, magneto-optical effects, and x-ray magnetic circular dichroism (MCD).

MCD, using the synchrotron-radiated x-ray, becomes a powerful tool for studying ferromag-

netic substances, after the discovery of the so-called orbital and spin sum rules.[2, 3] The

atomic orbital and spin magnetic moments (/i。rb and fispm) are considered to be the funda-

mental quantities in magnets, whereas the conventional bulk magnetization measurement

just probes the total magnetic moment. The MCD experiment[4, 5, 6] combined with the

sum rules enables one to measure the individual contributions of the spin and orbit to the

specific-site total moment in ferromagnetic compounds though there are some limitations

in the application of the sum rules.[7, 8, 9]

In a free atom or ion, fispm and /iorb are typically comparable in magnitude. It is known

that from Hundフs rules one can predict the ground-state electron-con軸uration for atoms

with an un filled shell. According to them, the total spin angular momentum 5 and orbital

angular momentum L of the open shell are described by the following three rules:

1. S has the largest value consistent with the Pauli exclusion principle.

2. L has the largest value consistent with the Pauli exclusion principle and the丘rst rule.

3. The spin-orbit interaction couples the vectors L and S. The coupling is antiparalle】

way for the less than half filling case, and parallel for the more than half filling case.

The first and second rules are considered to be a consequence of the Pauli principle and

Coulomb interaction. The Pauli principle states that the probability of finding two elec-

trons with the same spin direction must vanish as they approach each other because of

the antisymmetry of the wave function under exchange. Hence electrons with parallel spins

tendもo be farther apart from each other. The Coulomb repulsion also favors this tendency.

The energy cost due to the Coulomb interaction is lower for the longer distance between

electrons, resulting in the first rule. The maximum L is considered to be due to the multi-

pole Coulomb interaction. The exceptional cases of the Hund rule XS-coupling scheme are

heavy atoms, including the actinides, where the spin-orbit interaction is so strong that the

jj coupling or intermediate coupling has priority. At the present day one can perform full

quantum mechanical calculations for light atoms without any simplifying approximations,

and it is found that fispln and /uorb follow Hund's rules quite well. For heavy atoms such

complete calculations are in feasible because of the large number of electrons. However we

3



4 Chapter 1. Introduction

alternativelyhavegoodapproximateresultsforheavyatoms.Thustheformationofthe

atomicmagneticmomentsarewellunderstood.[叫

Insolids,thenumberofelectronsinvolvedistremendouslylargeandcompletecalcula-

tionslikethoseforfreeatomsareneverpossible.Thereforeitisconvenienttohavesimplified

modelsormethodsthatdescribemagnetisminsolidstofirstapproximation.Densityfunc-

tionaltheory(DFT),proposed員rstbyHohenbergandKohn,[12]isinprinciplearigorous

theoryforasystemofinteractingelectrons,basedontheelectrondensitydistributionn(r)

insteadofthemany-electronwavefunctionS(ti,V2,蝣蝣.)-[11]DFTstatesthattheexchange-

correlationenergyofelectronsE訂.,whichis,intheatomiccase,thedrivir増forceofthe

spinandorbitalpolarizationthatleadstoI王und'srules,istobeexpressedbyafunctional

intermsofn[r).Thisallowsonetosubstitutethemany-bodyproblemfordealingwitha

non-interactingelectronsystemwhichgivestheexactn(T).ThetruefunctionalEj;C[n(r)¥

is,however,notknown,andthisisthepointwherethemajorapproximationisneeded

toproceedwithDFT.Usuallytheso-calledlocaldensityapproximation(LDA)isapplied

withbeingguidedbytheresultsofanalyticalorMonteCarlocalculationsforahomoge-

neousinteractingelectrongas.Thus,intheitinerantlimit,LDAgivesexactresults.The

standardprocedureofthisapproximationisasfollows.Ateachpointinspacetheexchange-

correlationpropertiesareassumedtobedeterminedbythelocalchargedensityofelectrons.

Theexchange-correlationenergydensitye訂issimplyassumedtobegivenbythatofaho-

mogeneouselectrongaswiththesamechargedensity.Thetotalexchange-correlationenergy

isgainedbyintegratingoverallspace:Exc-Jn(r)exc{n(r))dr.Extensiontotワes亘n-

polarizedcaseisgainedanalogouslyandknownasthelocalspindensityapproximation

(LSDA).Inthiscase,theexchange-correlationenergydensityisassumedtobedetermined

bythelocalspin-magnetizationdensitym(r)=n†(r)-nlr)inadditiontothecharge

densityn(r)-n†(r)+nl(r):e訂,(r)=exc(n(r),Tnii")).Astheexplicitformofe∬again,

theresultsofanalyticalorMonteCarlocalculationsforahomogeneouselectrongas,with

thespinpolarization,areusuallyreferredto.

Withtheprogressofcomputerfacilities,thefirst-principlesband-structurecalculations

basedonL(S)DA,wherethereisnofreeparameter,havebeencarriedoutforseveraldecades.

IthasbeenshownthatLSDAyieldsgoodresultsabouttheelectronicstructureand〃spin

ofitinerantmagneticmaterialscontainingthe3c?transition-metalelements.[13]Inthe4/

and5/systems,thecontributionofft。rbtothetotalmomentiscomparablewithfJ,spinin

magnitude,eveninsolids.Tohandletheorbitalmagnetism,theeffectofthespin-orbit

interaction(SOI),i.e.,oneoftherelativisticeffects,hasbeenincludedinthecalculations,

butstillbasedonIJSDA(hereafterwedenotethisschemeasLSDA十SOI).Suchattemptsare,

however,notnecessarilyencoluragmg.Inmostcases,thecalculatedorbitalmomentsaretoo

smallcomparedwithexperiments.[14,15,16,17,18,19,20,21]Eveninthe3dsystems,where

A*。rbistypicallyquitesmall,LSDA+SOIseriouslyunderestimatesitscontribution.[14,15,

16,17,18]Amongthe5/systems,ferromagneticuraniumcompoundsareratherextensively

studied.[18,19,20,21]Duetothelessthanhalffillinginthe5/state,//orband//spinofU

sitearealignedintheantiparallelway,and//orbistypicallylargerthan^sp;ninmagmもude,

eveninmetallicsubstances.IntheLSDA+SOIcalculationsforuraniumcompounds,the

condition¥/J.。rb¥>lA'spinlissuccessfullyreproduced,butthecalculated/i。rt>isusuallystill

small,leadingtoatoosmallmagnitudeofthetotalmagneticmoment,|//。rbi-¥l*:
蝣spin|j
comparedwithexperiments.

Whydoesthismethod,LSDA+SOI,failstodescribeノthecontributionoftheorbital

moment?Itissupposedもhatthefollowingreasonsarecrucial:

1-Thehomogeneouselectron-gaspicture,onwhichL(S)DAisbased,clasheswiththe

existenceoftheorbitalmoment.Theorbitalangularmomentumcomesfromthe

rotationalmovementaboutanucleus,whereas,inthehomogeneouspicture,thereis

nonucleusandhenceelectronsareunbounded.
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2. The correlation of different orbital states, which leads to Hund's second rule in the case

offree atoms, is considered to be nonlocal e恥ct. The orbital state is characterized by

the rotational properties of the electronic wave function about the nucleus. In other

words, one needs to know the charge density of the electrons around the nucleus, and

notjust at the single point in question. On the other hand, in L(S)DA, it is a local

potential that has been used to describe every exchange-correlation effect,

3, LSDA is based on the spin DFT, where the total energy is minimized with respect to

n(r) and the spira-magnetization density m(r). Even if an exact functional is known,

which is able to include implicitly all e鮎cts related to the orbital magnetism, DFT just

guarantees the densities used in the variational process are to be reproduced exactly.

in this case, the total and spin densities, not the orbital moment. So long as we are

based on the spin DFT, there is no guarantee that the orbital-related quantities can

be reproduced.

From these reasons, it can be said that, in LSDA, there is no theoretical framework

to determine /ioTb self-consistently. Extension of LSDA, or another framework is necessary

for describing the itinerant magnetism including the orbital contribution. The correlation

needed here is atomic one, opposite to the homogeneous electron-gas picture.

Historically, discussions of the itinerant ferromagnetism, based on the band picture,

go back to the pioneering work by Slater.[22] He stood in the tight-binding I王artree-Fock

(HF) method, and showed thaもone can deduce the exchange splitting of 3d bands from

the intra-atomic Coulomb interaction. In his theory the orbital magnetic effect was not

taken into account; he considered only the spin polarization. It is supposed that the orbital

polarization should be also related to the intra-atomic Coulomb interaction, not only driven

by the relativistic spin-orbit coupling.

The effect of the Coulomb interaction between electrons is to be classified into the follow-

ing three categories: (i) the classical Coulomb interaction; (ii) a correlation effect between

electrons with the same spin orientation, which is a quantum-mechanical effect gained by

Hartree-Fock approximation (HFA); (iii) the remaining correlation effect, which cannot be

managed by HFA. For the sake of clear distinction, the effect (ii) is called the "exchange

effect , and (iii) the ``correlation effect" ・ HFA is a well-known and well-defined approxi-

mation, where the many-body wave function is expressed by a single Slater determinant.

By definition, although it cannot describe the correlation effect, one can obtain an exact

exchange potential by HFA. In L(S)DA, both of the exchange and correlation effects are

taken into consideration to some extent, but not completely, by referring to the homoge-

neous electron gas, and there is no guarantee that those effects in L(S)DA correspond well
to the real ones.

The aim of this thesis is to examine the effect of the atomic correlation for the orbital

magnetism in solids, featuring the e∬ect of the exchange interaction based on model cal-

culations. Our model is the so-called extended Hubbard model, where we consider the full

degeneracy of relevant orbitals, the spin-orbit interaction, and the intra-atomic multipole

Coulomb interaction which is treated within HFA. It is shown that the faithful treatment

for the intra-atomic exchange interaction is crucially important for good descriptions of the

orbital magnetism in the 3of or 5/ systems.

Organization of this thesis is the following. Chapters 2-4 give introductory explanations

concerned about the models and concepts used in this thesis. In Chap. 2, principles of

HFA are represented in detail. In Chap. 3, we formulate the intra-atomic interactions and

deduce the corresponding HF Hamiltonian. Atomic ground state is examined by HFA to

investigate its validity and accuracy in describing the magnetic quantities. It is shown

that HFA reproduces Hund's石rst and second rules for the 3d and 4/ atoms and that it is

a fairly good approximation for uranium atom where the spin-orbit interaction is strong.

Limitations of UFA are also given. In Chap. 4, the tight-binding method, which is used in
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this thesis to represent the electron kinetic energy, is explained. Using the tight-binding HF

model, the orbital-related magnetic quantities and effects in solids are discussed in Chaps 5-

7. In Chap. 5, possible magnetic structure of insulating CoO is discussed. Both of the facts

that the orbital moment of the 3d state in Coo is so large and that Goo is an insulator,

indicate that LSDA calculation is not suitable for Coo. We obtained interesting results by

the present method. In Chap. 6, the orbital moment in the metallic 3d systems is discussed.

It is shown that the monopole Coulomb interaction, to which the magnetic quantities in

the free atoms are independent, plays an important role to enhance the orbital magnetic

moment, not only in the insulating phase but also in the metallic phase. Finally in Chap. 7,

discussions about the uranium 5/ state and the role of the exact exchange potential are

given with taking US as an example・ US is known as an itinerant ferromagnetic compound,

but its orbital moment is quite large. It is shown that the exact exchange potential will

enhance the effect of the 5/ spin-orbit interaction and mixもhe坤in up and down states.

MCD spectrum and a detailed comparison between the potentials in LSDA and HFA are

alsogiven.



Chapter 2

Hartree-Fock approximation

2.1　General principle

Mean-field approximation is often used as the first approach to understand interacting-

electron system. It provides us a simple picture that each electron is moving independently in

the one-electron potential which comes from the averaged interaction with all other electrons.

The Hartree-Fock approximation (HFA) is one of the well known approach in this direction

and is based on the variational method. In HFA, the ground-state wavefunction for N-

electron system is expressed by a single Slater determinant:

^lfai) i>2¥xi) - iPn(xi)
・pl(x2) i>2[B2)蝣蝣蝣　fpN(x2)

砂.{xn) 4>2¥Xn) -　+N(㌶N)

(2-1)

The single-electron states -Ofc(ae)'s (k - 1, - ,N) are to be determined by the variational

method- Here in Eq. (2.1), Xj stands for both of the coordinate in the real space r, and

the spin variable a, of the j-th electron.擁(as)'s include the spin function and they are
orthonormalized with each other:

ノー 4,芸(x)ゆkJ(諾) dx - 6kk>蝣

We consider the following Hamiltonian which consists of 2 parts:

N

H-∑h(xi)+芸三三　V(認i,認j),
=1　　　i=l j=l(i&)

(2-2)

(2.3)

where h includes any kind of one-body Hamiltonian, for instance, the kinetic energy, the

spm-orbit interaction, the Zeeman energy, the potential energy in the periodic crystal lattice,

etc- The second term represents the Coulomb interaction between electrons, t)(a5i, aj2) =

1/|yi - t-2|. The expectation value of (2・3) in the ground state (2.1) is calculated as follows:

.Ⅴ

(申HF¥H¥qHF)-∑伸k)+芸三三†(kk'¥v¥kk'}-(kk'¥v¥k'k)}, (2.4)
jfc=l         k=i k'=l

where we have used the relation (2.2) and de点ned the following expressions,

{k¥h¥k) - 一二IJ-1!‖J、l′　蝣i<U

7
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璃x)%j)*k,(x )v(x,x′)iMaO一転(a,′) dxゐ′　　(2.6)

The interaction matrix elements in Eq. (2.4), (kk′回kk′) and (kk'¥v¥k'k), are called the

Coulomb integral and the exchange integral, respectively. The minimization problem of

くせHFw匝HF) in terms of ipk's under the condition of (2.2) yields the following equation

with Lagrange s undetermined multiplier e^kl '

A　＼一

くせHF¥H仲HFト∑ ∑ C^irJ(^fcil^fci)
k,-l *;i=l

h(x)^k(x) +
N

k'=lJ

I.,.I.(・十'.I,f../∴ <t.r i.蝣蝣,ri

=0. (2.7)

This becomes

車x'jvlx^'^jcix')-′(諺,}-差ekk'ipk'(x). (2・8)
For the summation over k in the left-hand side of this equation, the term of k'= k, which

means the self interaction, is automatically excluded by the canceling out between the

Coulomb and exchange parts. This is one of the important aspects of HFA; nonphystcal self

interaction is automaticqUy removed in HFA. The one-body density matrix in the ground

state (2.1) can be d誠ned as follows:

N

p(諺,認′) - ∑碩*)M*')
fc=l

Making use of this expression, Eq. (2.8) is rewritten as

N

{h(x) +ォeff(諺) - A{x)}擁(認) - ∑ tkk'1/>k'(認),
kJこ=1

where veff(x) and A(x) are defined by

・eff(認- /<詔,x')p(x′,認')dx',

A(x)t(x) - h諾,x'W(x')p(x′,認)ゐ′・

(2.9)

(2-10)

The operators in the brackets of Eq. (2.10), which act on血, are the Hermitian operators
and independent of k, so that we can take ipk as the eigenfunction of these operators. Then

ikk'm the right-hand side becomes zero for k ≠ k , namely,

{h(x) + veff(x) - A(諾))擁(re) - ekipk(x).

This is called 'Hartree-Fock equation'- More explicit form like (2.8) is given by

N

h(x)ipk(x) + ∑
fc'=l

v(諺,x')¥i>k,(x')¥2 dx'l頼諾)

(2.13)

距- 'x')M*') d車′(認) - e-　(2.14)
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The single determinant甘HF is constructed by these eigenfunctions V^'s (&-1,‥. , N) of

Eq. (2.13), which are in order of the energy from the lowest eigenvalue e. In general,

this procedure of HFA is rather difficult because veff and A in Eq. (2.13) contains ^'s
(k-l,... , N) and this is a nonlinear problem by nature. Usually, the following iterative

way is employed to deal with this problem. First, assuming an appropriate form for uefj

and A, one will solve Eq. (2.13). Then with this solution ipk's one will calculate weff and

A and examine whether the obtained vetr and A are the same as the assumed ones or not.

If the agreement is not obtained, one should go further with the calculated veff and A to

get new solution ㊥;'s and recalculate vef[ and A. This cycle is to be iterated until the

sufficient convergence is seen for vefj and A. Thus converged potential, vef[ plus A, is called
self-consistent爺eld'.

Equation (2.14) multiplied by現x) from the left side and integrated with respect to x
yields the one-electron energy of the state k;

N

Ek - (k¥h¥k)+ ≡ ‡(kk'¥v¥kがト{kk'¥v¥k'k)}.
k'=l

(2.15)

The total energy, Eq. (2-4), can be rewritten with this one-electron energy　たas follows:

W-(岬H匝HP)-∑Ek一芸三三{〈榊町(kk'¥v¥k'k)}, (2.16)
」V

;=1　　　*=1 *'=1

where it should be noted that the second term prevents the double-counting of the electron-

electron interaction.

2.2Secondquantization

Ingeneral,thesecond-quantizationmethodismoreconvenientthanusingtheSlaterde-

termmant.Inthissection,wewouldformulatetheHamilもonianbythesecondquantization

andexamineitsforminHFA-Thisprocedureprovidesuswithaninsightaboutwhatis

missinginHFAanditcanhelpustogofurtherintoahigherorderapproximation.We

considerthefollowingHamiltonianwhichisthesameasEq.(2.3)butisexpressedbythe

secondquantization,

H-∑(k¥h¥k')a^ak,+呈∑(kifa帖-i')ailai2ak2ォ*,'(2・.7)

k,k'kiM,ki,k2'

herenotethatthereisnorestrictionaboutthesingle-electronstatesk'sexceptthatthey

constructanorthonormalcompleteset.a吉ak)isthecreation(annihilation)operatorof

theAr-thstate-WeexpresstheHFground-statewavefunctionforAr-electronsystemas

HF-++sHt=at,a*a-lkNIO),(2.18)

where|0)representsthevacuumstate.Weshouldtrytominimize(せHF固匝HF),whichis

calculatedasfollows:

II　- 、l,'T|,,!,|,川;I

」Ⅴ

=　∑<*,-l/サl*j>+
1=1

N N

∑∑†("'2"^jl^1*蝣'i**'?ド(回)}-　(2.19)
1=1J=¥

This is the same as (2.4) and the states k's should satisfy the HF equation (2.13) from the

condition of minimizing W. The HF ground state申HF is realized by filling these states
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with N electrons in order of the energy from the lowest eigenvalue e. The story up to now

is completely the same as the previous one discussed in sec. 2.1・

Let us examine the original Hamiltonian (2.17) in detail, provided that the states

(2.17) satisfy the HF equation (2.13). It is convenient to stand in the hole picture for the

occupied states in the HF ground stateせHF;

hi. -a去　　bi - i*,>　　{bki'bt}-h凍+HM =s'i'  (2.20)

namely, b~j^ {bf.) represents an operator to create (annihilate) a hole in the state k- Here-

inafter the occupied states ofせ　are labeled as k ≦ kp, and the unoccupied states, k > kp,

and we would stand in the hole picture for k < kp with using operators bjJ and bk, while

electron picture for k > kp with ajjf and ak, Then

akせHF-o (k>kF)　　bk^m -0 (k≦kF),　　　　(2.21)

namely,せ　behaves like vacuum state for the operators a and b.

Utilizing this new scheme of the electron-hole picture, we would rewrite the Hamilto-

nian (2.17) in terms of a and b and furthermore in terms of the normal product. After a

cumbersome procedure, the I壬amiltonian becomes as follows:

H- ∑(梱k)+芸∑ {{kk'¥v¥kk')-(kk'¥v¥k'k)}
k≦kp k,h'≦kF

+　∑latak<　K'h)
k.k'

・[
(k¥h¥k') + ∑ {{kk^vlk'kx)-(khlvlkik')}

i,<*F

+　∑(atht'+hak>)
*,*'

・[
(k¥h¥k')+ ∑ i(k姉I*'*!ト(kkilvlhk'D

kx<kF

(2.22)

(2.23)

(2.24)

・芸1妄4[〈12回34'…b3+
+ I(12回34ト(12回43)} (a+4&Jas + a+W&2)

+ (12回34) [a+a%a4a3 + bjbtbib2)

- 2 {{12回34ト(12回43DaT64 b2as

+ I(12回34ト(12回43)} (a^b2a4a3 + bjb^a^

+ (12回34)6162a4a3]. (2.25)

where it should be noted that the summationover k is to be taken as k > kp when k is the

subscript ofa or a+, while k ≦ kp for bor 6+. In (2-23) and (2.24), one can recognize that the

equation within the square brackets [ j is the matrix element of the mean-field Hamiltonian

of (2-13) between the states k and k'. Since the state & satisfies the HF equation (2.13),

this matrix element becomes (.k&kv蝣The equation (2.24) is, however, to be zero since the

subscript of a should be different from that of b. The equation (2.22), which is a constant

term, is equal to the ground-state energy in I王FA, namely, Eq. (2.19). Hence the original

Hamiltonian (2.17) can be written in the form

H-W+∑ek(atak一触)+H2
kl

(2.26)
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here Hi represents the interaction term, which contains four operators, and is described by

Eq. (2.25). The characteristic feature of (2.26) is that the one-body term, which contains

two operators, is already diagonalized. Operating H to甘HF leads to

HWHF = wせHF+H2せHF

- wvat +芸∑ (1醐4)afafb^bs岬　　(2.27)
1,2,3,4

here note that we have utilized Eq. (2.21)I The second term becomes the summation over

the excited states, in which two electron-hole pairs are excited fromせHF To go beyond
HFA, we should take into account this term.



Chapter 3

Atomic ground state

In this chapter, we summarize the magnetic ground state of an atom or ion, which has

an incomplete shell such as 3d, 4/, or 5/ orbital outside closed shells, and examine how

properly the HF method can describe the magnetic quantities of such system. In Sec. 3.1,

we prepare an appropriate Hamiltonian for an isolated ion. In Sec. 3-2, a corresponding

HF Hamiltonian is derived. Magnetic quantities, to which we should pay attention, are

introduced in Sec. 3.3. Calculated results and discussions for the 3d, 4/, and U ions are

given in Sec. 3.4, 3.5, and 3.6, respectively. Sec. 3.7 is devoted to conclusion.

3.1　Hamiltoman

The ground state of an ion with an incomplete shell nl (n and / are the principal quantum

number and the azimuthal quantum number of the atomic orbital, respectively) may be

described by the following Hamiltonian:

H - Hee+ Hkin + Hso + iJcry + Hm,

where Hee is the electrostatic Coulomb interaction between the equivalent electrons in the

nl shell; Hkin is the kinetic energy; Hso is the spin-orbiもinteraction; i?cry is the crystalline

field; Hm is the infinitesimal molecular fieldコwhich is added to lift degeneracy and obtain a

magnetically polarized solution-

The one-electron state of the nl shell can be specified by the orbital magnetic quantum

number m and the spin magnetic quantum number a:

v) - ¥nlma) - Rni{r)Yim{9<i>)x。　　　　　　　　(3.2)

where v is the abbreviation for all of the one-electron quantum numbers; Rni is the radial

wave function; Y¥m is the spherical harmonics; ¥ is tne spin function. For馬-　we would
use the ab initio HF numerical result with multipleLaveraged con丘guration and limit our

discussion to only the angular and spin parts. This simplification has been justified by a

number of calculations based on the same approximation. With fixing Rn], ifkin becomes

constant and we will omit it from the following discussions.

The interaction term Hee is written as follows:

・V　;ヽ'

He 壬∑∑　-・.r.i
i=l j-l(i≠j)

呈∑ (〃1^2¥v¥^3V¥)ォJl(42<VV3>
Vl,V2,U3,V4

r>

(3-3)

(3・4)
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where N in the臥st line is the electron number in the nl shell, and we have used the

second-quantization method in the second line. The interaction matrix element is given by

(vtv2回V^vA) - <-'(7lcr3d,72(T4dmi-f-m2|m3-|-TO4

・ ∑　c"(lmi,lm3)ck(lm4,lm2)Fk{nl).　　(3.5)
k=0,2,4,…,2Z

Here, ck and Fk are called the Gaunt coe伍cient and Slater integral, respectively, and their
explicit forms are

ck{lm, l'm')
2k+1

Fk(nl) - Idr¥dr2

/ -一蝣

～.

7.

Yl㌫Yk(m-m')Yl'm',

k+2

芸云iRnliriWIRnli^W
>

where r< (r>) denotes the smaller (larger) of n and r2- As can be seen from Eq. (3.5),

the electron-electron interaction within an atom is in general muliipole interaction. The

monopole part [k - 0 term) is trivial in the case of an isolated atom because it only gives a

shift in the total energy according to the electron number and has no effect on the magnetic

quantities or wavefunction. In the interaction matrix element, the monopole part is

(V¥V2回V3"4)(k=0) -　Sala3Sa2<riSmi+m2iTn3+mic (lmi,lm3) co(lm4,lm2) F-(nl)

-　sffl(ras,GiQavm¥m,zVm,2'm>4^ l.^v

-　o(/ii/3*C2〝.F-(nl),　　　　　　　　　　　　　(3.8)

where we have usedもhe relation c (lm,Im′) - Smmi. Then the monopole part of the

interaction Hamiltonian (3.4) is

#ee (Jb=O) 呈F-(nl) ∑∑ a+a+,av>av
L・  tノJ

芸F-(nl) ∑元高J
L′≠Il'

-F-(nl)N(N - 1).. (3.9)

here hv is the number operator;元〝　　　　The other multipole parts (k ≠ 0 terms)

determine the ground state of an isolated ion. In the case of solid, F- plays an important

role as will be discussed in the following chapters.

The spm-orbit interaction and molecular field are written as

-" so

Hr,

N

EnE∑li蝣Si -C,nl∑(vl¥l中2)<a*2>
4=1

Ⅳ

△。∑six - △m ∑{i/i|s*|i/2)a+ a
l=1　　　　　　　vIV2

(3.10)

(3.ll)

where (ni is the coupling constant and A is infinitesimal. Z; and s{ are the orbital and

spin angular momentum operators, respectively, of the i-th electron. The parameter values

In HFA, however, a丘nite F- larger than an appropriate critical value, usually several electron volts, is

needed to converge calculations even for an atom- In the mean-field approximation, it is necessary to draw

a distinction between occupied and unoccupied states, and F takes the role of it. Once F- goes beyond
the critical value, calculated results for an atom do not depend on the value of F.
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that we encounter in (3.1) and the explicit form of the crystal field iJcry will be given later

in the course of each calculation.

The exact eigenfunction of the Hamiltonian (3.1) can be obtained numerically with

the con尽guration-interaction (CI) method. For a given electron configuration, setting up

all the possible many-body bases, i.e., all the possible Slater determinants, we calculate

the Hamilt。nian matrix in this space and diagonalize it numerically. For instance言n the

case of 3d3 con五guration, there are lOC3 - 120 Slater determinants as the bases and we

should construct the (120 × 120) Hamiltonian matrix to be diagonalized. The ground-state

wavefunction申is given by a linear combination of these 120 bases.

3.2　HF Hamiltoman

The Hamiltonian for an isolated atom (3.1) is solvable within the CI scheme, whereas we

shall apply HFA and derive the explicit form of the mean-field Hamiltonian in accordance

with the prescription of Sec. 2.1.

The HF ground-state wave function is written by a single product

*HF =ォ-・akisr帖　　　　　　　　(3.12)

where N is the electron number in the incomplete nl shell. mom the variational method.

the HF equation has been derived as Eq. (2.14) to determine the one-electron states kフS :

¥

h(x)rl>k(x) + ∑
fc'=l

」V

-∑
k'=l

距-k'(X')¥2dx'¥ -)
[/v(x-′サ*(サ')d車J(㌶ -ekipk(x), (3.13)

where h(x) is sum of the one-body Hamiltonian, namely, it corresponds to HsQ + HcTy +Hm

in the present case, but note that the sum over the electron index i (i = 1,...,N) has been

dropped and we would formally represent this point as follows:

h{x) = Hg¥認) + H<S(x) +HW(x).　　　　　(3.14)

Since we are dealing with atomic orbitals, each one-electron state k can be represented by

a linear combination of the spin-orbit function v de五ned by Eq・ (3.2);

血(謡) - ∑ckv4*v{x)-
L/

The matrix form of (3.15) is

擁1, -減*,)-(症,-　　c,

(3.15)

(3.16)

where C is a unitary matrix whose size is N¥ × AT/. Ni is the degeneracy of the nl orbital,

Ni - 2(2/ + 1). From this relation between擁and転we can de丘ne the following creation
and annihilation operators;

or

af-∑C^a+, ak-∑C芸uau
r　　　　　　　　　　>'

a+-∑ckvakつ　ay-∑ck〝ak・
k k

(3.17)

(3.18)
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In the HF equation (3.13), there appear summations over k. Using the relation (3.15), these
summations is rewritten as

;V

∑¥*kY
fc=l -蓋(写chv　5>"¢ul)

-妄[蓋(-'kv^-'kv -′　　(3-19)

蓋-:(*) -妄[差clvCkv'-ur(芯)蝣　(3.20)
In Eqs. (3.19) and (3.20), the summation over k in the square brackets has a signi鮎ant
meaning m HFA. To see this, let us consider the following expectation value:

¥atau　≡ (申HF¥ataリ′l甘HF)

- 〈岬(差ctvak差ckJ〝′α I*HF,
Nt N,

-　∑ ∑ cJkCW^Ia+at,!*:,HF)
*=1 kl-!

(3-21)

where we have used Eq. (3.18) in the second line. The expectation valueくせHF庸ak′!申HF)
becomes zero unless k = k/ and k < N. Then

JV
(a+<v>=∑cla
kv^kv'
fc=l

(3.22)

Now we recognize that the quantity in the square brackets in (3.19) and (3.20) happens to

be the ground-state expectation value ofa pair of operators (a^avi). This is called HF order

parameter. Rewriting Eq. (3.13) with making use of the HF order parameter, we get

h(x)ip抑雲:<<v'/v(x榊J
x KS*')<t>サ'M')M㌶) - <(頼〝i(軸(x')¥ - eki/>k(盟)I  (3.23)

The insertion of (3.15) yields

h(x)写ckv'<t>v<中uE〈ata^}ノ高') d認′

・写ckv </!vl(#')痢′)4>v'{x)一榊')頓)M*')

-Ek∑ck〝 K>{訂)・
ト・'

(3.24)

By multiplying ¢ニ(a:) from the left side and integrating with respect to x, one can obtain

the following secular equation:

∑ r¥h.r'.f'、
レナ
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∑ '.at a〃呈) ∑ I(-1回v'V[ト(vvx^v^v'^ Cki′
vil/呈　　　　　zJJ

- Ek∑ck〝′・
is

This equation reduces to a matrix form:

HHFck =: ekCk,,

with

(*O間, - (u¥h¥i/)

+∑(aXav (i/i/Fi|t>|i>'i^) (-1回W)¥
ylU呈

and

ck --*t∴,Ckv,‥.).

(3.25)

(3.26)

(3.27)

(3.28)

The matrix ffHF is the HF Hamiltonian matrix in the v space, whose size is N¥ × N,. An

alternative form of the HF Hamiltonian can be written as follows by using the creation and

annihilation operators:

HHF - ∑ata,.

・ {V¥h¥v>)十vEl
(刷U′)十∑(<<v [{vvx¥v叫ト

く-iyvty^v〉])I (3-29)

Obviously this is a mean一五eld Hamiltonian, which contains only one pair of creation and

annihilation operators. Self-consistent iterative procedure to solve Eq. (3.26) is as follows:

Furnishing appropriate order parameters (a *Javi) as an initial input, one will construct the

Hamiltonian matrix inもhe v space, (3.27), and numerically diagonalize it. From the obtained

eigenvecもor Ck s, new order parameters are computed by Eq. (3.22), and with them, a new

Hamiltoman matrix is calculated for the next step. One should iterate this cycle until a

su氏cient convergence is obtained for the order parameters.

The total energy given by Eq. (2.16) reduces to the following simple form with the order

parameters :

W　- (・"*.!#I・HF)
:V

- ∑Ek一芸三三{〈kk'¥v¥k町〈榊′kH
*=1　　　　　　k=l k'=l

〟

∑fk -妄∑∑(a+ai//){a+ ayjは(uu1回v'v[) - {vvi回viV)I・
k=l vv'viv[

(3.30)

3.3　Magnetic quantities

In examining the ground state of an ion, we concentrate on the resultant spin angular

momentum s = ∑豊　the resultant orbital angular momentum X = ∑ =1li, the total
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angularmomentum J - S+L, and their squares, S , L , and J. Note that these momenta

and their squares are operators; for instance,

S-∑(V¥sv)a,a,,

,.蝣!.・'
-S_T+S,,+S,一芸(S+S-+S,-S+)+S2

z

sx +iSy - ∑[i/¥sx +isy¥i/')a+av, - ∑>lォ+机aJa〃J
L、ト・l                    I蝣i."'

Qg　^^y - ∑ v¥sx -isv¥v)ata,,, = ∑(f|s-|z^′)afa〝J・
(・/′'　　　　　　　　　　　　　　　　　　　!・(.-I

where

We should calculate the ground-state expectation values of them such as (叫SZ仲) or

くせHF匿湖HF)・ The spin magnetic moment (^spin) and orbital magnetic moment (」t。rb)
are related to the spin and orbital angular momenta by

^spin --2^B(S)　A'。rb--Hb[I<)・

The other important magnetic quantity is the so-called spin magnetic dipole

A

T-≡

With defining the following function

ifc)(i) =

each component of T is rewritten as

si -3ri

∑atal'¥v¥c{ji-y/E<ら2)S-+捕(2)
1-z恒′)
I/Il'
∑atav′(Uト諦c^ls++c,(2)一一涌,(2)
蝣-¥-z

S-¥V)

laal
妄a+<v〈Uト晶(-v+vlc(2)

1サ--ZCqS勅

(3.35)

(3-36)

(3.37)

(3・38)

The expectation value (T) gives an insight about the anisotropy of the spin magnetic field

when the atomic cloud is distorted due to the spin-orbit interaction or crystal丘eld effect.

If the system is in cubic symmetry, a nonzero value of (T) is driven only by the spin-orbit

interaction.

In HFA, the ground-state expectation values of those operators given above are easily

calculated if one knows corresponding one-body matrix elements in addition to the converged

HF order parameter- For instance, the expectation value of the spin angular momentum S,

(3.31), turns out to be

(S)HF　-　くせHF¥s¥せHF)

-　∑(U回v')(aU*>)
:・上、・l

(3-39)
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Terms in Eq. (3.32), such as S+S_, need attention because they contain four operators;

S+S- = ∑ ∑(V¥十船(Hォル;)atiav呈<a*呈
i/ii/: v^v呈

-　∑∑(!/]>+拙く痢-船
・'ll/ V-2V呈

N ,  N,  N,  N,

・∑ ∑ ∑ ∑ cue舶C芸。〃。C硯atak[ai2ak'2, (3.40)
*i=l fc'=l *2=1 k昌=1

where the relation (3.18) has been used. We should concentrate on G ≡ [atak'atak芸)HF

Since the HF ground-state wave function is a single product in terms of {k} (k - 1,...N),

nonvamshing value of G is restricted to the following k-combinations:

(i) k¥=k¥and&2=kら

(ii) jbi -kらand&2-k'x.

Then the set of operators comes to be the number operators %. In the case (i), G reduces
to

G　- ("*i元k。)HF

if both ki and &2 belong to occupied states

otherwise.

For the expectation value of (3.40), the term corresponding to (i) is

A'　　　　　.V

(S+S-)HFIl(i)　∑∑(vi¥s+棉(V2¥s-¥v'2) ∑Qi^i^i ∑ct^c.励
"l"i "2<

V

・l"i

*1=1　　　　　　　　*2=1

・l〉〈atraサ　芸〈Z/2|s-|^2,〈ataK
-(s.¥HF
蝣+/(S-)HF

In(ii),usingthecommutationrelation,Gbecomes

G-(ntl(l一元k。))HF

if ky is being occupied and k<z unoccupied

otherwise ,

(3.41)

(3.42)

(3.43)

where note that a case k¥ - k[ - fc2 - k'2 is not considered here because it can be included

in (i). A schematic diagram forもhe process (ii) is depicted in Fig. 3.1. The corresponding

term m the expectation value of S+S- is

'V　_＼'L

(c c ¥HF(")　∑∑(vi¥s+船(痢-槻∑　∑ C芸1^1^*2〃呈W。〃,Cfcl"。
uIUまV-2V呈　　　　　　　　　　　*!=! Aj2=iV+l

∑∑(i/i|s十Iui)(痢4)
i>li^ v2V^

ど ∑(vx¥s+拙くサ2¥S一船
V¥vx v2Vム

N

/,cliV^kii

L*i=iた差cfc2j/2C*2*
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Figure 3.1: One of the processes that appear in the calculation ofもhe HF ground-state

expectation value of Eq. (3.40), aj^a^a^a,.^ The hatched area represents occupied states
in the HF ground state.

N

2^Cj-jCfci^

Iki-lrn,

b2=i-N
E

*2=1Ckiv2Ck2v[

-∑∑柚+拙〝S-K)(a+a,,)¥6叫-(<ォ,)]

▲蝣..-;.、J弓

-∑(V¥|s+5-|^2)¥ai,av呈)

v¥v芸

-≡∑Ms+船{V2¥iル;)lata〃昌)¥at2av

L,14V-2V芸

wherewehaveusedtherelation

∑^kv^kv'-&W′,

*

whichisderivedfromthefollowingrelationforthecompletesystem:

--.r'「∑<蝣;i・'*-I*I・'・I∑-:1.1-1-,..(・'I.

*V

Thusweobtain

(5+5-}Ht-(S+)HF(S-)HF+∑(j/i|s+s-|i/.昌)(<a*昌)

v¥v呈

-∑∑("lta拙く"2k一槻:<<v芸)砿中

・i"iv?v呈

(3.44)

(3.45)

(3.46)

(3.47)

In the CI scheme, to calculat the expectation value of magnetic operators we need not

onlyォa-3) but also (aXa^t3aVi) and in the course of calculating these quantities we
need to pay attention to signs that originate from the commutation relation.
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3.4　3dion

We survey the ground state of ions with having a 3d orbit as an incomplete shell. First,

the free 3c? ions, with the crystal五eld HcTy being either zero or spherical, are investigated.

Numerical CI calculation shows that their ground states are described by a simple picture;

the spin-orbit interaction among 3d electrons is weak compared with the Coulomb interaction

(the Russell-Saunders case) and a perturbaもive treatment for the spin-orbit interaction is

justified (」S-coupling limit). In addition to the spherical case, we will discuss the 3d ions

under the crystal鮎Id with Oft symmetry, to simulate the solid-state effect. For each case

we give results gained by the CI scheme, and they are compared with those by HFA. It is
shown that HFA reproduces the atomic Hund rules.

3.4.1 Free ion - the Russell-Saunders case and ZS-coupling scheme

First of allフwe deal with the 3c? ions with spherical symmetry. The Hamiltonian with-

out the spin-orbit interaction commutes with all components of L, S, and J. Hence this

Hamiltonian has no matrix elements between the states labeled by two different sets of

eigenvalues of S , L2, J2, Sz, Lz, and Jz- For the sake of labeling states, we introduce

quantum numbers S, L, J, Ms, ML, and M according to the following scheme

Sz=S(S+1)S'
z-Ms
V-L(L+1)L'z-ML

r2'J*-J(J+1)J'
z=M,

(3.48)

wheretheprimestandsformanipulationtotakeprecisevalueoftheseobservables.

Theelectrostaticinteractionproducestheenergydifferenceamongterms,whichare

characterizedby5andL,theLSmultiplets,butleavesthesetermsdegeneratewithregard

to[JandM],or,[J,Ms,andML¥.Theground-stateSandLaregivenbyempiricalHund's

Qt。t。etKow,;,..,1/ttj>_1_rules;Stakesthemaximumvalue(Hund'slstrule);amongthemaximum-5multipletsthe

termoflargestLislowestinenergy(Hund's2ndrule).ThemaximumSiswellunderstood

asaconsequenceoftheexchangeinteractiontoalignthespinofeachsingleelectron.The

maximumLisonthebasisofthemultipoleCoulombinteractionrepresentedbytheGaunt

coefficient(SeeEq.(3.5)).

ForagivenLSmultiplet,thetotalangularmomentumJcantakethefollowingvalue

fromtheprincipleofcouplingoftwoangularmomenta:

J-¥L-S¥,¥L-S圧1,～,L+S.(3.49)

ThedegeneracyamongJ'sisliftedbythespin-orbitcoupling.Weshalltreatitbya

perturbativemanner.IntheRussell-Saunderscasetheenergyintervalbetweend瓶rent

LSmultipletsislargecomparedwiththespin-orbitinteraction,andwecanignoreitso拝・

diagonalmatrixelementsconnectingdifferenもLSmultiplets.ThenaneffectiveHamiltonian

inaspecific(1,5)spacecanbewrittenintheform

(Hso)LS -HLS - XL蝣S.

For the Hund-rule LS multiplet, the coupling constant A becomes

,t=

(:

Cm/N if N < Ni/2

-Cnl/(N,-N) ifN>Ni/2
otherwise,

(3.50)

(3-51)

here N′ - 2(2g+ 1). The Hamiltonian甘叫commuもes with J. Even if we go back to
the origina柑amiltonian (3.10), it also commutes with 3. This permits the levels t。 be
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Figure 3.2: Vector-model analysis of the component of L + 2S in the direction of J, under

the LS-coupling limit.

labeled by J. It should be noted that S and L do not commute with HLS and that these

are no longer good quantum numbers. However, in the weak spin-orbit coupling limit, it is

permissible to label states by a set of quantum numbers SUM. The Hamiltonian (3.50)
reduces to

HLS = XL-S

」[(L+S)2-」2-S2]

呈J'-LA-S2主

and its matrix element within a given SLJ term is given by

(sLJM¥HLS¥SLJM')-呈[J(J+1)-L(L+1トS(S+1)}6MM′ (3.52)

For the individual levels separated by HLS, we use the standard notation 2S+1Lj. The

sign of the coupling constant A determines the lowest J term in energy. In the Hund-rule

LS multiplet the coupling constant A given by Eq. (3.51) is positive (negative) for the less

more) than half filling so that the ground-state J-value is ¥L - S¥ (L + S).

Finally the degeneracy about M is lifted by the infinitesimal molecular丘eld (3,ll); either

M - -J ot M - J term will be lowest in energy.

Under HLS, the angular momenta S and L interact with each other; they o恥rs a twisting
force to one another- In consequence, they show precession around J and components of

them perpendicular to J vanish if we take the time average. Hence the magnetic moments,

Mspin - -2/<E (S) M。rb - -/%(L) and n - ptspin +^。rb, are proportional to J and can be
written by

(**)・>-(Mspin+M。rb)j=9jサBJ

(MspiiJj=-9jPBJ

(M。rb)j三二g冒^B

wheretheproportionalconstantsaregivenby

9j2+

9sj-1+

#3薫藍
2J(/+1)

(3.53)

(3.54)

These factors are easily obtained by making the scalar product between Eq. (3.53) and J

(See Fig. 3-2)- The factor gj is known as the Land占g-iactor.
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Table3.1:ParametervaluesusedinthecalculationfortheUions-FkandC3rfwereobtained

byCowan'sabinitioatomicHFprogramwithrelativisticcorrection.囲Thiscalculation

wasdonefortheaverageofthe3dNconfigurationwithalllowershellsfilled.TheSlater

integralswerereducedto80%oftheirabinitiovalues,toaccountforintra-atomicCI.(The

list.^rlnn&a¥t。-tr^。Ii>Qn/1i7K^聖聖droneshavealreadybeenre平ormalized.)Allvaluesareinunit。feV.

F∠　　　F4　(3d　　　△m

0.019　1.0×10~

d2(V3+)8.10185.08250.0271.0×10-4

(Cr3+)8.62105.40290.0351.0×10-4

d4(Cr2+)7.71934.79970.0305.0×10-6

(Mn2+)8.25235.12920.0401.0×10-4

d6

d7(Fe2+)

(C。2+)冒:書芸32冒宝.4507

.76550.05

0.。6呂1.Oxl

l.。xl呂二三

dd;((昌U2+)9.7868

10.28406.077

6.38333霊31.

21.呂x10-4

xl。"4Table 3.2: Calculated results for the Zd ions with spherical symmetry, based on the CI

method. The second column "Term", such as 2D3/2, is representing the ground-state mul-

tiplet deduced from the LS-coupling scheme. S, L, and J are evaluated by calculating (S2)

etc. and solving equations such as S(S + 1) = (S2) The magnetic moments fi, pspin, and

Jorb are in unit offtB. R is the ratio of^。rb to ^spm; R^ = (i。rh/Mspin. One can see that
these results飢in well with those resolved

Term　　'

by the LS-coupling scheme.

L J

1/2

〃spin　　/Jorb (/ :　;'/ '・蝣

3/2　-0.602　3/2　-1.20 0.60　-1.80　-3.00

1　3　　2

2　3/2　3

-1.33　1.34　-2.67 -2.00 2　-0.26

3/　-0.60 1.81　-2.40　-1.33 3/　　0.19
0.00

2　5/2　0　5/2

0.00　　0.00 0　　0.00

5.00　　5.00 0.00　　0.00 -5/　　0.00
2　'・> 6.00　　4.00

2　3/2　3　9/2

2.00　　0.50 -4　　0.27

6.00　3.00　　3.00

5.00　　2.00

1/2

1.00　-9/　　0.10
3.00　　1.50 -4　-0.17

・)　~l '*' 3.00　1.00　　2.00 2.00　-5/2　-0.29

Calculated results and discussions - Numerical calculations based on the CI scheme

show that the Z,S-coupling scheme well holds in the 3rf ions with spherical symmetry. Used

parameters are glven in Table 3.1. Figures 3.3-3-8 show comparison between the CI and

HF results as a function of the occupation number of the M orbital. Numerical values of

calculated quantities are listed in Table 3.2 for the CI method and in Table 3.3 for the拝F
method. In all calculations the quantization axis was taken as z axis.

Figure 3.3 demonstrates the energy di触ence between the HF total energy and the true
eigenvalue of the ground state gained by the CI method. It can be seen that the HF result

agrees well with the CI one for the more than half filling case. On the other hand, significant

deviations are observed in the less than half filling (N=2, 3, and 4). Figure 3.4 shows the

calculated S and L. They are evaluated by calculating (S2) etc. and solving equations such

as 5(5+ l) - {52) Excellent agreements are seen between堕e CI and HF results, showing
that the HF method can reproduce the Hund-rule S and L. The calculated J displayed in

Fig. 3.5 shows that HFA overestimates J in the less than half filling case. Figure 3.6 gives the

total magnetic moment p - 〃spin +/^orb and the individual moments'ratio R^ - //orb//i蝣spiir
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Table 3.3: Results of the HF calculation for the free 3d ions. The second column △E is the

n r to ua⊥en e rg y m u n it o t m e V , m e asu red fro m th e g ro u n d -sta te en erg y g a in e d b v th e

m eth o d . T h e o th er co lu m n s are th e sa m e as T a b le 3 .2

3 dJV △ E S 〃sp in /" orb R 〈J 〉 (T 〉

d1 (T i3+ )j 'l t¥ r」+ ¥ 0 1 / 2 2 3′2 - 1 .2 0 0 .6 0 - 1 .8 0 ー ¥" " l ¥"W3 .0 0 3 / 2 - 0 .6 0

d A (V 12 .6 1 3 2 .3 3 ー1.0 0 1 .9 9 - 3 .0 0 - 1 .5 0 ー0.18

d d (C r3+ 1̂ 17 .5 3 ′2 3 2 1̀ 3 ー0 .0 0 3 .0 0 - 3 .0 0 ⊥1.0 0 ′ 0 .13

4J 4 (C r^十) 1 5 .6 2 2 1 .54 2 .0 0 4 .0 0 - 2 .0 0 ー0 .5 0 0 0 .3 0

d? (M n 2+ ) 0 5Jo /'tti_^4-¥ ′2 0 5′ 5 .0 0 5 .0 0 0 .0 0 0 .0 0 - 5 / 2 0 .0 0

(F e叶 0.1 6 .0 0 4 .0 0 2 .0 0 0 .5 0 - 4 0 .2 7

Idぢ(C 雲 ) 0 3′2 3 9 /2 6 .0 0 2 .9 9 3 .0 0 1 .0 0 - 9′ 0.10

rf 8 (N i 十 5.0 0 2 .0 0 3 .0 0 1 .5 0 - -0 .17

9 2+d (聖 二し 0 1′2 2 5′ 3.0 0 1 .0 0 2 .0 0 2 .0 0 - 5′2 - 0 .2 9

Figure3.3:TheHFtotalenergyofthefree3dions,measuredfromtheground-stateeigen-

valueobtainedbytheCImethod.

Similartendencyofthesequantities,asafunctionofthenumberof3delectron,canbeseen

betweentheCIandfIFresults,althoughnoticeabledisagreementappearsinthelessthan

half丘Uing.Theindividualmomentsthemselves,fispinand/iorb,aregiveninFig.3.7.(Jz)

and¥Tz)areinFig.3.8.(Jz)inHFAiscompletelyidenticalwiththat。ftheCImethod.

Asfor(Tz),deviationissmall.However,/jspinandfi。rhinHFAshowseriousdeviationfrom

thoseofCIinthefillingTV-2,3,and4.

ToseethereasonwhysomeoftheHFresultsdeviatefromCI'sinthelessthanhalffilling

case,wedemonstratethewayofelectronoccupationintothemabasisinFig.3.9.First,

inmorethanhalffillingcase(N≧5)wecanseethattheHFresultsarewhollyoralmost

<-+r..ll_,'1thesameasthosebyCI;thedown-spinstatesarefullyoccupied,andtheup-spinstates

cometobeoccupiedfromthesmallestmbasisasweincreasetheelectronnumber.Since

theLS-couplingconstan時definedinEqs.(3.50)and(3.51),isnegativeforN>5,Sand

LarecoupledinaparallelwaysoastorealizethemaximumJ.Thisleadstoastretched

statewhere(Sz)and(Lz)takeminimumvalues,-Sand-L,respectively,whichare

obtainedbythewayofoccupationdemonstratedinthelowerpanelofFig.3.9;one-electron

statesspecifiedbymacometobeoccupiedonebyonefromthedownspinstateandfurther

fromthesmallestmstate.Suchastretchedstateisrepresentedbyasingledeterminant,

whichisachievablebyHFA.ThisfactresultsintheexcellentagreementbetweentheCI

andHFresults.Secondly,letusexaminethelessthanhalffillingcase(JV-23and4)・

IntheCIschemetheelectronsaredistributednotonlyinもhedown-spinstatesbutalso

intheup-spinstates,torealizetheminimumJresultingfromthepositivevalueofユ.In
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Fxgure 3.4: Calculated S and L of the free M ions. Solid and broken lines correspond to

the results by the CI and HF method, respectively, although they are overlapping so that
we can not tell one from another.

=!

c

4

3

蝣サ

1

Figure 3.5: Calculated / of the free 3d ions.

HFA, however, the stretched states still hold as in the case of the more than half filling;

the electron population is restricted to the down-spin states. The Hund-rule LS multiplets,

deduced by Hee alone, degenerate by (2S+ l)(2Z+ l)-fold. Among them, single-determinant

states, which are accessible by HFA, are limited to only a few states: [¥MS¥ - S, ¥ML| = L]
states, namely, the stretched states. In the Russell-Saunders case the Coulomb interaction

is large compared with the spin-orbiもmteraction. Thus the HF procedure selects one of the

stretched states as the lowest state in energy, even if it loses some energy from the spin-orbit
interaction.

In summary, when the Coulomb interaction is so large compared with other one-body

interactions, HFA is not a good approximation of the electronic state of the free 3d ions

with less than half filling. In the real crystal, however, a large crystal field should act on

the 3d electrons and moreover the 3d orbital should hybridize with orbitals of surrounding

atoms. Hence it is expected that, in the real crystal, the description by HFA will be closer

to the true one. In the next section. we will make a close study of this point by introducing
a crystal field Hamiltonian with Oft symmetry.
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Figure 3-6: Calculated total magnetic moment /i - ^spin + fiorb (thick line with circle) and

Rp, - fJ'orb/^spin (thin line with triangle) in the free 3d ions. Solid line is by the CI method,
and broken line by HFA.
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Figure 3.7: Calculated /ispin (thick line with circle) and fiorb (thin line with triangle) of the
free 3d ions. Solid line is by the CI method, and broken line by HFA.

Figure 3.8: Calculated (Jz) (thick line with circle) and (Tz) (thin line with triangle) of the
free 3d ions. Solid line is by the CI method, and broken line by HFA.
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Figure 3.9: The way of electron occupation in the ma basis, for the free 3d ions. In each

con丘guration the upper panel represents the result by the CI method, and lower by the HF

method; the shaded or hatched area shows the probability of electron occupation of each
mcr state.
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3.4.2　3d ion under Oh crystal field

ln ionic crystals, 3d ions are often surrounded octahedrally by negatively charged ions

such as O (See Fig. 3.10). In such cases, 3d electrons feel a crystal field with Oh sym-

metry, and the five-fold degenerate orbital states of a single 3d electron split into three-fold

T2g state転,症, and転) and two-fold Eq state ¢a,2_y2 and尋。ZLr-i). Functions in
parentheses, such as ¢秒are called the cubic harmonics which is given by an appropriate

linear combination of the spherical harmonics Y2r, ・ The crystal-field splitting of one-electron

state, e(Egトe(T2g), is denoted by lQDq. The explicit form ofHcry is given by the following
matrix whose basis is the orbital magnetic quantum number ra (m - -2,... ,2):

Hcry-(Dq

O

o

o

5Dq¥0005Dq

-4DqO0O

o&Dqoo

Oo-ADqO

OooDq

(3.55)

TypicalvalueoflQDqisabout1eVforinsulatingoxides.Thisorderofenergyis

smallerthanthatofもhemultipoleinteraction,butfairlylargerthanthatofthespin-orbit

interaction.Werepresentthissituationbythefollowingconceptualrelation-¥Hサ

uIMv|rrI/-M_A_J-1--≫W,cry≫Iff,圧Notethatthisrelationhasnostrictmeaning).Whenthisconditionholds.

thegroundstateofthe3dionisapproximatelygivenbyasimplepicture.T。beginwithi

HeerealizestheHund-rule5andLasinthecaseofthefreeions.ThenHcryreducesthe

orbitalstateLtoseveralirreduciblerepresentationsoftheOhpointgroup.Thetermenergy

ofeachirreduciblerepresentationcanbegainedbythemethodofequivalentoperator.[24]

Fortheseprocedures,aconsiderableknowledgeofgrouptheoryisneeded.Wejustshow

theoutcomesoftheseprocesses.Fig.3-llmanifeststhewayofsplittingofeachらandin

thefollowing,theeigenvaluesandeigenfunctionsofthecrystal丘eldHamiltonianeffective

fortheHund-ruleLSmultipletaregiven:

--

----≡

(a)　　　　　　　　　(b)

Figure 3-10: (a) Octahedral coordination, (b) Splitting of the 3d one-electron states due t。
the Oh crystal field.

figure 3.ll: Splitting of the Hund-rule L state due to the (〕h crystal field.



28

E=一郎c T2g
(

E-錘　ED t

Chapter 3. Atomic ground state

¢訂y -読(Y2-2 - Y:22)

¢yz =読(Y2-i +Y21)
¢zE -表(Y2-i - Y21)

¢∬2-s/2 -義(紘+y22)
¢3*3_r2 - Y20

L=3

e - 188c T)lu

e - -6β　J2ii

転,2-,2-1 -　吉[v/5 (y3-i -y3i)+諺(*3-3-Yss)]
^s/02-訂2) - +去[n/5 (Fa-i + *3iト¥/3 (Y3-3 + Y33)

毎-s/2)読(垢　+y32)

(3.56)

(3.57)

e--368c A2u
・,,　-　-11　　1

Note that the used spherical harmonics in these expressions is the eigenfunction of the

total orbital angular momentum L and is not necessarily corresponding to the genuine

wavefunction of the 3^ electron system, which is given by a linear combination of Slater
determinants. The factors c and /? are defined as follows:

21
c--(lODq)

2　{IS`(25㌧5)+ 15}(5-45)

β=土面 (L- 1)(2I- 1)(2」-3)

Here the upper sign refers to N < 5, and lower, N > 5.

Finally, Hso is taken into account by a perturbative treatment in the space ofもhe Hund-

rule spin S and the split orbital states・ As shown in Fig. 3.ll, the lowest orbital state

in 3d3 and 3d8 con軸rations has no degeneracy. Its eigenstate, |0), is given by a real
function because Hee and Hcvy, both of which have an origin in electrostatic interaction,

are represented by real functions. On the other hand, L is a pure imaginary operator and

the expectation value (0|」|0) is also pure imaginary. This contradict the fact that I is a

Hermitian operator and its diagonal element should be real. Then (0|X|0)=0, i.e., quenching

of the orbital moment occurs when the crystal-field splitting state of the lowest energy has

no degeneracy. This quenched moment will be partially recovered by Hso perturbation

higher than or equal to the second order. When Tx or T2 is lowest in energy, both of which

degenerate by three-fold, the first order perturbation of Hso is enough to induce the orbital

moment, and this can be done by the method of pseudo orbital. See Refs. [25, 26] for details.

In the following, calculated results, obtained by a numerical calculation but not by the

perturbative treatment described above, are summarized. Used parameters are lODq -

1.5 eV and △　= 0.02 eV. Fk and (3d are the same as those in Table 3.1. Figure 3・12

shows the way of electron population into the cubic basis. Compared with the free ion

case, the agreement between the CI and HF results is fairly good for all electron filling,

It should be noted that in the 3d!4 and 3d9 con五gurations the displayed state degenerates
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Table 3.4: Magnetic quantities of 3d ions under the crystal丘eld with Oh symmetry, calcu-

lated by the CI method. lODq - 1.5 eV and △　- 0.02 eV. The second column "Term",

such as 2T2s, is deduced by Hund's rules and the point group theory. S, L, and J are

evaluated by solving equations such as S(S + 1) - (S2) Magnetic moments //, fJ.spm, and

Table 3.5: Same as Table 3.4, but calculated by HFA. The second column AE is the total

from the ground-state eigenvalue by the CI method.energy in unit of meV, measured
3dfJV △E S V spin AW b R 〃 (Jz〉 (T Z〉

d 1 (T i3+ ) 0 1′ 1.93 - 0.00 1 .00 - 1.00 - 1.00 0.50 0.14

1 2.83 2.55 0.15 2 .00 - 1.85 - 0 .92 0.85 - 0 .16

d3 (C r3+ ) 0.2 3′ 3.45 2.91 3 .00 - 0 .09 - 0 .03 - 1.4 1

d4 (C r^ ) CL2 2 2 .95 3.92 4 .00 - 0 .08 ⊥0 .02 - 1 .92 0 .30

d5 (M n 2十 0 5/2 0.0 1 5 ′ 5 .00 5 .00 0 .00 0.00 - ら′ o .0 0

(・e2+ ) 7.8 一54 5 .00 4 .00 1.00 0.2 5 - 3 .00 - 0 .15

(C o '7+ ) 111.3 3′2 2.86 4 .09 5 .00 2 .9 9 2 .0 1 0.67 - 3 .51 0 .0 9

d8 押 p + ) 1.0 3 .36 2 .21 2 .0 0 0 .22 0.ll - 1.21 - 0 .0 0

」 (C ua+ ). 0 1/2 2 2 .22 1 .25 1.0 0 0 .2 6 0.26 - 0 .76 - 0 .2 6

with {4>ガy¢yz¥訂)3((j>x2_y2)1 state. This is related to the recent topic of the orbital ordering

in mangamtes・ Figures 3.13-3.17, which display various calculated quantities, also indicate

that the ground-state properties of the 3c? ions are well described by HFA. Numerical values

of the calculated quantities are listed in Tables 3-4 and 3.5.

In summary we have introduced the Oh crystal field as an additional one-body term to

examine the solid-state effect. The agreement between the CI and HF results has been lm-

proved compared with the free ion case. This suggests that HFA increases its accuracy with

reinforcement of the one-body term. In Sec. 3.6 we would confirm this point by exploring

the ground state offree uranium ion, where the one-body term is only Hso but the condi-

tion ¥He　≫ |_ffs。| is no longer satisfied. As for the real crystal, there exists hybridization

(electron hopping) between orbitals of different atoms. This contributes considerably to the

one-body term, especially in metals, prompting an expectation that HFA becomes a good

approximation in crystals. In metallic substances, however, there is an another problem

concerned about F-, which has nothing to do with the present ionic case. Discussion about

it will be given in the next chapter.
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Figure 3.12: The way of electron occupation in the cubic basis, for the 3d ions in the Oh

crystal field (10Dq - 1.5 eV). In each con耳guration the upper panel represents the result

by the CI method, and lower by the HF method; the shaded or hatched area shows the

probabihty of electron occupation of each state.
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Figure 3.13: Calculated S and L of the 3d ions in the Oh crystal field (10Dq - 1.5 eV).

Solid and broken lines correspond to the results by the CI and HF method, respectively.
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Figure 3.14: Calculated J of the 3d ions in the Oh crystal field (10Dq - 1.5 eV).
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Figure 3.15: Calculatedもotal magnetic moment /i - fispin +(x。rb (thick line with circle) and

R〃　^orb/Mspin (thin line with triangle) of the 3d ions in the Oh crystal鮎Id (lODq -

1.5 eV). Solid line is by the CI method, and broken line by HFA.
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0　1　2　3　4　5　6　7　8　9 10

3dN

Figure 3.16: Calculated /isp;n (thick line with circle) and ^。rb (thin line with triangle) of the

3d ions in the Oh crystal field (lODq - 1-5 eV). Solid line is by the CI method, and broken

line by HFA.

Figure 3-17: Calculated (Jz) (thick line with circle) and {Tz) (thin line with triangle) of the

3a ions in the Oh crystal field (lODq - 1.5 eV). Solid line is by the CI method, and broken

line by HFA.

1　2　3　4　5　6　7　8　9

3dN

Figure 3.18: The HF total energy of the 3d ions in the Oh crystal field (IQDq - 1.5 eV),

measured from the ground-state eigenvalue obtained by the CI method.



3.5. 4/ion 33

3.5　ifion

We examine the ground state of 4/ ions. In the spherical symmetry, the situation is

completely the same as that of the 3rf ions. The condition固。eE ≫ ¥Hs。I holds, and the
ground state is described by Hund s rules and the La-coupling scheme. Thus determined

ionic 4/ states are usually valid even in solids in most cases. Even if we can not ignore

the effect of the crystal負eld. it is considered to be very small compared with the spin-orbit

interaction声he condition ¥He i ≫ ¥Hs。¥ ≫ ¥Hcry| is satis且ed in most cases. The e鮎ct of a

weak Oh crystal field is examined.

In either spherical or Oh symmetry, the degree of appropriateness of HFA is investigated.

3.5.1　Spherical symmetry

The 4/ ions are being in the Russell-Saunders case as in the case of the 3d ions. Their

ground state is represented by the quantum numbers SL deduced from Hund's rules, and

J from the LS coupling. HFA gives precise results in more than half filling but fails in less

than half filling.

Figures 3.19-3.24show the calculated results based on the CI and I壬F method. Numerical

values of the calculated quantities are given in Tables 3.7 and 3.8, and used parameters are

listed in Table 3.6.

Figure 3.19: The HF total energy of the free 4/ ions, measured from that obtained by the
CI method.

Figure 3-20: Calculated 5 and L of the free 4/ ions. Solid and broken lines correspond to

the results by the CI and HF method, respectively, although they are overlapping so that

we can not tell one from another.
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Table 3.6: Parameter values used in the calculation for the 4/ ions- F and 」4/ were obtained

by Cowan's ab iniiio atomic HF program with relativistic correction.[23] This calculation

was done for the average of the 4/ con五guration with all 1云>wer shells mled・ The Slater

integrals were reduced to 80% of their ab iniiio values, to account for intra-atomic CI. (The

listed ones have already been renormalized.) All values are in unit of eV.

C4f　　　△m
-　　0.087　1.0×10~

f2　(Pr3+)　9.7808　6.1355　4.3538　0.102 1.0×10_4

10.1789　6.3869　4.5496　0.119 1.0×10-4

10.5574　6.6243　4.7173　0.136 1.0×10-4

10.9187　6.8518　4.9171　0.155　1.0×10-

11.2668　7.07.03　5.0468　0.175　2.0×10~6

ll.6040　7.2816　5.2079　0.197 1.0×10-4

ll.9324　7.4875　5.3661 0.221 1.0×10~4

12.2530　7.6880　5.4422　0.246 1.0×10-4

12.5664　7.8832　5.5965　0.273 1.0×10~4

12.8736　8.0744　5.7452　0.302 1.0×10-4

13.1761 8.2633　5.8871 0.333 1.0×10 4

13.4745　8.4　　.9922　0.366 1.0×10-4

f　(Nd3+)
J　(Pm3+)

J　(Sm3+ )

J　(Eu3+)

∫　(Gd3+)

∫　(Tb3+)

J　(Dy:3+ ^

JIO　(Ho3+)

∫ll (Er3+)

112 (Tm3+)

J13　(Yb3+)

Table 3.7: Calculated results for the free 4/ ions, based on the CI method. The column

"Term", such as 2-F5/2, is the ground-state multiplet deduced by the Hund rules and LS-

c。upling scheme. 5, L, and J are evaluated by solving equations such as S(S + 1) = (S2)・

The magnetic momentsp,, /ispin, and p。rb are in unit of/ab- Rji - Orb/Vspin- Il; is seen
that the LS-coupling scheme holds well as in the case of the free 3d ions,
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4f

Figure 3.21: Calculated J of the free 4/ ions. Solid line is by the CI method, and broken

line by HFA.
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Figure 3.22: Calculated total magnetic moment /i = ^spin +/u。rb (thick line with circle) and

R〃 - A*。rb/Vspin (thin line with triangle) in the free 4/ ions. Solid line is by the CI method.
and broken・line by HFA.
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Figure 3.23‥ Calculated pspm (thick line with circle) and /i。rb (thin line with triangle) of

the free 4/ ions. Solid line is by the CI method, and broken line by HFA.
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Figure 3.24: Calculated (JZ) (thick line with circle) and (Tz) (thin line with triangle) of the

free 4/ ions. Solid line is by the CI method, and broken line by HFA.

Table 3.8: Calculated results for the free 4/ ions, based on HFA. The second column AE is

the deviation of the HF total energy from the CI ground-state energy, in unit of meV. The
other columns are the same as Table 3.7.

r △E L A*spin A*orb R u 〈JZ〉 (T Z 「

f 1 (C e d+ ) ′ 5/ 2 - 2 .1 4 0 .7 1 - 2 .8 6 - 4 .0 0 ′2 】0 .5 7

f l (P rd+ ) 2 1 .6 0 .9 6 4 .9 4 4 .0 6 - 3 .1 0 1 .8 0 - 4 .9 0 - 2 .7 2 4 - 0 .6 3

f d (N <P + ) 4 5 .9 1 .4 7 5 .9 6 4 .6 8 - 3 .0 6 2 .8 9 - 5 .9 5 - 2 .0 6 ′ -0 .3 4

/ 4 (P m 3+ 1 6 7 .3 l .S 5 .9 7 4 .3 4 ー2.0 3 3 .9 3 - 5 .9 7 ー1.5 2 4 0 .0 2

r (S m :a+ ^ 8 7 .1 2 .4 6 4 .9 6 3 .l l - 0 .0 5 4 .9 0 - 4 .9 5 ー1.0 1 ′ 0 .3 3

f (E u d + ) 12 8 .4 2 .9 4 2 .9 5 1 .8 2 2 .9 3 5 i ー2.9 3 ー0 .5 0 0 0 .4 7

/ ' (G d ^ 0 .3 3 .4 7 0 .0 7 3 .5 0 6 .9 7 6 .9 3 0 .0 3 0 .00 5 - 7′ 0.0 1

f B (T b d + ) 4 .9 2 .9 5 3 .0 6 6 .0 0 8 .9 5 5 .8 9 3 .0 5 0 .5 2 一6 0 .2 4

6 .5 2 .4 4 5 .0 9 7 .5 0 9 .9 2 4 .8 5 5 .0 8 一05 -1 5 / 2 0 .1 3

/ 1U (H o d+ ) 0 .5 1 .9 3 6 .0 9 8 .0 0 9 .9 2 3 .8 3 6 .0 8 1 .5 9 -0 .1 4

Z ll (E rrf + ) 0 .0 1 .4 8 6 .0 4 7 .5 0 8 .9 7 2 .9 3 6 .0 3 2 .0 6 ー15′2 - 0 .3 1

/ 1J (T m :3+ 1 0 0 .9 9 5 .0 1 6 6 .9 9 li 5 .0 1 2 .5 3 一6 ー0.4 1

/ " (Y b d + ) 0 1/ 2 ′ 3 - 7′2 - 0 .3 3
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Figure 3-25: Electron population in the ma basis, for the 4/ ions with spherical symmetry.

In each configuration the upper panel represents the result by the CI method, and lower by

the HF method. The shaded or hatched area shows the probability of electron occupation
of each ma state.
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3.5.2　4/ ions in Oh symmetry - Weak crystal field

We consider the effect of a small crystal field with Oh symmetry on the 4/ ions. Fig-

ure 3.26 demonstrates the assumed crystal field, where the splitting energy is represented

by only one parameter B for simplicity (This corresponds to an approximation that the

sixth-order of r in the crysta川eld is ignored). The explicit form of the assumed Hcry
is given by the following matrix whose basis is the orbital magnetic quantum number m

m--3,...,3):

o 0 0 v/汚　0　　0
0　　-7　　0　　0

0　　0　　　　0　0　　　、/′汚

0　　0　　0　　6　　0　　0　　0

ヽ/汚　0　　0　0　1

0　　0　　0　　-7

0　　0　V/拓　0　0

(3.60)

For the numerical calculationswetake B - 2.0 × 10-3 eV and △　= 1.0 × 1CT4 eV. The

other parameters are the same as in Table 3.6. Then the condition ¥He　≫ IHs。i ≫匿cry
is satisfied and we can simulate a realistic situation of the 4/ ions in solid. The calculated

results are displayed in Figs. 3.27-3.33, and listed in Tables 3.9 and 3.10. One can see that

the HF results for the magnetic moments /ispin and //orb considerably deviate from those by

the CI method, for all con五guration excepもN = 1, 7, and 13. The crystal field applied now

is not su丑iciently large for HFA to be a good approximation. Since the present parameter

set is a realistic one, it can be said that HFA is not suited for describe electronic structure

of crystals which contain rare-earth atoms.

Figure 3.26‥ Oh crystal field splitting of the 4/ one-electron orbital state.
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Table 3.9: Magnetic quantities of 4/ ions under the crystal field with Oh symmetry, cal-

culated by the CI method. See text for the explicit form of Hcry. B - 0.002 eV and

△　- 1.0 × 10　eV. Conceptually speaking, the present parameter set corresponds to

¥Hォ　≫ lHs。F ≫匪:ry上 The column "Term" represents the free-ion's ground-state multi-

plet. S: L, and J are evaluated by solving equations such as S(S+1) - (S2). The magnetic

Table 3.10‥ Same as Table 3.9, buもcalculated by I王FA・ △E, the energy difference between

the fIF and CI methods, is in unit ofmeV.

4 f v A E ∫ L J 〟 〃spin /'蝣CMb R P 蝣:-/ 蝣> 〈T Z 〉

f l (C e d+ ) 0 1′2 3 5 / 2 - 0 .7 1 0 .2 6 ー 0 .9 7 - 3 .7 1 0 .8 4 -0 .19

f 2 (P rrf+ ) 2 3 .2 0 .9 6 4 .94 4 .0 6 -3 .10 1 .8 0 - 4 .9 0 - 2 .7 2 4 .0 0 - 0 .6 3

r (N d rf+ ) 4 5 .7 1.4 7 5 .」 u - 3 .0 5 2 .8 9 - 5 .9 5 - 2 .0 6 4 .5 0 - 0 .3 4

f 4 (P m J+ ) 12 9 .9 1.9 7 5 .9 7 4 .6 5 ー 1 .0 4 3 .9 1 - 4 .9 6 】 1 .2 7 3 .0 0 0 .0 1

P (S m 叶 ) 9 3 .0 2 .4 6 牛 9 6 3 .l l - 0 .0 5 4 .9 0 ー4 .9 5 - 1 .0 1 2 .5 0 0 .3 3

/ 6 (E u 3 + ¥ 1 25 .3 2 .94 2 .9 5 1 .8 2 2 .9 3 5 .8 6 - 2 .9 3 -0 .5 0 -0 .0 0 0 .4 7

子つ G d 叶 ) 0 .2 3 .4 7 0 .、0 7 7 ′2 6 ▼9 7 6 .9 3 0 .0 3 0 .0 0 5 - 7 /2 0 .0 1

r (t v + ) l l .3 2 .9 5 3 .0 6 6 8 .9 5 5 .8 9 3 .0 5 0 .5 2 ー 6 .0 0 0 .2 4

P (D r <+ ) 6 .7 2 .4 4 5 .0 9 1 5 ′2 9 .9 2 4 .8 5 5 .0 8 1 .0 5 I 1 5 ′2 0 .1 3

/ 1U (H o a 十) 0 .6 1 .9 3 6 .0 9 8 9 .9 2 3 .8 3 6 .0 8 1 .5 9 -8 .0 0 - 0 .14

∫ (E r叫 ) 5 .9 1 .4 8 6 .0 4 1 5 ′2 8 .9 7 2 .」 6 .0 3 2 .0 6 - 1 5 / 2 -0 .3 1

f lコ (T m d+ ) 8 一9 0 .9 9 5 .0 1 6 6 .9 9 1 .9 8 5 .0 1 2 .5 3 - 6 .0 0 - 0 .4 1

p s (Y b 3 + ) 0 1′2 3 7 / 2 1 .3 6 0 .34 1 .0 2 3 .0 0 - 1 .1 9 ー0 .l l
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1 2　3　4　5　6　7　8　910111213

4FI

Figure 3.27: The HF total energy of the 4/ ions in the weak Oh crystal field, measured from

the ground-state eigenvalue obtained by the CI method.

Figure 3.28: Calculated S and L of the 4/ ions in the weak Oh crystal field. Solid and

broken lines correspond to the results by the CI and HF method, respectively-

4fN

Figure 3.29‥ Calculated J of the 4/ ion占in the weak Oh crystal field.
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Figure 3.30: Calculated total magnetic moment /i - /isp;n +//orb (thick line with circle) and

R〃 - /^。rb/A'spin (thin line with triangle) of the 4/ ions in the weak Oh crystal field. Solid

line is by the CI method, and broken line by HFA.
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Figure 3.31: Calculated jusp;n (thick line with circle) and 〃。rb (thin line with triangle) of

the 4/ ions in the weak Oh crystal field. Solid line is by the CI method, and broken line by
HFA.
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3dN

Figure 3.32: CalculatedくJ3) (thick line with circle) and (Tz) (thin line with triangle) of the

4/ ions in the weak Oh crystal field. Solid line is by the CI method, and broken line by
HFA.
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Figure 3.33: The way of electron population in the cubic basis, for the 4/ ions in the weak

Oh crystal field. In each con五guiation the upper panel represents the result by the CI

method, and lower by the HF method. In the耳gures, x, y, and z denote the bases ofT¥Iti

representation; X, Y, and Z are the T2u bases; xyz is the A2u basis. The shaded or hatched

area shows the probability of electron occupation of each state.
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3.6　Uion

The ground state of uranium ions, which have the 5/ shell as an incomplete shell, is

investigated inもhis section. Radial wavefunction of the 5/ orbital, R^j{r), has a distinct

difference from the 4/ one; Rsf spreads rather outside with possessing one node, in order to

satisfy the orthogonalization with the core-state's R^j. Consequently, the Slater integrals are

smaller than those of rare-earth elements (For comparison, see Tables 3.ll and 3.6). As for

the coupling constant of the 5/ spin-orbiもinteraction言5f , however, due to the large atomic

nucleus, it has a large value with the same order as that of the rare-earth elements, (4/- As

a result of these facts, the situation in the U ions do not pertain to the Russell-Saunders

case; the condition ¥He　≫ Iifs。I is not gratified sufficiently- In the limit of strong spin-orbit

interaction, ground state is described by the jj-coupling scheme; individual electrons have

resultant angular momentum j - I+s with the aid of Hs。, and then the multipole Coulomb

interaction i/ee forms total angular momentum <7 - jl +j2 + - - -. Unfortunatelyコneither

the 」5-coupling scheme nor jj-coupling scheme explains the actinide system (this situation

is known as intermediate coupling), and an analytic theory as in the case of the 3d and 4/

ions is not feasible. We should rely on a numerical calculation to get the ground state.

On the analogy of the calculation of the 3d ions in Oh crystal丘eld, discussed in Sec. 3.4.2,

a good result is expected for HFA since the one-body term Hs。 of the U ions is rather strong.

Figure 3.34 shows the way of electron population in ma basis, calculated by the CI and HF

methods. In contrast toもhe case of the free 4/ ions (see Fig. 3.25), HFA well describes

the extension of the population into the minority spin states. Tables 3.12 and 3-13 give

the calculated magnetic quantities. One can see that the agreement between the CI and

HF results is fairly good; the deviation is less than 15% for all quantities. In conclusion,

HFA can be a good starting point to describe the U 5/ ground state as far as the magnetic
moments are concerned.

Table 3-ll: Parameter values of the U ions in unit ofeV. F s and 」5/ are from Ref. [27]
but F 's are scaled to 80% of their bare values to account for the intra-atomic correlation

elTect.

5/JV.　　　　　∠　　F*　　　　　毎　　　△m
+) 7-611 4.979　3-655　0.261 1.0×10-

/3　(U3+) 7.086　4.598　3.363　0.235 1.0×10-4

Table 3.12: Calculated results for the free U ions, based on the CI method. S, L, and J are

obtained by solving equations such as S(S + 1) - (S2) The magnetic moments /x, /ispm>

and /i。rb are in unit of-/iB. R^ = /l。rb/M蝣spin-

5f　　　　5　　L Aォ　Aspin　/'。rb Ry. {Jz)  (TB)

") 0.93　4.89　4　-3.30　1.40　-4.70　-3.36 4　-0.81

/3(U3+) 1.38　5.85　9/2　-3.41　2.18　-5.59　-2.56　9/2　-0.63
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Table 3.13: Same as Table 3.12, but calculated by the HF method. Deviations of the HF

result from the CI one are represented in parentheses by percentage. The second column

△E is the energy difference between HF and CI, in unit ofmeV.

5r　　　△ E S L　　　　　　　　　〃sDin　　〃。rh A〃　A*spin A*。rb Ru (Jz)

) 15.1　0.90　4.85

-3) (-1)

∫ (U3+) 52.3 1.35　　5.81

ト2)仁1)

4.01　-3.26　1,48　　-4.74　-3.21

(0) (-1) (6)　(1)　(5)

4.58　-3.25　2.49　-5.75　-2.30

(2) (-5) (14)　(3) (-10)

-0.81

(0)　(0)

9/2　-0.60

(0)　仁5)

CI

汀¶

f mum
HF up down

4+>st(ir+) 5戸3+^
(ir+)

Figure 3.34: Electron population in the ma basis, for the free TJ ions. In each configuration

the upper panel represents the result by the CI method, and lower by the HF method. The

shaded or hatched area shows the probability of e一ectron occupation of each state.
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3.7　Summary

We have investigated the atomic ground state of the 3d, 4/, and U isolated ions, and

examined the validity of HFA.

The 3d and 4/ ground states in spherical symmetry are given by the Hund rules and

LS-couphng scheme. In the more than half filling case, their wavefunctions are expressed

by a single Slater determinanもwhereas multi-determinants are needed in the less than half

filling. Consequently, HFA, i. e., single-determinant approximation, gives precise results for

the more than half filling case but fails in the less than half filling.

Under the realistic Oh crystal field, HFA comes to be a good approximation for the 3d

states, even in the less than half五Ihng case: This shows that HFA increases its accuracy

with sufficiently strong one-body interaction.

The U 5/ states do not belong to the Russell-Saunders case. Hs。 is so strong that it can

mix different LS multiplets deduced from Hee- Because of this strong one-body term, HFA

gives a good result for 5/2 and 5/3 con耳gurations.

The radial wavefunction of the 3d and 5/ orbitals spread rather outside so that consider-

able solid-state effects, such as hybridization effect and crysta川eld e斤ect, are anticipated in

crystals. It seems reasonable to conclude that HFA is expected to provide a good description

for 3d or 5/ substances.
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Tight-binding method

The tight-binding approximation for solids has been developed by Slater and Koster.[28]

Originally this method was proposed as an interpolation method since the firsトprinciples

band structure calculation with using elaborate technique needs huge computing power;

accurate calculations were done only for some points of high symmetry in the Brillouin

zone, and they were interpolated by the tight-binding method throughout the Brillouin

zone. Owing to the great progress in computational facilities, the interpolation scheme is

no longer required, at least for the usual band structure calculation. However声he tight-
binding approach is still useful to studies where tremendous computing power is necessary,

for instance, large uniもcell crystals, defects, disordered materials, surfaces, interfaces, and

phonon spectra. Furthermore it is often applied to model calculations to treat excited states

or strong electron-correlation effects, which can not be handled by LDA. Although there are

some limitations and shortcomings in LDA, it often gives good results as far as ground-state

properties or interaction strengths are concerned. Parameters relevant to models are often

extracted from converting an LDA band structure into the tight-binding scheme.

In the tight-binding method, the one-electron wave function in crystal is approximately

expressed by a linear combination of atomic orbitals (LCAO)- As in Eq. (3-2), an atomic

orbital located at site i can be expressed by

・iv{r-Pi)-舶r-p,-1) Vm詣　　　　(4.1)
where王′ is the combined label of n, /, m, and a. From these functions one can construct

linear combination

ォ&(')-嵩写　　vii/yl蝣-蝣ai Pi)　(4.2)

where Rw is a translational vector stretching from the zero point to the w-th unit cell; pt

is the position vector of the site i within a unit cell (See Fig. 4.1); N is the number of unit

cells in a large box, which is utilized for the periodic boundary condition. The function uた
satis丘es Bloch's theorem

uた[r+R) - eikR uた　　　　　　　　(4.3)

where R is any translational vector. Wave vector k has a meaning as the crystal momentum,

which is an irreducible representation in periodic system. Eigenfunction of crystal Hamilt0-

man H, is to be labeled by k and the band index n, and expressed by a linear combination

-I,/*

甘?(')-∑cLォたサ蝣
%v

m

(4.4)
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Table 4.1: Two-center tight-binding energy integrals, expressed in terms of the Slater-Koster

integrals and the direction cosinesらm, n (r +m2+n　= 1). The entries not given

in the table can be found by cyclically permuting the coordinates and direction cosines.

Interchanging the order of the indices has no effect if the sum of the parities of the two

orbitals is even, but changes the sign if the sum of the parities is odd.

Es

E,

Ex

Jx, v

E∬, I

Es,訂y

Es,訂2-y2

3*2-r2

E訂,訂y

Ex, yz

E一　訂

Eg x-'-y^

Jy, a? -y6

E,

E.x, 3z2-r2

E,, 3z2-r2

Ez, 322-r2

Jxy, xy

E訂y, yz

->xy, zx

E.xy, xJ

E.,yz, x'-yl

Ez

Jxy, 3^2-r2

E,yz, 3z2-r2

E, 3z2-r2

E訂2ザx'-y*

3z2-r2

E&-,2, 3^2-r2

(sS<7)

l(spa)

P(ppa) + (1 - P)(ppir)

lm(ppcr) - lm(ppir)

Inyppa) - in(ppir)

ヽ乃Irn(sda)

圭ヽ乃(I2 - m2)(sda)

- |(/2 + m2)}{sd<r)

ノ吾l2m{pd<T) + m{¥ - 212)(pdir)

ヽ乃Imn(pd(T) - 2lmn{pdiT)

ヽ乃l2n(pda) + n{¥ - 212)(pdir)
1

ラ

1

2
1

蝣)

i[

ヽ乃l(P - mT)(pda-) + 1(1 - g2 + m2)(pdn)

j舌m(/2 - m2)(pda) - m(l + I2 - m2)(pdir)

∨官n(l2 - m2)(pda) - n{P - m2)(pdir)

- IJP +m^ipda) - 1β In2(pdir)
m¥n -¥{P+m*)]{pdv)-J吾i (pdir)

n[n2 - ¥{P + m^](pda) + 、β n(/2 + m2)(pdir)
312m2(dda) + (I2 + m2 - Al2m2){ddTt) + (n2 +fm2){dd6)

2>lm2n{dda) + ln{l - 4m2)(cw7r) + ln(m'2 - I)(dd6)

312mn(dd<r) + mn(l - 412)(ddir) + mn(P

i;
m{f -m2){dda)+2lm(m2 - P

l)(ddS)

)(ddir) + Urn

mn(l2 - m2)(dda) - mn[l + 2(/2 - m2)}(ddir)

ァn/

＼::

¥・'・

+

(p
mn[l.+ ¥{l2 - m2)](dd8)

- m2)(dd<r) + n/[l - 2(J2 - m2)]{ddit)

-nl[l-

n2-¥
1

ラ1

[n
1

亨＼

lm[

+

ran

ttU

l/':

F - m2)](dd6)

+ m2)](dda) - 2V吾Imn2(ddir)

J富Im(l + n2)(dd6)

2-w2+
V等

ヽ乃In[n2 -

i、::

m21:w-
+

吉、乃(

mn

W2
InI

(J2

(P - m2)(dd6)

m2)](ddor) + V3 mn{P + m2 - n2)(ddir)
+ m2)(dd6)

+ m2)](dd(T) + v乍In{P + m2 - n2)(ddv)

(P + m2){dd6)
m2)2(dda)+[P+m2-(F-m2)2](ddir)

+¥{l2ml¥2)*](dd&)
2.

n

】2

)2

(P + m2)](dda) + ヽ乃n2(m2 - [2)(dd7rJ

m2)(dd6)

o)+3n2(/2//2 + m2)(ddir)
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Figure 4.1: Position of a umt cell and site.

Note that the summation over i is taken within a lunit cell. It is not assured that the bases

uた's are orthogonal with each other, since two atomic orbitals,尋　and <j)jn, usually have

チn overlap if they are located on different atoms (i ^ j) in a close distance. Such an overlap
is often ignored for simplicity, as in the case of this thesis, but we will continue to formulate

the tight-bindmg method with the more general case of non-orthogonal basis.

Matrix elemenもof the crystal Hamiltonian H can be written as follows on the basis of

uた

・H-ivjn¥?6) ≡ (uた匿鴎)

- fuた'(r)Hu%{t)dr

-　∑expjifc・(礼+pJ -pi)} 」8v,j>(礼).　　(4.5)
LLI

where we have used the periodicity of the Hamiltoman, H(r + Rw) - H[r), and introduced

a following matrix:

&iv,jn¥札) ≡ ∫ (r-pi) H ¢31*(r一札-Pj)dr (4.6)

this matrix represents the interaction between electrons localized at position pi and札+py
On the same way, let us define the following "overlap matrix" between the bases:

Jiv,jfi¥'e) ≡ (励IV-)

- f姉ォ&(!・)dr

-　∑exp{ik・(Ru+pj -p^} Siv,jlJt(礼),
W

」>iv,jli¥.-w) ≡ ノ、 ¢i〝　蝣r-Pi) 4>iAr-R"-Pi) dr-

(4-7)

(4.8)

where

Having de丘ned these matrices, the Schrodinger equation, #S　- En(k)哩, reduces t。 a

secular equation

ど lHi〝J^(fc) - En(た) Sivijll(k)] C*jlt - O
id

(4.9)
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= En(k) S(k) (4.10)

HI

foreachkintheBrillouinzone.Thisisageneralizedeigenvalueproblemwiththeoverlap

matrix,andissolvablebyusingappropriatecomputerprogram.

Themainsubjectinthetight-bindingschemeistodeterminetheatomic-orbitalmatrices

(4.6)and(4.8).ThecrystalHamiltonianH,involvingaperiodicpotential,canbewritten

asthesumofakineticenergyoperator,andapotential,whichisapproximatelyasumof

sphericallysymmetricalpotentialwellslocatedatallthesitesofthecrys叫H--藍∇2+

∑りVt(r-R叩-pj).Hencethematrix(4.6)isalinearcombinationofintegralsofaproduct

ofanatomicorbital4>iulocatedonthesiteatpositionpitanotheratomicorbital毎pon

thesiteatRw+j>-,andasphericalpotentialfunctionlocatedonstillathirdsite.Itis

convenienttoexpressthemthroughon-siteintegral,two-centerintegral,andthree-center

integral.

蝣^ivJii¥--w)-」Jiu/j,vijbl'uO

・ノ ¢ /(r-p,.) V-(r一札-Pi, ¢3V(r一札-pj) dr

+1,'J
^.v*(r -p,-) VJ(r - il, -p,) ¢3V(r一札-Pj) dr.　(4.ll)

The丘rst term, Eivfl represents the "on-site energy" or "orbital energy" , and the other terms

represent the electron hopping. The primed summation in the third term means that either

the case of Rり+Pi = Pi or -Rサ; +pi - -R^ +p^-, namely, the on-site integral or two-center

integral, is not included in this sum.

For practical reason, this rigorous expression is simplified by ignoring the three-center

integrals, and further retaining only a few two-center integrals; for instance, those between

nearest- and next-nearest-neighbor atoms. Since the potential function is assumed to be

spherical, the two-center integrals are expressed by a small number of " disposable" param-

eters. If we consider the vector札+pj - Pit stretching from one site to the other, to be
an axis like that of a diatomic molecule, we can express each of the function <f> as a sum of

functions quantized with respect to the axis. From this rotation of the axis, a two-center

integral becomes a linear combination of numerous integrals. However, the property of the

spherical harmonics permits only a few integrals to be non-zero - only when two atomic

functions have the same m (magnetic orbital quantum number) the integral can have a

飯ite value. The non-zero components are labeled by <r, tt, 6, and ¢ for m - 0,士1,士2,

and士3, respectively (these are called Slater-Koster integrals or SK parameters). Now one

can express the two-center integrals in terms of a few "disposable" SK parameters and the

direction cosines /, m, n of the vector R^ + pj - p{- For convenience, the relations for all
combination of s, p, and d orbitals, taken from Ref. [28], are reproduced in Table 4.1. These

relations are also applicable to the overlap integrals.

In SK Table 4.1, relations including / orbitals are not given. Our interest in this thesis

is the electronic structure of uranium compounds where the 5/ orbital plays an important

role. In spite of using Table 4.1, we will derive the same relations numerically, based on

the rotation of the spherical harmonics. This method can be appliedもo all combinations of

atomic functions with any orbital angular momentum.
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Rotation of a cartesian coordinate system (x, y, z) can be specified by the Euler angles

α, /?,7　0 ≦ α < 2tt, 0≦β≦ x, 0 ≦7 < 2tt). These anglesrelate a丘nalrotated coordinate

system (x , y′, Z′　to the initial one in the following three steps:

1. The ㌶　2/i, ^j-axes are rotated about the z-axis through an angle α counterclockwise

relative to器, y, z. (The z and 21-axes coincide.)

2. The #2, s/2, Z2-axes are rotated about the t/i-axis through an angle β counterclockwise

relative to x¥, y¥, z¥. (The y¥ and 1/2-axes coincide.)

3. The final rotation is through an angle 7 counterclockwise about 22-axis, yielding the

a:′, y , z system. (The z2 and z'-axes coincide.)

y　.v,-

Figure 4.2: Rotation about z through angle α

Spherical harmonics viewed from the new coordinate system x', y', z′ can be related to the

one m the original system by a unitary transformation:

WV) - ∑Ylml(0<p)Dlm,m(α,0,7).
951

where the unitary matrix D is de丘ned by

l+m

Arc'm(α,/?,7) = ∑(-)*
(I+ m)¥(l - m)l(l+m′)!(/一m′)!

(4.12)

-r′`'7'ハ~-フ"''∠一＼ノk¥(l-m′-ky.(l+m-k)¥(m'-m+ky.
k=0
・ICos芸21+m-m'-2k,

I-sin呈m'-m+2kα(4・13'

Notethatthisrotationmatrixisageneraloneinthesensethatitcanbeappliedtoany

angularmo誓entumjwithintegralandhalfoddintegralvalues(j-0,喜,i,普,-).Angular

partappearingmatwo-centerintegralcanbeconsideredasthefollowingsimplifiedform:

/Y,i-i*(u)Y'?寺請)dO

-/Y,<iォii馳)節,-,WR<PR)dQ>(4-14)

whereonesphericalharmonicsislocatedatzero-point,andtheotheratpositionR.We
wouldmakeanewcoordinatedsystem(x',′)Z′orr′y,(p')sothatthez'-axi言oincides

withthevectorR.Inthenewsystemtheazimuthalanglesoftwovectorsrandr-R

cometobeidentical(SeeFig.4-3).UsingEq.(4.12),theangularintegralreducestothe

oneexpressedbythenewcoordinatesystem

*W*V) tf。 >(サRPR) dn
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Figure 4.3二Polar and azimuthal angles of vectors r and r - R, in the new coordinated

system.

- / E-^vo^-J (」*wv)^-2-2 <ffi'

-　∑
m棚胃

D^im[Dl -2-'2 / Y,耕′<S)Y,3-> WR-′
(4.15)

The integral will be zero unless m¥ - m^, because of the integral over <yク'. Then the

expression reduces to

妄晩Dhニ　yf,,,(OV)サWが'RV>')dH′　　(4.16)

Having known this point about the angular pa叶the two-center integral in (4・11) can be
written as a linear combination of disposable parameters

-C'ii/jT'l札　= / 4>iv*{r-Pi) Vj(r-Ru-pj) <j>jtl(r-Rw-pj) dr

- ∑叱-(〕Q)一骨レjn^l,,(Q) Dl-ニ-V(山g)-　(4.17)
iltl

with

Q≡-Kw+Pj -Pi (4.18)

酔れ'(Q) ≡ !Rinvi^r) Vj{¥r一馴Rjn,iA¥r-Q¥) r*dr

・4汀/ 鶴(dV)*uo>',Q-′・  (4・19)

Here ujq represents a set of the Eu-er angles, which describes the rotation to make the new

coordinate system where the　′-axis coincides with Q. The matrices侮つs correspond to
the SK integrals such as pda・
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Tightーbinding Hartree-Fock method

The tight-binding Hamiltonian described above, HTB(k), is considered to represent well the

electron kinetic energy- In this thesis, in addition to #TB(fc), we would separatelyもreat

the on-site Coulomb interaction, at least for an orbital most relevant to magnetism, by

the self-consistent HF procedure. Furthermore the spin-orbit interaction should be added

for the discussion of orbital magnetism. These intra-atomic interactions are essentially the

same as those of isolated atoms discussed in Chap. 3, but a slight modification is needed for

the application to solids. We shall show it in the following, by featuring a simple example
where there is only one site in the unit cell and only a single orbital is taken into account.

Extension for a general case is straightforward.

The Hamiltonian for a one-electron state with the crystal momentum k may be expressed

by

H(k) - HTB(k) + Hso + H,HF

Hsa - ∑∑¥uv¥El -s¥u〃′) a+va〕yJ
u)　vl/'

H,HF　∑∑awvawv'∑(atvla叫)
oJ VV'　　　　vxv呈

× [(UJV.UV¥¥車V ,U!vl) - {u>V)LOVi¥v¥u)l>'l,U)v'y¥

with

(4.20)

(4.21)

(4.22)

Here, ¥u>v) represents an atomic orbital ¢〃 localized at o>-th unit cell. The on-site matrix

elements have no u>-dependence. Furthermore, since we will deal with homogeneous solution,

for example, magnetically ordered state, the HF order parameter (a+ a ,} do not have w-

dependence. Then the expressions become

HS。-∑(柑s¥v) ∑awvawi/'
vv'　　　　　　　　　　　w

H.HF　-　∑∑(a^Sま)
vv> l/ll/'

・ [{j^l回i/Xト(-l舶"')]∑aivaw〝JI
LU

(4.23)

(4.24)

It is necessary to unify the basis of each Hamiltonian. The basis of HxB(k) is the Bloch
orbital

u至(v)-孟写exp[ik札bv{v-Rw).
The inverse transformation yields

蝣>{蝣>蝣一札) -孟亨exp(-ik蝣R-) u空(r'

Or

aw+〟 -孟亨exp{-ik蝣Rw) a+kv

(4.25)

(4.26)

(4.27)
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Using this relation, the basis of Hs。 and H」, , i.e., the atomic orbital basis, can be converted
into the Bloch basis:

写atvau,v'

-轟亨exp(-ik蝣JRw)ajk禄xp(ffe'蝣Rol)ak,〝′]

kkr完〝ak'v<1

-N写exp{-i(k-k')蝣Rw}

-∑a完vaK〝bkk'

kk'

-∑a去vakv

k

Thentheon-siteinteractionsarerewrittenasfollows

-ffs。-∑(v¥(ls¥v∑a去

""k

H.HF-∑∑>」ォ〃呈)

vvviV-

・[{vvi帖んi)-(-1回uiy′)]∑a去〝akv

k

(4-28)

(4.29)

(4.30)

The I王F order parameter (aja ,} is to be calculated from the eigenvectors of occupied

states. As previously described, the eigenfunction of H, labeled by k and the band index

n, is given by a linear combination of Bloch orbitals:

せ」(*)-∑　空サ蝣
上J

Inversely the Bloch orbital is given by

u空サ-∑　せ?00
n

Or

a妄言∑L'nv a忘れ・
r7,

Then

(<2+(V　- (ataov')

妄∑(a去vak'〝′)
kk

1

:V

∑∑r-iK(-1.k'(a去0-ii
k'n')・
kknn

(4.31)

(4.32)

(4.33)

(4-34)

Sincewearebasedonthesingle-determinantapproximation,theground-stateexpectation

valueofa去a,,becomeszerounlessthefollowingcondi

nkn'-tionsaresatisfied.
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・　fc=kl

・n = n

the state kn is an occupied state (E^ ≦ EF)

Thus we get

(ata,,)-孟∑ ph*pk
唱Fj^M^fMii

(4-35)



Chapter 5

Antiferromagnetic structure and

orbital magnetism in Coo

Part of this chapter has been published in J. Phys. Soc. Jpn. 67, 2637 (1998) by Tatsuya
Shishidou and Takeo Jo.

Abstract

Possible magnetic structures of CoO, which is known to be the second kind of

antiferromagnet, are discussed for the cubic phase on the basis of the extended

Hubbard model including the 3d spin-orbit coupling and the intra-atomic full

3<i-3d multipole interaction in the framework of the Hartree-Fock (HF) approxi-

mation. In addition to a collinear single-Q structure, a noncollinear quadruple-Q

one, both of which are compatiblとwith the neutron diffraction experime叫are

obtained as stable HF solutions. The magnitude of the Co orbital magnetic

moment is shown to be as large as - 1/iB-　Relationship between the orbital

magnetism and the band-gap formation is explained.

5.1　Introduction

Electronic structures of transition metal (TM) monoxides NiO, Coo, FeO and MnO.

which show antiferromagnetism (AF), have been the subject of continuous debates. Since the

msulating property of monoxides both below and above the Neel temperature was pointed

out to not be explained by a band model,[29] the importance of electron-electron interaction

has been discussed- It is generally agreed that the large Coulomb interaction causes the

insulating properties.[30, 31] The electronic structures have also been discussed in terms of

the recently developed茄rst-principles band structure calculation on the basis of the local

density-functional approximation (LDA); LDA does not give the insulator as long as we

assume pararnagnetism. Even if we assume AF, the insulating band gap obtained from

LDA is known to be too small compared with the experimental result.[32]

Amongもhe monoxides, the magnitude of the orbital magnetic moment //orb of Co and

Fe ions in CoO and FeO, respectively, is well known to be on the order of 1//b-[33] The large

fiorb in Coo and FeO was pointed out by Kanamori[26] to cause the large magnetostriction

and by the presenもauthors[34] to be reflected explicitly in the isotropic L2,3 Ⅹ-ray absorp-

tion spectrum. Although LDA is successfully applied to discussions of the magnetism ofTM

systems, success depends on the experimenta川tiding that p。rb is almost quenched in TM

55
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systems; Coo and FeO are examples of exceptions. In LDA, there is no theoretical frame-

work for calculating /iorb self-consistently and we must be satisfied with a perturbational

calculation which is known to cause an underestimation of 〃orb- Since 〃orb is comparable

with the spin magnetic moment ^spjn in 4/ rare earth and 5/ actinide systems, various ex-

tensions of LDA, which include current-density-functional formulation,[35, 36, 37, 38] have

been attempted. The first-principles calculation of 〃orb with the same level as that of (i蝣spin

is, however, in feasible at the present stage.

The TM ions in NiO, Coo, FeO and MnO exhibit the second kind of AF structure

on the fee lattice which is, in general, described by the four wave vectors determining the

magnetic moduiaもion: Qx - ir/a(l,l,l), Qi - ^la仁1,斗1), Q3 - T/a(l,-l,-1) and
Qa蝣- Vォ(-1,1,-1)・ For NiO, FeO and MnOコit is generally agreed that the single-Q

structure is realized, where the magnetic moments within the (111) plane are parallel and

they are antiparallel with each other between the adjacent (111) planes. In the case of CoO,

which shows tetragonal distortion with c/a < 1 below the Neel point, the magnetic structure

is still controversial- According to van Laar,[39] a noncollinear magnetic structure is also

compatible with the neutron diffraction experiment, in addition to the single-Q structure.

The purpose of this work is to discuss possible second-kind AF structures of Coo on the

basis of Hartree-Fock (HF) approximation for an extended Hubbard model where the full

3d orbitals of the Co atom, the 2p orbitals of the 0 atom, the multipole 3d-3d intra-atomic

interaction and the 3c? spin-orbit interaction are taken into account.

HF calculation based on the tighトbinding model has been applied to discussions of

the electronic structures of TM monoxides[40] and insulating Mn perovskitesコ[41] and it

is known to describe their insulating properties. For systems where /iorb and pspin are

comparable with each other, the HF calculation is shown to give a reasonable value of the

ratio /i。rb/Vspin for TM oxides and uranium compounds.[42] We therefore adopt the present

model, since the magnitude of ^orb of Co in Coo is expected to affect the stable magnetic

structure including the direction of the magnetic moment relative to the crystal axis. The

present subject can only be discussed by using a realistic model, taking into account the full

orbital degeneracy. Realistic calculations of magnetic quantities have been performed by

the firsLprinciples LDA approach, but its main object was a ferromagnet[13] and magnetic

properties of noncollinear structures and antiferromagnets have been discussed by only a

limited number of researchers.[43, 44] The discussion on possible multiple-Q structures with

a large p。rb, which is not reproduced by LDA, therefore sdems to be a unique subject.

We first give a brief review on the second kind ofAF structure on an fee lattice. We pick

out, from an fee lattice, a tetrahedron composed offour atoms which are nearest neighbors to

one another. This fee lattice is regarded to be a simple cubic (SC) lattice of the tetrahedron.

The second kind of AF on the fee lattice is described by an "antiferromagnetic" arrangement

of the magnetic structure of the tetrahedron.[45] A general structure of the second kind of

AF is therefore given by an arbitrary arrangement of magnetic moments of the four atoms

within the tetrahedron, which is described by the modulation wave vectors Qx - Q4, i.e.,

the multiple-Q structure (see Fig- 5.1). If we assume a classical Heisenberg model, each

multiple-Q structure is degenerate to one another. The degeneracy is removed either by a

quantum effect, which prefers a collinear structure, or the four- and more-spin interactions

beyond the two-spin one in the Heisenberg model.[46] The quantum effect is important in

the case of a small spin, e.g., s = 1/2, while the four- and more-spin effects are for a larger

spin. The present HF calculation includes the four- and more-spin effects, which seems to

be appropriate for discussing the magnetic structure of the Co ion with a spin magnetic

moment of - 3/iB.

A phenomenological discussion of the relative stability among multiple-Q states on an

fee-lattice has been given by Jo and Hirai.[46] Although they did not consider any effect of

the spm-orbit interaction, the deduced results seem to be useful for carrying forward our

discussion. In a general structure of the second kind of AF, the magnetic moment of each
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Figure 5.1: A general magnetic structure of the second kind of AF on an fee lattice. Within

a tetrahedron, which is composed offour atoms (sites 1, 2, 3, and 4 shown by open circles),

the direction of magnetic moments of each atom is arbitrary, while that of each atom of the

tetrahedron with four closed circles is coupled antiferromagnetically to the one with open

circles. Then a general structure is given by placing these two types of tetrahedrons alter

naもely at the corners of a simple cubic lattice. See Ref. [46] for a more detailed explanation.

siteRk can be expressed by

Hk - Ai exp(iQl蝣Rk)+A2exp(iQ2蝣Rk)+A3exp(iQ3 -Rk)+A4exp(iQ4蝣Rk)・ (5.1)

To put it another way, this multiple-Q state is formally expressed by

AilQi) + A2¥Q2) + A3IQ3) +A4¥Q4)　　　　　　　(5.2)

Here Aj denotes the vector amplitude of the modulated state |Q,-) the direction of A, spec-
i翫s the direction of the magnetic moment of one sublattice and |A; |2 represents the weight

of the state ¥Q{) in the superposition. Magnetic moments of the tetrahedron's four atoms,

located at JRi - (0,0,0), R2 - (a/2,a/2,0), R3 - (0,a/2,a/2), and RA - (a/2,0,a/2) as
shown in Fig. 5.1, are represented by

rjfl

〝2

'iS

〝4

i^BI H　　1

-1　-1　1　1

-1　1　-1

-1　1　1　-1

Alternaもively, {Aa} is given by a linear combination of {/x^}‥

AI

A2

A3

A4

1

4

1　-1　-1

1　-1　1　1

i^B^n^m
1　1　1　-1

AI

A2
A,

A4

〝1

Mj

〝3

f'-4

(5.3)

(5.4)

Jo and Hirai expressed the energy of the system in terms of {A;} with a consideration of

symmetry of the system, and they showed that only limited kinds of superpositions are
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candidates within the lowest-order expansion of {A,} to remove the degeneracy. They are

the single-Q, a triple-Q, a collinear quadruple-Q and a noncollinear quadruple-Q state. The

single-Q is a familiar structure and is sometimes called the "A-structure" , and the collinear

quadruple-Q is known as the "B-structure" according to the literature.[47]

5.2　Formulation

We assume the Hamiltonian given by

H-HTB+Hs。+He

Hrn Td(E3d,10Dq)+Tp(E2p)

Tpd+Tvr>+Tc
ppl-dd,
く3dど∑{i>i¥l-s¥v2)dt.d,,
lJI/1-2^2'
IVIV2
∑∑¥g{viV2Vzl>4トg(viv2ViV3)}

官"¥V^VsVt
⑳(d£。di〃4)dtd.
蝣ivl-'tv3コ

g(viV2h>3V4) -

with

(5.9)

HTe represents the kinetic energy. Td and Tp describe the id and 2p orbital energies.

respectively, where we consider point-charge crystal一鮎Id splitting (lODq) for the 3d level.

Tpd, Tpp, and Tu stand for 2p-3cf, 2㌢2p, and 3d-3c? electron hopping, respectively. Hs

represents the 3d spin-orbit interaction with coupling constant Czd- The operator ds> denotes

the annihilation ofa 3d electron in the v state of Co site i. The symbol u is the combined

index of the spin and orbital magnetic quantum number. Hee represents the intra-atomic

3d-3d multipole interaction, which is treated within the HF approximation. The matrix

element giyivivzv^) is written in terms of the Slater integrals and Gaunt coefficients. For

the parameter values of the Hamiltonian, we adopt those listed in Table 5.1. Here 」3d is

obtained by ab initio atomic HF calculation, and the other parameters are from Ref. [40].

For the 3d-3d multipole interaction, we calculate the expectation values not only of 10

number operators but also lOC2 - 45 0仔-diagonal operators to maintain the rotationally

invariant property of the interaction operator. Due to the presence of 〃orbi the direction

of atomic magnetic moment obtained as the HF solution is restricted. In the iteration

process of the HF calculation, we determine the magnitudes of //sp;n and fiorb and their

directions simultaneously in the following way. First we give the quantization axes of both

spin and orbital moments and the expectation values of the above-mentioned operators as

input parameters. Then we obtain, as output values, the new expectation values. With

these, we obtain the expectation values of the spin components Sx, Sy and Sz and the

components of orbital angular momentum LxI Ly and Lz in the 3d state under the given

quantization axes; we obtain the directions of /ispin and fxorh. In the next step of iteration,

we adopt the obtained directions of^spin and fiorh as the new quantization axes of/ispin and

/iorb, respectively. We repeat the iteration up to several thousand steps until the su氏cient

convergence is obtained; the directions of ^spin and porb can be different from each other.

5.3　Results and Discussions

Single-Q structure
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Table 5.1: Parameter values used in the calculation. Except (3^, these are from Ref. [40],

where the Coulomb interaction parameter were represented by the Racah parameters, A =

F- -49^/441, B - F2/49 - 5F4/441, and C - 35F4/441. The energy difference between
the 2p and 3d levels is deduced from the charge transfer energy in Ref. [40] de丘ned by A =

E3d- E%p +nUdd) where n is the 3c/-electron number in TM-+ ion and Udd is the multiplet-

averaged 3d-3d Coulomb interaction Udd - A - 145/9 + 7C/9 - F- - 2F2/63 - 2F4/63.
Ail in units ofeV.

Parameter MnO FeO Coo NiO

pd(T 1.3　　1.3

pair　　　　　　-0.6　　　-0.6

ppa 0.55　　　0.55

ppit　　　　　-0.15　　-0.15

ddcr　　　　　　-0.23　　-0.29

ddir 0.025　　0.030

ddS　　　　　　-0.005　-0.004

E2p-E3d ll.3611　27.027

1ODg 0.70　　0.70
F-　　　　　　4.474　　6.172

F2　　　　　　3.750　　9.730

Fi　　　　　　5.166　　6.048

(3d 0.041　0.052

1.3　　　　1.4

-0.6　　-0.63

0.55　　　0.60

-0.15　　-0.15

-0.25　　-0.23

0.058　　　0.10

-0.006　　-0.01

32.314　41.9156

0.70　　　0.70

5.956　　　6.440

10.640　　10.570

6.804　　7.560

0.067　　0.083

We first start from the "A-structure" obtained for 3d spin-orbit coupling (^ - 0, where

the modulation is given by the wave vector Qx = 7r/a(l, 1, 1) and the direction of/ispin is in
the 【001] direction and ^orb - 0. By turning on the 3d spin-orbit coupling, //orb increases

with changing its direction within the (110) plane. This causes a similar reorientation of

A'spin- We obtain a stable HF solution after several thousand iterations. Figure 5.2 displays

this relaxation process. We take the polar axis to be inもhe [001] direction and specify the

direction by　が, ip) using the polar and azimuthal angles t? and ip in units of degrees. The

solution has the single-Q structure, where, for one of the sublattice, /xsp;n = 2.81/iB and its

direction is (36.1, 225) and //orb - 0.84^B and its direction is (35.9, 225). For the other

sublattice, the directions are obtained by inversion. We note that the [112] direction within

the (111) plane corresponds to (35.3, 225). The directions of //spin and /i。rb in our solution

are almost in this direction. At present, it is not clear whether the difference between the

angles in our solution and 35.3 is significant or not. Even if we start our iteration from the

[110] direction, the same solution is obtained. We also note that Solovyev et al. recently

obtained, by the LDA+U approach (essentially the same calculation as the present one), a

solution with nearly (35, 225) and with similar values for ^spin and /i。rt>-[48]

Quadruple- Q structure

ln the phenomenological discussion by Jo and Hirai[46] on the relative stability among

multiple-Q states, in addition to the single-Q structure, the two kinds of quadruple-Q states

which are superpositions of the 4 kinds of single-Q states with an equal weight, are found

to be stable in a wide parameter region. Following (5.2), we define the state ¥B) given

by Ai- 1/2(0,0,-1), A2=: 1/2(0,0,1), Az- 1/2(0,0,1) and A4- 1/2(0,0,1). We also

de丘ne the state匿) given by Aj-ち烏(1,1,1), A3-盲嵩(1,1,-1), A3-首畠(41,1) and

A4=読(1,-1, 1). Then ¥B) and ¥C) or their equivalent states are the two kinds of stable
quadruple-Q states. The former corresponds to the "B-structure" (collinear one) and the
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Figure 5.2: Relaxation process to the new equilibrium magnetic state with switching on the

spin-orbit interaction- Growth of the orbital magnetic moment (solid line) and deviaもi of

the spin (white squ千res) and orbital (black squares) magnetic moments from the [001] axis
are displayed・ No significant change can be seen for the magnitude of fisp'm (n-t shown) in
course of the iteration.

latter to the other one where the magnetic moments of four atoms of the tetrahedron are

directed towards its center of gravity (see Fig. 5.3).

We next start from the HF solution assuming a "B-structure" with /ispin in the [001] direc-
tion for (,3d - 0. Then by switching on 」3^っA*orb again increases and we obtain, after several

thousand iteration steps, a HF solution, where |^spin| - 2.81^6 withが= 33.8 and |/i。rb

0.92/ia with蝣& - 35.5 for a tetrahedron. We assume the four atoms of the tetrahedron are at

J?i- 0/2(0,0,0), -R2- a/2(l,l,0), i23- a/2(0,l,l) and R4- a/2(l,0,1). Then tp is 45for

Hi, 225 for J?2, 135 for R3 and 315 for R4 (see Fig. 5.4). The magnetic moments of atoms

on the nearest-neighbor tetrahedrons are given by inversion. We consider the quadruple-Q

state given by v巧:/3¥B) +挿FC′) where匿′) is a noncollinear quadruple-Q state de丘ned

byAl - v/178(l,l,0),A2- yi再(1,1,0), Aa = y/i/8(l,-l,0)andA4　V矯-1,1,0).

Table 5.2: Calculated result assuming the single-Q or multiple-Q structure. n3f; is the

30-electron number. Magnetic moments are in unit of fiQ, and angles in degree.

"3d

Single-Q

C3d - 0　　7.1719

(3d ≠　　　7.1715

Multiple-Q

(3d - 0　　7.1705

Cad ≠　　　7.1702

〃spin y spm　　　　　^spin

2.82

2.81　36.1　　　　　225

2.82

2.81　33.　45,225,135,315

^orb Vorb　　　　　・?orb

0.84　35.　　　　　225

0.92　35.5　45,225,135,315
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(a)　　　　　　　　　(b)　　　　　　　　　(c)

Figure 5・3: Magnetic moment arrangement within a tetrahedron in (a) the single-Q state

(so-called A-structure), (b) the collinear quadruple-Q state (B-structure), and (c) the non-

collinear quadruple-Q state where the moments are directed towards the center of gravity
of the tetrahedron,

Then w is equal to 35.3 at R^ - U4 for both nspm and /iort and <^'s for the four atoms

in tetrahedrons are the same as those of our solution, where the atomic magnetic moment

is in the [112],臼2], [112] and [112] directions for Rlt R2,耳3 and R4, respectively. Our
solution almost corresponds to this structure. At present, it is not clear whether the small

di鮎rence inがbetween our solution and the structureの再¥B) 、/i殉C′) is significant
or not- According to van Laar,[39] the neutron diffraction experiment is compatible with

the structure 、ノち乃IB) + ∨/1/3|C") with蝣d = 35.3 replaced by d - 27.4 in the tetragonal

phase-　Furthermore, according to Solovyev et aら[48] the single-Q structure with蝣d竺35

in the cubic phase is, by tetragonal distortion, changed to that withが竺27.5. Although

we have not performed a calculation including the tetragonal distortion, we expect that our

solution in the cubic phase corresponds to that pointed out as a candidate by van Laar.

Orbital magnetism

Although a definite value of /iorb is n-t yet experimentally determined, the magnitude

of - 1〃b is consistenもwith the results of various experiments. The calculated magnitude

of the total magnetic moment is consistent with the results of experiments.[49,?50, 51] A

partial quenching of//orb, i'-e., large residual 〃orb of Co2+ in the octahedral crystal field, is

discussed by Van Vleck,匝2] and calculated explicitly in Sec. 3.4.2 of this thesis. Its relation

to the branching ratio and spectral shape of the Co L? and L3 x-ray absorption spectrum

is also discussed by the present authors on the basis of a single-ion model, where an in-

tuitive discussion is given for the preferential occupation of specific 3d magnetic quantum

numbers.[34] In the present HF calculation based on the lattice model, although each state

with specific symmetry has a丘nite bandwidth, the essence of the discussion based on the

single-ion model is not altered. Namely, due to the fact that our system is a Mott insu-

lator, the occupation of an orbit with a given symmetry raises the energy of orbits with

other symmetries to above the band gap through intra-atomic Coulomb repulsion. Solovyev

emphasized the F dependence of the orbital moment in solids, by picking up Coo as an

example (See Fig. 2 in Ref. [48]). But the scenario of the orbital magnetism in Coo is a

simple one as described above; for a su氏ciently large F- enough to open the band gap, the

system is well described by the ligand-field theory and the triply degenerate orbital state

under the Oh crystal field is the reason for the large value of the orbital moment Thus

the case of Coo seems to be an exceptional one and a more general discussion is desirable.

In the next chapter, by dealing with a metallic Zd system, we will examine the role of the

monopole Coulomb interaction in the orbital magnetism.
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Figure 5.4: The noncollmear multiple-Q structure obtained as a王IF solution. The z com-

ponent of each moment is in the positive z direction.

Relative stability among two solutions

We performed a preliminary calculation of the energy difference between the single-Q and

quadruple-Q states obtained as the HF solutions. The electronic energy of the single-Q state

is lower than that of the quadruple-Q state by 0.0066 eV per formula unit. The obtained

number of 3d electrons is 7.1715 for the single-Q state and 7.1702 for the quadruple-Q state.

Since the present system is an insulator, we calculated the difference in Madelung energy

between the two solutions, assuming the observed lattice constant and the positive charge of

1.8285 (= 9-0-7.1715) for the Co ion for the single-Q state and of 1-8298 (- 9.0-7.1702) for
the quadruple-Q state; negative charge to guarantee charge neutrality is assumed for the 0

ion. The result shows that the Madelung energy of the quadruple-Q state is lower than that

ofもhe single-Q state by 0.056 eV per formula unit. If we simply sum the electronic energy

and the Madelung energy, the total energy of the quadruple-Q state is lower than that of

the single-Q state. In the present calculation of the Madelung energy, however, we assume

the point-charge model which seems to overestimate the absolute magnitude of Madelung

energy. In the present HF calculation, the electron charge distribution is coupled with our

Hamiltonian only through the intra-atomic 3d-3d interaction. In the actual system, the

spatial charge distribution is coupled with the Hamiltonian of electrons through intra- and

mter-atomic interactions, the inclusion of which is required in order to discuss the energy,

but which is beyond the capacity of the present model. We therefore cannot definitely

conclude that the quadruple-Q state is lower than that of the single-Q state at the present
stage.

Since our single-Q solution is almost the same as that obtained by the LDA+U approach,

our results, including those for the quadruple-Q state, are expected to be independent to

the details of the adopted model. In fact, even if we vary the value of 」3,2 near the adopted

value, the obtained magnetic structure is the same as that shown above. At prese叫we
have not obtained HF solutions other than the single-Q and quadruple-Q solutions, which
are also attained from the initial states of HF iteration other than those discussed above.

According to the phenomenological discussion of stable multiple-Q structures, a specific

triple-Q structure may be possible under certain conditions. In the present HF iteration,

mixing of the triple-Q state is not seen.
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5.4　Conclusion

In conclusion, we have shown that, in addition to the well-known single-Q state, the
noncollinear quadruple-Q state shown in Fig- 5.4, both of which are expected to be com-

patible with the neutron diffraction experiment, is a promising Candidate of the magnetic

structure on the fee lattice of NaCl-type CoOコon the basis of the HF calculation. We ex-

pect that future experiments will yield a conclusive answer. On the theoretical side, more

quantitaもIve discussions on the relative stability among candidates including the tetragonal

lattice distortion will be needed.



Chapter 6

Orbital magnetism in metallic

3d systems

6.1　Introduction

Nowadays, it is a rather easy task to include the effect of the spin-orbit interaction in the

誓odern石rst-pnnciples band-structure calculation based on the local (spin) density approx-
imation [L(S)DAj. In most cases, however, LSDA seriously underestimates the contribution

of !iorbj as discussed in Chap. 1. As far as the spin polarization is concerned, LSDA gives

good results for itinerant magnetic materials. But it seems that LSDA has noもheoretical

framework to determine /,l。rb self-consistently. A clear explanation for the mechanism of the

orbital polarization (OP) in solids has been desired.

In free atoms, the Hund second rule describes the orbital angular momentum L of

valence electrons; L has the largest value consistent with the Pauli principle and with the

臥md first rule (maximumもotal spin S). As explained in Chap. 3, this is the consequence

of the multipole Coulomb interaction, which is written in terms of the Slater integrals other

than the monopole part F. A hypothesis, that is, the mechanism of the OP in solids is

essentially related to the atomic Hund second rule, has been made by Brooks.【20] From the

interpretation of the Hartree-Fock (HF) total energy of atoms with open shell, he derived

an explicit OP functional form as an additional term in the LSDA total energy. For the 3d

shell, it is -¥B{L)2 with the Racah parameter B (-孟F2 -品F ) and the expectation
value of L. Its application to several metallic substances shows encouraging results[53] but

fails in some cases.[54]

Solovyev et a/.[48] have pointed out that the Brooks interpretation of the open-shell HF

energy is incorrect and proposed a di斤erent theory for the OP mechanism. By examining

the HF total energy of some simple cases, they analytically showed that, for the propoト

tional constant of (L) in addition to B, there exist F- and other Slater integrals. They

criticize the success of the Brooks theory in some metallic magnets as follows: F is strongly

renormalized due to the screening effect in metals and F -dependent term will be almost

canceling out via other terms, with leaving only the B term alone. Thus the OP mechanism

proposed by Brooks is one of the limiting cases of general mechanism and they argued that

the "hidden parameter" responsible for the orbital enhancement in solids is the renormalized

^u.

To emphasized this concept, they demonstrated the F- dependence of /iorb of Coo and

showed that the orbital magnetism (the magnitude, direction, and localization of the orbital

moment) is directly related with the appearance of the band gap caused by the large F-

The offered example of CoO, however, seems to be rather exceptional case for the purpose of

64
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Table 6.1: Parameter values used in the calculation. All in units of eV. Parameters for

the intra-atomic interactions言3d, F , and F are obtained from the ab miiio atomic HF
calculation with assuming the Fe configuration (3d) (4s)2. The Slater integrals, F2 and F4,
are renormahzed to 80% of their ab initio values.

dda ddS　　(,3d F Z F4

-0.3780　0.1705　-0.0211　0.050　8.5066　5.2724

examining the OP mechanism in solids, because its result is concerned with the discontinuity

of the magnetic quantities in the course of the metal-insulator transition. Once the band

gap opens, /i。rb of the 3d electrons is well described by the ligand-held theory and it takes

a large magnitude, which can be deduced from the orbital degeneracy in a given crystal

held and the spin-orbit interaction. In order to make a more general discussion about the

mechanism of OP in solids, a detailed examination in metallic phase seems to be desirable.

In this chapter, we would investigate the role of F in the orbital magnetism in solids,

by using the tighもーbinding HF method with preparing metallic 3d bands. For simplicity.

we consider an fee lattice with single site in the unit cell. As the valence band, only a 3d

orbital is taken into account. Hence no valence fluctuation occurs; the occupation number

of the atomic 3d orbital ofa specific site, n^d, is always integer. It is shown that //orb is very

sensitive to F even in metallic phase.

6.2　Model

We consider an idealized crystal, whose structure is fee and unit cell contains single site.

The valence band is constructed by a 3d orbital alone. The Hamiltonian is given by

H - -&TB +^so+He　　　　　　　　　　　　(6.1)

where Htb is the tight-binding Hamiltonian that expresses the 3d-electron hopping in the

fee lattice; HsQ and Hee are the on-site interactions, i.e., the 3d spin-orbit interaction and the

multipole 3d-3c? Coulo汀血interaction treated by the HF approximation, respectively. For

the explicit form of each Hamiltonian, we refer to the previous chapters. Parameter values

used in the calculation are summarized in Table 6.1. Htb alone, with the listed hopping

integrals, reproduces the typical fee feature in the density of states (DOS), as shown in

Fig. 6.1. As for the parameters concerned about the on-site interactions, we took them from

those of the neutral iron ato甲　For a given F and r^, the Hamiltonian (6.1) is solved

E:
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Figure 6.1: Density of states reproduced by #tb for the single-site fee structure. The Fermi

level, denoted by the vertical broken line, is for n^d - 7.
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in the momentum representation, with assuming the ferromagnetic order. The quantization

axis is taken as the z axis (cubic c axis).

6.3　Calculated results

6.3.1　nM-7

First of all, we would show the calculated results for n%d - 7. Figure 6.2 shows the

spin-resolved DOS obtained for different values of F. In all cases, the down-spin states
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Figure 6.2: Spin-resolved DOS for several F- values, with assuming n3(j - 7. Solid and

broken lines refer to the minority(up)-spin DOS and majority(down手spin DOS, respectively.

The Fermi level is denoted by the vertical broken line-

are well pushed below the Fermi level (Ep) and fully occupied. Between the two results

of F- - 0 and 1 eV, no signi爺cant change is seen in the shape of DOS except that the

down-spin states in F- - 1 eV located lower in energy than those ofF　- 0 eV- When

F exceeds 1 eV, a pseudo gap begins opening in the vicinity of Ep, though there exists a

small but茄nite state density at Ep and it is still remaining for the value of F being up to

several electron volts.

Calculated S and L with sweeping F- are shown in Fig. 6.3(a). They are obtained by
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Figure 6.3: Calculated magnetic quantities for n3(j - 7, with sweeping F. (a) S (open

squares) and L (filled squares); (b) ^spin (open squares) and fioTb (filled squares).

up down up down up down

F-=O eV F-=0.6 eV F-=l eV

Figure 6.4‥ The way of electron occupation in the ma basis (m is the orbital magnetic

quantum number), for n3d - 7 and for several values of F. The shaded or hatched area

shows the probability of electron occupation of each mcr state-

calculating the expectation values, (S2) and (L2) and from the relations S(S + 1) = (S2)

and L(L + 1) - (　As far as the system keeps the welLmetallic behavior (F　≦ 1 eV)っ

i.e., in the case there is no pseudo gap, L is rather insensitive to the change of F. Once

the pseudo gap opens (F- > 1 eV), L begins to increase toward the atomic I王und rule value

L - 3. The orbital magnetic moment 〃。rb - -(j-b(lz), displayed in Fig. 6.3(b), shows a

behavior di斤erent from that of L. Even in the region of F- < 1 eV, where L is almost

constant, /iorb is very sensitive toもhe change of F- and strongly enhanced with increasing

F-. This clearly indicates thaもone of the major factors for the orbital polarization in solids,

even in the metallic phase, is the enhancement mechanism through the monopole Coulomb

interaction.

In the present case, where the electron filling is more than half and the majority-spin

states are fully occupied, /ispin is constant and jioTb is determined by the way of electron

population in the五vefold minority(up)-spin states. From Fig・ 6.4, one can recognize that the

symmetry breaking in the electron population among the up-spin states becomes stronger

for the larger value ofF-; the states with m - -2 and -1 come to be occupied preferentially

m is the orbital magnetic quantum number). To see in detail what happens in the course

of sweeping FQ, partial components in the minority-spin DOSっwith m - -2 substate and

its counterpart m - 2, are displayed in Fig- 6.5 for several values of F-. In the case of

F- - 0 eV, both sub-DOS's are distributed broadly in the wide energy range and overlap

with each other, resulting in a considerable cancellation of the orbital moment. In turning

on and increasingもhe value of F-, a remarkable change is seen in each sub-DOS while the

total DOS does not change its shape greatly. In the liniit of the large F-, most parもofthe
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Figure 6-5: Partial DOS specified by the orbital magnetic quantum number m - -2 (thick

solid line) and m = 2 (thick broken line) in the minority-spin state density (thin solid line),

for n^d - 7 and for several values ofF.

m - 2 sub-DOS is well pushed up above Ep, while that of the m = -2 state is located

below Ep. A pair of sub-DOS's with読-土1 exhibits almost the same trend.

6.3.2　n3d-2

Calculated-agnetic quantities, with assuming n^g - 2, are represented in Fig. 6.6, as a

function of F. Due to the lessもhan half filling, the directions of/ispin and porb are opposite.

As enlarging the value of F-, the magnitude of fiorb, which is fairly smaller than fispin for

moderately small F-, begins increasing and finally overcomes the contribution of [ispin- L

and /ォ。rb show the analogous behavior to the case ofn3d - 7. In the range 0 ≦ FO ≦ 1 eV,

the value of L is rather insensitive to F-, whereas porb shows the significant change. From

Fig. 6-7, one can recognize that the this energy range ofF , 0 ≦ FO ≦ 1 eV, corresponds to

the situation that the system reveals the well-metallic behavior, i.e.コthere isーno pseudo gap

at Ep. Again, the change of 〟 rb is interpreted as the redistribution of sub-DOS's between

the positive and negative m states while the majority-spin DOS itself, which is the sum of

each ra-state density, is kept almost unchanged- (See the right hand side figures in Fig. 6.7-)

In the present calculation all of the minority-spin DOS is located above Ep蝣The mixing

of differenもspin states never occurs. This feature is retained to the in丘nite limit of F-

The atomic electronic structure, which is discussed in detail in Chap. 1, must be recalled

here. We have seen that the ground-state electron-population in the ma basis should be

distributed into both spin states, for the free 3d ions with the less than halffilling∴Atomic
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Figure6.6:Calculatedmagneticquantitiesforn^d-2,withsweepingF:(a)S(open

squares)andL(filledsquares);(b)〟sp:
,in(opensquares)and/i。rb(filledsquares).

HFAfailstodescribethisspinmixing.Inthepresentsolidcase,theresultforthelargeF

limitisclearlywrong;thecalculatedmagneticquantitiesdonotapproachthecorresponding

atomicones.ObviouslythisisduetotheshortcomingsofHFAandthemany-bodyeffect

beyondHFAisnecessarytoobtainthetruegroundstate.IntherangeofsmallF-,however,

itisnotclearwhetherthepresentcalculationthatshowsnospinmixingiswelldescribing

therealsystemornot.
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Figure 6.7‥ Calculated DOS's in the n3a - 2 case for various values ofF-‥ from the top-side

panel, Fu - 0, 1, and 1.5 eV, respectively. The left hand side斤gures are the spin⊥resolved

DOSフs with solid (broken) line representing the majority (minorityyspin DOS. In the right

hand side figures, the majority-spin DOS's are decomposed into the substates with m = +2

(thick solid line) and ra - -2 (thick broken line).
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6.3.3　Another別Img case

Calculated results for all mIing cases are summarized in Figs. 6.8 and 6.9. Here we

have just presented the orbital-related quantities, L and /i。rt>-　The spin-related ones are

insensitive to the change of F-, and we would not show that. The result for n3d = 8 shows

almost the same one as n^d - 7, and n^d - 3 case is similar to n^d - 2 case.
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Figure 6.8: Orbital-related magnetic quantities in the more than half丘Iling case. Solid and

broken lines refer to the orbital angular momentum L and the orbital magnetic moment

〃。rb, respectively.
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Figure 6.9: Same as Fig. 6.8, but in the less than halffillingLcase.

6.4　Discussions and Conclusions

From the calculations in this chapter, it becomes clear that /i。rb in solids is very sensitive

to the value ofFa, even in the metallic phase. It is well known that, among the intra-atomic

interactions, the spm-orbit interaction in solids is not so different from the atomic one, and

that the screening e斤ect on the Slater integrals is rather week except.F.[55] On the other

hand, the monopole Coulomb interaction, expressed by F-, is to be greatly screened in

solids due to the many-body effect, especially in the metallic phase.[56] The degree of this

screening effect is expected to have a strong material-dependence. This e鮎ct is to be

directly re鮎cted in the orbital moment through its strong sensitivity to the value of F-. It
can be said that "the、 way of renormalization of F- due to the electron-correlation effect" is

one of the significant mechanisms for the enhancement of 〃orb in solids, which di鮎rs every
material.

Is it possible to give an intuitive discussion about the F--driven orbital-enhancement

mechanism? If we had treated the present Hubbard model within the many-body scheme,

the scenario is rather easy. Roughly speaking, F /W, where W is the band width, governs

the degree of localization of electrons- In increasing F-/W, the time scale, for which an
electron stays in a specific site, becomes longer. In this period the electron will sufferもhe

spin-orbit interaction and move around the nucleus, resulting in making the orbital moment.

Then the question is whether or not this scenario can be still verified in the mean-

field scheme. In our calculations based on HFA, /uorb actually depends on the value of F--
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This suggests that the electron-localization mechanism due to F- may be reproduced in

HFA at lease to some extent. In HFA, the exchange interaction is treated exactly, and

Hthe nonphysical self--interaction" , which exists in LDA scheme, is completely excluded. As

a result, the electrons in the occupied states feel the electrostatic potential from N - 1

electrons other than himself, while the electrons in the unoccupied states feel the potential

from total N electrons. This differentiation of Coulomb potential seems to be essential in

describing the electron localization in the mean一銭eld scheme.
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Chapter 7

Electronic structure of US

Part of this chapter is based on a manuscript by Tatsuya Shishidou, Tamio Oguchi, and

Takeo Jo, accepted for publication in Physical Review B 59 (1999).

Abstract

TheU5/spin(fi.,
蝣spユandorbital(/iorb)magneticmomentsintheferromag-
neticcompoundUSarecalculatedonthebasisoftheI王artree-Fockapproxima-

tion(HFA)foranextendedHubbardmodel.Ourtightーbindingmodelincludes

theUQp,5/,6d,and7sorbitalsandtheS3s,3p,and3dones,andtheintra-

atomic5/-5/multipoleinteractionandthespin-orbitinteractioninthe5/state

aretakenintoaccount.Mostofparametersinvolvedinthemodelaredetermined

by触ingwiththeenergyofBlochelectronsintheparamagneticstateobtained

byafirst-principlescalculationbasedonthelocaldensityapproximation(LDA).

Thecalculatedratioofthemoments^orb/pspinoト2.1and^jorboト3-2/ybare

ingoodagreementwithavailableexperimentalresults.Thecalculatedmagnetic

circulardichroismspectrumattheU3d-^5/x-rayabsorptionalsoagreeswith

therecentexperiment.Itisshownthattheexactexchangepotentialgainedby

HFAmixesdifferentspinstatesstronglyandenhancestheeffectofthespin-orbit

interaction.ProblemsofLDAintheestimationof/zorbarediscussedindetail.

7.1Introduction

Inmagnets,theatomicspin(〃spinandorbital(/i。rb)magneticmomentsarebasicquan-

titlesandtheirseparatedeterminationisthereforeimportant.Asmethodsoftheirexpeト

Imentaldetermination,thetraditionalgyromagneticratiomeasurement,[57]themagnetic

formfactormeasurementintheneutronscattering囲andthemagneticx-rayscattering[59]

?reknown.Inadditiontoもhese,therecentlydevelopedmagneticcirculardichroism(MCD)

mthecore-to-valencex-rayabsorptioncombinedwithseveralsumrules[2,3]hasattracted

_!--j.i...ア:__muchattentionasamethodofsite-andsymmetry-selectivedeterminationof//apinandfi
'spmana^orb.
Onthetheoreticalside,thefirstprincipleslocaldensityapproximation(LDA)orlocalspin-

densityapproxi聖tion(LSDA)(Ref.[13])isknowntobeチtypicalmethodofcalculating

magneticquantitiesandhasbeensuccessfullyappliedtovarioussubstances.Itis,however.

knownthatもherearelimitationsorproblemsinLSDA.囲

OneofmajorknownproblemsrelatedtomagneticquantitiesinLSDAisseeninthe

underestimationof/-i。rbinmagnets.Evenin3dtransitionmetals(Fe,Co,andNi)where(J,。]rb

isquitesmallcomparedtofispm,theLSDAunderestimatesthecontributionof/iorbbyabout

74
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afactor of2 especially in Co.[14, 15, 16, 17] The problem becomes more serious in 5/ systems,

・e., actinide compounds, where the spin-orbit interaction (SOI) among 5/ electrons is much

stronger and /iorb is generally larger. Recent LSDA calculations for uranium compounds

seem to underestimate 〃。rb.[19, 20, 21] In IJSDA, the Kohn-Sham equation is described

by a local potential including the spin-dependent electron density. The electric current,

which describes //orb; is, however, not included in it. This means that although fiapm is self-

consistently determined in LSDA, there is no framework to determine ^orb self-consistently-

In an atom, its ground state of valence shell is, according to Hund's rule, specified by

the maximum of the total spin of valence electrons S and the maximum of the total orbital

momentum L among the maximum S multiplets. The maximum S is well understood as

a consequence of the exchange interaction to align the spin of electrons, The maximum L

arises from the multipole exchange interaction represented by the the Gaunt coefficient[61]

without relying on the SOI, which determines the relative direction between 5 and L.

The local exchange-correlation potential in LSDA seems to be insu伍cient to describe the

maximum L, which is considered to be one of causes of the underestimation of fi。rb m solids.

Numerous attempts have been made to estimate ^。rb, which are roughly classified into

two categories. One is based on the so-called current-density-functional theory[35, 36, 371

that intended to extend the density-functional theory to include the orbital current as an

extra degree of freedom, which describes ^orb. Unfortunately an explicit form of the con-

tribution of the current density is at present unknown. Its application to the ferromagnetic

co with the use of a simplified form is, however, not necessarily encouraging.[38] The other

category includes the orbital polarization (OP),[20, 53, 54, 62] self-interaction correction

(SIC),[63] and LDA+!7 (Ref. [48]) approaches, which intended to calculate fi。Tk practically.

For a better description of/j。rb, the OP functional form of -^(Lz) with the Racah pa-
rameter B has been deduced[20] from an atomic multiplet ground state without SOI, whose

S and L are given by Hund's rules. However, the OP method does not assure us that

it will give a good description when the SOI is included and thus 5 and L are no longer

good quantum number岳A serious problem can be seen in its application to Ce.[54] The 4/

ground state of magnetic Ce + ion is, if an infinitesimal magnetic丘eld is applied in the z

direction, given by (j, jz)- (5/2, 5/2), whose wave function is given by a linear combination

as ＼/呼子l3,1トV/i市l2,I), where ¥m, a) denotes the 4/ state with the magnetic quantum
number m and spin <r. The OP result for a large volume limit (i.e., the atomic limit) shows

that the (m - 3, a -1) subband is filled leaving all the other 4/ states empty; the OP

method fails to describe the mixture of the spin states. The same岳ituation is observed m

the application of the SIC to Ce.[63] Furthermore, the uncertainty in the application of the

OP method to solids is discussed by Solovyev et al. with examining the Hartree-Fock (HF)

total energy in detail.[48] In solids, as discussed in Chap. 6, /J,orb is very sensitive to and de-

pendent on the magnitude of the monopole Coulomb interaction F , while such mechanism

is not taken into account in the Brooks formalism.

In the recent LDA+J7 approach with the correction term U to LDA, which has the

same form as the HF potential and satisfies the rotational invariance,[48] on the other hand,

Solovyev et al. have succeeded in reproducing a large magnitude of/i。rb for Fe and Co atoms

(- I^b) in the` antiferromagnets FeO and Coo, respectively. We have also, by the same HP

calculation on the basis of an extended Hubbard model for CoO, succeeded m reproducing

fJ-orb of Co.[64] This means that a faithful HF calculation can be, if an appropriate multi-

orbital tight-binding Hamiltonian is prepared, a promising practical method to reproduce

the magnitude of /xorb in systems with a large orbital moment. At present, the role of

exchange interaction in discussing the magnitude of fiovb, however, does not seem to be

discussed from a general point of view.

The purpose of this paper is to investigate how important the exact treatment of the

exchange potentia一 IS II- realizing correct large orbital magnetism in itinerant ferromagnets.

For this purpose, ferromagnetic U compounds are the most suitable substances for a severe
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test because /iorb is quite large as mentioned above compared with 3d compounds. We choose

US as a prototype of itinerant U ferromagnets and investigate its magnetic ground state and

/iorb under the HF approximation. Our model is the so-called extended Hubbard model,

where we consider all the relevant valence-band orbitals and full degeneracy of them. The

SOI among the 5/ electrons is explicitly included and the intra-atomic multipole Coulomb

interaction between the 5/ electrons is treated within the HF approximation.

US is a ferromagnet with Curie temperature being 178 K. Despite rather simple NaCl-

type cubic structure, a strong magnetic anisotropy favoring the [111] alignment has been

observed.[65, 66, 67] A bulk magnetization meチsurement[68] shows the ordered moment is
1.55/iB per unit formula and a neutron scattering measurement[69] shows a slightly larger

value of 1.70/iB, which is assigned to the 5/ magnetic moment. These values are far smaller

than that expected for the free ion, indicating that some sort of Hsolid-state e斤ect" takes

place on the 5/ states. From several experimental results (for instance, photoemission,[70]

electrical resistivity,[71] pressure dependence of Curie temperature[72] and speci丘c heat

measurements[73, 74]), the 5/ electrons of US are considered to be itinerant. On the the-

oretical side, Kraft et al. have performed an LSDA calculation with the SOI in a苧econd

variational treatment for ferromagnetic U monochalcogenides (US, USe, and UTe), and have

shown that the magnitude of the calculated /j,orb is larger than that of /ispin and they cou-

pie in an antiparallel way to each other.[19] However, the magnitude of the total magnetic

moment (〃spin チ A'orb) is too small compared to the experimental data, indicating that the
calculated //orb is not large enough. In addition to LSDA, the OP approach[20] and a kind

of HF calculation[75] have also been performed for US, about which we will discuss later.

We will show that the HF calculation including the expectation values of the off-diagonal

operators as well as the number operators with the ¥m, <r) basis in the exchange interaction

is crucial in describing the magnetic quantities and wave function.

In Sec. 7.2, we formulate our multiband tight-binding HF model. In Sec. 7.3, calculated

results and discussions are presented. To con爺rm the validity of the 5/ magnetic state in

our model, we also calculate the x-ray MCD spectrum at the U朋示edge (U 3d - 5f
dipole transition) and compare it with the recent experimental result-[27] The di鮎rence
m the exchange potential between the HF and LSDA is discussed in detail. Section 7.4 is

devoted to conclusions.

7.2　Formulation

7.2.1　Hamiltonian

We consider a realistic multiband Hubbard model de負ned by

H-HO+E-+Z+Hr,　　　　　　　　(7.1)

where H stands for the electron-hopping energy, which is expressed by the tight-binding

method, and the orbital energies other than the 5/ state. We consider all the valence-band-

related orbitals and the full degeneracy of them. We take into account 6p, 5/, 0>d, and ls

orbitals for the U atom, and 3s, 3p, and 3d ones for the S atom- The hopping integrals are

treated within the Slater-Koster two-center approximation.[28] Other terms in Eq. (7.1) are
de丘ned as follows:

EO-∑ ∑尋L瑞JiiTycri
iTo ・(∈r)

z - cs/∑∑(iv¥¥l擁ノ2)f+ f.1/23
号　"1C2

(7-2)

(7.3)
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7.4)

E- describes the 5/ orbital energy, where e旨stands forもhe bare on-site energy of the 5/

state with the orbital symmetry F (F - Tiu, T2U, A2U)-　7 is the sub-basis of F. The

operator /jT7<7 denotes the annihilation of a 5/ electron with the orbital state Tj and the

spin <r on the ith U site. Z is the SOI among the U 5/ electrons with a coupling constant

C5/. The symbol v speci丘es both of the orbital magnetic quantum number (m) and spin

one (a); F7 is a linear combination of m. Hi represents the intra-atomic 5/-5/ multipole

interaction on the U sites. The interaction matrix element g{yiViy^,v^) is written[61j in

terms of the Slater integrals Fk7s (k - 0,2,4,6) and the Gaunt coe用icients c (limi,l^m^Y5
as follows:

g(viU21/3V4) - (vxv2 去J/3^4)
=sn∂Q。aiOml+m2}m3+m4∑Fkc*(3mi,3m3)c*(3m4,3m2).

<fc=0,2,4,6

(7.5)

WeemploytheHFapproximationtotheinteractiontermas

rrHF--
nt-∑∑¥giy¥v-ivz〃4トg(〝1〃'2^4^3)1(fL'fizv4)鳥i/jl/3"(7-6)

I1/11′2"3サ'4

Theexpectationvalue{/+'fv,)istheHForderparameterwhichshouldbedeterminedself-

consistently.Hereafterweassumeaferromagneticorderinganddropthesiteindexifrom

(Jii/Jii/').Wetakeintoaccountnotonlythe14diagonalorderparametersbutalso91

-14C2)off-diagonalones.Theinclusionofthespin-off-diagonalpartsoftheHForder

parametersandtheformofもheexchangepotentialinEq.(7・6)playanimportantrolein

describingthe5/stateaswillbediscussedlater.

7.2.2AtestofHFapproximationintheatomiclimit

BeforeapplyingthepresentmodeltoUS,wediscussthevalidityoftheHFapproxima-

tionindescribingthe5/magneticgroundstate.Inthelimitofthehoppingintegralsin

Hbeingzero,thesystembecomesisolatedatoms(orions)andwecaneasilyexaminethe

single-determinantHFapproximationinthefollowingway.Fortheelectronconhguraもion

of5/2(U4+)or5/3(U3+),wesolvetheHFHamiltonianofaUatom,Z+HfF,bythe

self-consistentiterationtoobtainapolarizedsolutionbyincludingasmallmagneticfieldin

thefirstcycle.Ontheotherhand,wecanstraightforwardlyandexactlysolvetheoriginal

Hamiltonianwithoutthemean-fieldapproximationZ+Hjbytheconfiguration-interaction

(CI)schemesettingupallthepossiblemany-bodybases(allthepossibleSlaterdetermi-

nants)foragivenelectroncon五gurationandbyperforminganumericaldiagonalization.

DuetothestrongSOI,thegroundstateisnotgivenbythesimpleHundruleLScoupling

butamixtureofmorethanoneLSmultipletofagivenJ,i.e.,theintermediatecoupling.

Theusedparameters[27】andthecalculatedfisp'
m,f^。rb,andthezcomponentofthemag-
neticdipole(Tz)(T-∑蝣[s{-3vi(ri-.Si)/r鈷wheresiandrs-areもhespinoperatorand

positionvectoroftheith5/electron,respectively)arelistedinTable7.1.Thepositivedi-

rectionofthequantizationaxisistakenasalongthedirectionof/.lspin.Relativedeviations

oftheHFresultfromtheCIoneareshowntobelessthan15%forallmagneticquantities

eventhoughtheHFapproximationdoesnotconsideranycorrelationeffects.Obviously,the

HFapproximationcanbea.goodstartingpointfordescribingtheTJ5/magneticground

state.
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Table 7.1: The 5/ magnetic state ofa free U ion with the 5/ or 5/ electron configuration,

calculated by the configuration-interaction (CI) method and HF method. nspin (^。rb) rep-

resents the spin (orbital) magnetic moment, and ^/ - /ispin +/x。rb・ (TZ) is the expectation

value of the z component of the magnetic dipole. The upper panel shows the results for

the 5/ configuration, and the middle 5/3. Deviations of the HF result from the CI one

are represented in parentheses in percentage. Magnetic moments fi^j, 〃spin, and /jorb are in

units of /is. Used parameters (Slater inもegrals F*'s, coupling constant (5/ of the SO!) are

also shown in the lower panel in eV.

J A*5/　Mspin　^。rb　/'。rb/A'spin　(Tz)
CI　　　　-3.30　1.40　　-4.70　　-3.36　　-0.81

月　　　　-3.26　1.48　　-4.74　　　-3.21　　-0.81

仁1)  (6)　(1)　(5)　(0)

5/3(U3+)　fi5f fispm ft。rb fi。rhjnspin (Tz)
CI　　　-3.41　2.18　　-5.59　　　-2.56　　　-0.63

HF　　　　-3.25　　2.49　　-5.75　　-2.30　　-0.60

仁5) (14)  (3)　(-10)　(-4)

F2　　F4　　　Fb cs/
7.611　4.979　　　3.655　　　0.261

5/3 (U3+)　　　7.086　4.598　　3.363　　0.235

7.2.3　Determination of the parameter values

Let us discuss our method to determine the parameters that appear in the Hamilto-

nian (7.1)- It is well known that one can estimate F s (except F ) from ab iniiio atomic

HF value with an appropriate reduction factor[55, 76] around 0.8 which stems from the

intra-atomic correlation (con五guration-interaction) effect and thaもthus the obtained F s

are usually usable even in solids. The ordinary ab initio atomic values of Fk's and Csf

were obtained from Cowan's HF program with relativistic correction,[23] where 」5/ was

calculated by the Blume-Watson method・[77, 78] The assumed electron con軸uration was
the neutral atomic one, 5/ 6rfJ7s , since it may be suitable rather than ionic ones due to

the fact thaもUS is a good conductor. Norman[55] has evaluated the reduction factors for

each F s in U4+ ion in a semiphenomenological manner assuming the Yukawa screened

Coulomb interaction-　Expecting that such factors will hardly change between the neu-

tral and ionic configurations, we set the reduction factors of our case around Norman s.

namely, 0.65, 0.85, and 0.9 for k-2, 4, and 6, respectively-　Thus determined parameters

are F2 - 5.530, FA - 4.669, F6 - 2.881, and Cs/ = 0.226 inunits ofeV. Even if we

adopt a common reduction factor around 0.8, the essence of calculated results is found to be

unchanged. As the monopole integral F , which is associated with the multiplet-averaged

effective Coulomb interaction U/f by Ujf - F -4F2/195- 2F4/U3- 10QF6!5577, is hard

to be evaluated due to a strong screening in solids, we leave it as an adjustable parameter.

H and E in Eq. (7-1) contain a number of parameters which are related to the elec-

tron kinetic energies: the hopping integrals and orbital energies. These parameters are

determined by丘tting with the energy dispersion in the paramagnetic state without the SOI

(hereafter we call this the P state) obtained by a first-principles LDA calculation with the

full-potential linear augmented plane wave (FLAPW) method-[79] We have mentioned the

problems about the LDA, but such problems will be suppressed in the P state, where there

is no spin or orbital polarization, and we suppose that the LDA will give a good description.
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Table 7.2: The determined orbital energies and Slater-Koster two center hopping integrals

in units of eV. Note that the U 5/ orbital energy is not a bare one, i-e., the listed value

includes the LDA 5/-5/ potential. See text for details.

orbital energy

U6サ

U5J

U6d

U7s

S3*

S3p

S3d

-2.8632

14.1689

17.6525

19.0819

-0.6562

10.6073

22.3455

1st neighbor

a ir　　　　　6

13.9655

18.7905

13.6751

26.4753

2nd neighbor

<x

(Tiu)

¥T¥u T2u A-2uj

{Tig Eg

(Aln)

(Alu)

(Tiu)

(T2g Eg

U 6p-U 6x>

U 5/-U 5/

U 6d-U

U 7s-U 7s

S3s-S3s

S 3p-S 3p

S 3d-S 3d

U7s-U 6サ

U7s-U 6d

I I.-I　・蝣'/

U 6p-U 6d

0.2777　　0.1475

0.0728　　-0.0366　　0.0354　　-0.0161

-0.4291　-0.2321　0.0027

-1.0413

0.4011

-0.0082　-0.1497

0.2779　　0.6844　　-0.2751

0.0569

-0.8546

0.3891

-0.1994. -0.2928

UQp-V5/　-0.2949　-0-3951

U6rf-U5/　0.3006　　0.1199　-0.0058

S 3s-S 3d　　-0,2414

S 3s-S 3d　　-0.7523

S3p-S3d　　-0.2674　0.4882

S 3β-U 7β　　1.2161

S3S-U6p　-1.2198
S 3s-U 6d 0.4495

S3s-U5/　-0,1444

U 7s-S 3d 1.5471

U 7S-S 3d 1.8403

U 6p-S 3p 1.2666

U6p-S3d　-4.7589

S3p-U6d　-2.3538

S 3サーU 5/　0.8317

U 6d-S 3d　　-1.5566

S 3d-U 5/　1.1760

0.6178

-0.4079

0.5853

-0.4441

1.9167　　-0.6830

-0.6893　-0.4226

-1.1020　-0.0099

-0.2881　0.0598　　0.0372

0.1603

0.3336

-0.2205　-0.0499

1.1180　　0.5992　　0.0803

0.7437

0.2269

0.2523

0.5572　　-0.2317

0.0053　　-0.1009　　0.0413

0.3784

-0.2572

1,3945　　0.0573

0.1338

0.1983

-0.4976

0.5565

0.2284

-0.1833

-0.2784

-0.5586

0.2697

-0.0445

-0.2243

0.0573

0.2641

-0.3287

0.0386

-0.0217

0.3985　　-0.1864

-0.0589　　0.0170



Chapter 7. Electronic structure of 〕S

1○

○l

tA

Ej

くJJ

lPl

ヽβ

トJ

tn

OB

t̂ ^^^ J

-̂

ri
....

ノw X U#

5　1CI　-II　5

states/eV/spin

Figure 7.1: Band structure in the paramagnetic state without the SOI (the P state). The

left hand side is the band dispersion along the highly symmetric lines offee. The solid line

shows the FLAPW dispersion and the dotted line represents the fitted one. The vertical

axis is the energy measured from the Fermi l占vel in unit of eV. The right hand side is

the calculated density of states based on our tight-binding model and also on the FLAPW

method. The shaded area represents the U 5/ partial DOS. See text for details.

To carry out the丘tting, we consider the following Hamiltonian in place of Eq. (7.1):

H'-H-+E,　　　　　　　　　　　(7.7)

here note that Z and Hi are dropped and that the term of the 5/ orbital energy E differs

from E- ofEq. (7-2) in the poinもthat尋is replaced by er. Since the symmetry is completely

cubic in the P state, the potential energy for the 5/ state arising from the intra-atomic 5/-5/

interaction is diagonal in the representation FT and is included in er; the original s旨is the

bare on-site energy in the sense thaもthe mean field coining from the interaction among the

5/ electrons is not counted, whereas er includes that・ H'is凱ted to the FLAPW result for

the lowest 20 bands (without spin) at irreducible 29 k points in the Brillouin zone and also at

47 k points along the highly symmetric lines of fee. A nonlinear least-square触ing problem
is solved by the Tayloトseries expansion method-[80] The fitted energy dispersion ofelectrons

is shown in Fig. 7.1 and the obtained parameters are listed in Table 7.2. For simplicity, we

have ignored the overlap of the atomic orbitals of the tight-binding basis. Neverthelessもhe

紬ing quality is rather good. The calculated density of states (DOS) displayed in Fig・ 7.1
reproduces the result of FLAPW reasonably. We shall explain the electronic structure in the
p state briefly. In the DOS, three lumps can be seen below the Fermi energy (」>)・Each

one is mainly composed of the U 6p, S 3s, and S 3p states, from the deeper binding energy

toward Ep, respectively- The sharp structure around Ep is derived from the U 5/ state,

which is embedded in the rather broad U 6d DOS and well hybridized with this itinerant

state. Although the nearest-neighboring (NN) atom of U is S, the hybridizaもion between U

5/ and S 3p is relatively weak because the energy position of S 3p state is detached far from

Ef- (However, the U d state is well hybridized with S 3p state.) This clearly indicates that

the itineracy of the 5/ electrons originates from the hybridization with the U 6c? orbitals of

the next-nearest-neighboring (NNN) U atoms. The atomic radius of the chalcogen governs

the NNN distance and thus the degree of localization of the 5/ electrons. This picture

explains the experimental fact that for the larger atomic radius of the chalcogen (S, Se, and

Te) the saturated magnetic moment becomes larger (1.55, 1.8, and 1.9/jb per unit formula,
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respectively), that is, the degree of localization becomes stronger.

For dealing with the ferromagnetic state with the SOI, we should determine the bare 5/

orbital energy尋by subtracting the LDA potential energy, which is arising from the intra-
atomic 5/-5/ interaction, from 」r. This procedure is to prevent us from double counting

the /守 interaction in the subsequent HF calculation. The LDA potential energy of the
/-/ interaction Lr can be divided into two parts; Lr - Cr - V, where Cr is the classical

Coulomb part (i.e., the Hartree part) and is exactly the same as that of the HF [the丘rst term

ofEq. (7.6)]. It is written in terms of the order parameters {/ / ;) in the P state, which

are already known from H', and the Slater integrals F s, which are already determined

except F. This means that once we choose a speci丘c value for F we can readily evaluate

Cr-　The term -V stands for the exchange-correlation part and we assume that it has

no F dependence. This quantity is hard to be evaluated and we treat it as an adjustable

parameter. Moreover, in the ferromagnetic state with the SOI,錦will differ from that of
the P state to keep the charge neutrality. This change ofe呈will not be small because the

SOI for the 5/ state is very strong. We impose such change of the 5/ orbital energy on the

unknown parameter l′.

Finally our Hamiltonian for US in the ferromagnetic state is given by

H- H-+E-(F-, V)+Z+HfF(F-　　　　　　　(7.8)

where E-(F-, V) denotes Eq- (7.2) with 」- - er - Cr(F-) + V, and HfF(F-) is given by
Eq. (7.6) and depends onもhe unknown parameter F - There are two adjustable parameters,

F and V. To determine them we simply assume that the 5/ electron number n^j shows

no change between the P and the ferromagnetic state, and we choose l′ for a given F so

that nsf - 2.88, which coincides with that of the P state obtained from H. The FLAPW

calculation shows a little change in n^j, namely, it increases by only 0.2 from the value m

the P state・ Even if we choose V which gives a difference in n5f between the P state and the

ferromagnetic one, our main results are found to be insensitive to the choice of V. Then we

choose F so as to set the 5/ magnetic moment to be the experimental value -1.70/ub-[69]

Thus we can determine F and V and examine the individual moments of the 5/ state,

/"spin and ^。rb- The adopted assumptions and treatments might be rather reasonable ones

for qualitative discussions on whether or not the large //orb can be obtained with using the

HF exact exchange potential and what is absent in the usual LSDA calculation. We believe

that the employed assumptions will not a鮎ct the essential physics.

Computational details in the self-consistent calculation is as follows. For a given set of

parameters, the Hamiltonian (7.8) is sbIved in the momentum representation. Uniformly

spaced 1000 k points are sampled in the Brillouin zone. Interpolation between meshes is

done by the tetrahedron method-[81] The convergence of the HF order parameters is that

the root mean square sum of the differences of each order parameter between the last two

steps is less than 10 . The quantization aやis taken as along the [111] direction, i-e-, the
experimental easy axis except for a discussion on the magnetic anisotropy.

7.3　Results and Discussions

7.3.1 Magnetic ground state

Before determining the value of F-, variation of the calculated quantities with sweeping

F- is studied. Figure 7.2 displays (a) the 5/ magnetic moment fi5f, (b) the ratio of 〃。rb

to /ispin of the 5/ moment, (c) the individual /ispm and jj,Orb, (d) the expectation value of

the 5/ magnetic dipole (TZ) and (e) the constant potential V for the 5/ orbital-　For a

given F , V has been chosen so that the 5/ electron number nsj becomes 2.88. As shown

in (c), the absolute values of the individual /ispm and /i。ri-, increase as a function of F , but
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Figure 7.2: The calculated quantities with sweeping F-. From the top side of panels, (a)

the 5/ magnetic moment, (b) the ratio #。rb//%>in of the 5/ moment, (c) the individual

moments fJ.spm (open circle with broken line) and /x。rb (closed circle with solid line), (d) the

5/ magnetic dipole (Tz) and (e) the constant potential V.

^spin is rather insensitive to F , and //。It, almost determines the change offi。rb/fJ.spm- This

tendency is the same as the metallic 3d systems discussed in Chap. 6; again, //Orb has a

strong F -sensitivity. For F- - 0.76 eV, fi5j becomes -1.70//B [indicated by an arrow in

(a)], which coincides with the result of the neutron scattering,[69] and thus we use this value

of F- according to our prescription mentioned in the last section. At this point, fj,。Tt/Aォspin IS

-2.14, and the individualmoments are fj,spm - 1-49/iB, /^。rb - -3.19JUB, and {Tz) - -0.36,

and the constant potential l′ - 1.505 eV.

For comparison, we list up results of previous band structure calculations for US in

Table 7.3. The results based on the conventional LSDA with the SOI through a second

variation reveal a too small absolute value of /isj compared to the experimental -1.7/iB

and the magnitude of fJ,orb/pspm is smaller than our HF result.[82] Brooks[20] applied the

orbital polarization (OP) method and obtained a large magnitude of ^。rb and a considerable

improvement in p5j-　However, they have stated that the individual magnitudes of ^spin

and ^。rb are considered to be too large from the analysis of the magnetic form factor.[75]

To improve the OP method, Severin et al- examined a spin(cr) and magnetic quantum

number(m)-diagonal HF exchange potential and scaled it to the size of the corresponding

LSDA exchange potential.[75] Their results have a strong resemblance to ours, although

they have ignored the spin-o鮭diagonal elements, which are fully taken into account in our

method. This enigma will be discussed later. In the results of the neutron scattering
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Table 7.3: Magnetic ground state of the 5/ orbital by various band structure calculations.

Magnetic moments 〝5ノ, 〃spin, and 〟)rb are in units of〃B・

Method Author　　　　　^5/　^orb/M-spin　〃spin　　^orb

LSDA+SOI2nd FLAPW

LSDA+SOI2nd ASW

LSDA+SOI2nd LMTO

OP LMTO

OP (scaled HF)
HF TB

spin-diag. HF TB
neut】・on measurement

Oguchi (Ref. [79])

Kraft et al. (Ref. [19])

Brooks (Refつ20])
Brooks (Refつ20] )

Severin et al. (Ref- [75])

present

present

Wedgwood (Refつ69

-0.55　　　-1.33　　　1.66　　-2.21

-1.1

-1.1

-1i

-1.61

(-1.70)

-1.56

-1.7

-1.73　　　1.5　　　-2.6

-1.52　　　2.1　　　-3.2

-1.82　　　2.2　　　-4.0

-2.07　　1.51　　-3.12

-2.14　　1.49　　-3.19

-1.87　　　1.78　　-3.34

仁2.3)  (1.31)仁3-0)

measurement by Wedgwood[69] in Table 7.3, the values in parenthesis are taken from an

analysis by Severin et al.[75] Our individual moments are in a qualitative agreement with
these values.

US is well known to show the largest magnetic anisotropy among cubic materials.[65, 66,

67] It strongly favors a [111] alignment and its saturated momenもis about 1.7 times as large

as that ofもhe hard axis [001]. We try to examine this anisotropy in the present framework.

Table 7.4 shows calculated results (the 5/ electron number, 5/ magnetic momentっand total

energy) for various quantization axes with the same parameters; F and V are fixed to

those determined for the magnetization in the [111] direction, fi^f is strongly dependent

on the axis and the calculated tendency about the easy and hard magnetization axis is

in accordance with the experimental results, although the change of nsf is less than 0.03.

The calculated total energy for each axis shows that the [111] direction isもhe easy axis as

expected from the calculated tendency of /is/. Even if we determine the value of V so as

to give n5y - 2-88 for the magnetization in the [001] direction, the tendency ofnsj and the

total energy shown in Table 7.4 is found to be unchanged.

Table 7.4‥ The quantization-axis dependence of the 5/ electron number, 5/ magnetic mo-

ment, and total energy. The total energy is measured with referring to the energy for the

[Ill]axis.

axis n5f fi5f hb] totalenergy [meV]
[Ill] 2.88　-1.70

[110] 2.87　-1.51　　　　7.5

[0叫　2.85　-1:2　　　　12.6

7.3.2　U M4,5 MCD spectrum

To see whether or not our model describes the magnetic ground state of US, we in-

vestigate magnetic circular dichroism (MCD) in x-ray core-photoabsorption spectroscopy

(XAS). Discovery of the so-called orbital[2] and spin[3] sum rules, which directly relate

(SE).= -A'spin/2/iB), {L2) '= -P。rb/fJ-B) and (T2) of a specific site to simple integrations

of measured spectra, have led MCD into a powerful technique for studying ferromagnets.

Recently, Collins et al. have measuredもhe MCD spectrum of US at the U M45 edge (U 3d
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core - 5/ photoabsorption) by using hard x-ray.[27] Their spectra show some characteristic

features: (i) pairs of Zd core spin-orbit-split peaks (M4 and Ms edges) are separated by

about 170 eV, which is su伍ciently larger than the magnitude of the 3<i-5/ exchange inter-

action, (ii) the XAS spectrum shows a simple line shape with no clear multiplet or satellite

structure, (iii) in both of the M4 and M5 regions, the MCD shows positive signals in almost

entire photon energies, (iv) the MCD intensity in the Ms region is very small compared to

the M4, (v) finally, in the M5 region, a small negative splinter is observed just above the

large positIve peak m the MCD spectrum.

The feature (i) indicates that the total angular momentum of the 3d core spin-orbit

multiplet (jc - 3/2 and 5/2) is a good quantum number in the photoexcited final states.

The feature (iii) is considered to be due to the large magnitude of/i。rb since the same feature

has been seen in the Pも1/2,3 MCD of CrPt3, where fi。Tb dominates the Pt 5c? magnetic

moment.[83, 84, 85] An atomic multiplet calculation[27] can well reproduce the features (ii),

iii), and (iv), but may not explain the feature (v), indicating that some "solidsねte effect"

takes place inもhe 5/ state. According to the sum rules,[2, 3] the branching ratio of MCD

spectrum in d - / transition is related to the ground state magnetic moments by

-Rmcd =
Ud^ {i-1-1+1)　　　(Lz)
JM dw(J-i-I+i) 2 (Lz)-2(5,)-Q(Tz)

-1,　　　　- 7.9

whereI凡denotestheabsorptioncoefficientwiththephotonhelicityk(k-ア1).Ifthe(Tz)

termisnegligibleinEq.(7.9),onecandirectlydetermine/x。rb/^spinfromthee羊perimental

integratedintensityratio-Rmcdandexamineourtheoreticalvalueof/i。rbルspm>butunfor-

tunately,{Tz)isgenerallyverylargeinUsystems.Therefore,itcouldbeaseverecheヰfor

ourHFgroundstatewhetherourframeworkcanreproducethevalueofRmct>itselfand

thelineshapeoftheUM45MCDspectrum,especiallythefeature(v).TheXASspectrum

withthephotonhelicitykandenergyuscanbecalculatedas

JK(W)-筈∑∑W*誹甑)S(Ekn-Ec-w),(7.10)

E^>Er

whereij;knistheHFone-electronvalencestatewithmomentumk,bandindexn-andenergy

Kn,andゆistheUcore3dstatewithenergyEc,whichissplitintojc-3/2and5/2,and

theoperatorf凡denotestheintra-atomic3d-5/dipoletransitionwiththephotonhehc軸

k.Here,wehaveignoredthephotonenergydependenceoft泥.Thesummatiodabout宛IS

takenoverallunoccupiedstates.Wehavealsoignoredacore-valence-interactioninthefinal

state,whichingeneralleadstoamultipletstructureinthespectrum.Inourcase,however,

thefeature(ii)indicatesthatsuchaninteractionisveryweek.Infact,themultipoleSlater

integralsF(3d,5/)andG(3d,5/)areverysmall,[27]justifyingourapproximation.

Figure7.3showsthecalculatedXASandMCDspectra.Theyhavebeenconvoluted

byusingLorentzianswithFWHMof4.0eV,whichrepresentthe3dcoreholelifetime

broadening.[27]TheXASspectrashowasimplepeakstructure,andtheMCDspectrareveal

positivesignforalmostentirephotonenergies.NotethattheintensityoftheM5MCDis

multipliedby5,namely,itisfairlysmallcomparedtotheM4region.Morenoteworthyisthe

appearanceofasmallnegativesplinterintheM5MCD,asexperimentallyobservedasthe

feature(v),whichcannotbeobtainedbytheatomicmultipletcalculation.Alle軍penrりe再al

lineshapefeaturescanbereproducedwellbyourpresentcalculation.Theexperimental

branchingratiooftheMCDdefinedbyEq.(7.9),Rmcd-M5/M4,is0.13士蝣0.03,-涼hile

ourresultis0.169.Reasonableagreementforbothofthelineshapeandbr哉nching!ratioノis

obtainedbetweenourcalculationandtheexperimentsbyCollinsetal.[27]Itisiritere

ni.蝣.白鱒toclarifytheoriginofthecharacteristicfeaturesintheMCDlineshape,thesmallbranching

ratioandthesmallnegativesplinterintheM5region∴Bothofthemcanb-undeFstood

qualitativelybyinspectingthe5/partialDOSwhichisprojectedintothetot瓦l'溢血gular
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Figure 7.3: Calculated XAS and MCD spectra of US at the U M4,5 edge (3d - 5f)・ Thin
line denotes the polarization-averaged XAS spectrum, (/ + /+ )/2. Thick line represents

the MCD spectrum, I""1 - 7+. The left (right) side offigures corresponds to the M5 (M4)

region. The zero point of the photon energy of each figure is set to Ep - Eja- Lorentzian
convolutions with FWHM of 4.0 eV are used to include the core lifetime broadening. Note

that the MCD spectrum in the M5 region is multiplied by 5.

Figure 7.4: The 5/ partial DOS projected into the j bases: (a) the solid line denotes the

5/ DOS ofj - b/2 and the broken one that ofj - 7/2, (b) among the j - 7/2 states, the

individual jz - 7/2 (i, - -7/2) DOS is represented by the solid line (shaded area).

momentum of the 5/ state, j - 5/2 and 7/2, and the transition probability of the d - i

dipole excitation. The 5/ DOS is displayed in Fig. 7.4(a). Although j is not a good quantum

number for the 5/ states, most of the j - 7/2 states are well pushed up above Ep and the

magnetic 5/ state is almost determined by an electron population among the sixfold j - 5/2

states. Figure 7.5 shows the distribution of the electron population in the j basis. Among

the 7 - 5/2 bases, jz - 5/2, 3/2, and 1/2 states have large occupations, which leads to

the large magnitude of /iort, that is coupled antiparallel to /ispin-　Figure 7.6 shows the

jz dependence of weights of the transition probability in the d - / photoabsorption. In

the 3d5/ {Me,) edge, we have a large weight of transition into the j = 7/2 states, which

are almost unoccupied by electrons, and large absorption intensity is expected for both of

r-1 ㌢d I+1, and the magnitude of their difference / x - /+1 becomes small. The small
negative splinter in the M5 MCD can be explained by considering the energy position of

each DOS amongj - 7/2 bases. In Fig. 7.4(b), the jz - -7/2 (+7/2) state has the largest

weight of transition with k = -1 (+1) photon. DOS for all other bases which have negative
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Figure 7.5: The 5/ electron occupation projected into the j bases. The left side is for

j - 5/2 (hatched rectangle), and right, j.- 7/2 (solid rectangle).
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Figure 7.6: The jz dependence of weights of the transition probability into the / states ¥jjz)

m the d - / photoabsorption by the photon helicity k (k -ア1) for each of the core d5/2

and d3/2 branches.

(positive) jz, has a strong resemblance to that of jz - -7/2 (+7/2). A difference in the

energy position between negative and positive jz DOS causes an asymmetric dispersive MCD

line shape; the small negative splinter appears just above the positive peak. Next, in the

3d3/2 (M4) edge, we have a large weight of transition into the j - 5/2 states where jz - 5/2,
3/2 and 1/2 are mainly occupied and others are almost empty. In Figs. 7.5 and 7.6, we can

expectもhat the absorption with k - -1 is strong because the states with the large weight

of transition are almost empty, and that, on the other hand, the absorption with k - +1 is

week because vacant seats for the transition are quite few. The MCD, / <- I+ , in the M4

edge, then, becomes large. Thus the obtained characteristic features in the MCD spectrum

are quailtativf∋ly understood.

7.3.3　I壬F and LSDA

We shall discuss in detail the difference between the HF exchange potential and that of

the LSDA. From Eqs. (7.5) and (7.6), the exchange part of the HF I王amiltonian can be
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Table 7.5: Upper: the absolute values of the spin-off-diagonal matrix elements of the ex-

change part of the converged HF Hamiltonian in units of eV. Lower: the spm-off-diagonal

matrix elements of the spin-orbit interaction among the 5/ electrons in units of Cs//2. The

basis of matrices is the spin state `T and the magnetic quantum number m of the 5/ state.

-3　　-2　　-1 0　　　1　　　2　　　3

1　-3

-2

-1

0

1

2
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0

0

0

.06

0
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0
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0　　0.01

0　　　0　　0.01

0.14　　0
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0.07　　0
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9 0

0　　　0　　　0

0　　　0　　　0

0.02　　0

0　　0.01

0　　0.01
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2 3

1　-3

-2　ヽ庵
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rewritten as

Hx= 」

TTl^JTl^m.^

孟-r,-.)妄(f+f誹,J,

i<7iJra¥a-2(7.-H)

with carrying out the integration in the spin space. Two important aspects about the HF

exact、 exchange potential can be revealed from Eq. (7.ll). In the first place, it has a spin-

off-diagonal element {spin一極term) (T¥ ≠ o"2, that is, the exchange interaction may mix the

spin-up and spin-down states. Since we are considering a situation with the SOI, the self-

consistent one-electron state will be a combination of the different spin bases. In such a case,

the HF order parameter in Eq. (7.ll) in general have afinite value even for <j¥ ≠ <r2. Table?・5

shows the spin-off-diagonal matrix elements of the converged Hx蝣Here we simply displayed

the absolute values of them although they are actually complex numbers- It can be seen that

the columns and rows with larger matrix elements well correspond to those where the spin-

off-diagonal matrix element of the SOI has a finite value (the matrix elements of the SOI are

displayed also in Table 7-5) and that their magnitude (0.1 - 0.3 eV) is comparable toもhat of

the SOI, V寓C5//2竺0.4 eV. Thus the exact exchange potential clearly enhances the effect
of the SOI and mi£es strongly the spi恥up and spin-down states. This feature is not seen

in the LSDA exchange potentIal, since it is a spin-diagonal potential. Needlessもo say, the

effecもof the spin-o汗Ldiagonal elements, i.e., the correct exchange potential is not taken into

account in LSDA, which causes an insu用icient mixing between the spm-up and spin-down

states. In order to emphasize this point, we shall arti負daily remove the spin-off-diagonal

elements from the HF potential and see what happens. With this restriction and with the

same parameters, we ca′lculate again the ground state self-consistently. The results are as

follows: 715/ - 2.85, f15j = -1.56^B, /*。rb/jォspin - -1.87, 〃spin - 1-78^b, fJ-orb = -3.34/iB,
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and (Tz) = -0.22- A great change can be seen in (Tz), that is, its magnitude is about 60% of

that of the exact one. fisj, /ispin and fioTb are quantities which are obtained by the diagonal

summation in <r and m basis so that they are relatively insensitive to the extinction of the

spin-off-diagonal exchange potential. (Tz) is, on the other hand, considered to be sensitive

to叫because it has a form ofTz - ∑,. {^372 [c<2)(ri)*i- - C-iVi)*+] - 2c<2)(ro*-}
with c^(T-i) - ¥/4汀/(2k + 1) Yk-(ri) -ith the spin-flip terms- Thus (Tz) will re鮎ct the

extent of the spin-up and spin-down mixing in il>kn- This change in (Tz) readily influences

the branching ratio of MCD. In fact, i?MCD becomes 0.292, which is far larger than the

experimental result 0.13ア0.03. Even if the parameters F and l′ are chosen so that nsj -

2.88 and nsf - -1.70/j.b, the results of (Tz) and Rmct> are not improved; (TB)ニー0.24

and -Rmcd - 0.302. Severin et al. seem to have obtained fairly reasonable results for 〃5J

and individual moments[75] although they have not considered the spin-o鮭diagonal terms

in the exchange potential. It is debatable whether the character of each one-electron state

or (Tz) is appropriately described in their framework.

In the second place, there is a strong orbital dependence m the exact exchange potential.

In the LSDA, the spin-up and spin-down states are split more or less uniformly, because the

exchange potential for the spin a state has a rather simple form as n告/ (r), where na(r)

is the total charge density with the spin a, and the corresponding matrix elements within

the / states hardly have an orbital dependence. The diagonal matrix element of Eq. (7.ll)

withrespecttomandais(Hx)%　コma-　∑m′[mm'¥l/ri2¥m'm)(f+　f ) anditism

dependent. In fact声he converged Hx for the U 5/ state of US shows that for the minority

spin it varies from -0.3 t0 -0.4 eV, whereas for the majority spin it varies widely from

-0.7 to -1.8 eV, showing the strong m dependence. This is essential in realizing the large

orbital magnetic moment.

We conclude that these characteristic features of the exact exchange potential, which

are missing in the LSDA, are crucial in the estimation of fi。Tb-　We may say that the
underestimation of fj,。T^ in the LSDA approach arises from its insu伍cient treatment of the

exchange interaction and not from its insufficiency in describing the correlation effect.

7.4　Conclusions

We have calculated fispm and /iorb of the 5/ state and the MCD spectrum in the U

3d - 5/ x-ray absorption for ferromagnetic US on the basis of the E王F approximation for

an extended Hubbard model. The model includes the U 6p, 5/, (id, and 7s orbitals and

the S 3s, 3p, and 3c? orbitals, and the intra-atomic 5手5/ multIpole interaction andもhe

5/ spin-orbiもinteraction, most of parameters of which are determined by fitting with the

result of the first-principles IJDA calculation in the paraniagnetic state. The calculated ratio

AWb/Mspin Of -2-1 and 〃orb of -3.2/iB are in good agreement with available experimental

results. The calculated MCD spectrum in the U 3<i - 5/ absorption also agrees withもhe

recent experiment ,

We have shown that, for the 5/ electrons speci負ed by the magnetic quantum number

m and spin <r, the m-dependent potential and the spin-off-diagonal matrix element, both

of which arise from a faithful HF approximation, are crucially important in estimating

especially fi。rh and (Tz) and in obtaining the reasonable wave function. By a comparison

between the present HF calculation and LSDA, an insufficiency in describing the exchange

interaction in LSDA is pointed out to be a major cause of its underestimation offJ,Orb, which

is seen not only in U compounds but also in transition metals such as Co. Although our

model contains the adjustable parameters F and V, we expect that the obtained results

are not sensitive to details of adopted models.

In this work, we have not discussed the electron-correlation effect, which is not considered



7.4. Conclusions 89

explicitlyinthepresentcalculation.Inourcalculation,wehavesettheSlaterintegral

F--0-76eVsoastoobtain/i5/--1.70/iB-TheadoptedF-value,however,seemsto

betoosmall.Evenitinerant3dtransitionmetalssuchasFeandCoareconsideredtohave

FO:と1eVfortheZd-3dintra-atomicinteraction.[86,87]Itiswellknownthatthestability

ofmagneticsolutionismuchemphasizedintheHFapproximationandthattheelectron-

correlationeffectisexpectedtobeasuppressionofthistendency-【Withthecorrelation

effect,thedrivingforceforthepolarizationwillbesuppressedandwewillneedalarger

valueofF-soastoobtainnsf--1.70〃Kanamorihasdiscussedthecorrelationeffect

inmetalconsideringthemultiplescatteringbetweentwoelecもronsinbands.[56]According

もohisargument,thebareintra-atomicCoulombintegralUisstronglyreducedbythe

correlatione斤ectf/eff空(7/(1+U/W),whereWisthebandwidth,andtherenormahzed

Uef!cannotexceedW.Thentherelativelysmallvalueof丘ttedF-isnotsosurprising

becauseourF-istherenormalizedeffectiveone,onwhichallcorrelatione鮎ctisimposed,

andtheintrinsic5/bandwidthinthiscaseisonlyabout1.5eV(seeFig.7.1)-Ofcoursea

detailedcalculation,inwhichthecorrelationeffectisexplicitlyconsideredinsomemanner.

ispreferableandmustbeinteresting,butitisoutofthepresentpaperandafutureproblem.

Evenifsuchcorrelationeffectisincluded,webelievethattheroleofexchangeinteraction

inobtainingthecorrectratio/i。rb/y^spin,whichisdiscussedabove,isunchanged.

TheexperimentaltotalmagneticmomentperformulaunitofUSis-1-55/ubandthe

differencefromthe5/moment0.15/iBissupposedtobeacontributionfromtheU6dspin

moment,whichiscoupledparalleltothe5/〟sp:
lin.[90,91]Inourcalculation,sincethe5/-6d
exchangeinteractionisneglected,the6c?statecontributesonly0.02^b-InUchalcogemdes,

theKerrspectrumduetothe5/-6dopticaltransitionhasbeenobserved,[92]whichwillbe

afuturesubjectofthisstudybyincludingもhe5手interaction.
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