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Introducticon

In [10] and [1ll], E.Rees and E.Thomas studied the divisibility
of some Chern numbers of the complex cobordism classes and the
homotopy groups of MU(n). The purpose of this paper is to study
the symplectic cobordism theory by using their methods.

. Let MSp(n) be the Thom space of the universal symplectic
vector bundle over the classifying space BSp(n), and MSp =
{MSp(n),‘sn} be the Thom spectrum of the symplectic cobordism

theory, where €, ¢ Z4MSp(n) — MSp(n+l) 1is thé structure map.

Let bn : MSp(nj — QéNMSp(n+N) be the adjoint map of the

- 4N 1
composition En,N C I "MSp(n) — MSp(ntN) of I € ei’ where
N > 3n > 0. Converting bn into a fibering with fiber an we .
consider the fibering
bn 4N |
(1) F ——> MSp(n) ——— O MSp{(n+N).

Then 'Fn is (8n-2)-connected, and we can determine the cohomology
groups of F in dimensions less than 12n-2 (see Proposition 2.15).
Let Pi = H41(BSp) be the i-th symplectic Pontrjagin class.

For a symplectic cobordism class u & (MSp) and a class

Tax

P. «-D. & H4l(55p) with 23_ i, =i, P, <-<P. [u] denotes the
iy lj =17t i, _'Lj



Pontrjagin number of wu for a class Pi ---Pi .
1 J

The one of our purpose is to obtain the divisibility of some
Pontrjagin numbers of the symplectic cobordism classes by making
use of the cohomology groups of Fn. As a concrete result, we

have the following theorem (see Theorem 3.8):

Theorem I. Let n 2 1. Then
(i) Pn[u] 20 mod 8 for any u e‘w4n(MSp).
(ii) Pan[u]r— ((n+4)/2)P _ ,[ul = 0 mod 24 for any u e

w4n+4(MSp).

The divisibility of Pontrjagin numbers of some symplectic
cobordism classes has been studiéd in {141, [131, [3], [6] to
investigate the structure of 7, (MSp). For the divisibility (1)
of the above theorem, E.E.Floyd [3] has proved it with some restriction
by using the alternative method, and some application of the method

of Floyd's is considered in {[4].

The second purpose of this paper is to study the homotopy

groups (MSp(n)) and (MSp(n)) by using the fibering (1)

T8n-1 T8n+3
and some examples of the symplectic cobordism classes. Our second
results are stated as follows (see Corollaries 4.4, 4.5 and

Theorems 4.6, 4.7).

Theorem II. (i) Let m(n) be the greatest common measure of

{(1/8)Pn[u]i ue m, (MSp)}. Then the induced homomorphism

b (MSp{(n)) —— T

n* ° TT8n—l 4n—l(MSp)

of bn in (1) is epimorphic and its kernel is a cyclic group of



order 4m(n) generated by the Whitehead product [i, i] for the
homotopy class 1 of the natural inclusion map S4n — MSp(n).

(ii) If 2ﬂ4n_l(MSp) =0 and n 1s not a power of 2,

then bn* in (i) is split epimorphic, that is,

ﬂ8n-l(MSp(n)) = Z4m(n) ® TT4n--.l(MSp)'

(iii) m{n) is a power of 2 for n #¥ 1, 3, and m(l)=m(3})=3.

k, 514 k, .4

(iv) m(n) =1 if n = 2"42"-1 or 27+2 (k,ﬂ;O) and n # 1, 3.

Theorem III. (i) (MSp(n)) (n23) has no p-torsion for

TT8n+3

any odd prime p.

(ii) The homomorphism bn* ﬂ8n+3(MSp(n)) ——e-ﬂ4n+3(MSp)
is epimorphic for n > 1.

(1ii) If n = 2%42%-1 (x,421), then b_, in (ii) is isomorphic,
i.e., ﬂ8n+3(MSp(n)) = ﬂ4n43KMSp).

We notice that the assumption 2W4n_l(MSp) = 0 in Theorem II (ii)

is valid for n < 8 by the result of D.M.Segal [12].

This paper is organized as follows. In §1 we summarize the
necessary lemmas concerning the iterated cohomology suspension
investigated by R.J.Milgram [5]. In §2 we study the cbhomology
groups of F_. and in §3 we state the divisibility of some Pontrjagin
numbers and prove Theorem.If In §4 we consider the homotopy exact

sequence concerning wsn_l(MSp(n)) and (MSp(n)) and state

1T8n+3

Theorems II and III. In §5 we prepare some symplectic cobordism

classes and prove these theorems in §4.
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§1. Preliminaries
In this section, we summarize the necessary lemmas concerning

the iterated cohomology suspension studied by R.J.Milgram [5].

Let Y be an (r-1l)~-connected CW-complex, and i : ¥ —> QkaY

be the natural inclusion. Then Milgram [5; Th.1l.11] proved that

the cofiber QkaY/Y of i is homotopy equivalent in dimensions

less than 3r-1 to the space gk-1 gk-1

k-1

VT Y A Y, where KT YAY

is the quotient space of S x (YA Y) by the identification of

(x, Yy y2) with (-x, Yor yl) and (x, *) with the base point.
k

When Y = X for a (k+r-1l)-connected CW-complex X, we can
consider the evaluation map e : Zkﬂkx —— X and the fibering
p—3 1Ky — 5 x (v =o%n.

Then the inclusion i : ¥ —> QkaY is a section of the fibering

k. k. .
QkF —Q—la QkaY —ina Y, and we have the maps F —= ZKQkF

kok kok

Y — QTLTY/Y  is the

k k.
t (g-@ j)r Zk(ﬂkaY/Y), where g : §

canonical projection. Since these maps are (k+3r-1)-equivalent,



we have the following lemma (cf. Proof of [5; Cor.4.41).

Lemma 1.1. In dimensions less than k+3r-1, F 1is homotopy

equivalent to gk gkt Ko 2Fx A %) .

Take X to be the Thom space MSp(n+N) of the universal

symplectic vector bundle over BSp(n+N). Then we have the fibering
(1.2)  Fle) ——> Z4NQ4NMSp(n+N) —C 5 MSp(n+N).

Hereafter we shall take integers n and N to satisfy N > 3n > 0.

By Lemma 1.1, we have

Corollary 1.3. 1In dimensions less than 4N+12n-1, F(e) is

homotopy eguivalent to Z4NT(n,N), where we use the notation

T, = s ko 0®Nusp (nan) A 04 Nusp (n+y) .

~Put A =2 or Zp (p:prime). By this corollary, we have
the isomorphisms

Hl+4N(F(e); Ay = Hl(F(n,N); Ay for i £ 12n-2.

Therefore the Serre cohomology exact sequence of (1.2) turns out to

be the exact seguence

(1.4) +oe —> 8 Y0, ;: &) —> 5T (usp (0 ; 1) T

gl (@%Msp (n+N); A) —3> HE(T(n,N); A) —> ==-

for i < 12n-2, where 7T, © and j are the transgression, the

* *
induced homomorphisms e and i composed with the suspension

isomorphisms respectively, and o is known to be the iterated



cohomology suspension.
We shall use the following notations:

r.), we mean:

that ri's are

(1.5) (i) By a series R = (ryrvees
non negative integers.
(ii) For a series R = (ry, ---, rj), we set |R| = Xi;liri'
(iii) For series R = (rl, Ty, +++) and S = (sl, Syt see),
and r_ > s for some m>1.
m m =

means that r. = s. (léi;m-l)

R > 8
Let Pi = H41(BSp) be the universal i-th symplectic Pontrjagin

ZEPy, s Plin Y.

*
class. Then it is known that H (BSp(n+N))
r r.
We set pR = Pll~-—Pj3 € H4!R¥(B8p) for a series R = (rl, ree, rj).
4 _
Let U € H’(n+N)(MSp(n+N)) be the Thom class of MSp(n+N), and
consider the composition
- , : i 4
v : B % @sp (ni)) —2—s w8 T W (usp (nt) ) —Z— w1 (2% msp (n+N) ),
where U is the Thom isomorphism given by U(x) = Ux and” ©
is the iterated cohomology suspension in (1.4). Here 0 1is
for * £ 8n-1 1is

*
isomorphic for i < 8n-1, and H (Q4NMSp(n+N))
{V(PR)| IR| < n}, where

the free abelian group with basis
gd (0 IRD (@ 4yc0 (hany) .

(1.6)  v(PH) = o(up®)
The following lemma is an immediate consequence of [5; Prop.3.1]
(cf£. [11; (2.1)]1), where <8,8'> and e -60©6 are the notations

A

for i

The cohomology group B (T (n,N))
Z and Z,. A basis of

used in [11].

Lemma 1.7. (i)
is a direct sum of some copies of

12n-2



its free part consists of the following classes:

4 .
<V(PR),V(PS)> e HsnL‘(|R|+tSl)(F(n,N)) for any series R and S

with R > S and |R|+|S| < n-1, and

A

Ry _ H8n+8{R{(F

1-v(p%yev (2R

(n,N)) for any series R with 2|R| < n-2.

A basis of its Z2~summands consists of the following classes:

2k E H8n+2k+8|R|(T(

e 'V(PR)®V(PR) n,N)) for any integer k > 1 and

any series R with 2k+8|R| < 4n-2.

(ii) A basis of H'(I'(n,N); Z,) for i < 12n-2 consists of

2
the mod 2 reductions of the classes given in (i) and moreover the
classes
S2k+1l o pRy H8n+2k+l+8IR{(T(n,N

(PR av (PR

)i Z,) for any integer k 2

0 and any series R with 2k+8|R| < 4n-4.

We remark that the classes u-6®86 in [11; (2.1)] do.not appear

in HE'(T(n,N)) for i < 12n-2 since N > 3n.

By the above lemma, we have B (I (n,N)) = 0 4if j is odd

and J < 12n-2, and the following

Lemma 1.8. (i) The seguence (1.4) for A =2 and i < 12n-2

is short exact:
\ : 4 ; i
0 Hl+4N(MSp(n+N)) C, Hl(Q’NMsp(n+N)) 2> ' (T (n,N)) —> 0.

(11) B (@*MMsp(n+N)) = 0 if i is odd and i g 12n-2.

For the maps j and 1 in (1.4), we have the following lemma



by [5; Th.4.6] (cf. [11; (2.10), (2.5)1):
Lemma 1.9. (i) In the integral cohomology groups,
f e <v (%) ,v (PS> if R > S,
J(V(PT)V(PT)) = R R
2(1-V(P)®V(P)) if R = S.
(ii) In the mod 2 cohomology groups,
43

q4(n+j+}R|)

eI v eRyevieR)) = s (upY) .

The next lemma can be proved by a similar argument to E.Rees

and E.Thomas [11l; 2.4, 2.6, 2.8].

Lemma 1.10. For i < 3n, the cohomology group H4l(Q4NMSp(n+N))

is a free abelian group.

Proof. H4l(Q4NMSp(n+N)) has no odd torsion by Lemma 1.7.

We prove that

g4 Y v n, N 2. gdN+ai

(*) © : 5 (MSp(n+N);ZZ) is monomorphic.

- 4
Then H41 l(Q‘NMSp(n+N); Zz) = 0 by the exact sequence (1l.4), and

hence H4l(Q4NMSp(n+N)) has no 2-torsion by the universal coefficient

theorem. Thus we have the lemma.

Now we prove (*). A basis of H41_1(F(n,N); 22) for i < 3n

consists of the classes e4l—8(n+'Rl)—l-V(PR)®V(PR) for any series

R with 4i-8(n+|R|)~1 > 0 by Lemma 1.7, and it holds

. 1 - 1R D)
(e [RD =1 (pR) oy (pR)) o gq? (1mnm[R])pR
. 4t , R, _ _ 4k _R
by Lemma 1.9 (ii). We have . Sq (UP) = ZOékéMin(t,lR[)UPt-ksq P
4s S-s+0-1
£ = P
by the Cartan formula, and Sq P, ZO;ﬁés( < )Ps—ﬁ‘j+£

by the Wu formula. Using these relations and the condition



2(n+|R|) < i < 3n, we have

4(i-n-|R|) R _ R S
Sq Up = UPi—n—IRlP + ZSUP
for some series S = (s;, s,, *-*) with sy =0 (j>i-n-|R|). By
the above relations, we see that T is monomorphic and we have (*).

g.e.d,

. *
The formulas for the cohomology operations on H (I'(n,N): 22)

are given by Milgram [5; Th.3.7.] (cf. [11;(2.3)]) as follows:

Lemma 1.11. (i) sqitev(e®),v %> <sq¥vpRy,

= Z0§r<i/2

4{i-1)

sq V(PS)>, Sq3<V(PR),V(PS)> =0 if j Z 0 mod 4.

(i1) sq*t-veeReveR)) <sq*Tv (%) ,5q* ) v 2Ry >

= Z0§r<i/2
3)e4l"83-Sq4JV(PR)®Sq43v(pR),
sq (1-v(eRyev(®®)) = 0 if 3 Z 0 mod 4.

(iii) For k » 1,

i, k- R Ry, _ ky rd(n+|R|-3)y k+i-83 . 43 R 43 R
Sq” (e sV(P)eV(P)) = zj,r;O(r]( o183 Je Sq JV(PT)®Sg “VI(P).
Especially, we have
Corollary 1.12. For k > 1,
sqt (X v PRy ev(pR)) = kT revpRyev 2Ry,
sa’ (e®-v(eRyev(2R)) = (§)e*"2v@R)evpR), |
sq (v ERieveR)) = ((K)+n+ RN v 2R ey (R
Let X be a (k+r-1)-connected space and r > 2. The evaluation
map e; 2oty — X is the composition of the evaluation maps
e' : tiadx ——»-Zjblﬂj’lx (i;j;l), and we have the commutative diagram



Fle ) — = £Fafx k o x
(1.13) lfl le'
) e
Fle, ;) — ph-lok-1y k=1 , %,

where F(ei) (i=k~1,k) are the fibers of the respective fiberings

and fl is the restriction of e' to the fiber. Then, through

the identifications of F(e;) with I'(s'™% K, @'x A 2" in

dimensions less than i+3r-1 given in Lemma 1.1, we see that £

1
is identified with the composition of
k, k-1 Zle k k-1 k-2 k-1 k-1
T (s XK YAY) —> I Q(s™” k IYAIY) = 1%71(s X 00 TXAQT TX),

where Y = nkx and T is the natural map QkEkY/Y -—a»Q(Qk_le_l
(ZY)/ZY) (see [5; §21) with identifications otstw/w = Sl—l “& WA W
(W=Y,IY) and 'é is the map induced by the evaluation maps.

In the diagram (1.13), set X = MSp(n+N) (N>3n+4) and k =

4N, +++, 4N-3 to obtain the commutative diagram

4N 4N €an

F(e,.) ——> I O MSp(n+N) > MSp (n+N)

4N
(1.14) lf le“

e
g — 22 fsp (ne) —ANZ4 | ysp (n+N)

F(e

where e" = (e)? ana £ = (£0% 1et o' : BT (usp (nem))

1
—> H (Q4N_4MSp(n+N)) be the iterated cohomclogy suspension. Then,
4N
by using the identifications of F(e,.) with I T(n,N), Fle, o ,)
with Z4N_4F(n+l,N—l) and fl with é(Zle) as is stated above,

we have the following lemma by [5; Th.3.8] on Tyt

- 10 -



Lemma 1.15. Set V'(x) = o'(Ux). Then

k+d R

£ (v pRyev 2F)) = e *®)ev(P®)  for any k > 0,

£ (<vr (%), v (25)5) = 0.

§2., The cohomology groups of Fﬁ

The structure map S Z4MSp(n) —> MSp(fn+l) in the Thom
spectrum MSp = {MSp(n), en} of the symplectic cobordism théory
is defined to be the map induced by the bundle map of gn & 1 to
£n+l' where Ei is the uniVersal symplectic vector bundle over

BSp(i) and 1 means the trivial symplectic line bundle. Consider

o 4N i
the composition ‘En,N : Z MSp(n) —> MSp(n+N)}) of I €nti’ and
its adjoint map bn N G MSp(n) — Q4NMSp(n+N). Converting
. 14

bn N into a fibering with fiber Fooqr we consider the fibéring
14 r

o : b
n,N 4N
(2.1) Fn N —— MSp(n}) ——— O "MSp(n+N}.
14

For any N' > N > n > 1, the homotopy groups, the cohomology

groups of F and Pn are naturally isomorphic in dimensions

!N /N

less than 12n-1, because ¢ is (8n+8N+6)~equivalent.  Therefore,

n+N

for a positive integer n, we shall take an integer N large enough

to satisfy N > 3n, and we denote simply by

b =05D and F_ =F
n

n n]N nIN.

We remark that Fn is (8n-2)-connected.

In this section, we investigate the cohomology groups of Fn

in dimensionsvlesé than 12n-2.

- 11 -



*
Let I c H (BSp) be the ideal generated by {Pil i > n}, and

(2.2) vur) c g4 PN+ (oo (n4N))  be the subgroup generated by
fupR| PR e 17 = 1_ n Bl (BSP) ).
n n
Then we have
Lemma 2.3. (i) The composition
etz ) : £ Nusp (n) — £ MN0* N usp (n+N) —> MSp (n+N)
is homotopic to €L N’ where e is the evaluation map in (1.2).
7 .

(ii) The following commutative diagram of four short exact

sequences holds for i < 12n-2:

yriAn. g -5 lr ) J s BN (T (n,N))
n n
In IT “
B4 (wsp (ntw) ) —2—s B (0¥ MSp (n+N)) —L—» BN (T (n,N))
1% b*
e
i n,N 4N . l n

m 4N (2 %Wysp (n)) «E— Hh (Msp(n)).

Here the central horizontal sequence is the one in Lemma 1.8 (i),
the central vertical sequence is the Serre cohomology exact
sequence of the fibering (2.1) where 1 denotes its transgression,

§ is the restriction of o, and J is the composition JT.

~ Proof. (i) is clear by definition.

(ii) The left hand vertical sequence is exact by the definition
*

n,N

is epimorphic, so is b;, and the central vertical sequence is short

(2.2) of UI%. By (i), the lower square commutes. Since €

exact. Since the central horizontal sequence is short exact as is

- 12 -



shown in Lemma 1.8 (i), the upper one is so by the 9 lemma, and

these complete the proof. g.e.d.

We remark that the transgression T : Hl-l(Fn; A) ——a-Hl(

Q4NMSp(n+N); A) is monomorphic for i < 12n-2 and for any

coefficient group A, by the proof of the above lemma.

4
Lemma 2.4. In H8n+‘l(Q4NMSp(n+N)) for i < n, the element
R S R_S * .
V(P)V(PT) - V(PnP P”) Dbelongs to Ker bn for any series R
and S with |[R|+]|S]| = 1.
Proof. Let U denote the Thom class of + MSp(n). Then, by

Lemma 2.3, we have

* R Syy _ o* R, .. * S, _ 4N =1 _* R, . 4N -1 _* S
b _(V(P)V(PT)) = bnc(UP ) bnO(UP ) = (Z77) en,N(UP )+ (Z7) cn’N(UP )
*
= gpR-p° = vp_PRPS = b (v(P PP?S)),
n - n n
and the lemma holds. g.e.d.
o R, , 2 R,2, .. : : *
Especially, (V{(P7))~ - V(Pn(P y7) is contained in Ker bn
by the above lemma for R = S. On the other hand, its j-image
is 2(1-v(PY)ev(PY)) by Lemma 1.9 (i). Therefore, by the commutative
diagram in Lemma 2.3 (ii), we see the following:
(2.5) There is an element wn(R) (=-wn N(R)) 1= Iin+8!Rl such that
’
v@E*)? - v (%% + vw_(R) is divisible by 2 in g8 (ntIRD
2*Nusp (n+N) ) .
On the other hand, we have
Lemma 2.6. There is an element v_(R) (= v (R)) e I4n+8|Rl
n n,N n

for any series R with 2|R| < n satisfying the following

- 13 -



conditions (1i)-(ii):

. _ R s . _

(1) v (R) = Pn+}R|P + )cMmgP”  for some series S = (s1/ S5
<++) with s; =0 (j>n+|R|) and some integers mg -

(ii) Uv_(R) = sq? (IR (gpR) | vp_(pR)2 in gBPTANEIR|

MSp (n+N) ; Zz)=

Proof. By the Cartan formula, we have

4 (n+|R]) R, _ R IR|-1 k, R R, 2
Sq (UPT) = WP iir|P Y Tuci UP 4R |-x59 (B) + uP_(PT) 7.
Hence we can take an element vn(R) e Iin+8’RI such that its

L. R IR|-1, K, Ry . 2 .
mod 2 reduction is Pn+lRlP + i Pn+}R[—kSq (P7) and it
satisfies (i). g.e.d.

For classes wn(R) in (2.5) and vh(R) in Lemma 2.6, we

notice that wn(R) = vn(R) =0 for R = 0 (the 0-series) since
Iin = 0. Furthermore,

Lemma 2.7. V(wn(R)) V(vn(R)) mod 2 for any series R

with 2|R| < n-3.

WA

Proof. Consider the following commutative diagram for

J £12n-9 and n > 2:

1371 (r (n,N) ; zz)'——l—a H3+4N(M5p(n+N); %) ——9—9~H3(Q4NMSp(n+N); Z,)

i H o

T! o] 4N-4

-1, 1) 5 2) s 19T (usp (new) 2,) 2 137 (2" usp (n4n) 52,

H

*
Here twO exact sequences are the ones in (l1.4) for A = 22, f is

the homomorphism in Lemma 1.15, and o, o', 0" are the iterated

- 14 -



cohomology suspensions. Let 3 = 8(n+|R|) for 2|R| < n-3.

R, 2 ] HB(n+]R|)(

Then (v(?*)? - v(p_ ("% + v _(R) = 0 in 0*Nsp (n+N) ;

yA by (2.5), and we have V'(Pn(PR)z) + V'(wP(R)) = 0 where

2) \
H8(n+|R|)-5(T(

V'(x) = 0'(Ux}). Hence there is a class 2z e n-1,N+1);

. . . . _ R, 2 :
Z,) satisfying <t'(2) UPn(P y© o+ an(R). Since wn(R) 1= In, we

3 8L+3 PT

have z = e>-v'(PHyev' (PF) + z£>l oy € vt (phyev' (pT)  for

some AE 7 euzz, by Lemma 1.9. These two equalities imply
14

81

) e “LyveTevie?))

UPn(PR)Z + Uw_(R) = Sq4(n+IR[)(UPR) + 1 A

R (Lgs1,m

by Lemmas 1.15 and 1.9. Therefore, if we put X = wn(R) - vn(R)

4n+8|R| .
e I , then the mod 2 reduction of UX equals T(Zﬁgl,Tkﬂ,T

e84 L.y pT)ev(PT)) and the integral class V(X) is divisible

by 2. Therefore we have V(wn(R)) E V(vn(R)) mod 2 for any series

R with 2|R| < n-3, and this completes the proof. g.e.d.

Lemma 2.8. Assume N > 7n-4. Then, for any integer k > 1
and any series R with k+2|R| < n-1, the element V(Pp+k(PR)2) -
V(vﬁ+k(R)) is divisible by 2 in H8n+4k+8|RI(Q4NMSp(n+N)), where

(R) (R) .

Va+k = Vatk,N-k

Proof. - Consider the iterated cohomology suspension

i+4k , 4 (N-k)

: H (2 MSp{(n+N)) ——> Hi(Q4NMSp(n+N)).

Then we see that

v BRy 2 : R, 2 e _ R, 2
c((Vv'(P7))" - V' (P (P + vi(v 4 (R)) = -V(P (P)7) + Vv, (R)).

n+k n+k

Thus the lemma holds by (2.5) and Lemma 2.7. g.e.d.

- 15 -



Now, consider the short exact seguence

*

. . b . |

0 ———e»Hl-l(Fn) —T 5 5t (*Mmsp (n+N)) — B s 5  (MSp(n)) —> 0
in Lemma 2.3 (ii). Then, by Lemma 2.4, (2.5) and Lemma 2.8, we
can define the following classes a(R,S), b(R), c(2i,R) and d(R)

in H*(Fn) as follows:

(2.9) a(R,S) e H8n+4(|R|+|S|)’l(Fn)

for series R and S with
R > S and |R|+|S]| < n-1 satisfying

t(a(r,8) = vieRv(e®) - v(p _pFe%).

(2.10) Db(R) e H8n+8|RI(Fn) for a series R with 2|R| < n-1 satisfying
T((R) = (/D {WEN? - v (2R%) + viw (R,
where wn(R) is a class in (2.5)-.

(2.11)  c(ak,®) e w¥FA1HBIR] (g

for an integer k > 1 and a
series R with k+2|R| < n-1 satisfying

t(c(ak,R) = (L/2){v(p_, (PN - viv,  (RDI,

where N > 7n-4 and vn+k(R) is a class in Lemma 2.8.

(2.12) c(4k+2,R) e H8n+4k+l+8|R|(Fn)

for an integer k > 0 and a
series R with Xk+2|R| £ n-1 satisfying

4k+2
e

3 (c(4k+2,R)) = v e®y ev (pR)

where 3 = jT : Hl‘l(Fn) — > g (r(n,N)) in Lemma 2.3 (ii) is
isomorphic if i = 1 mod 4.

(2.13) 4(R) e H4n+4!Rl(Fn) for a series R = (r;,r,,***) with

IR| < 2n-1, r,=1 for some ‘t2n+l and’ rj=0 (3> (n+|R[+1)/2) satisfying
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T(d(rR)) = v(p%).
For the epimorphism 3 : Hl"l(Fn) —> H'(I'(n,N)) in Lemma 2.3

(ii) , we have

Lemma 2.14. (i) 3J(a(R,;8)) = <v(PF),v(P°)>, 3(b(R)) =

pR) and J(c(ax,r)) = v pRiev(e®) for k > 1.

1ov(PR)®v(
(1i) The set of 4d(R) in (2.13) and 2c(4k,T) of c(4k,T)

in (2.11) forms a basis of Ker j.

Procf. (i) By Lemma 1.9, (2.9) and (2.10), we have
J(a(r,8)) = 3(v(ERvES) - v %)) = <v(eR) v (%>,
)2

JBR) = 3(W/{wERN)?2 - v M2 + v (R)D = 1veRev e,

By the definition of f in (1.14), we have the commutative diagram

git 4k (g4 (K)o (nany ) —3s 5EH4% (1 ek, w-X) )
! o
gt (04Nus ] > 't
p (n+N)) > H (I'(n,N))

for i £ 12n-2, where N > 7n-4, j's are the homomorphisms in (1.4)
and 0 1s the iterated cohomology suspension. By this diagram,
Lemmas i1:9,1.15 and (2.11), we have

R, 2

J(e(ak,®) = U1/ v D) - viv_, (R)D
= 50 (/A LwENN? - v, @A+ viv_, (R)D
= —(£H*a-veRevpR)) = e**vReveh).

(ii) By the definition of vn(R) in Lemma 2.6, the set

{up®| r = (ry,r,,***) with IrR| < 2n-1, r, = 1 for some t > n+l and



T, 2

£y = 0 (j>(n+|R|+1)/2)} U {op_,, (P97 - Uvn+k(T)l k > 1, T with

*
k+2|T| < n-1} forms a basis of U, for * < 8n-2. Hence, by the
definition of d(R) and c(4k,T) and J(c(4k,T)) = e**v(T)ev(pT)
in (i), we have the desired result. g.e.d.

Now, by using the upper short exact sequence in Lemma 2.3 (ii)

and Lemmas 1.7 and 2.14, we see immediately the following

Proposition 2.15. Let 3Jj < n-1. Then

»H8n+4j—l

(i) (Fn) is the free abelian group with the basis

consisting of the following classes:

a(R,S) in (2.9) with |[R]+]|sS]| = 3j, b(R) in (2.10) with 2]|R]| = 3,

c(4k,R) in (2.11) with k+|R] = 3, @(R) in (2.13) with |R| = j+n.

(1i) H8n+4j+l(Fn) is isomorphic to a direct sum of some
copies of 22 with the basis consisting of ¢ (4k+2,R) 1in (2.12)
with k+|R| = 3.

(ii5) B ) = H8”+4j+2(fn) = 0.

For the mod 2 cohomology of Fn' we can define the class

(2.16) c(4k+1,R) e H for an integer k > 0

8n+4k+8!RI(Fn; 7

5)
and a series R with k+2|R| < n-1 satisfying

4k+1
= e

3 (c(4k+1,R)) v (PR ev (PFy

where J : H (Fn; Z.,) —> Hl(F(n,N); pA is isomorphic if

2)
i =1 mod 4.

By the same way as the above proposition, we have

Lemma 2.17. The set of mod 2 reductions of a(R,8), b(R),
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c(2k,R), d(R) in (2.9-13) and c¢(4k+1,R) in (2.16) forms a basis of

F ; Z.) for i < 12n-3.

*

We can study the cohomology operations on H (En; Zp) for
* < 12n-3. When p is an odd prime, the opefation p* on

H*(Fn; Zp) for * : 12n-3 1is completely determined by Proposition
2.15 and (2.9-13), because we can compute T(Pix)= PiT(X) for any
X € H*(Fn; Zé) and T is monomorphic. Consider the operation Sqi
12n-3. Then we can determine Sqix for

*
on BH (Fn; Z for =*

A

5)
x = a(R,S8), d(R), because we can compute T(Sqlx) = SqlT(x) by

(2.9) and (2.13) and VT is monomorphic. For x = b(R), c(k,R), we

can compute J(Sg x) = Sq J(x) by Lemmas 1.11, 2.14 and (2.12),

i-1

(2.16). Since J : H (Fn; Zz) —3> H (I (n,N); %Z.) is monomorphic

2
if i #0 mod 4 and i < 12n-2, Sg'b(R) for i Z 0 mod 4 and
Sqlc(k,R) for i+k Z 0 mod 4 can be determined. Sq4lb(R) and

sqlc(k,R) for j+k

0 mod 4 can be determined up to linear
combinations of d(T).

Consequently we have

Lemma 2.18. (i) Sgta(R,S) = Sg b(R) = Sg-c(4k,R) = Sq d(R) = 0
if i Z 0 mod 4.
(ii) Sqglc(4k+l,R) = c(4k+2,R), Sg2c(4k+2,R) = c(4k+4,R) + X,

where X 1s a linear combination of‘ alr).
In the case R = 0 (the 0O-series), we have

Lemma 2.19. (i) Sqb(0) = a((1),0) + n c(4,0),

plpi(0) = -(a((1),0) + (n+l)c(4,0)) for p = 3.
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(ii) Sqglc(4k+1,0)

c(dk+2,0) if i =1, 0 if i = 2,
(n+k)c(4k+5,0) if i = 4,
sqlc(4k+2,0) = 0 if i =1, c(4k+4,0) if i = 2,
(n+k) c (4k+6,0) if i = 4,
Sqic(4k,0) =0 if. i =1 and 2, (n+k)c(4k+4,0) +
) if i = 4,

O(UPZLPnH{

where & is the homomorphism in Lemma 2.3 (ii).

Proof. First, we prove the formula for Plb(O). When ©p 3,

. i, _ _ : 1 _ _ -
it holds PV = -V(P and P P = (n+l)Pn+l P Py where V v(1l).

P ), T(0(0)) = (1/2) (v2 -

1)
By (2.9-11), t(a((1),0)) = V(P{)V - V(P,

V(Pn)) and t(c(4,0)) = ((n+l)/2)V(Pn ). By these relations, we

+1
have T(Plb(O)) = —-t{a((l),0) + (n+l)c(4,0)). Since T is monomorphic,
we have the desired formula for Plb(O).

Next, by using Lemmas 1.11, 2.14 and (2.16), we have 3(Sq*b(0))

<V(P),V> + ne?.vev = 3(a((1),0) + nc(4,0)) and we can compute

(sq*c(k,0)) = Sq75(c(k,0)) for i =1, 2, 4 and k = 1, 2. Since

: Hl—l(Fn; z,) —> B (T (n,N); 2

A

il

2) is monomorphic for i < 8n+é,
we have the desired formulas for Sq4b(0), Sqlc(k,O) (i=1,2,4 and
k=1,2).

To obtain the formulas for Sqlc(4k+j,0), consider the commutative

diagram
F > MSp (n) °n > 0™ usp (n+N)
lEk lbn,k o4k, ”
Q4an+k ————+-Q4kMSp(n+k) ntk o Q4NMSp(n+N),
where Bk is the restriction of bn,k and N > 7n-4. Then we have
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the following commutative diagram for i < 12n-2:

i+4k-1 o i-1,.4k k i=1
H (F_ix) — BY T(QF L) ——>H T(F)
T T
a Ak (o (K ygp (nem) ) g > 5t (0% MMsp (n+N) ),

where o's are iterated cohomology suspensions and 7T's are the
transgressions. Since 1's are monomorphic, we have B;a(b(O)) =
c(4k,0), Bro(c(i,0)) = c(4k+i,0) for i =1,2 and Bo(a((1),0))
= E(UPan+k) by (2.9-12), where ¢ is the homomorphism in Lemma
2.3 (ii). Hence, by the naturality of the cohomology operation, we

have the desired formulas for Sqlc(4k+j,0). g.e.d.

§3. Symplectic Pontrjagin numbers

For a symplectic cobordism class u e ﬂi(MSp) and a class
'y € Hj(BSp), let yl[ul be the Pontrjagin number of u £for the
class vy.

To study the divisibility of some Pontrjagin numbers, consider
a fixed element

(0) %, = x + x' e H(F) (t=8n+4j-1 with j<n),

0
where x 1s one of the classes a(R,S5), b(R), C(4k,R) and d(R)

given in Proposition 2.15 (i) and x' 1is a linear combination of

another classes. Then we can take the following steps (1)=(4):

(1) Take a basis {xi} of Ht(Fn) which includes x and

OI

let '{Qi} be the dual basis of H (Fn).

t

(2) Take a suitable cell decomposition of Fn' and denote its
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i-skeleton by Fél).

(3) For an integer { > 2 and the Hurewicz homomorphism

(t=-£), _
n )

(2)
= Ht(Fn), set

(t=2)
H m (F /F ) — H_(F_/F

(t-»e) ) ,

H(Q)(v) = Zikiz)(v)ii for v e n (F /F_

t
where kig)(v) are integers.

(4) Let a(f) be the greatest common measure of {kéﬁ)(v)lxv e

(t=1) .
ﬂt(Fn/Fn )},

Now we have the following basic lemma.

Lemma 3.1. Assume that the class Xy = X + X' e Ht(Fn) in (0)

satisfies

_ T
T(x) = ZTKTV(P ) + X,

t+l(Q4N

t L S
where T : H (Fn) — H MSp{(n+N)) is the.transgression in Lemma

2.3 (ii), the coefficient AT is a half of an integer and X 1is

a sum of decomposable terms. Then

T =
ZTXTP [ul] =0 mod «(f) for any u e ﬂi(MSp),

where o(f) is the integer given in the step (4).

Proof. Consider the following commutative diagram:

d

4N , 9x (t-2)
(2°"MSp (n+N)) ——a-ﬂt(Fn) —_— ﬂt(Fn/F

(MSp) <— T )

TTt-—4n+l t+1 n
(3.2) lH lH lH lH(ﬁ)
c AN T D (t=-12)
Hy _4pe1(MSP) <— H__, (277MSp(n+N)) —> H (F ) ———> H_(F_/F_ ).

Here 8 and T are the connecting map and the transgression of the
fibering (2.1) respectively, o is the iterated homology suspension,

g is the natural projection and H's are the Hurewicz homomorphisms.
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o1 (@*"MSp (n+N)) be the

For any class u e ﬂt_4n+1(MSp), let u' e Te
class corresponding to u under the isomorphism in (3.2). By the
(£)

above steps (1)-(3), H "'g,3(u'}) = Zikig)(q*a(u'))§i. Taking the
Kronecker pairing, we have

(1)

aPgamn, x> = kP (qam)) =0 moa an).

On the other hand, by (3.2) and the assumption, we have

(1)

' an), x> = <H@Y, Tix))> = [AL<HY, o(uPh)> = [P ],

- and these complete the proof. g.e.d.

By this lemma, if we can take a basis of Ht(Fn) in (1) and a
cell decomposition of Fn in (2) which enable us to compute kéﬁ)(v)
in (3) and «(f) in (4) for a fixed element X, in (0), then we

have the divisibility of some Pontrjagin number. Here we shall

consider the case Xg = a((l),0) + (n+d4)c(4,0) or c(4,0).

We remark that Fn is (8n-2)-connected. By Proposition 2.15

and Lemmas 2.18 and 2.19, we have

Lemma 3.3. (i) For n

v

1,

gn~1 _ 8n _ 8n+1l _

H (F,) = 2<b(0)>, H(F) =0, (F) = 2,<c(2,0)>.

(ii) For n > 2,

4
g8 2p ) = w8 (r ) = 0, BB (r ) = z<a'> @ z<c(4,0)>, BB (p )
n n ~'n n

='Zz<c(5,0)>,
where a' = a{(l),0) + (n+4)c(4,0).

(iii) Sq’b(0) = a', p'b(0) = -a' for p =3, Sqb(0) = 0 for
1<i<7 and i # 4, Sg-c(l,0) = c(2,0) if i =1, 0 if i = 2,
nc(5,0) if i = 4, Sg c(2,0) =0 if i =1, c(4,0) if i = 2,
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nc(6,0) if i =4, Sg'(a') = Sq c(4,0) =0 for 1< i g 3.
By this lemma, we have immediately

Lemma 3.4. Let n > 2. Then we can take a complex K given by

eSn b% e8n+l\/w (88n+3\/ egn+3)\j¢ e8n+4tj¢ _e8n+5
1 4 5

8n-1
K =285

0

and a map f : K —>F_, which satisfy the following (i)-(ii):

(1) £, : Hi(K) -— Hi(Fn) is isomorphic for i < 8n+4.

(ii) The cells e§n+3 and egn+3 correspond to the cohomology
* *
classes f (a') and £ (c(4,0)) respectively.

Proposition 3.5. Let n > 2. Then

2, @

8n—l(Fn) = Zs ﬂ8n(Fn) = W8n+l(Fn) = 22 ZZ’ T

(i) = 8n+2(Fn)

= 0, (Fn) = 2 @& Z (resp. Z & Z & Z2) if n is odd (resp. even).

T8n+3

(ii) We can take a basis {u(3); v(3)} of a free part of

|

ﬂ8n+3(Fn) to satisfy H(u(3)) = 24a' and’ H(V(3)) = 4c(4,0), where

( i i 3
H W8n+3(Fn) ——e-H8n+3\Fn) is the Hurewicz homomorphism and

{a', c(4,0)} 4is the dual basis of {a', c(4,0)} in Lemma 3.3.

Proof. By Lemma 3.4, we prove the proposition for K in

Lemma 3.4 instead of Fn.

It is obwvious that = (8n) _ g8n-1y, <8n

8n-1
g(8nm) __, o8n-1 g q, :

(K) = 2 with K

K(8n) 8n

If qq : —> S are the respective

projections, then ql¢l is homotopic to the constant map and

deg q2¢l = 2 since qub(O) = 0 and Sqlc(l,O) = ¢(2,0) by Lemma

= g(8nFl) _ p(8n+2) _ o8n-1,, 8ny

3.3 {(iii). Hence we have K’ 9

e8n+l), and the split exact sequence
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8n-1 Px 8n L’ 8n+l

* '
()0 —=>Tgnyy (8 ) === Tgnei (R T g (S —-0
T«
where p and g are the projections. Therefore ﬂ8n(K) Ton+1
(K) = 22 & Z2° Furthermore
N 8n-1 8n 8n+l _
(3.6) Ty H(K') = mg (S ) ® mg (S U, =2,, 82,

{cf. [2; 4.1]), and, for the attaching maps wl and wz, q*wl
and p*wz generate the first and second summands respectively, and

the order p*wl and q*wz are divisors of 2 and 4 respectively.
To prove the latter half of (3.6), we consider the commutative diagram

S8n+2 SSn—l Ssn—l(j 8n+3

I £ Tq

Y
S8n+2 k K(8n+1) K(8n+l)kj e8n+3

_ by
I I I
SSn+2 S8n+l S8n+l L%w e8n+3
k

for k = 1 and 2, where 7 is the natural projection, and g and 7
are the maps defined by g and w respectively. Consider the

mod 2 and mod 3 cohomology groups of this diagram. Then, since

Sq4b(0) = a' and Plb(O) = -a' for p =3 by Lemma 3.3 (iii), we
. 8n-1, _
see that q*wl is a generator of ﬂ8n+2(Sk y = 224 and the order
of q*wz is a divisor of 4. Since quc(Z,O) = ¢(4,0) Dby Lemma 3.3
‘s : . 8n+1
(iii), me¥y =0 and m Y, # 0 in Tg ., (S Yy = Z,. Hence the

order of p*wl is at most 2 and p*wz is a generator of T N

8n+
. o8n-1, _ 8n 8n+1
(k'/s°770) = my (570 e Tgn+2

(58n+2 LG e8n+l

)=Zz, by the fact that 7}

8n+1

Yy —— T (S ) is epimorphic where @' is the

8n+2
restriction of ®m (cf. [2; 4.1]). These imply the latter half of (3.6).
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Consider the exact seguence

i

(Y vv,)
8+ 2 8n+2 V¥ s , x (8n+3)
Ten+3(S1 V Sy 0 1) > Tgne3 (K" > Tgn+3 (K )
(W,vy,)
3 8n+2 8n+2 vr2'* '
> Tgnt2(8y TV S0 ) Mg+ (K -

Then Im 3 = Ker (wlvwz)* = 7<241,> & Z<41.,> by (3.6), where 1j

1 2
8n+2 . .
8n+2(sj ), J = 1, 2. Further studying the

first (YY), Dby (*) and the latter half of (3.6), we see that
(8n+3))

is a generator of

(K =2 ® Z ® Z,. On the other hand, the attaching map

Tgn+3 2

¢, 1is contained in Ker 3 = Im i, = Z, Dby the last equalities in

Lemma 3.3 (iii). Furthermore, since Sq4c(l,0) = nc(5,0) by
Lemma 3.3 (iii), we see that ¢4-# 0 if n is odd and ¢4 =0
if n is even.

By the above exact seguence, we can take a basis {u(3), v(3)}

- _ (8n+3) . _
of ﬂ8n+3(K)/Tor = W8n+3(K )/Tor to satisfy 2Ju(3) = 2411
and 3v(3) = 41,. These imply that H(u(3)) = 24a' and H(v(3))
= 4c(4,0), and we complete the proof. g.e.d.

Remark 3.7. For n =1, (Fn) {(i=~1,0,1) are the same

™ ,
8n+1

as the ones given in Proposition 3.5.
By Lemmas 3.1, 3.3 and Proposition 3.5, we have the following

Theorem 3.8. Let n > 1. Then
(1) Pn[u] 0 mod 8 for any u e ﬂ4n(MSp).
(ii) Pan[u] - ((n+4)/2)Pn+l[u] Z 0 mod 24 for any u e

ﬂ4n+4(MSp)’

Proof. For n = 1, (i) and (ii) follow from the results of

{71, [6] on n4(MSp) and WS(MSp). Let n > 2. We consider the
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case that x, = a' or c¢(4,0) and £ =5 in Lemma 3.1. By Lemma

0
H8n+3

3.3 (ii), we can take a basis {a', c(4,0)} of (Fn). When

Xy = c(4,0), we see that «a(5) is a multiple of 4 by Proposition

3.5 and Tt(c(4,0)) = (1/2)V(P ) by (2.11), hence (i) follows from

n+l

Lemma 3.1. When Xy = a', a(5) is a multiple of 24 by Proposition

3.5 and 1(a') = -V(P,P ) + ((n+d) /2)V(P_..) + V(P,)V by (2.9) and

n+l

(2.11), hence (ii) follows from Lemma 3.1. g.e.d.

Remark 3.9. In addition to Proposition 3.5 (i), the homotopy
groups wi(Fn) can be determined for i < 8n+6 by the information

of S.0ka.

§4, Homotopy groups of MSp(n)

In the rest of this note, we study the homotopy groups

_1(MSp(n)) and 3(MSp(n)) for n > 1.

b
8n+

Consider the homotopy exact sequence of the fibering (2.1):

Tan

b

, e d n*
(4.1 - 'fé'hi(MSp) ——e-ﬂi+4n_l(Fn) —_— ﬂi+4n_l(MSp(n))———-4>

where we identify ﬂi(MSp) with ﬂi+4n(Q4NMSp(n+N)) since N > 3n.

Because Fn is (8n-2)-connected, bn* is isomorphic for i X<

A
o
=]

|
N

and epimorphic for i = 4n.
Proposition 4.2. (i) For 9 : ﬂ4n(MSp) ——e-wgn_l(Fn) = 2 (n21)
(see Prop.3.5 (i) and Remark 3.7), it holds

ou = j(l/Z)Pn[u] for any u e ﬂ4n(MSp).
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(MSp) —— m

(ii) For o : T an+d gn+3(Fy) = 2 @ 2 & Tor (n>2)
(see Prop.3.5 (i)), it holds
du = (1/24) (-PyP_[u] + ((n+4)/2)P__ [uD)u(3) + ((1/8)P . [u))v(3) + x

(MSp) , by taking the basis {u(3), v(3)} of a free

for any u e Tan+d
part of W8n+3(Fn) (see Prop.3.5 (ii)), where x is 0 if n is odd
and an element in the summand 2 if n is even.

2

Proof. We shall prove (ii). (i) is proved similarly.
By Proposition 3.5 (ii), the basis {u(3), v(3)} of the free

part of (F) is taken so that H(u(3)) = 24a' and H{(v(3))

Tgn+3
= 4¢c(4,0), where {a', c(4,0)} is the dual basis for the basis -

8n+3

{a', c(4,0)} of H (Fn) in Lemma 3.3 (ii). For any class

- 4N -
e ﬂ4n+4(MSp) = W8n+4(9 MSp(n+N)), set o9du —“ku(3) + 4v(3) + x

for some integers %k, £ and some torsion element x. Then, by

u

taking the Kronecker pairing,

24k <H(%u), a'> = <H(u), T(a')> = <H(u), ~V(P1Pn) + ((n+4)/2)v (P

n+1l

N

—Pan[u} + ((n+4)/2)Pn+l[u], and

Il

4f = <H(3u), c(4,0)> = <H(u), T(c(4,0))> = <H(u), (1/2)V(P

n-!—l)>

(1/2)P_,; [ul,

where we use the equality 1(a') = V(Pl)V - V(P Pn) + ((n+4)/2)V (P

1
) by (2.9) and (2.11). Hence we have

n+l

and T(c(4,0)) = (1/2)V(P .,

the desired result. _ g.e.d.

The Pontrjagin number Pn[u] is a multiple of 8 for any u

enﬂ4n(MSp) (n>1) by Theorem 3.8 (i). Thus we set

v

(4.3) m(n) = g.c.m. {(1/8)Pn[u][ uem, (MSp)} for n 2 1.
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Corollary 4.4. The kernel of the epimorphism bn* : ﬂsn_l(MSp(n))
— n4n_l(MSp) is a cyclic group of order 4m(n) generated by the
Whitehead product [i,i] for the homotopy class 1 of the natural

inclusion i : S —> MSp(n).

Proof. By Proposition 4.2 (i), the definition (4.3) and the
exact sequence (4.1), we see that Ker bn* is a cyclic group of order
4m(n). Consider the commutative diagram

o i
F(il) J S4n 1 S4n+l

it Lo b

F — 3 s msp(n) —2— *Musp(n+m) .

Here il denotes the natural inclusion and F(il) is the fiber,

and 1' 1is the composition QS4n+l —_ Q4NS4(D+N) — Q4NMSp(n+N)

of the natural inclusions. It holds that mg . (F(i;)) =2 and
4n

jx (1) = +[1,1] for a generator 1 e W4n(S ) by the definition
of the Whitehead product. Since i, : mg (F(iy)) —> 7y (F )
is isomorphic, the kernel of bn* ﬂgn_l(MSp(n)) S ﬂ4n_l(MSp)
is generated by [i,i] by the naturality. g.e.d.

Let MU(2n) be the Thom space of the universal complex vector
bundle over BU(2n), and consider the map ¢ : MSp(n) —=> MU(2n)
induced by the inclusion Sp(n) < U(2n). Then we have the following

~corollary, where vz(y) is the exponent of 2 in the prime power

decomposition of y:

Corollary 4.5. Assume that

() n 1is not a.power of 2 and 2W4n—l(MSp) =0, or
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(B) v, (m(n)) + 2 = v (|n n_l(MU(Zn))I).

2407
Then the epimorphism bn* : ﬂgn_l(MSp(n)) ———+'n4n_l(MSp) is split,

that is, it holds

Tgn-1 (MSP(n)) = Z4m(n) @ Tr4n_fl(MSp),

b
Proof. Let ﬁvn — MU({2n) _2n, Q4NMU(2n+2N) be the fibering

defined by the same way as (2.1), and consider the commutative diagram

b
Fn — MSp(n) ———E——a-Q4NMSp(n+N)

o e e

¥, — Mu(2n) —22 o*Nyy(2n+on)
induced by c. We remark that %Zn is (8n-2)-connected. Then we

have the commutative diagram

b
. b s n*
TgnMSP) == Mg g (F) —> g, (MSP(n)) ———m, _, (MSp) —> 0

c, ‘ lc;‘ lc* l Cy
R

M, (MU) — Ton-1Fop) — Tg,_q (MU(2n)) ——— 0.

In the first place, we notice that <c¢] is isomorphic. By E.Rees
and E.Thomas [11;§2], H8n—l(§2n) is z generated by o, which
satisfies

o) = (1/2) (5(Te, ) ~ (3(D)2),
1 2n
where % : HOMTL(E, ) —> m2(@™Mw) ana 5 ¥y —s 580 (%M

are the transgression and the iterated suspension respectively, and

0 e H4n+4N(M) is the Thom class (M=MU(2n+2N)). The above equality
and  T(b(0)) = (1/2)(v° - V(P)) of (2.10) imply 1c'(wy) = -T(b(0))
and so c'*(al) = -b(0), because c*(c2n) = iPn, c*(ﬁ) = +U0 and T
is monomorphic. Thus c'* : H8n-l(§2n) ——é-HBn”l(Fn) is isomorphic
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and so is ¢, 1in the diagram.

Furthermore w8n_l(MU(2n)) = Coker 9 1is a cyclic group of order

g

2 where 8 = p0(2n)~l by [11; Th.A], and Coker 3 = Z4m(n) by
Corollary 4.4. Thus we have the commutative diagram
0 ker 3 (= °n*
———> Coker (_Z4m(n)) ——9vﬂ8n_l(MSp(n)) _ n4n_l(MSp) —> 0

(*) lc" »I'C*

Ccoker ¥ (=2 ) =

MU (2n)),
28

Ten-1

where c¢" 1is the epimorphism induced by «¢,.

When (b) heolds, <¢" induces the isomorphism of the 2-torsion
parts, hence the upper sequence in (*) splits because W4n_l(MSp)
is a 2-torsion group (cf. [15; 20.40]).

Now we assume that (a) holds; Then B # 0 by the definition of
p0(2n) ([11; Th.A]) and ﬂ4n_l(MSp) ® 22 = ﬂ4n_l(MSp), Hence, by

tensoring Z, to (*), we have the split exact sequence 0 —> Z,
Ten-1 MSp(n)) & 2, —> 7, ,(MSp) —> 0. Therefore the upper

sequence in (*) splits as desired. g.e.d.

We shall prove the following theorems in the next section by

preparing some symplectic cobordism classes.

Theorem 4.6. For the integer m(n) in (4.3), the following
(1) and (ii) hold:

(1) m(n) is a power of 2 for - n # 1, 3, and m(l) = m(3) = 3.

k, 51 k

(i1) m(n) = 1 if n = 2%42%-1 or 2%+2% (x,0>0) ana n % 1, 3.

Theorem 4.7. (i) ﬂ8n+3(MSp(n)) (n>3) has no p-torsion for

any odd prime p.



(ii) bn* (MSp(n)) —— ﬂ4n+3(MSp) is epimorphic for n>l.

"8n+3
(111) Tf n = 2%2%'-1 (k,421), then b_, in (ii) is isomorphic,

(MSp(n)) = (MSp) .

1-€r Tgnt3 = Tan+3

§5. Symplectic cobordism classes

In this section, we examine the characteristic numbers of some
symplectic cobordism classes to prove Theorems 4.6 and 4.7.

Let El be the universal symplectic line bundle over the
guaternionic projective space HP = BSp(l), and El ®C gl ®c El
be the tensor product of El over HP x HP  x HP by taking ?l
as the complex vector bundle. Then it is a symplectic vector

bundle Ei (cf. [14]), and so we denote its classifving map by

(5.1) ¢ : Y = HP x HP x HP ——> BSp.

MSp
1

P?Sp(gl) e MSp4(HPm) be the Euler class of El in the symplectic

Let P IS MSp4&Bsp) be the universal first Pontrjagin class and

cobordism theory. By using the réspective projections q; Y —>
HP (i=1,2,3) onto the three factors, we set 'Xi = q.Pl (El) =
MSp4(Y). Then it holds MSp*(Y) = MSp*[ Xl’ Xz, X3] , and we have
an expansion

MSp) k

(5.2) cb*(Pl MSp (g3 x.tx. Ix

=P Y o= Zi,j,k;oaijk 1 X27%;3

for some cobordism classes
(5.3) a5 € ﬂ4(i+j+k—l)(MSP)'

W i jagi .
e shall consider the Pontrjagin numbers Pi+3+k—l[aijk] and
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[ I.

P1Pi4dek-2"415x

For E =H or MSp, let B? e E (HPm) be the dual class of

43
(P?(gl))J where P?(gl) is the Fuler class of gl. Then the

following hold (cf. [8]1,[15; §161):

(5.4) E*(HPw) is a free 1w, (E)-module with basis consisting of

gE

0}, and
3 }

| 3

ilv

E, (MSp)

I

T, (E) [bT, bo, +++1, bE = i,6%

2! J j+l
4

where i : HP® —> MSp is the natural inclusion.

e E4j(MSp),

*
Consider the classes X, = qul(El) e H4(Y), i=1,2,3, where

q; Y —> HP" are the respective projections onto the three factors.

*
Then H (YY) = Zl[xl, oy x3] , and we have the following lemma,

A. .
where P T e H41(BSp) denotes the primitive class defined inductively

A . . A, . .
i_ ¢i-1, 4,3+1 i-j _qy1F1, Rk
by P T = zj=l( 1)- "pyP + (-1)7 TiP,:

* *
Lemma 5.5. For the induced homomorphism ¢ : H (BSp) —>

H (Y) of ¢ in (5.1),

A,
¢*(P 1) f m

= aJ((28) 1/(2k) 1(20) L (2m) D) x "%, %",

2

where the summation is taken over k,f,m 2 0 with k+{4+m = 1i.

A.

2i i

Proof. Let ci = H" (BU) be the i-th Chern class, and ¢

2i L . B ci-1, o341 Bioy
e H"7 (BU) be the primitive class defined by ¢ = = ijl(—l) c.c
TS
+(—1)l l:Lci. Then, for the canonical map ¢ : BSp —= BU, it holds

x Bog b4 by By
c (c °7) =2P * by the definitions of P ' and c J. Hence, by the

definition of ¢,

A, A A

27 (p 1 4i

) = 2P i(gi) = c 2l(gl % &1 8 &y) in H T (Y).
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Let n be the canonical complex line bundle over CPm, and n
be the conjugate bundle of 1. Then n & n is a symplectic line
bundle over CPm, and we denote its classifying map by q : cp” —>

© o 00 e *
HP . Set Z =CP x CP x CP . Then it holds H (Z) = 2 Eyi’ Yor y3] '
*
where y; = wicl(n) IS H2(Z) (i=1,2,3) for the respective projections

L Z —> CP° onto the three factors. For the homomorphism
* * *
(g xgxgq) ~: H(Y) — H (2), we see that

x Dbog Bag - - -
(gxgxqg) (C (£,8:,8,8.E,)) =C ((nén)e,(nén)e, (nén))
. s
Py 1~y oty g) T v~y oy )
. 2k 26 2m
= 8y gy ((20) 170200 1(20) 1 (2m) Dy, Py, 2Py 2T,

2i}

i

.
2{ (Y17 y*y3) T+ (v 4y -y )

A, .
. . i _ i .
by using the equality ¢ (Zkgk) = Zk(cl(;k)) for line bundles Z, .

2

* *
Since (gxgxg)  is monomorphic and (gxgxq) (xk) = Yy for k =

1,2,3, we have the desired result by the above equalities. g.e.d.

Let (b)% = H4E(MSp) denote the 4f-dimensional part of bk =

(1+b +b2+-'-)k, i.e.,

1
(5.6) (l+b,x+b_x2+-+)}F

~ X 2 _H
1%tb, = Zﬁéo(b)ﬂx » where b, = b, in (5.4),

and let H : 7, (MSp) —> H,(MSp) be the Hurewicz homomorphism.

Proposition 5.7. For any non negative integer r, s, t,

k

-k = 4{(2(x+s+t) !/ (2x) 1 (2s8) 1 (2t) )b

i J
JH(a; ) (BYZ_ (B)]_.(b)

ijk s=7 r+s+t-1’

where the summation is taken over all 1i,j,k > 0 with iZr, j<s, kZ<t.

Proof. Consider the commutative diagram
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MSp~ (BSp) —f—> (H A MSp) (BSp) H, (MSp) © H (BSp)

%* * *
l¢ l¢ ll & b
*

n

MSp™ (Y) —D > (H A MSp) (Y)

{14

H, (MSp) © H (Y),

where h denotes the Boardman homomorphism. Then we have

(5.8) (106 VR (PYP) = g (PMSP)

The following relation holds (cf. [1]1,[8;(5.1)]):

A,

MSp b

(5.9) h(P™%) = Zl>l 1-1P o
A,

where P 1 is the primitive class in Lemma 5.6. By (5.9) and Lemma 5.5,

(1o R(MSP) = 4] L ((20)1/(20) 1(28) 1 (28) )by _yxy T, x, T

On the other hand, by (5.9) and (5.6),
Sivdy = RV T J .8
b (%) (Zi;lbi_lxk Y = Zsij(b)s_jxk.
By (5.2) and this eguality, we have

MSp, _ i 3 k r s_ t
Re” (P77) = Zr+s+t;1‘ ZH(aijk)(b) 1Pl )% "x,"x

Therefore, we have the proposition by (5.8).

For any class u ﬂ4n(MSp), its Hurewicz image H{u) can be

written as

r r.
1

= : . o0 j - L 4
H(u) Zx(rl’__.,r.)bl by ~ € H,(MSp) = Z[by,b,,>"1.

For our purpose, we denote simply the coefficients. Ain) and

n-2 ’

An-2,1) °©°Ff bln and b," ‘b, by (u) and <u>, respectively.

Then we have

(5.10) Pn[u} = (u), l n- l[u] = <p>r+.n(u)' for n

1Y%

1.

These formulas cah be proved by the same proof as that for MU
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given in [1; pp.10-11], [15; pp.401-402].

r+s+t-1 r+s+t-3
1 or bl b2

in the both sides of the equality in Proposition 5.7, and by the

By comparing the coefficients of b

above notations of () and < >, we have the following

Lemma 5.11. For r,s,t > 0, the following hold, where summations
are taken over 1i,j,k > 0 with igr, jgs, kgt.
(1)
4 if {r,s,t}
Z(aijk)(r-i)(s_j)(t_k) 24 if A{r,s,t}

0 otherwise.

{1,0,0} or {21010}1

{1,1,0},

(ii)
i k A & j-1 k
Z{<aljk (r 1](5 3)(t k) + (a 1jk)(l(r i- 2) ls- j/(t k) * j[r—:i.)(s--j-Z)(t-k)
4 if {r,s,t} = {3,0,0},

60 if {r,s,t} {2,1,0},

+ k(L )} = ~ :
(2 (:23) (55) 360 if r=s=t-=1,

0 otherwisé.

Proposition 5.12. (i) For 1i,3j 2 1,
8 mod 16 if 1 and Jj are powers of 2,
( 130) =
0 mod 16 otherwise.

(ii) For i,3j,k > 1,

(aijk) = 0 and
8 mod 16 if 1i,j,k are powers of 2,
<a. .k> = {
1] 0 mod 16 otherwise.

We shall prove Proposition 5.12 by preparing the following

two lemmas:



Lemma 5.13. (i) (aijk) =0 if 1,3,k > 1.
{(ii) , . 360 if r =85 =t =1,
i 3 k
Jo<a, o> () (L2 (0L0) =
ijk ‘r-if ts-37 ek 0 otherwise,
for r,s,t 2 1, where the summation is taken over all i,j,k > 1
with i;r, j<s, kEt.
. . i 3 k _
Proof. (i) By Lemma 5.11 (i), z(aijk)(r—i (s—j)(tak) =0

for any 1r,s,t > 1, where the summation is taken over all i,j.k 21

with 1igr, j<s, kgt. Therefore we see (i) by the induction on i+j+k.

(ii) (i) and Lemma 5.11 (ii) imply (ii). g.e.d.

Lemma 5.14. (i) <aijk> is a multiple of <alll> = 360 for

any 1i,j:k 211.

(ii) <aijk> = <ai'j'k'> for any permutation (i',j',k') of
(1,3,k).

s r i _

(iii) ‘i=1<aiSt>(r-i) =0 for r >2 and s,t > 1.

(iv) Set mijk = <aijk>/360' Then Moce = Mr31™g11™e1q for

(V) 1 mod 2 if r 1is a power of 2,
Tr11 ©

0 mod 2 otherwise.

Proof. By Lemma 5.13 (ii), we can prove (i) and (ii) by the
induction on i+3j+k, and (iii) by the induction on s+t. We can
prove (iv) inductively on r+s+t by using (iii) and (ii), and (V)
inductively on r by using (iii) and the fact that
i+l_

(2*.) for r > 2% is odd if and only if r = 2

L g.e.d.
o

Proof of Proposition 5.12. (ii) . The first equality is proved
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in Lemma 5.13 (i). The second equality is an immediate consequence
of Lemma 5.14 (iv),(Vv).

(1) By Lemma 5.11 (i), we see that for «r,s

13%
ot

z ( 1 ]( 3 ] { 24 if r =585 = 1
] . (a...) " o

1zazgr,1232s qu r-1c 87 0 otherwise.

By using this eguality instead of Lemma 5.13 (ii), we can prove (i)

by the same way as the above proof of the second equality in (ii).

g.e.d.

Now we consider the another example of symplecﬁic cobordism
classes defined by R.E.Stong [14] and N.Ray [9]. We follow the

methods due to N.Ray.

1

The complex projective space CP21— is a weakly almost

2n.=-1
symplectic manifold (see[l14]), and so is the product HzilCP *
Consider the composition

2y
f : Hi=1CP

where j and g are canonical maps and m 1is the classifying map

of the tensor product of 2r copies of 1, we have a bordism class
2n.-1

2 1 ©
[m;_,CP ; £]1 € MSp, .y (HP)
for n = Zizlni. By (5.4), we have an expansion
2n.-1
2r i _ vh-r .. MSp
[li-,CP 1= dpoya (st amy ) By

for some classes

2r

(5.15) ay{ny,~+,n, ) e, (MSp) (n=[T ;n).

By the result of N.Ray [9; (3.1),(3.2)] for the computation of

the Hurewicz image of these classes ak(n ~-,n2r), we have the

17’



following proposition, where sn(jl,---,er) denotes the coefficient

2r  2(ny=35)-1

. . 2r 2{n-r-3)
of T{_q%, in the expansion of (2i=lxi) .

Proposition 5.16. For the Hurewicz homomorphism H

"4 (n-r-k)
(MSp) —> Hy (n-r-k) (MSp), it holds
-n -n
p-—q 3 L2 3 l... 2r k
H(ay (ny,*++,n,)) = Is (i, ,32r>(b>jl (b)j2 SR
r
where n = er n,, j = zZr j. and the summation is taken over
i=1"47 i=17i
all J; 2 0.
We notice that the coefficients of blﬁ and bl’a’—zb2 in the
40-dimensional component (b);m of (b)™™ are (-l)f(m;le] and
-1 Cemitf-2 . .
(=1) (Q—l)( -1 ) respectively. Therefore, by comparing the
coefficients of b,"*™F and b," 7 7%b, in the both sides of

the above equality, and by using the notations () and < > in

(5.10), we see the following

Lemma 5.17. For ni > 1 (léiéZr), the following hold, where
_ v2r . _ v2r . . .
n = Zi=lni' = Zi=lji and the summations are taken over j. z 0
with Jj.<n.-1 (1<i<2r):
i="71 ==
: n.+j.
. e - 1y k D . = 2r i
(1) (ak(nl' ’n2r)) Z( 1 (n—r—k—j)sn(jl’ ']ZI)Hi=l( ni-l

2r M3itIi71L
i=1' n.-1
1

. 2 . . .
Cnmr=k=3-D) (o %5 ) - (oK ) I95, 6,03 /m =1 3

. . L. - e ew - Ca— - 'j A o s e :
(ii) <ak(nl, ,n2r)> = ) (-1) Sn(jl' :JZI)H

When k = 1, we have the following

Proposition 5.18. For n-r > 2, the following hold, where
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ZZr

n o= ) _q0y°
= 2n.-2  2n.-2
(i) -0t ¢ ) if r=1 and n,,n, >
n;-1 n,-1 1772 =
1 2
n 4 2ni~2
P o_p_plag(ngreseymy 00 =9 (-1) 241, _, ( ni_l} if r=2 and n;21 (12ig4),
0 otherwise.
(ii) Pan_r_z[al(nl,°°°.n2r)] =
2n., -2 2n.-2
n+l 1 2 . _
(-1) (n-5) { nl_l)( n2—l) if r=1 and n;,n,22,
n 4 21372
(-1)"12(n-18+40) T, _, ) if 1r=2, 0<f<4 and £ numbers of n.'s
i=1 ni—l ="= i
are equal to 1 and the other nifs
are more than 2,
no. 6 (2PiT? . .
(-1)"7200; _, { ni_l) if r=3 and n,;21 (1gig6),
0 otherwise.
Proof. (i) The eguality in Lemma 5.17 (i) for %k =1 is
. A s . 2r ni+ji-1
(al(nll.'.rnzr)-) - z("'l) Sn(jl>’...'32r)ni=l( nl—l ),
where n = er n j = er . and the summation is taken over 3,20
i=1"4" i=173 i=

(1gig2r) with ji;ni~l and j = n-r-1l, n-r-2. Therefore the left
hand side is O_if r>3, because j<n-2r.

Let r = 1. If n, = 1 or n, =1, then Pn_z[al(nl,nz)] =0

is clear. For the case nq /N, > 2, the summation in the above

equality is taken over (Jj,,j,) = (n.-1,n.-1), (n,-1,n,-2}) and
1'-2 2 1 2

1

(nl-2,n2—l), and then Sn(jl’jz) = 2, 4 and 4 respectively. Hence
we have
2n.-2 2n.,-2
_ .3 01 1 2
(a;(ny,ny)) = (=1)77 72 n-1 U n—

for n,,n, 2 2. Since P _olaj(nyny)l = (a;(ny;,n5)) by (5.10),
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we have the desired equality for Pn—2[al(nl’n2)]'

For the case r = 2, the summation in the first equality is
taken over Jy = ni~1 (1<i<4) only, and then sn(jl,"‘,j4) = 24,
Thus we have the desired equality for Pn_3[al(nl,n2,n3,n4)].

(ii) By the equality in Lemma 5.17 (ii), and by a similar

argument in (i), we see that <al(n )> =0 1if r > 4,

l'aco’n2r

and that, for r = 1,
: 2n. -2 2n2-2

n .
(-1) M (n+1) N D05 if npmy 202,
<a. (n.,,n.}> = 1 2
1'71772
0 otherwise.
By (5.10}), Pan_3[al(nl,n2)} = <al(n1,n2)> + (n-2)(al(nl,n2)) for

n > 3. Hence we have the desired equality for Pan_3[al(nl,n2)]

by the above equalities for <a1(nl,n2)> and (al(nl,nZ)). We
omit the proof of the equalities for Pan_r_z{al(nl,---,nZI)]
(r=2,3), since we can prove them similarly and we shall not use them.

g.e.d.

Corollary 5.19. P -°,n2r)] (n-r>2) is congruent to

n-r-123(ny.”

8 mod 16 if r=1 and ny

r=2 and nl=n2=n3=n4=l,

-l,n2—1 are powers of 2, or

¢ mod 16 otherwise.

Proof. By Proposition 5.18 (i), P [al(nl,&°°,n2r)] = 0 for

n-r-1

n~r;2 unless r = 1 and nl,n2;2, or r = 2. We prove the corollary for
r = l:(nl,n2;2) and r = 2. We notice that V2(($)} = a(n) + a{m-n)
- a(m) (cf.[10;(6)]), where «a(y) is the number of 1's in the

dvadic expansions of y. Thus, by Proposition 5.18 (i), we have
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vz({Pn_z[al(nl,nz)][) =1+ a(ny-1) + a(n,-1) (ny,n,>2), and

_ 4
vz([Pn_3[al(nl,n2,n3,n4)]|) = 3 4 Zizla(ni—l) (ny,ny,ny,mn, > 1).

Hence v, ([P _,la;(n;,n,)1[) is at least 3, and is 3 if and only

n-2
if nl~1 and n2-l are powers of 2. Also vz(]Pn_3[al(nl,n2,n3,n£][)
is 3 if and only if n, = 1 (1gig4). These complete the proof.

g.e.d.

Now we can prove the following theorem which is Theorem III (i):

Theorem 5.20. (MSp(n)) (n>3) has no p-torsion for any

TT8n+3

odd prime p.

Proof. Let Qp = {4/m| (m,p) = 1} ¢ Q. Tensoring Qp to

(4.1) for i = 4n+4 (n22), we have the exact sequence

(MSp) ® Qp -—a?ilegp ® Qp —_— T

Tr4n+4

gn+3 (MSR () @ O ——> 0,

since ﬂ8n+3(Fn) ® Qp = Qp ® Qp (n>2) by Proposition 3.5 (i) and
ﬂ4n+3(MSp) is a 2-torsion group. Therefore it is sufficient to

show that
(5.21) o®1 : ﬂ4n+4(MSp) ® Qp —_— Qp & Qp is epimorphic for n23.

Set Yy = al(l,l,l,l), y;, = al(z,i), 2§i§6, and =z = al(3,3). Then,

by using Proposition 4.2, the equalities

(5.22) Pk+£[uv] = Pk[u]Pﬂ[v],

,PlPk+£_l[uv] = PlPk—l[u]Pf[v] +’Pk[u]PlPﬂ_l[v]

for ue ﬂ4k(MSp), vV e ﬂ42(MSp) (k,£>1) and Proposition 5.18, we
see the following equalities for k > 0, where (a,b) = au(3) +

bv{3) + a torsioh element:
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k+1 k+1 k k+1 . k+1

2 (yyv, ) = ((-D) c4+ (3k+5), (-1)Ktigkrl.zy,
2y, = (-DFEMa- k3, (1R

Dy, vy = (-1F8FLa3- a2y, (-nFER-3),

5y, 5y, = ((-DXeRes. a2y, (~1FlgR.2.s),

2 (y,52) = (0¥l 2y, (c1FEeReg),
2y, yg) = ((~DF85 a7 ey, (-1 R85e507),
2y, ye) = ((-DFT85 700 (ke2), (-1} R 20700) .

Therefore, for 3®1 in (5.21), we have the following equalities:

When n = 2k-1 with k>2 and p # 5,

201 ((1/85 2. 0)y % + (1785725 K = 10,

(-n¥*t K225y %y = (0, 1)

(-1)%

91 ((k/85 1)y, + ((k+1) /8
when n = 2k-1 for k > 3 and p = 5,

k k-3

-nFae1 (/88 hy ¥ - (/8573 20700)y 5y) = a1, 0,
-1% Lse1((k-1) /85 o2y K - () /8830070 9)y K Py ) = (0, b
when n =3 and p = 5,
281 ((1/4)y,2 + (2/9)2) = (1, 0), 2del(-(1/Dy,” - (1/3)z) = (0, 1);
when n = 2k for k > 2,
k k-1

(-1) a®1((1/8k‘1-4)yly2 + (1/8k'2-4)y2 yy) = (1,0),

k k- l k-1 k-2

k+1
k k k-2

= (0,1).

These equalities imply (5.21), and we have the desired result. g.e.d.

Now we prove Theorems 4.6 and 4.7.

Proof of Theorem 4.6. (i} By Proposition 5.18 and (5.22),
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i-1 _ i-1, . .1
Phipp(27(2,2)7 72 (2,3)1 = (-1)7 738
i-1

(121), Py, (22,207 %a (2,51 = (-1)135-8771 (iz2).

i, i,
P, [a;(2,2)71 = (=8)" (izD),

Therefore m(2i) (i>1l) 1is a power of 2 by the first equality, and
m(2i+1) (i>2) is so by the last two ones. m(l) = m(3) = 3 follows

from the result of [7], [6] on (MSp) and ﬂlZ(MSp).

2

T4

(ii) The desired result for n = 25+2f-1 (resp. 25+2%) follows

‘immediately from (i) and the fact that P_Ja 1 (resp. P_[a (2k+l,
n 2k2£0 n 1
2£+l]) is not a multiple of 16 by (5.10) and Proposition 5.12 (i)

(resp. Corollary 5.19). g.e.d.

Proof of Theorem 4.7. (i) is proved in Theorem 5.20.
(i1) If n = 1, then ﬂ7(MSp) = 0 by [7], and (ii) is trivial.

If n > 2, then. (Fn) = 0 by Proposition 3.5 (i). Thus (ii)

Ten+2

follows from the exact sequence (4.1).

(iii) Consider the exact sequence (4.1) for i = 4n+4 and

n= 25271 with x,2 > 1:

b

n

(MSp) 2 28 2 —>T (MSp (n)) e MSp) —— 0,

Tan+4 8n+3 an+3 "

where we identify (Fn) with 2 ® Z by Proposition 3.5 (i).

T8n+3

By Propositions 4.2 (ii), 5.12 (ii) and Corollary 5.19, we have

d9{a X_p ) = (x, 0) and 8(a1(2k+1,22+1)) = (x', V)
27271

for some integer. x' and some odd integers x and y. These
imply that Coker 8 1is a finite group and has no 2-torsion. By
Theorem 5.20, Coker 3 has no p-torsion for any odd prime p,

hence Coker 3 = 0, and b_, is isomorphic. g.e.d.
n
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