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1. Introduction
This paper is concerned with the Dirichlet problem for second

order guasilinear elliptic equations of the type

i

(1.1 - div A(x,Vu) + B(x,u,vu) 0 in Q,

(1.2) u=g . on 39,

vhere Q is either a bounded domain or an exterior domain in RN,'A is
a given N-vector functionlof the variables X and Yu =
(8u/8x1,...,8u/8xN), B is a given scalar function of the variables
X,u and Vu, and g is a function given on the boundary 2Q of Q. We
allow the domain Q to be.the entire space RN, in which case the
boundary condition (1.2) is void. Equation (1.1) is allowed to be

degenerate so that the nonlinear pseudo-Laplacian eguation
(1.3) - div (|vu|P %vu) + B(x,u,v1) = 0 in®, p > 1,

is included as a special case of it. Our objective here is to

develop the method of supersolutions and subsolutions for

constructing weak solutions of the problem (1.1)-(1.2) and for

analyzing the structure of the set of weak solutions thus constructed.
A systematic study of nonlinear elliptic boundary problems by

means of the supersolution-subsolution method was initiated by Nagumo



[21], who considered the semilinear equation

92u

N
(1.4) - 2 a.j(x)axiaxj

+ B{(x,u,Vu) = 0
i,j=1"1
in a bounded domain Q and established an existence theorem asserting
that the problem (1.4)-(1.2) has a classical solution if suitable
classical quasi-supersolutions and quasi-subsolutions are known to
exist. ( By a quasi-supersolution ( quasi—subsolutidn ) is meant a
function which is expressed locally as the minimum ( maximum ) of a
finite number of supersolutions'( subsolutions ) of the problem.)
Nagumo's existence theory has been generalized and extended in
various directions. Among other things Ako[1]( see also Hirai and
Ak0[141) proved the existence of classical minimal and maximal
solutions to the Dirichlet probiem for general uniformly elliptic
éuasilinear equations of the form
N 82u
(1.5) - ‘g a; (X, u, Vg 5~ + BXx,u, VO = 0 in Q
i,j=1 177 :

and showed moreover that, in case all the aij are independent of u
and B is nondecreasing in u, a Peéno type theorem holds for the
problem (1.5)-(1.2), that is, the interval between the minimal ahd
maximal solutions is filled with the set of solutions contained
between these two extremal solutions. Ako and Kusano[2] applied the
supersolution-subsolution method to find classical entire solutions
of equation (1.5), i.e. those solutions of (1.5) which are guaranteed
to exist throughout RN,

It was only recently that the supersolution-subsolution approach
was attempted to the solvability of nonlinear elliptic problems in

the framework of weak or generalized solutions; see e.g. Boccardo,



Murat and Puell[3], Cacl[51, Hess[12, 131, and Deuel and Hess [6].

The papers [3,6,12]1 deal with the Dirichlet problem for eguations of

the form .
(1.6) - div A{x,u,%u) + B(x,u,vVu) = 0

in a bounded domain Q and give sufficient conditions for the
existence of a weak solution between a weak supersolution and a weak
- subsolution. In case A is independent of u and B is independent of
vu, Diaz[7] has established, by means of the monotone method, the
existence of weak maximal and minimal solutions between weak super-
and subsolutions ( see also [131). The Dirichlet problem for (1.6)
in unbounded domains is studied in the papers [5,13], in each of
which it is shown that the existence of a weak solution in Wl’p(Q) of
the problenm is implied by the existence df suitable weak super- and
éubsolutions in wl’p(Q).

A survéy 0f the previous results sketched above raises the
following questions.

(1) Is it possible to develop an analogue of the Nagumo-AKo
existence thecry'for weak solutions of the problem (1.63-(1.2) ?
Mdre precisely, is it possible to establish an existence theorem for
(1.6)-¢1.2) in terms of weak quasi-supersolutions and quasi-
subsolutions ?

(2). Is it possible to prove for the problem (1.6)-(1.2) weak
versions of Ako's theorem on the existence of maximal and minimal
solutidns and a Peano-Ako type theorem on the structure of the set of

solutions ¢

The purpose of this paper is to make an attempt to answer the



above qnestions. Partial answers to these questions will be given
for the problem (1.1)-(1.2). In the case of bounded domains §, we
introduce three kinds of weak quasi-supersolutions and quasi-
subsolutions, called super- and subsoclutions of class W, L or C,
depending on the structure of equation (1.1), aﬁd show that the
existence of a quasi-subsolution Ql and a quasi-supersolution ?, of
any kind satisfying ¢, <9, a.e. in Q and ¢ £ 8<¢, a.e. on o0
implies the existence of a weak solution u of (1.1)-(1.2) such that
Ql £ u < mz a.e. in Q; furthermore we show that when ¢1, @2 are of
"class W or L, the maximal and minimal weak solutions of (1.1)-(1.2)
are guaranteed to exist between wl and ¢2. and that the interval
between these extremal solutions is filled with the.set of solutions
of (1.1)-(1.2). In the case of unbounded domains @, we intend to

solve the problem (1.1)-(1.2) in the framework of W}

N it s
shown that all the results for bocunded domains can be carried over to
the case where Q is either an exterior domain in RN or coincides with
the entire space RN. Examples illustrating our main results will be
presented; in particular, sufficient conditions will be given under
which the equation (1.3) possesses bounded positive weak solutions
defined in the entire space RN.

Finally we refer to Tolksdorf[23], DiBenedetto[8] and

Reshetnjakl22] for the regularity of bounded weak solutions of

equation (1.6) or (1.1).

2. Preliminaries

Throughout this paper all functions are real-valued. We define

- 4 -



x'y and |x| by %'y =

u- MZ

1xiyi for x (xl,...,xN), y = (yl,...,yN) €

1
RN. and |x]| = (x~x)1/2. Let N be the set of positive natural

numbers. We put R+ = (0,«) and §+ = [0,=). We let t+ = max(t,()
for t € R. Let p and q be fixed constants satisfying 1 ¢ p ¢ = and
q = p/(p-1). Let 2 be a bounded domain or an exterior domain in RN
(N = 1); the possibility Q = RN is not excluded. Let 8Q be the
boundary of Q. We assume that 32 belongs to the class C1 if a0 is
not empty. Let wl’p(Q) be the Sobolev space and Wé’p(Q) be the

closure of CZ(Q) in Wl'p(Q). In the trace sense we write u = ( £,2

1

) v a.e. on 99 for functions u and v in W 'P(@). The norms in LF(Q)

and Wl’p(Q) are defined by

Hull = ¢ SlulPax H>ME, g R ipbul :
LP Q v Py  8)<t LP@)
We shall use full_ = lufl_,~ = Hul and full = fiull when there
P pif LP @) wlPq)
is no ambiguity. Let W}ég(Q) be the set of all functions belonging

to Wl’p(QO) for all bounded subdomains QO of  with 50 c Q.

We assume in the bouhdary condition (1.2) that g € wl’p(Q) is a
given function. In the egquation (1.1} we assume that the functions
A xRN s RY, Ae) = (A x,8), ... A (x,8)), and B 1 @ x R x RV »
R satisfy the Caratheodory condition, that is, each Ai(x,i) is
measurable in x € Q for every fixed £ € RN and continuous in & € RN
for almost every fixed x € Q, and B(x,t,£) is measurable in x € Q for
every fixed (t,E) € R x RN and continuous in (t,€) € R x RN for
almost every fixed x € Q. Furthermore we assume that the function A

satisfies the following conditions:



p-1 . _
(Hp) IAi(x,ﬁ)I < |f0(x)| + lco(x>||g| , i =1,...,N,
for a.e. X € Q, VE € RN, where fO is a measurable function in @ and
o N
Cq € Lloc(R )
(H,) ( A(X,E) - AX,E" N E -8 ) >0

for a.e. X € Q, Y E,E” € RN with £ # E7
. P _ p-1_
(Hg) A(X,EYE 2 a(x)]|E] Ifl(x)llsl Ifz(x)l,
for a.e. X € Q, ¥ £ € RN, where o : RN - R+ is a continuous function
and f1 and f,, are measurable functions in Q.

2

For simplicity, it is assumed in (H,) and (H.) that c¢. and o are

1 3 0

defined on RN. Typical conditions to be imposed on the functions
fo,fl,f2 are as follows:

q P 1 .
(H4) fO € LD, f1 € LY (Y, f2 € L ()

q N P N 1 N, .
(HB) fO E_Lloc(R ), fl € LIOC(R ), f2 € LIDC(R Y3
(H.) £ £ .8, € 17 RY

6 0’172 loc

Here we state four lemmas which will be used in the later

sections.

LEMMA 2.1. Let Q@ be a bounded open set in RN. Suppose that
1

(Hp), (H,), (H,
and u € W1'P(Q) such that

) and (H Py

4) hold. Let (un}neN be a sequence in W

u - ou weakly in wl’p(Q),

u - u strongly in LB,



f(A(x,Vun) - A(X,Vu)):(Vu_ - Vu)dx + 0 as n - =,
Q

1,9y,

then un converges strongly to u in ¥

LEMMA 2.2. Let @ be a measurable set in RN and let m € N and 1

£p, < (i = 0,...,m) be constants. Assume that a function f:0QxR™

- R satisfies the Caratheodory condition and f(x,ul(x),...,um(x)) €

Py P,

LY@ if u, € L (@
Py

L Y(Q), F(u

p1 pm
1,...,m). Then F:L “(Q)X---xXL "(Q) -

1,...,um)(x) f(x,ul(x)....,um(x)), is continuous in the

strong topology.

LEMMA 2.3. Let @ be a bounded open set in RN (N =2 2).

e
Suppose that Ai and B satisfy the conditions

lacx,E)]¢1 + |&]) + |Bx,t,8)] < uclthra + [P,

Ax,8)£ 2 v[EIP - weo,

for a.e. x € Q, Y (t,E) € RXRN, where u:R. = R+ is a nondecreasing

+
function and v is a positive constant. I1f u is a bounded solution

of (1.1 with flull,.o < M then u € c¥ (@) and

lual y= €
C (QO)

for any subdomain QO c c @, where 0 < ¥y <1, v = Y(N,p,M,v,u(M)) and

C = C(?,dist(QO, 98)) are positive constants.

Lemma 2.1 is proved in [(4 , p.13, Lemma 3]. The proof of Lemma



2.2 is given in [17, p}22, Theorem 2.11. Lemma 2.3 is due to
Ladyzhenskaya and Ural 'tseva [19, p.251, Theorem 1.11.

We shall employ the theory of monotone operators. Let ¥V be a
real reflexive Banach space and V* be its dual space. A map F:V -

V* is called pseudo-monotone if F satisfies the following conditions:

(i) F is a bounded map;

(iiy If uigu €V, ui -+ u weakly in V and lim sup <F(ui),ui-u> £ 0
i »

then lim inf <F(ui),ui—v> 2 (F{(u),u-v> for all v € V.

j & o«

Let v € wl’p(Q) be given. Let Ki(x,E)-= Ai(x,§+Vv(x)), i=1,

..N, for a.e. x € Q, Y £ ¢ RN,  Put Ax,8) = (B (x,8) 4000, Ky (%800,
Then Ei (i =1,...,N) satisfy the Caratheodory condition (see [24,

p.152, Theorem 18.31). It follows from (H1)'(H2) and (H,) that for

3
v N
a.e. X € Q, £ e R

15, x,8)] < lg 000 + Ico(x)||€+Vv(x)|p_1

N 2p|cb<x>||s|p'1, i = 1,...,N,

where ,(x) = |f,00] + 2p|CO(X)l|Vv(X)|p-1 e L9@Q), and that
A(X,E)E = A(X,E+VV(X)) (E+VV(X)) - A(X,E) 9V(X)

2 2 Paco 1£1P - 1T, 0 llElP™h - (1, 0l,

where ¥l(x) = 2p(|f1(x)|+N|c0(X)|le(x)I) e LP(Q) and ¥2(x) =
a(x)lvv(x)lp+2p|f1(x)IIVV(x)lp'1+|f2(x)|+ NIE o | ovio | eLly.

Consequently, we can assume that A satisfies (H,),(H,) and (H,).

1 2 3
Let B:QXRXRN -+ R satisfy the Caratheodory condition and the



following condition:

Py P
.u,.) € L "(R) for all u, € L, i =0,1,...,N,

B(x,uo.ul,.. N

where 1 < P, < » is a constant. For @i,wi € wl'p(Q) with @, £ 0L

$i a.e. in Q, i = 1,2, we define Ti(x,t) by

wi(x) if t < mi(x)
Ti(x,t) = t if mi(x) <t < ¢i(x)
wi(x) if wi(x) < t

1

for a.e. x € Q, Y t € R. We see that for v € W '2(@)

V¢i in { v < @i }
v in ¢ @, £ v £ wi }

Vwi in { *i < v}

(2.1) VTi(V)

where (Ti(v))(x) Ti(x,v(x)). ¥We also define the maps F F

1* 2
1,p Py

G:W ' (@)Y > L ") by

Fi(u)(x) = B(x,Ti(u)(x),VTi(u)(x)), i=1,2,

G(u) (x) = IFl(u}(x) - Fz(u)(x)lsgn u(x),
where (Ti(u))(x) = Ti(x.u(x)). The following lemma holds.

1,p p0
LEMMA 2.4. he maps Fl’FZ’G:w QY » L () are continuous in

the strong topology.

PROOF.  Since T (uw) = ¢, + (u—r,oi)+ - (u—wi)+ for u € LPQ), i =
1,2, it follows from Lemmas 3.1 and 3.2 in [19,pp.50-511 that
T,:LP@ » LP@) and Tizwl’p(Q) » w1'P(Q) are continuous in the

1

P
strong topology. Lemma 2.2 implies that Fi:W Py - L 0(Q)(i =



1,2) are continuous in the strong topology. We shall show the

continuity of G. Let u,u € Wl’p(Q) and u, -~ u strongly in wl’p(Q).
Put
(1) '
Qn = { X € Q un(x) 2 0 and u(x) = 0},
(2) '
Q = { X € Q : un(x) 2 0 and u(x) < 0},
(3 .
Q = { x € @ : un(x) £ 0 and u(x) > 0},
(4) .
Qn = { X € Q : un(x) £ 0 and u(x) £ 0}.

It follows from Lemma 3.1 in [19, p.50] that £ (Q(z)u 9‘3)) - 0 as n
4

- ©, where EN is the Lebesgue measure in RN. Since Q = U Q;i) for
i=1
all n € N we have
Py
ﬂG(u )=~ G(u)llp -0 < HG(un)—G(u)H (1) 4y ¥
0 pO,Q U Q
P b P
0 0 0 0
2 HF (u )-F (u bR + 2 YlIF, (w)-F, () i ,
2 po,9(2) Q(3) 1 2 pO'Q(Z) Q(3)
{F. (a )~-F, (u > <
1" ™n 2 n pO‘Q(Z) Q(3}
IF, (u )~-F, (w)+F,_ (u)-F, (u ) IF, (w)~-F,(u
1 ™n 1 2 2 n pO,Q(z)UQ(B) 1 2 pO,Q(z)UQ(S)
Put
(L
En = { x €Q : un(x) > 0 and u(x) > 0},
E(Z) - . _
n = { x € Q : un(x) > 0 and u(x) = 0},
g(3) , ] '
n = { x € 0 : un(x) = 0 and u(x) > 0}.
From (2.1) we have F_(u) = F_ (u) in E(Z) and F,(u_ > = F,(u_) in E(3)
‘ 1 2 n 1 'n 2 n n °

Hence



ﬂG(un)-G(u)ﬂp -Q(l) < IIFI(un)~F1(u)+F2(u)-F2(un)IIp 'E(I)UE(Z)UE(s)
0'"n 0’ n n n
< HFl(un)—Fl(u)+F2(u)—F2(un)H o
pO,Q
Similarly, we obtain
ﬂG(un)-G(u)Hp .9(4) < “Fl(un)-Fl(u)+F2(u)_F2(un)“p0;Q.
0*'"n

Consequently, IlG(un)—G(u)lIp Q> 0 as n » », which implies that

0’
1,p Po :
G:W ' (Q) = L “() is continuous in the strong topology. This

campletes the proof of Lemma 2.4,

3. Equations in bounded domains

Throughout this section we assume that Q is bounded and that the
conditions (Hl)-(H4) are satltisfied for (1.1). Let %y = inf { a(x) :
X € Q) and d = Hcoﬂng, where o(xX) and co(x) are functions appearing

in (Hl) and (HB). Note that ao > 0 since @ is a positive continuous

function on RN.

DEFINITION 1. A function u is said to be a solution

{(subsolution, supersolution) of equation (1.1) in Q if u € wl’p(Q),

1

B(x,u,vu) € L10

C(Q) and

(3.1) J ( Ax,Vu) V9 + B(x,u,Yw¢y dx = 0 ( <0, = 0 ),
Q

for all ¢ € CE(Q) with @ = 0 in Q.



DEFINITION 2. A function u is said to be a W-subsclution
(L-subsolution, C-subsolution) of equation (1.1) in Q if u = max { U,
:i=1,...,m} a.e. in Q for some m € N, where each ui is a
subsolution of (1.1) in Q and u, € wl'Pq) (u, € vl P@HnL® @, u; €

c¢®1@)y. Here ¢®'1(@) is the space of Lipschitz continuous

functions in Q.
A function u is said to be a W-supersolution (L-supersolution,
C-supersolution) of equation (1.1) in Q if u = min { ui v i o=

1,...,m} a.e. in Q for some m € N , where each ui is a supersolution

of (1.1) in Q and u, € wi'P) (u, € wl'P@)nL® @)y, u, € ¢ 1@,

The notion of W,L,C-subsolutions {(-supersolutions) is not a
complete weak version of Nagumo's qﬁasi-subsolutions
(-supersolutions). However, these are sufficient for the existence
of weak minimal and maximal solutions and for the formulation of
Peano-Ako type theorems. We shall use W,L,C-subsolutions
(-supersolutions) depending on the conditions of B(x,u,vVu), which
influence technically the restriction on test functions ¢ in (3.1).

It follows from the definition that if uy and u, are
W-subsolutions {(L-subsolutions, C-subsolutions) of (1.1), then max
(ul,uz) is a W-subsolution (L-subsolution, C-subsolution) of (1.1),
and that if u1 and u2 are W-supersolutions (L-supersolutions,
C-supersolutions) of (1.1}, then min (ul,ug) is a W-supersolution
(L-supersolution, C-supersolution) of (1.1), It is not known in

general whether W,L,C~subsolutions (-supersolutions) of (1.1) are



subsolutions (supersolutions) of (1.1). However, in the following
situation, we can prove that an L-subsolution {(-supersolution) of

(1.1) is indeed a subsolution (supersolution) of (1.1).

PROPOSITION 1. Let equation (1.1) be of the form

(3.2) - div A(x,Vu) + B(x,u) = 0 in

Lo

Assume that B(x,u) is nondecreasing with respect to u € R for almost

every fixed x € @ and satisfies the following condition:

(3.3) IB(x,t)] < Ifa(x)I + hilt] for a.e. X € Q, Yt €R,

where f3 € Lq(Q) and h:ﬁ+ - ﬁ+ is a nondecreasing function. If v is

an L-subsolution (L-supersolution) of (3.2), then u is a subsolution

{supersolution) of (3.2).

We give the proof of Proposition 1 in the last part of this

section.

3.1. W-subsolutions and W-supersolutions

THEOREM 3.1. let wl and Qz be respectively a W-subsolution and

a W-supersolution of (1.1) in & such that @y < @2 a.e. in Q and wl <

g £ ¢, a.e. on of. Suppose that there exist a positive constant c

1

and a function f3 € L9 such that

(3.4) IBx, t,83] < [£500] + helt]y cllﬁlp‘l,

for a.e. X € Q, Y (t,E) € RXRN, where h:ﬁ+ - ﬁ+ is a nondecreasing

function such that h(lel) € LEQ) for ¢ € LF(Q). Then the problem

..13..



(1.1>-¢1.2) has a solution u such that ¢y £u < ¢, a.e. in Q.

PROOF. The functions ml and Qz are of the form

(3.5) ¢, = max { ﬁi tio=1,...,m}, ¢, = min { ¢i 1= 1,...,n}

a.e. in , where *i and Ei are respectively subsolutions and

supersclutions of (1.1) in Q. By adding the same functions to {ﬂi}

or {@i}, we can assume that m = n. By taking ¢1+(g—¢1)+-(g—¢2)+

instead of g, without loss of generality, we can assume that wl £ g £
¢, a.e. in Q. Let A(x,E) = A(X,E+Vg(x)) and B(x,t,&) =
B(x,t+g(x),€+7g(x)) for a.e. X € Q, Y (t,€) € RXRN. Then we can

assume that A satisfies (H,),(H

1 y,(H,) and (H,). Let u, = ﬁi—g and

2 3 4

v, = wi—g (i = 1,...,m) and let u, = max {ui:1=1,...m} and VO = min
{vi:1=1,..,,m}. We note that u0=w1-g £ 0L v0=¢2—g a.e. in  and
that ui and vi (i=1,...,m) are respectively subsolutions and

supersolutions of the equation
(3.6) - div A(x,vu) + B(x,u,vu) = 0 in Q

Therefore_u0 and VO are respectively a W-subsolution and a
W-supersolution of (3.6) in 9. For i € {(0,...,m}, a.e. X € , " t €
R we define
u. (X if t < u, (0
i i

Ti(x,t) = 14 if ui(x) £t L vi(x),
vi(x) if Vi(X)< 4

and

hix,t) = |t - T.(x,t)|® Lsan (t

T (x,t)).

0



The functions Ti(x,t) and h(x,t) satisfy the Caratheodory condition.
Consider the function ﬁ(x,Ti(u),VTi(u)) where Ti(u)(x) = Ti(x,u(x))

(cf. (2.1)). Put w = max {Iui|+|vi|:i=1....m}. From (2.1) and
(3.4) we have for u € wl’p(Q)

IBex, T, (w, VT, un | < [£,000 + hiwelgly + ¢ 19T, (w) + vg| P71
< |f.(x)] + 2P¢ IVUIP_I,
4 1
where
f£,0x) = Ifs(x)l + hiwxy+lgxo
n -1
v 2Pc. S (vgx|+lvu, )|+ ]|vv, (x) )P,
1,4 i L
=0
We also have for a.e. X € Q, Yt € R

lhex, t)] < (Iuo(x)|+lv0(x)|+|tl)p'1 < Ifs(x)l+2p|tlp_1

where f.(x) = 2p(|u0(x)|+|v0(x)|)p'1. Consequently, the following

estimates hold:

(3.7) 1B, T, w,vT, | < 1£,00+2P¢ Ivul®7, i=0,1,...,m,
for ¥ u € wl’p(Q). a.e. X € QQ, where f4 € Lq(Q),
(3.8) Ihex, )] < [£.0] + 2P ¢|P71,

for a.e. X € Q, Y t € R, where f. € L2Q).  For i € (0,1,...,m} we

define Ei,Bi:wl'p(Q) » L9(Q) by

' Bicu)(x)
(3.9)

Bi(u)(x)

E(x,Ti(u)(x),VTi(u)(x))

Iﬁi(u)(x) - Eo(u)(x)l sgn u{x).

We consider the following problem



0 in 9

m
- div A(x,Vv) + Bo(v> + > B (V) + Bhi{x,v)
(3.10) i=1

v 0 on 9Q

where # = 4p(p+1)(2m+1)pclpaol—p + 1. Theorem 3.1 is proved if the

following two lemmas are proved.

LEMMA 3.1. I1f v € Wé’p(Q) is a solution of (3.10) then u = v+g

is a solution of (1.1)-(1.2) such that ¢1 £u < mz a.e. in Q.

1,

o Py of (3.10).

LEMMA 3.2. There exists a solution v € ¥

1
0

in { v > vi }, we have from (2.1)

PROOF OF LEMMA 3.1. Since (v-vi)+ €W

'Peqy (i=1,...,m) and
- 1 :
IP
0

h{x,v) = |v-v

f[ﬁ(x,Vv)-V(v—vi) + (v-vi){ﬁ(x.v
237

O,Vvo) +
m -

> |Bx,T
l=1

On the other hand, since v, is a supersolution of (3.6), we obtain

(v),vT,(v)) - B(x,v Vvo)l + Blv-v lp'l}ldx = 0.

l l 0’ 0

S {E(X,Vvi)'V(v—vi) + E(x,vi,Vvi)(v-vi)}dx >0
VOV,
1

and hence, by (H,.>,

2

0 < [ (B(x,vv) - K(x,vVi>)-V(v—vi)dx

VOV,
1
sv{év-v.){B(x.vi,Vvi)-B(x,vO,Vvo)-IE(x,vi.Vvi)—B(x,vo,VvO)I
i
- Blv-volp Lyax < 0

Therefore we have



0 = f(v—vi)lv—v Ip-1

0 dx = [ I(v-vi)+|pdx,
v>vi Q

which shows that v < v, a.e. in Q and hence v £ Vo 2-€. in Q.

Similarly, we obtain u0 £ Vv a.e. in Q. Consequently, v is a

solution of (3.6), so that uw = v + g is a solution of (1.1)-(1.2).

This proves the assertion of Lemma 3.1.

PROOF OF LEMMA 3.2. Let V = Wé'p(Q) and V* be its dual space.

For u,v € V we define

<a,(w),v> = J A(x,vu) - vvdx,
Q
) m
<a, (wy,v> = f (B . (u) + 3 B,(u) + Bh{(x,u)}vdx.
2 0 “ "1
Q l=1
It follows from (Hl),(H4),(3.7) and (3.8) that al,azzv - V* are
bounded maps. We define F:V » V© by F(u) = a (W) + a,(u). We
shall show that F is pseudo-monotone. Let ui.ufé v, ui -+ u weakly

in V and 1lim sup <F(ui),ui-u> < 0. Then {ui}iEN is bounded in V and
i » o :

‘ui -+ u strongly in P, By (3.7),(3.8) and Holder's inequality we
have

m
|<a2(ui),ui—u>| < ﬂui—uup{HBO(ui)Hq +L§1ual<ui>uq +

p p-1 ‘oo
B(Hfsﬂq + 2 "uiﬂp Y} » 0 as i-=,
From (Hz) we obtain

<F{u,),u.-u> = <a,{u),u,~-u> + <a,(u,),u.-ud,
i i 1 i i i

2
so that

<F(ui),ui—u> - 0 as i = =,



which implies
<a,(u.),u,-u> = 0 as i » o,
17 i
Consequently we have
<a1(ui)-a1(u).ui—u> - 0 as i =» o,

By Lemma 2.1 we have ui =+ u strongly in V, so that, by Lemmas 2.2 and

2.4, for all v € ¥
<a1(ui)-a1(u),u-v> - 0, <a2(ui)-a2(u),u-v> - 0,
and thus

<F(ui),ui-v> = <F(ui),ui-u>+<F(ui)—F(u).u-v>+<F(u),u-v)
=< (F{u),u-v> as i = o,

which implies that F is pseudo-monotone. From (H3) and (3.7) we

have for u € V

21
P p-1 -p P _,P P Py _ p-1 p-1
2 clﬂVqu )+2 Buuup 2 B(Huoup+uv0up) B(ﬂuoup +uv0up )uuup .

P _ p-1 _ -
<F(w),u> = aOHVu“p HflﬂpHVqu £, (2m+1)ﬂuﬂp(ﬂf4ﬂq +
and so, by the definition of 8,
-p pP_ v 4P p-1 P P
<F(u).u> = 2 {aOHVqu (2m+1)4 clﬂuﬂp“Vqu +Bﬂu“p}+o(ﬂuﬂ )
> z’P'l(aOHVuug + 1y « odhul®y as full » o,
Hence
1 © o
(3.11) fay <FQw,u> = as lull » =,
From Theorem 2.7 in [20, p.180]1 there exists a solution v € V of

 F(vy,¢ > =0 for all ¢ € V,

implying that v is a sclution of (3.10). This completes the proof

of Lemma 3.2.



An essential device in the above proof is to consider the
equation (3.10). By using Theorem 3.1 we prove the existence of
minimal and maximal solutions of (1.1)-(1.2) between W-subsolutions
and W-supersolutions and establish a Peano-Ako type theorem. We

employ the techniques of Hirai and Ako[14] and Ako[1l1].

LEMMA 3.3. Let the hypotheses of Theorem 3.1 hold. I1f u is a

solution of (1.1)-(1.2) such that ®y £ u< mz a.e. in 9, then we have

the estimate

lul < C,
wl'Pg)

where C is a constant independent gi u.

PROOF. We can assume that @1 £ g £ ¢2 a.e. in Q. Since u-g €

Wé’p(Q)'we have

J (A(x,Vu)-v(u-g) + B(X,u,vu) (u-g)}dx = 0.
Q

From (Hl),(H3) and (H4) we can estimate

oy [ 1valPax < J ol Hvul® hel s, [+Nlvgl clg l+alval Py «
Q Q
- p-1

lu-gl (lfgl+hcle I+l Iy ve [vul® Trrdx
< £<If2I+NIVgIlf0l+<l@1l+lw2|><1f3|+h<l¢1|+lwzl)}dx

+ Jalt [+Nd|vglee clo 1+19, 1)) [valP ax.

Q
We have for € > 0
p-1
(It l+Nd|vgl+e o l+le, 123 vul

< e Pclg, I+Ndlvel+e clo 1+19, 1P + e¥fvulP.
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The conclusion of Lemma 3.3 follows by choosing & such that sq = a0/2.

THEOREM 3.2. Let the hypotheses of Theorem 3.1 hold. Suppose

@©
loc

q P © 1 )
that fo,f3 € L*(Q)nL D, fl € L (Q)nLloc(Q) and f2 € L (Q)nLloc(Q)
w
in (H4) and (3.4). Moreover, suppose that ¢1,¢2 € Lloc(Q)’ Then

the problem (1.1)-{(1.2) has a minimal solution u and a maximal

solution u such that @1 £1 < E < @2 a.e. in Q in the sense that if u

€ Wl’p(Q) is any solution of (1.1)-(1.2) with @1 £ ux @2 a.e. in Q,

then u £ u < u a.e. in Q.

PROOF. Put
(3.12) ¢ = {u:u is a solution of (1.1)-(1.2)with ¢1$ u S¢2 a.e.in ).

By Theorem 3.1 we see that ¢ # ¢, 1t follows from Lemma 2.3 that
for any subdomain-Q0 c c Q there exists § € (0,1) such that the

B

restriction of ¥ on QO is bounded in C (50). We define the
functions u and u by

(3.13) u(x) = inf {u(x) : u € ¥}, uw(x) = sup {(udx) : u € ¢},
for x € Q. Then we see that u, u € C(Q). We shall show that u, u

€ ¢, Let {Xl}iEN be the set of all rational points of @ and for i €

(i)

N let {vn }nGN be a sequence in ¢ such that lim iv(l)(xl) = E(xl).
n - «
_ L) _ (1) (27 .
Put u1 = vl and 12 = max (ul,v2 ,v2 ). Then Az is a
W-subsolution of (1.1) in Q with @, < Az < ¢, a.e.in § and 12 = g
a.e.on 99Q. From Theorem 3.1 we see that there exists u, € ¢ such

2
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that *2 < u2 < wz a.e.in Q. Inductively we can choose a

nondecreasing sequence {un} ¢ ¢ such that for n = 2, An < u < @2

neN

a.e.in @, where A_ = max {(u ,v(l),...,v(n)). Let u{(x) = lim
n n-1'"n n n - o
un(x) for x € Q. By virtue of Ascoli-Arzela's Theorem, we see that

un converges to u uniformly on any compact subsets of Q and hence u €

c(H. Since vél)(xl) < An(xl) < un(xl) < E(xl) for n 2 i, we have

u(x’) =_E(x1) for all i € N. Therefore u = u in Q.
By Lemma 3.3 we see that u, is bounded in Wl’p(Q) and hence we

can extract a subsequence, still denoted by un, such that

u, - u weakly in Wl’p(Q).

u 2 u strongly in LP(Q).

Since u = g a.e.on 9%, we obtain u -u € Wé’p(Q) and hence

JA(x, 70 )-A(xX,Y0)) V(u_-uddx
aQ n n

= - éA(x.Vu)°V(un-u)dx - éB(x,un,Vun)(un—u)dx.

The first term on the right hand side of the above equality tends to
2ero as n - «© since un converges to u weakly in Wl’p(Q). From (3.4)

we obtain

£|B(x.un.Vun)(un-u)|dx <

- p-1 ©
“un uﬂp{"faﬂq+uh(l¢1|+|¢2|)Hq+c1HVunﬂp } - 0 as n » =,

Therefore we have

f(A(x,Vun)-A(x,Vu))'V(un-u)dx - 0 as n = o,
Q

Hence, by Lemmas 2.1 and 2.2, we obtain
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ACx,Yu ) > A(X,vw), B(x,u ,Vu ) = B(X,u,Vu) strongly in L,

which proves that u = E € 9. Similarly we have u € ¢, This

coampletes the proof of Theorem 3.2.

Under the assumptions of Theorem 3.2, we denote by ¥ the set
definéd by (3.12). By virtue of Lemma 2.3, we see that ¢ c C(Q).
We can derive the following Peano-Ako type theorem for the problem

(1.1)-(1.2).

THEOREM 3.3. Let the hypotheses of Theorem 3.2 hold. Suppose

that ¢1,¢2 e L. Moreover, suppose that B(x,t,E) is

nondecreasing with respect to t € [¢1(x),¢2(x)] for almost every

fixed x € Q and every fixed £ € RN. Then we have for every X, € Q

{u(x,) : u € ¥y = [u(x ),E(x

0 )1,

0 0

where u and u are, respectively, the minimal solution and the maximal

solution of (1.1)-(1.2) between wl and ¢2.

PROOF. It follows from Theorem 3.2 that
¥ ={u€EF:u<gux u a.e.in Q).
Hence we have
{ u(xo) T u € ¥} c© [g(xo),u(xo)].
To prove Theorem 3.3 it suffices to derive a contradiction from the

assumption that there exists uO € R such that g(xo) < uo < E(xo) and

uO ¢ ¢ u(xD) tu € 9. We denote by T(x,t) the truncated function
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ml(x) if t < wl(x)
T(x,t) = t if ¢1(x) £t L @2(x)
Qz(x) if ¢2(x) < t

for a.e. x € Q, Y t € R. We set B(x,t,8) = B(x,T(x,1t),8). From

(3.4) we have
IBex,t,8)] < |f3(x)I+h<|¢1(x)|+|¢2(x)|>+c1|z|p'1
for a.e. x € Q, Y(t,E) € RxRN. We consider the equation

(3.14) - div A(x,vu) + B(x,u,vu) = 0 in Q.

Let u, =4, v, =1 and d1 = ﬂvl—ulﬂm. Since B(x,t,£) is

nondecreasing with respect to t € R, we have fpr all non-negative

functions @ € C:(Q)

f{A(x,V(u1+ d,/2))ve + E(x,u1+ d,/2,v(u;+ d,/2))9}dx
0 ;
2~f(A(x,Vu1)~V¢ + ﬁ(x,ul,Vul)w}dx = 0.
Q

Hence u1+ d1/2 is a supersolution of (3.14). It is easy to see that
any u € ¥ is a solution of (3.14) in @ and hence Il = min (u1+ d1/2,
vl) is a W-supersolution of (3.14) in Q. Similarly, vl— d1/2 is a
subsolution of (3.14) in Q and Al = max (ul, vy d1/2) is a

1 1
a.e.on 99, it follows from Theorem 3.1 that there exists a solution u

W-subsolution of (3.14) in Q. Since x, £ A, in Q and Al = g = Il

of the problem (3.14)-(1.2) such that A, £ u < I in Q. Hence, we

1 1
have
U, £u £ u1+ d1/2, A d1/2 £ u < vy in Q.
Therefore, u € ¢. By our assumption we see that u(xo) = uO. Let
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u2 = ul, v2 = u if u(xo) > uO and let u2 = u, v2 = v1 if u(xo) < uo.
Then we have u, < u, £ v, < v, in Q, u,(x,) < u, < v, (xy), Ilvz-uzllc° <
d,/2. Put d, = lv,-u,ll_,. Proceeding as above, there exist u,,v, €
¢ such that u, < ug < Vg < Vo in Q, ug(xo) < u, < v3(x0), “V3f03"m <

d2/2 < 2—2d1. By an inductive process we can construct seguences

{un}nEN and {vn}nGN of ¥ such that for n € N, u < Uy < Vel < v
1-n

) _ * oq.
in Q, un(xo) <uy < vn(xo), ﬂvn unllm <2 dl' Let u (x) = ;12 _

%
un(x) for x € Q. Then, u (xo) = Ug.

that un converges to u* uniformly on any compact subsets of Q. By

From Lemma 2.3 it follows

an argument similar to that of Theorem 3.2, we obtain u* € ¢, which

contradicts u*(xo) = uo. This completes the proof of Theorem 3.3.

3.2. L-subsolutions and L-supersolutions

THEOREM 3.4. Let

<

and oz be respectively an L-subsolution

(1.1) in 9 such that ®, < wz a.e. in @ and

1
of

and an L-supersolution

?y £ g < ¢, a.e. on Q. Suppose that there exist a constant & €

(0,11 and a function f. € LI(Q) such that

= 3

{3.185) IB(x,t,8)]| < h(ltl)(lfS(x)l + Iilp'e)

for a.e. X € Q, Y(t,E) € RXRN, wvhere h : ﬁ+ - R+ is a nondecreasing

functibn. Then the problem (1.1Y=-(1.2)Y has a solution u such that

@1 £u < ¢2 a.e.in §.

PROOF. This result follows from an argument similar to that of
[121. We give a proof for the sake of completeness. Without loss

of generality we can assume that @1 £ g5 wz a.e.in @ and that wl and
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¢, are of the form (3.5) with n = m. Let Ki(x,ﬁ) (i = 1,...,N),

Tl(x,t), uL, vL (L = 0,1,...,m), B(x,t,&) and h(x,t) be as in the

proof of Theorem 3.1. To prove Theorem 3.4 it suffices to solve the

problem
- div A(x,va) + B(x,u,vu) = 0 in Q, u. < u < v, in Q,
0 0
(3.16)
u =0 on 2Q.
Since uL and vl € Lw(Q) (L = 1,...m) are respectively subsolutions

and supersolutions of (3.16) in Q, u0 and VO are respectively an

L-subsolution and an L-supersolution of (3.16) in Q. Put
m
M=14+ "wlﬂw + H¢2 El Hu + Hvlum)

By a calculation similar to that of (3.7) and (3.8), we have

(3.17) IE(X,Tl(u),VTl(u))I < |f4(x)l + 2Phovy |va | PTE,

! =0,1,...,m, for ¥ u € wl’p(Q), a.e. x € Q, where £, € Ll(Q),
(3.18) lhex, 0] < PPl 4w 141P Yy for a.e. x €Q, ¥ t €R.
We define U, and u* by u, = min {uL:L=1,...,m} and v¥ o= max

{VL:L=1,.°.,m}. Put

K= (¢ €V : u, - 1 €9 < v¥ + 1 a.e. in Q }

where V = Wé’p(Q). Then K is a closed convex subset of V. Let

BL’BL 'V - L () (1=0,1,...,m) be the maps defined by (3.9). For u,v

€ V we define a,, a

1 5 and a3 by
<a;(u),v> = JA(x,vu) - Vv dx, <a,(u),v> = Jhix,u)v dx,
Q Q
) m
<ag(u),v> = f{BO(u) + 2 B;(w)}v dx.
Q l=1
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We note that a , a, : V - v¥. We also define F : V » V¥ by F(u) =

1‘
al(u) + az(u). We consider the variational inequality
(3.19) <F(u),@-u> + <ag(w,e-u> = 0 for Y ¢ € K.

Theorem 3.4 is proved if the following two lemmas are proved.

LEMMA 3.4. If uw € K is a solution of (3.19) then u is a

solution of (3.16).

LEMMA 3.5. There exists a solution u € K of (3.19).

PROOF OF LEMMA 3.4. We note that u - min (u,vi) = (u—vi)+ and
max (u.ui) - u = (ui-u)+ for 1 < i £ m. Since min (u,vi), max

(u,ui) € K we have from (3.19)

<F(u).(u—vi)+> + <a (u),(u-vi)+> < o0,

3

<F(u).(ui—u)+> + <a (u),(ui—u)+> > 0.

3

By an argument similar to that of Lemma 3.1, we have u0 £ux vO

a.e.in Q. Therefore,
<ay(w),@-u> + SB(x,u,va) (p-uddx = 0 for Y ¢ € K.
Q
For arbitrary non-negative function ¢ € CB(Q), we can choose a

positive constant & such that u+d¢ € K. From the above inequality

with ¢ = u + 8¢ we have
JEx,v0) W + B(x,u,vu)y¥)dx = 0.
Q

PROOF OF LEMMA 3.5.
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Step 1. For arbitrary z € LI(Q) there exists a unique u € X

such that

<F(u),p-ud> + fz(p-u)dx = 0 for Yo € K.
Q

q
In fact, let {zn}neN c L7(Q) be a sequence such that

2, =z strongly in LI(Q),

2 =z a.e. in .

n
It follows from the proof of Lemma 3.2 that F : V - V* is pseudo-
monotone and that (3.11) holds. From Theorem 8.2 in [20, p.247]

there exists a un € K such that

(3.20) <F(u ),p-u > + ézn(¢-un)dx > 0 for Y¢ € K.
By (3.18) we have
<ay(u d,u > < - <a,(u d,u > - éznundx
< J2P* MR . M|z |hax,
a n

and hence, from (H,), {u N is bounded in V. We can extract a

3 n}ne

subsegquence of (un}, still denoted by {un}. such that for some u € K

un - U weakly in V,

u - u a.e. in Q.
Put ¢ = u in (3.20). Then we obtain
<a;(u d,u -u> < - <a,(u d,u -u> - ézn(un-u)dx - 0 as n -» o

and hence

<a (un)-a

1 (u),un—u> - 0 as n = o,

1

We have from Lemma 2.1 un - u strongly in V. Therefore, letting n =
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@ in (3.20), we see that

Fu),¢-u> + [fz(p-uddx 2 0 for Yo € K.
Q

Let u1 and u2 € K satisfy the above inequality then we obtain

0 < <a1(u1)-a1(u2),u1-u2> < - <a2(u1)—a2(u2),u1—u2> £0
since h(x,t) is nondecreasing with respect to t € R. By (Hz) and
Poincare's inequality, we have u1 = u2°

Step 2. It follows from Step 1 that for arbitrary u € K there

exists a unique v € K such that

KF(v),p-v> + <a3(u).¢—v> >0 for Y@ € K.

We define S ¢ K= K by letting v = S{(u) be the unique solution of the

above problem for u € K. The following assertion holds:
S : KR - KR for some R > O,

where KR =KnNn {¢@ €K : llol <R }.

In faet, set v = S(u) for u € K. From (3.17) and €¢3.18) we

have

a, {v),v> £ - <a,(v),v> - Ca,(u),v>

1 2 3

< [Pt 1yP o 2m+1IMC] £ 1 +2Phon vl P78y ax
Q .

and hence from (H3)

IScI®P < cc1 + 1ul®°8y,

where C is a constant independent of u. Taking R > 0 such that

c(1+RP"®) < RP, we see that § : K = Kp.

Step 3. The map S : KR - KR is compact and continuous in the

strong topology.
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In fact, let {un}nEN C KR. Since KR is a bounded closed convex
subset of V, we can extract a subsequence, still denoted by U, such

that for some u € KR

un - 1 weakly in V,

u, - U a.e. in Q.

Since {S(un)} c KR’ we can assume that for some w € KR

S(un) -» W weakly in V,

S(un) - W a.e. in Q.
We see that for n € N
<a1(S(un)),S(un)-w> £ - <a2(S(un)),S(un)-w> - <a3(un),S(un)—w>.

It is easy to see that <a2(S(un)),S(un)—w> - 0 as n = o, By (3.17)

we have
I<a3(u y,Su)-w>] < 2am+ ISl E . 1+2Ph o [ vu_|P78) Iscu Y-wldx.
n n E 0 4 n n

Ve observe that

flf4||S(u )-wldx » © as n - o,
s) n

and

p-€ _ p-8 ) -
éIVunl IS(un) wldx < ﬂVuan ﬂS(un) pr/e - 0 as n » o,

Thus
<a3(un),S(un)—w> - 0 as n = «,
Consequently, we have
<a1(S(un))-a1(w).S(un)-w> - 0,

By Lemma 2.1 we obtain that S(un) - w strongly in V, which shows the
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compaciness of S KR - KR'

Since S : KR - KR is compact we can extract a subsequence {un}nelN c

Let un. u € KR' un - u strongly in V.

{un}nEN such that for some w € KR

S(u;) - w strongly in V,
;) - w a.e.in Q.
On the other hand, we have for all ¢ € K

<F(S(un)).w—3(un)> + <a (un),w-S(un)> = 0,

3

Letting n - «», we see that from Lemma 2.4 with P, = i

<F(S(un)),¢fS(un)> = <F(S(un)),¢-w> + <F(S(un)).w—S(un)>
2 (F{w),p-w>,

and

<a3(un).¢—S(un)> = <a3(un),w—S(un)> +,<a3(un),¢-w>

~ <a3(u),¢—w>.

Hence we have

<Flw),@-w> + <a,(uw),9-w> 2 0.

3
It follows from the definition of S that w = S{u) and hence S(u;) -
S(u) strongly in V, which proves that S : KR - KR is continuous in

the strong topology.

Applying the Schauder fix point theorem we can find a u € KR

such that u = S(u). This completes the proof of Lemma 3.5.

LEMMA 3.6. Let the hypotheses of Theorem 3.4 hold. If u is a

solution of (1.1)-(1.2) such that ml £u <L @2 a.e. in Q, then we have

the estimate
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full 1,p £ C,

WoOE )

where C is a constant independent of u.

Lemma 3.6 follows from an argument similar to that of Lemma 3.3.
By applying an argument similar to the proof of Theorems 3.2 and 3.3,

we can conclude from Lemma 3.6 the following theorems

THEOREM 3.5. Let the hypotheses of Theorem 3.4 hold. Suppose
o

1
lo f, € L7 n

0 1 2' 73

LTOC(Q) in (H4) and (3.15). Then the problem (1.1)-(1.2) has

e LY@nL? @, £, € LPHnL

that £ loc ,

C(Q) and f

o

minimal solution u and a maximal solution E such that ¢1 u<ucx< ¢2

a.e. in Q in the sense that if u € wl

1Py is any solution of

{(1.1)-(1.2) with @1 £ 1 < ¢, a.e. in @, then un € u £ u a.e. in Q.

THEOREM 3.6. Let the hypotheses of Theorem 3.5 hold. Suppose

that B(x,t,E) is nondecreasing with respect to t € [¢1(x),¢2(x)] for

almost every fixed x € Q and every fixed £ € RN. Then we have for

every X, € 0
{ u(xo) :u € ¥y = [u(xo),u(xo)],

where ¥ is the set defined by (3.12) and u, E are respectively the

minimal solution and the maximal solution of (1.1)-(1.2) between @1

and @2.
3.3. C-subsolutions and C-supersolutions
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THEOREM 3.7. Let @1 and wz be respectively a C-subsolution and

a C-supersolution of (1.1) in Q such that @4 < ¢, a.e. in Q and @, <

e LP*®(Q) ang . €

e L%y, >

g < ¢, a.e. on Q. Suppose that f
1+g

0
(Q) for some positive constant € in (H

1

L ) and (H

3). Moreover,

1

suppose that there exists a function f3 € Lq(Q) such that

(3.21) IBex, t,8)] < [f,0x0] + heltha + l2]P)

for a.e. X € Q, Y (t,&) € RXRN, where h : §+ - ﬁ+ is a nondecreasing

function . Then the problem (1.1)>-(1.2) has a solution u such that

¢, £u<e, ace. in Q.

PROOF. Without loss of generality we can assume that ¢1 £ g <

@2 a.e. in @ and that ¢y and ¢, are of the form (3.5) where ii‘ wi €

c®1@) and n = m. Put
m — —
M =1§1 Q17 S T T V28 T L P
Let for n € N
B(x,T(t),&) if |E] £ n+ M
Bn(x,t.i) =

B(x,T(t),(n+MYE/|E]> if |&] > n + M
where
- M if t < - M
T(t) = t if - Mt £ M
M if Mt
We see that Bn : QXRXRN > R satisfies the Carathéeodory condition and

that ¢1 and @2 are respectively a W-subsolution and a W-supersolution

of the equation
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(3.22) - div A(x,vW) + B_(X,u,Vu) = 0 in Q.
From (3.21) we have
1B (x,t,8)| < [£,001 + hODA + |n + M)

for a.e. x € Q, Y (t,E) € RXRN. and hence by Theorem 3.1 there exists

a solution un of the problem (3.22)n-(1.2) such that wl £u < ¢2 a.e.

n
in Q. From the proof of Theorem 2.1 in [3, pp. 225-233] we can

extract a subsequence of {un}nEN which converges to a solution of
(1.1)-(1.2) strongly in w}ag(n).

3.4. Examples and Remark

EXAMPLE 3.1. We consider the problem (1.3)-(1.2). Let
B(xX,t,E) be nondecreasing with respect to t € R for almost every

fixed x € Q and every fixed £ € RN. Suppose that B satisfies the

condition

[B(x.t,2)] < helthha + |2]P71

for a.e. X € Q, Y (t,&) € RXRN, where h : §+ - ﬁ+ is a nondecreasing
function. Moreover, suppose that g € WP n L7 (8Q). By
following Remark 2 in {1], we can construct an L-subsolution wl and
an L-supersolution @2 of (1.3) such that wl < wz a.e. in Q and @1 < g
< ¢, a.e. on 9. In fact, because of the boundedness of @, there

exists a positive constant M such that
N
Qc {xelR" : - MK X, < M }.

We choose positive constants ¥y and C such that
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Y = (h(o) + /-1y, €2y 1Py BT gy o

We define the functions wl and @2 by

—v(x1+M)
wl(x) = - @2(x). ¢2(x) = C(2 - ¢ Y.

Since C < ¢2(x) £ 2C in R, we see that ¢1 < ¢2 in Q@ and @1 £ g < @2 a.
e. on 99. We have for all non-negative functions @ € C:(Q)

f{lvwzlp'szz-V¢ +.B(x,¢2,7¢2)¢}dx
Q

z'f{IV¢2|p‘2v¢2°V¢ + B(X,0,79,)¢)dx
Q

> f{Iszlp_2V¢2'V¢ - h 1 + [ve, 1P herax
Q

=rY{(p-1)(x,+M)

= feley|Ple 1 - h(0)}gdx = 0,
Q
which implies that mz is a supersolution of (1.3). Similarly we see
that ¢1 is a subsolution of (1.3). Since the pseudo-Laplacian

operator satisfies the conditions (Hl)—(H3) (see, for example, [7,
p.264, Lemma 4.103), by virtue of Theorems 3.2 and 3.3 (or Theorems

3.5 and 3.6), there exist a minimal solution u and a maximal solution

u of {1.3)-(1.2) between ¢, and ¢, and the interval between u and u

is filled with the set of solutions of (1.3)-(1.2),

"EXAMPLE 3.2. In Theorem 3.6 we assumed that B(x,t,&) is
nondecreasing with respect to t E[wl(x),¢2(x)]. If B(x,t,€) is
strictly decreasing with respect to t € [¢1(x),¢2(x)]. Theorem 3.6 is

not true in general. For example, we consider the problem
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B

1]
<

in Q =B
on 89,

N 2 3,

(3.23) { Au + Au 1°

u

where X and 8 are positive constants. The problem (3.23) has a

trivial solution u = 0. If u € wé'z(n) A L°(Q) is a solution of

{3.23), then we see that u € Cz(ﬁ) by the regularity of elliptic
equations (see e.g. [19, p.115, Theorem 1.3;: and p.251, Theorem 2.11).

Gidas, Ni and Nirenberg [11] showed that there exists a unique
positive solution u 0f(3.23) if 1 < B < (N+2)/(N-2). We can regard

u and E as an L-subsolution and an L-supersolution of (3.23)
respectively. By virtue of the maximum prinéiple, bounded
non-trivial and non-negative solutions of (3.23) are positive,

Therefore we have

= {1 uis a solution of (3.23) with u £ u £ E} = {u,u}.

Thus a Peano-Ako type theorem does not hold for (3.23) with 1 < 8 {
(N+2)/(N-2). On the other hand, let 8 = 1 in (3.23) and let X be

the first eigenvalue of A under the Dirichlet condition. Then

(3.23) has a positive eigenfunction ﬁ, and we have

g = { cu : c is a constant with 0 < c < 1 Y.

This shows that a Peano-Ako type theorem holds for (3.23) with 8 = 1.

REMARK 3.1. Theorems 3.1, 3.4 and 3.7 are related to {6,
Theoreml], [12, Theoreml and [3, Theorem 2.13]. We cannot prove the
existence of minimal and maximal solutions and the Peano-Ako type

theorem under the generalized Nagumo condition (3.21).
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PROOF OF PROPOSITION 1. It suffices to prove that if u u, €

1 72
Wl’p(Q) n Lm(Q) are supersolutions (subsolutions) of (3.2), then min
(ul,uz) (max (ul,uz)) is a supersolution (subsolution) of (3.2). We

use the method of [16, p.42, Theorem 6.67]. We set w = min (ul,u Y,

2
ﬁi = u;-v and ﬁz = U,-W. Let B(x,E) = A(X,E+Yw(X)) and B(x,t) =
B{x,t+w(x)). Without loss of generality we can assume that A

satisfy (Hl), (Hz), (H3) and (H,». Let T(t)> be the truncated

4

function

0 if t <O

T(t) = t if 0t M

M if M<T,
where M = lu,ll, + lu,l_.  The functions ﬁl and ﬁz are supersolutions
of the equation
(3.24) - div A(x,vuw) + B(x,T(w) = 0 in Q.

We set V = Wi'P(Q) and
K={9 €V :0<¢<M+1a.e. in Q}.
Let for u, v € ¥

<ag(w,v> = JE(x,vu)-vv dx, <ay(w),v> = JB(x,T(u)v dx,
Q Q

where T(u){(xX) = T(u(x)). It follows from the proof of Theorem 3.2
that al, a2 T V- V*, where V* is the dual space of V, and that F : V
- V*, F(u) = al(u)+a2(u), is pseudo-monotone and (3.11) holds. From

Theorem 8.2 in [20, p.247] there exists a u € K such that <F(u),¢-u>

2 0 for all ¢ € K, i.e.

(3.25) JA(x,70) *V(@-u) + B(X,T(u))(@-u)}dx = 0 for all ¢ € K.
Q
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Since min (u,ﬁl) € K and u - min (u,ﬁl) = (u-ﬁl)+, we have

S{A(x, V) - 9(u-1;) + B(x, T(w)) (u-d
u>u1

1))dx < 0.

On the other hand, since ﬁl is a supersolution of (3.24) and (u—'ﬁi)+

€ wé'p<Q). we obtain

[ A%, vi
u>d

)+V(u-u,) + B(x,T(u

1 1 Y (u-u,)}dx =2 0

1 1

Consequently we have from (H,)

2

0 < SCACx,vu)-A(x, Vi) V(u-1,)dx

u>u1

< Jeu-u)) (Bex, T
u>u1

120" B(x,T(u))})dx < 0,

which implies that V(u—ﬁl)+ = 0 a.e. in Q. From Poincare's
inequality we have u < ﬁl a.e. in Q. Similarly we have u < ﬁz a.e.
in @ and hence 0 < u < min (ﬁl,ﬁz) = 0 a.e. in Q,i.e. u = 0 a.e. in Q.

For any non-negative function ¢ € CE(Q). we can choose a positive

constant 3 such that 8¢ € K. By (3.25) with ¢ = 8¢ we obtain

J{A(X,9w) V¥ + B(x,w¥ldx = 0,
Q

which shows that w = min (ul,uz) is a supersolution of (3.2).
Similarly we see that max (ul,uz) is a subsolution of (3.2) if ul. u2
€ wl’p(Q) n Lm(Q) are subsolutions of (3.2). This completes the

proof of Preposition 1.



4, Equations in unbounded domains
Throughout this section we assume that @ is either an exterior

domain in RN or @ = RN and that the conditions (H,)-(H.) and (H.)

1 3 5
hold for (1.1). We set QR = 0 n BR for R > 0, where BR denotes the
open ball of radius R centered at the origin. ' In case  is an

exterior domain we assume that there exists a positive constant a
such that 3Q ¢ Ba' In case @ = RN the boundary condition (1.2) is
void, and the problem is to find a solution of (1.1) defined

throughout RN,

DEFINITION 3. A function u is said to be a solution
(subsolution,‘supersolution)'of (1.1 in Q if u is a solution
{subsolution, supersolution) of (1.1) in QR for all R 2 a.

A function u is said to be a W-subsolution (W-supersolution) of
(1.1 in Q if u is a W-subsolution (W-supersolution) of (1.1) in'QR

for all R =2 a. L-subsolutions, L-supersolutions, C-subsolutions and

C-supérsolutions are defined analogously.

THEOREM 4.1. Let wl and ¢2 be a W-subsolution and a

W-supersolution of (1.1) in @, respectively, such that @1 < @2 a.e.

in © and ®y £ g £ ¢, a.e. on 9Q (if 9Q is non-empty). Suppose that

for all R = a there exist a positive constant CR’ a function f_ €

R

Lq(QR) and a nondecreasing function hp : R, - ﬁ+ such that hR(IQl) €

q p
L (QR) for ¢ € L (QR) and
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p-1
(4.1) IB(x,t,8)] < IfR(x)l + hR(ItI) + chﬁl

for a.e. x € QR‘ Y (t,E) € RXRN. Then the problem (1.1)-(1.2) has a

solution u such that ¢, £ ux @2 a.e. in Q.

LEMMA 4.1. et the hypotheses of Theorem 4.1 hold. Let R be

a constant with R = a. If u is a solution of (1.1) in QZR such that

?, £ux< ¢, a.e. in an and u = g a.e. on 9 (if 8Q is non-empty),

then we have the estimate

< C, ,

full p R

W (QR)

where CR is a constant independent of u.

PROOF OF LLEMMA 4.1. It suffices to prove the lemma for the

case that 2R is non-empty. We choose the function ¢ € Cé(BzR} S0
_ . . -1 . .
that ¢ = 1 in Bp, 0 < ¢ <1 in Byp and [ve| < 4R in B,p. Since
P, _ 1,p ,
@  (u-g) € WO (QaR) we have
p p-1 .
S A(x,7u) +v(u~-g) + po (u-g)A(X,Vu) V¢ + @ (u-g)B(xX,u,vud)}dx = O.
Q
2R
Put oy = inf { a(x) : x € Q,p) and d = Hcoﬂm;QzR. Note that «, > 0.
We obtain from (H;),(Hg) and (4.1)
fao¢p|7ulpdx < f[@p{lle+!f1|IVulp'1+NIVgI(If0|+dIVu|p'1)}
QzR QZR
+ 4R“1Np¢p'1lu—g!(lf0|+dIVu|p'1)

+ @plu-gl(|f2R|+h2R(luI)+02R|Vu|p_1)]dx.

Let v = |w1|+|@2|+|g|. Since Ju-g| < v and |u] £ v a.e. in QZR’ we
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have

P P -1
Joege  |vulTax < Srlt,|+NIvalls l+v4R™"Npls l+ 12, 1+h, (v))

2R
2R Q2R

1

+¢p|Vu|p_1(If1|+Nd|Vg|+02 v)+4R~ div¢p-1|Vulp‘1]dx.

R

By virtue of Holder's inequality, we have for g > 0

p

IvalP7 el g [+Nalvgl+c, vy < g% vulP « e P(lt, I+Nalvglecy v

R
and

1

4R nNpdveP livulP™l < £%P|vulP + g P(4r INpav) P,

Lemma 4.1 then follows by choosing &€ so that o, = 48q.

0

PROOF OF THEOREM 4.1. It suffices to prove the theorem for the

case o2 is non-empty. From Theorem 3.1 it follows that for n € N

the problem

- div A(x,vu) + B(x,u,vu) = 0 in Q
u=goneél, u-= @, on 3B

1

s ) p . )
has a solution un € W (Qn a) such that Ql < u < ¢2 a.e. in 9

n n+a’
. . . 1,p
By Lemma 4.1 we see that {un}n24a is bounded in W (QZa) and hence

(1)
we can extract a subsequence {un }neN of {un}n24a such that for some

+

(1) 1,p
u € ¥ (QZa)
(1) (1) . 1,p
u - 1 weakly in W (QZa)‘
(1 (1) . P
u, = 1 strongly in L (QZa).
We choose the function ¢ € Cé(BZa) so that 9 =1 in Ba. 0 £ ¢ £1 in
B,, and |vep] < 4a”} in B,,. Since u‘l’ = g a.e. on A and
(1y__ (1) 1,p
rp(un u ) € WO (Qza)’ we have



f@A(x.Vuél))-V(ugl)-u(l))dx
QZa ‘
= - f(uél)—u(l)){A(x,Vuél)) V¢ + B(x, uél) uél))¢}dx‘
Q2a
By virtue of (Hl) and (4.1), we have
él(uél) (1))A(x Vu(l))'V¢ldx
2a
< Nu - ‘“np,Q el o + du\m‘”np}2 } > 0,
' s 2a 2a
where d = ﬂc . wiQ. and
2a
él(uﬁl) (1))B(x ur(ll) (1))Idx
2a
(1) (1 (1
< Hu R LE SN +uhza(lcpll+l¢zt>uq;Q e, Ve up Q }
2 2a 2a
- 0 as n - «,
Since uél) converges to u(l) weakly in Wl'p(QZa). we obtain
f¢A(x,Vu(1))-V(ugl)—u(l))dx - 0 as n -3 o,
Q2a
Consequently we have from (Hz)
f(A(x,Vugl))—A(x,Vu(l)))-V(uél)-u(l))dx - 0 as n » o,
Q
a
By Lemmas 2.1 and 2.2 we see that uél) converges to u(l) strongly in

Wl’p(Qa) and hence u(l) is a solution of ¢1.1) in Qa such that ¢1 <

u(l) < ¢, a.e. in Qa and u(l) = g a.e. on 9Q. By an inductive

(i) (i)
}n,iEN and {u }iEN such

-1)
) neN is a subsequence of {un }nz4ia and converges
strongly in wl’p(Qia) to u(l), which is a solution of (1.1) in Q

process, we can construct seguences {u

that {u“)

ia



(1) (i

such that 9, £u < ¢, a.e. in Qia and u = g a.e. on 9f. Since
u(1+1) = u(l) a.e. in Qia' we can define u € Wiag(ﬂ) by u = u(l) in

Qia’ The function u is a solution of (1.1)-(1.2) such that ®, £ u <

¢2 a.e. in Q. This completes the proof of Theorem 4.1.

THEOREM 4.2. Let the hypotheses of Theorem 4.1 hold except

o

that (HS) is replaced by (HG)' Suppose that @1. Qz € Lloc(Q) and fR
€ Lw(QR) in (4.1) for all R = a. Then the problem (1.1)-(1.2) has a

minimal solution u and a maximal solution u such that @1 < u < u < mz

a.e. in @ in the sense that if u is any solution of (1.1)-(1.2) with

¢, £u<g9g, ace. in R, then u £ u £ u a.e. in Q.

PROOQF. It suffices to prove the theorem for the case 9% is
non-empty. We denote by ¥ the set defined by (3.12). Let u and u

be the functions defined by (3.13). It suffices to prove that u, u

€ 9, We can construct, similarly to the proof of Theorem 3.2, a

nondecreasing seguence {un} of ¢ such that un converges to G
uniformly on compact subsets of Q. Let R be an arbitrary constant

with R > a. From Lemma 4.1 we can extract a subseguence of {un},

still denoted by {un}, such that

u_ - u weakly in wl'p(QzR),

: p
u_ - u strongly in L (QZR)'

Similarly to the proof of Theorem 4.1, since u = g a.e. on 90, we see

that un converges to E strongly in Wl’p(QR), which shows that E is a
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solution of (1.1) in Q. Thus, u € ¥. Similarly we have u € ¢.

THEOREM 4.3. Let the hypotheses of Theorem 4.2 hold. Suppose

that ¢1, 9, € Lm(Qa). Moreover, suppose that B(x,t,£) is

4

nondecreasing with respect 1o t € [¢1(X),¢2(X)] for almost every

fixed x € Q and every fixed £ € RN. Then we have for every XO € 9

{ u(x,,) : u € ¥} = [ulx

0

where ¥ is the set defined by (3.12) and u, H are, respectively, the

minimal solution and the maximal solution of (1.1)-(1.2) between wl

and @2,
To prove Theorem 4.3 it suffices to consider the case that 8 is

non-empty. We set for R > a

9R = { u : uis a solution of (1.1) in QR with u £ u < u }
a.e. in QR and u = g a.e. on 8Q

We note that QR # ¢ because u, u € 9R and that 9R c C(QR) by virtue

of Lemma 2.3.

LEMMA 4.2. Let the hypotheses of Theorem 4.3 hold. Then

wWe
have for all R > a and X, € QR
{ u(xo) :u € QR} = [g(xo),u(xo)].
PROOF OF LEMMA 4.2, Suppose that g(xo) < E(XO). It suffices
to derive a contradiction from the assumption that there exists a u

0
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€ R such that u(xy) < u, < ulxy) and u, ¢ u(xy) @ u € 9. Let u

1

= u, v. = u and d, = v, -u ll_, . Similarly to the proof of
1 1 1 71 w,Q4R

Theorem 3.3, the functions ;1 = max (ul, vl- d1/2) and Il = min (u1+

d1/2, vl) are respectively a W-subsolution and a W-supersolution of

(3.14) in Q such that X

AR < Al in Q4R and Ll = g = Al a.e. on 99,

1

Since @1 < &1 < Il < ¢2 a.e. in Q4R’ it follows from Theorem 3.1 that

the problem

0 in Q4R .

u=gonoeY, u A

{ - div A(x,vu) + B(x,u,vu)
L BB4R

1

has a sclution u € ¥ ’p(Q4R) such that ;1 < u<ax, a.e. in

1 4R"
Therefore we have u € 94R. By an argument similar to that of

Theorem 3.3, we can Qonstruct a nondecreasing sequence {un} of 94R

such that u(x.) = u

0 0’ where u(x) = lim u_(x) for x € Q4R' From

n - «

Lemma 4.1 we can assume that

. 1,p
u - u weakly in W (QEB)‘

- . o)
u > u strongly in L (QZR)'

Similarly to the proof of Theorem 4.1, we have u € QR. This

contradicts U(x.) = u

0 0°

PROOF OF THEOREM 4.3. It follows from Theorem 4.2 that

Y= {u€Y :u<u=<mua.e. in Q).

We can assume that g(xo) < E(xo). Let R be an arbitrary constant

satisfying Ixol < R. Let u0 be an arbitrary fixed constant with
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g(xo) < uO < E(XO). It suffices to prove that there exists a u € ¢

such that u(xo) = uo. From Lemma 4.2, for n € N, we can choose a un

€ ynR such that un(XO) = uO. By Lemma 4.1 we see that {un}nz4 is
. l,p . (1)
bounded in W (QzR) and hence we can extract a subsequence {un }nEN
(1) 1,p
of {un}n24 such that for some u € W (an)
(1 (1) . . 1,p
u -y weakly in W (Q2R).
(1) (1 . P
u - u strongly in L (QZR)'

Since lunl < |¢1|+|¢2I € Lm(QZR), we can assume, from Lemma 2.3, that

uél) converges to u(l) uniformly on some neighborhood of x..

0
Therefore we see u(l)(xo) = uO. Theorem 4.3 follows from the

concluding argument in Theorem 4.1.

THEOREM 4.4. let @1 and wz be an L-subsoclution and an

L-supersolution of (1.1) in Q, respectively, such that P, 50, a.e.

in Q agd4¢1 £ g < ¢, a.e. on R (if 299 is non-emptvy). Suppose that

for all R = a there exist a positive constant SR € (0,11, a function

fR € Ll(QR) and a nondecreasing function h

R ° + +

p
(4.2) |B(x,t,8)] < hR(Itl)(]fR(x)l + || )

for a.e. X € QR’ Y (t,E) € RXRN. Then the problem (1.1)-(1.2) has a

solution u such that 9, < u £ ¢, a.e. in Q.

THEOREM 4.5. Let the hypotheses of Theorem 4.4 hold except

that (Hs) is replaced by (HG). Suppose that f_ € LTOC(QR) in (4.2)

R
for all R =2 a. Then the problem (1.1>-(1.2) has a minimal solution

1 and a maximal solution E such that @1 <1 L E < ¢2 a.e. in Q in the
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=

sense tha

if u is any solution of (1.1)-(1.2) with wl < ucx< ¢2 a.e.

in R, then u £ u < u a.e. in Q.

|

THEOREM 4.6. Let the hypotheses of Theorem 4.5 hold. Suppose

that B(x,t,£) is nondecreasing with respect to t € [¢1(x).¢2(x)] for

almost every fixed x € @ and every fixed £ € RN. Then we have for

every X, € Q

{ u(x,) : u € ¥ ) = [ux ),ﬁ(x

0 )1,

0 0

where ¢ is the set defined by (3.12) and u, E are, respectively, the

minimal solution and the maximal solution of (1.1)-(1.2) between wl

and 92.

Theorems 4.4, 4.5 and 4.6 are counterparts of Theorems 3.4, 3.5
and 3.6. Their‘prcofs are omitted, since they are similar to the

proofs of Theorems 4.1, 4.2 and 4.3.

THEOREM 4.7. Let Q = RN and let wl and ¢2 be a C-subsolution

and a C-supersolution of (1.1) in RN, respectively, such that wl < ¢2

. N q+8 N P+E N 1+ N
in R, Suppose that fo € LIOC(R Y, f1 € Lloc(R ) and f2 € LIOC(R )
for some positive constant & in (Hl) and (H3). Moreover, suppose

that for all R > 0 there exist a function fR € Lq(BR) and a

nondecreasing function hR : R+ - §+ such that

+

(4.3) IBx,t,8)] < lfp00 | + hpltha « l2]P)

for a.e. x € Q, Y (t,E) € RXRN. Then egquation (1.1) has a solution

u such that ¢, £u < ¢, a.e. in RN.
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LEMMA 4.3. et the hyvvotheses of Theorem 4.7 hold. Let R be

o

T a pbsitive constant. Then there exists a constant pR > p such that

£ M, then

if u is a solution of (1.1) in B2R with Hu“w;BzR

flal < C, ,
l,pR . R

W (BR)

wvhere CR is a constant independent of u.

Lemma 4.3 is due to [3, Proposition 3.8].

PROOF OF THEOREM 4.7. It follows from Theorem 3.7 that for n €

N the problem

0 in B_,
n
@1 on aBn

{ - div A(x,vVu) + B(x,u,vuw)
' u

has a solution un € wl’p(Bn) such that @1 < un < ¢2 a.e. in B_. Let

n
R be an arbitrary positive constant. By Lemma 4.3 there exists a pR

1,p ,
. . R
> p such that {un}n24R is bounded in W (BZR)' Thus we can
(1 (n
extract a subsequence {un }nGN of {un}n24R such that for some u €
l,p
W (BZR)
(1 (L . 1,p
un - 1 weakly in W (BZR)’
(1 (L .
un = u a.e. in B2R'
_ 1 .
Put M = "¢1"w:B Hmzum;B . Let ¢ € C,(B,p) be the function
2R 2R :
satisfying 0 < 9 < 1, |ve| < 4R™! in Byp and @ = 1 in By.  Since
(1)__ (1) l,p ® )
(p(un u ) € wo (BZR) n L (BZR)' we have



I¢A(X’vu;1))'V(uél)*u(l))dx
B
2R
o f(uél)-u(l)){A(X’Vuél))'v¢ * B(X,ugl),vuél))w}dx
B
2R

By Lemma 4.3, we obtain

Sl a D ouD Pax < gog 1P gDy 1y > 0 as n > o,
n n n "p,;B n p
BZR R’T2R R

Therefore we have from (4.3)

fl(u;1)~u(1))A(x,Vu;1))‘V@|dx - 0,
Bor
fl(u(l)-u(l))B(x.u(l),Vu(l))ldx
B2R n n n
(1)__ (1) (1Y__ (1), (1),p
< élun u |(|f2R|+h2R(M))dx + hzn(m>£lun u | IVun | Pax
2R 2R
- 0 as n = «,
Conseéuently we have by (Hz)
FTaax,vu -2z, vu 1y vy y4x » 0 as n o .
B n n
R
By virtue of Lemmas 2.1 and 2.2 we see that uél) converges to u(l)
strongly in wl’p(BR) and hence u‘l’ is a solution of (1.1) in B such
that Ql < u(l) < wz a.e. in BR' Theorem 4.7 follows from the

concluding argument in Theorem 4.1.

REMARK 4.1. In Theorems 4.3 and 4.6 we assumed that B(x,t,£)
is nondecreasing with respect to t € [wl(x). wz(x)]. The following
example shows that Theorems 4.3 and 4.6 are not true in general when

B(x,t,E) is strictly decreasing with respect to t € [@1(x), ¢2(X)].

_48_



We consider the equation

(4.4) Au + ccxouf = 0 in RN,

where ¢ € CI(RN) is positive, 0 ¢ 8 < 1 is constant and N = 3.
Equation (4.4) has a trivial solution u = 0. Fukagail9] showed that
(4.4) has a unique positive solution u such that u(x) = 0 as |x] » =

if

fr1+(1-8)(N—2)( max c(x))dx < =,
0 |x|=r

Therefore we see that under the above condition

{u:uis asolution of (4.4) with u € u < u in RN } = {(u,u).

5. Application

In this section we shall establish the existence of positive

solutions of the equation
(5.1) - div (qulp-ZVu) + B(x,u,Vu) = 0 in RN,

where 1 < p < 2, N2 3 and B{(x,t,E) is as in Theorem 4.7.

THEOREM 5.1. Suppose that there exist a continuous function ¢

[

: R - R+ and a continuocus nondecreasing function F : R+XR+ - R+ such

<
that

(5.2) [B(x,t,8)] < ¢(x|O)F¢t, lE])

or a.e. x € RN, Y (t,E) € R+XRN. Moreover, suppose that




1

1 1
P le P lgr < o,

o
[o%)
~
O 8

and that one of the following conditions is satisfied:

.
s l p-l - 4 .
(F,) lim F(t,s) = { for each fixed s = 0;
1 t e
t - 0
1
(F,) 1im % Fet, )P = o,
t »

Then egquation (5.1) possesses infinitely many positive solutions in

W}ag(RN) which are bounded and bounded away from zero in RN.

PROOF. The proof is similar to that of Theorem 1 in [18].

From Jensen's inequality we have for s > Q

s

(5.4) ( f(i)N_1¢(t)dt y1/(p-12
0
-1-(N-2)/(p-1) s . _ _
< s $ L=/ (p-1d 17/ Gm 1)y
0
S
< @R/ -1y 1/ (-1 g,
0
and hence for r > 0
r S
(5.5) fo fAAHN g8y -1 44
S
0 0
r
< ﬁ_% i1 - (i)(N 2)/(p=1); (1/(p=1d4 \ 1/(p=1),
0

Let Cl(ﬁ+) denote the locally convex space of continuously

differentiable functions on R+ with the topeology of uniform
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convergence on compact subsets of R+.

We first consider the case (Fl) holds. Let ¢ > 0 be small so

that

-1

1/(p-1) 7,1/(p-1)
N-2 Jt

0

1/(p-1)

F(x,1) (L) dt < /2

and

F(a,l)l/(p_l) ft(Q—p)/(p—1)¢(t)l/(p-1)
0

dt £ 1.

Consider the set

Y=(vec ®): a/2 <y <a, Iyl <1 forr 20,

where " ~ " = d/dr. Define the operator % in Cl(§+) by

(6.6) Fy(r) = a - J( Ny corarn, Iy (o hat )Y P Dqq,

©
(o R N

1
(S)
I1f v € ¥, we see, from (5.4) and (5.5) that for r > ¢

r s
@2 Fyr) 2 - Fa, DY @D popdyNlg g1/ @D g

=)
00 %
>0 - Blpe, /7D 1By 1Dy 5 gy
0
and
. Lt N-1 - 1/(p-1)
lEFn ] = ST S OFG ), Iy (a7t
0
< F(a,l)l/(p‘l) I t(2—p)/(p-1)¢(t)1/(p-1)dt <1,
0
which shows that F : Y - Y. Let {yn} be a sequence in Y converging
to ¥y € Y as n =+ « in the topology of Cl(ﬁ+). We have for r > 0

I(?yn)’(r)—(?y)“(r>| <
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2_2

r _ _ _
Ltr, s rat1® SocIFG (), Iyl D-Forcty, [y (ty | ]dt,
p-1 0 0 n n

which implies that # : Y= Y is continuous. We have for y € Y and r
> 0
[ (Fy) ()| <

2-p -1 2-p
1

1

r r _ ~
L r, P - P A e crar P Les ooy (SN g ctyaty Py,
0 0

p-1 r
Therefore we see that 7Y is relatively compact in Cl(ﬁ+). Thus we
are able to apply the Schauder-Tychonoff fixed point theorem and

conclude that ¥ has a fixed point y € Y. The function v(x) = y(|x|)

is a solution of the equation
- div (IVvlp'ZVV) + ¢(|x|)F(v,]vv]) = 0 in RN .

so that it is a C-supersolution of (5.1). Similarly we can show

that the operator € defined by

r S
5.7 z(ry = 8+ SO S HV R, 27 han /P Dy,
0 0

has a fixed point z in the set
zZ=+(zec'®) :8<z2(ry <28, |27 €1 for r = 0,
provided 8 > 0 is chosen small enough so that

E_IF(Zﬁ,l)I/(p-l) ftl/(p—1)¢(t)1/(p-1)

dt < 8
N-2 0
and
Fe2g, 1)/ (P71 pp(2-D)/Cp=1)y 1/ (p-1)yy oy
0
The function w(x) = z(¢(|x]) is a C-subsolution of (5.1). If 48 £ o,
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then w £ v in RN and hence it follows from Theorem 4.7 that (5.1) has

a solution u such that w £ u £ v a.e. in RN.

Next, we consider the case (Fz) halds. We take positive

constants ¢ and B so large that

1. 1 1 1 . 2-p 1
Polpio, 0Pt P le P lat < &, Fea,anP! P lg )P gt < o,
N-2 2
0 0
and
1 1 1 1 _ 2-p 1
R 2F(28 260271 fiP lg1hP gy < 8, Fe28,28)P7 ) SiP lec1)Plgt < 28,
0 0

Arguing as in the case of (Fl). we can verify that the operators #

and ¢ defined by (5.6) and (5.7) have fixed points y and z in the

sets

(yecl®) t a2 <y <o, Iy ()| <o for r = 0)
and

{ z € Cl(ﬁ+) : B < z(r) < 28, |z (r)| < 28 for r =0},
respectively. The functions v(x) = y(|x|) and w(x) = z(|x]) then

give respectively a C-supersolution and a C-subsolution of (5.1>,
which ensure the existence of the desired solution of (5.1) provided

48 £ o, The proof of Theorem 5.1 is thus complete.

The particular case (p = 2) of the above problem has been
considered by numerous authors including Kawano [15], Kusano and
Oharu [18], and Furusho [107]. The condition (5.3) generalizes the

one given by Kawano [15] for the case p = 2.
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