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Abstract

We investigate the phase structure of the S8U(3) lattice
gauge system coupled with a scalar field on the basis of the
lowest-order mean field approximation. TWO cases are considered
for the 8U(3) representation of ﬁhe_ scalaf field. - For the
fundamental representation, the resultant phase diagram is shown
to agree qualitatively with the Monte Carlo results, if we take
into account the analyses made in the limiting cases for the
parameters of the system. For the adjoint one, however, the
transition caused by the gauge fields Qf the residual subgroup
SU(ZfXU(1) does not appear due toNthé todbsimple form we assume

for the mean gauge-field.



§1. Introduction

Gauge model has a Qariety of phases according to the values
of its characteristic constants such as a gauge coupling and
masses of fundamental fermions. In the quantum chromodynamics
the confined ’phase is smoothly connected to the asymptotically
free phase and no phase transition (at least up to second order)
is expéqted.1) The single phase structure assures that quarks
are never liberated but behave as if they were free in hadrons at
a short distance. When the system is held in the thermal
eguilibrium with a finiﬁe temperature, however, the situation
changes. Theoretical considerationsz) and the investigations
using Monte Carlo simulations (MCS)3) have pointed out the
possibility that a first-order deconfining transition exists at
some critical temperature. If it is the case, we will find a
quark-gluon phase in high-energy heavy-ion collisions and a new
interesting physics will emerge. Phase transitions play an
important role also in the grand unified theories. Since the
symmetry assumed in such theories is not the one observed at low
energies, we have to break it by introducing scalar fields. The
symmetry is kept unbroken at high temperatures. After the system
is cooled down below a critical temperature the vacuum turns to
be false and makes a transition to the true one with a broken
symmetry. This transition gi?es a hint for thé interpretation of

the - flatness and the homogeneity of the universe in the

inflationary senario.4) Parameters in the potential for the



scalar fields should be chosen so that the system shows a desired
breaking pattern at low energies. Thus it is very interéstingxto
study phase structures of various gauge models.

In this report we discuss the SU(3) lattice gauge system
coupled with a scalar field. Recently the author has
investigated the model using computer simulations - in
colladboration with some members of his laboratory.S'G) In the
case that the scalar ‘field belongs to the fundamental
representation, they have found that the two-parameter phase-
plane 1is governed by a single phase although a transition 1line
lies 1in the weak coupling region. They have also studied the
case of the scalar field in the adjoint representation.
According to théir result it is seen that even such a simple
model gives rise to the quite complicated phase structure. In
particular, they have found that the line of the transition of a
Heisenberg spin system existing at a weak coupling limit extends
to a cross-over region and is connected to that of an Ising-like
transition at a strong coupling limit.

The Monte Carlo simulation may be the most powerful method
to study the phase structure, but a full analysis of the system
requires too long a CPU time., In practice, although the above
authors have used a rather small lattice (34 or 63X3), more
iterations are needed to determine the precise location and the
order of critical structures. The present author has realized a

necessity of theoretical analyses based on the other methods.



This situation was the main motivatioﬁ of the present work. Thus
it should be considered as a supplementary part to the_.previgus
Monte Carlo simulations.

The method used here is the mean field approximation (MFA).
It can predict a gross structure of the phase, though it often
leads tp erroneous predictions on the order and/or the 1location
of transition. Brezin and Drouffe have reformulated it in a way
that the approximation may be improved by adding correction terms
7)

order by order. For lattice gauge-higgs systems with a gauge

group U(1), Pendleton has shown that results of the lowest-order
MFA agree qualitatively with Monte Carlo data.s) We extend his
analysis to the»case of the group Sﬁ(3). In order to compare our
result with MCS, the scalar field is assumed to belong to the
fundamental or the adjoint representation of SU(3).

In the next section, we explain the model in a rather
detailed manner and review the results of the Monte Carlo
analyses in  this model. In 83 we apply the mean field
approximation to the cases of the scalar fields belonging to the
fundamental and adjoint representations respectively ‘ahd we
- derive the self-consistency equations in the mean  field
approximation. The numerical solutions are given in §4. In 85
we discuss the phase structure of the system based on the

numerical results. The final section is devoted to concluding

remarks.



§2. SU(3) lattice gauge system coupled with a scalar field

We consider the SU(3) gauge-higgs systém on a four-
dimensional euclidean lattice. A gauge variable Ug% is assigned
to each link (s,s+ﬁa) where s denotes a site, and ﬁ a unit vector
pointing the positive direction of xu. The lattice spacing a is
taken to be unity in the followings. Superscripts i and j run
over the indices of the fundamental ‘representation of SU(3),
i.e., 1 to 3. A scalar field ¢é (¢g) is defined on each site s
and it 1is assumed to belong to the fundamental (adjoint)
representation. The action of the whole system is a sum of a

gauge and a scalar part:

s=sU+s¢. ' (2.1)

We take the Wilson action for the gauge part

Sy = BEL1-3ReTr(U )1 , o (2.2)

3
P
where Up is an ordered product of Usﬁ along a plaquette, B=6/g2
(g is a gauge coupling constant) and the summation is taken over
the whole plaquettes. On the scalar field we impose a fixed norm

condition

Z|¢é|2 = 1 (fundamental repr.) (2.3a)
i .



- or
£(¢3)2 = 1 (adjoint repr.) , (2.3b)

for convenience. Then a naive discretisation of the minimally

coupled Lagrangian gives

+
S§ =Y I, [1-Re(dg ~Ugnd )] . (2.4a)
S,H
or
A T
sh =YSZﬁ[1—Tr(®S+ﬁUSﬁ®SUSﬁ)] , (2.4Db)
14

where superscripts F and A denote the fundamental and the adjoint

representation, respectively. Here in the case of the adjoint
representation, ®S=®g is a matrix form ®s=2a¢gka//§, where A?j
(a=1,...,8) is a Gell-Mann matrix. The parameter Y is

proportional to the vacuum expectation value squared of the

scalar field in the continuum limit. The partition function is

defined as

7 = [(dU)<d¢) e”S | (2.5)

Functional integration measures are



(@ = ng' T a'fuld s(uTu-1) §(detu-1) (2.6)
S, ‘ ’
(de)p = Np' T @bl s(le]2-1) (2.7a)
s
(ap)y = vzl T a%F s(e?-1) (2.7b)
where Ny, Np and N, are normalisation constants. Various gauge

fixing conditions can be imposed and then the MFA will give a
different result.s) It is suspected that the difference may be
explained by taking into account higher-order corrections. It
is, however, beyond the scope of this report to pursue this
problem any further. Here we adopt the model without a gauge
fixing. A state of the system is determined by minimizing a free
energy density F= -(4&nZ)/volume.

Let us ‘comment‘on behaviours of the system in the extreme
cases. The detailed discussions have been given elsewhere.S'G)
(1) v=0

The system reduces to an SU(3) pure gauge one. As mentioned
in the previous section, it has no phase.transition at a zero
temperature although it is expécted to have a first-order
critical point at a finite temperature.

(i) y==

It is the limit of an infinite vacuum expectation value of

the scalar field. In the case of the triplet scalar field, the

system 1is nothing but an SU(2) pufe gauge one with an inverse



temperature scaled by a factor 2/3, i.e. 28/3. The phase
structure _is similar to that of the SU(3) case ékcept that the
deconfining transition of the finite temperature is of’the‘second
order.

In the case of the octet scalar field, there are two
possible residual symmetries, SU(Z)XU(1) and U(1)*XU(1). In Ref.b6
it has been conjectured and confirmed by MCS that the former is
the reéi residual symmetry. Two subsystems with symmetry SU(2)
and with U(1) have their own critical natures independently.
Then two critical points exist, corresponding to the finite-
temperature deconfining transition of the SU(2) pure gauge system
and the U(1)-deconfining transition. The latter occurs at a
smaller value of B.

(iii) B=0

In this limit, the partition function of the system with a
triplet scalar field is written as an analytic function of Y,
since it factorizes, in the unitary gauge, into the product of
integrais of gauge variables. For the system  with an octet
scalar field, no factorization occurs, but the system is
described by a variable Dé=det(@s) if we perform integrations
over gauge variables. The small y expansion gives an effective
action for Dé similar to that of the Ising system and predicts a
transition at around y=5.

(iv) B=e

In this limit both the fundamental and the adjoint scalar



system become a four-dimensional Heisenberg spin system with a
symmetry of 0(6) and 0(8), respectively. It is” known that the
Heisenberg-spin system has a second-order critical point in four
dimensions. The critical point is estimated by applying an

infra-red bound!?) for O(N) system
N (7 4
Ye2 5 f dslexp(-s) *Iy(s)] ’ (2.8)
0 . .

where I, is a modified Bessel function of the zeroth order,

The analyses using Monte Carlo simulations have given phase
diagrams shown in Fig.t. The 6(6)—Heisenberg—spin transition
starting at (B,y)=(»,1) extends to the crossover \region and
terminates around (B,y)=(5,1) in Fig.1(a). It is consistent with
the above study of the limiting cases. There is no critical
-point to which the line is connected. Because there is no
critical point to which the line is connected, it must terminate
before reaching the strong coupling limit., The end point lies in
the crossover region, since the orderedness of spins loses its
meaning in the disorder region of the gauge system. The dotted
linevis a critical-like étructure connecting the crossover points
of the SU(3, (8=0 limit) and SU(2) (B=« limit) pure gauge system.
This sﬁructure may be due to a size effect arising from smallness
of the 1lattice. The phase diagram (Fig.1(b)) of the adjoint-
scalar system is drawn for the finite-temperature case. The

phase plane is divided into five parts by critical lines. Region



I and 1II are SU(3)-symmetric phases, where the former’ is the
confined phase and the latter the deconfined.  The broken phase
consists of three parts, the SU(2)xU(1)-confined, the SU(Z)—
confined: but U(1)-deconfined, and the fully deconfined one. The
location of the Ising-like transition line in the strong coupling
region is obscure owing to the rather small number of iteratidns.
The phase diagram at a zero temperature is obtained by removing
the finite temperature transition line from Fig.1(b). In order
to vefify these phase structures, we study the system based on

the mean field method.

10



§3. Mean field approximation

The mean field approximation can.be considered as a saddle
point estimation of the partition function, where the variables
are replaced by a new set of unconstrained variables. Self-
consistency equations are, therefore, derived as a stationary
condition for the effective action. Let us derive them for the
SU(3) 1lattice gauge-higgs system in the case that the scalar
field belongs to the fundamental répresentation. For the case of
the adjoint representation, we will note the difference and give
resultant formulae at the end of the section.

The unconstrained fields are introduced by inserting a unity
into the integral of the partition function (2.5). For gauge

variables, it reads

1 = J a'8v s(v-u)

o0

o0 100
f d18vJ a8 exp{-ReTr(M (V-U)1} , (3.1)

o —jc

where we have dropped suffices s, ﬁ and superfices i, j. For the

scalar fields we have
T = J d®n s(n-9)
006 i006 +
= I d n[ d%g exp{-Rel& (n-¢)11 . (3.2)

—jo

11



The partition function is rewritten as
Z = |(du)(d¢) exp{-s(u,¢)} ,

= |dvdn(du)(d¢) §(V-U)S(n-¢) exp{-s(v,n)} ,

{
= |dvdMdndg(du) (d¢)

xexp{—S(V,n)—ReTr[M+(V—U)]—Re[ET(n—¢)]} « (3.3)

If we perform the integration over the original variables in such

a way as
W (M) f(du) exp{ReTr(M'U)} (3.4)
and
eW(8) [(d¢) exp{Re(£+¢)} ' ' (3.5)
then we have

Z

JdVdend¢ exp{-Sqre(V,M,n, )} (3.6)

where the effective action is defined by

12



Sefe(V/M,n,9) = S(V,n) - SZﬁ[w(Msﬁ)-ReTr(MZﬁVsa)]
, )

- % [w(Eg) -Re(Eing)l . (3.7)
=]

Saddle point conditions are obtained by differentiating Saff bY

each unconstrained fields:

3s -
0 = iff = - a: * %Vlj ' (3.8a)
ani BMji
oS .
0 = eff _ __dw_ lnl , (3.8b)
28] og) 2
45 ..
0 = eff _ 35, lMl] , (3.9a)
v’ avi, 2
ji ji
39S .
0 = iff - BS+ + %gl , (3.9b)
on . N .
i i

and their hermitian conjugates.

Substituting vil  ana ni into Egs.(3.9a,b) by use of Egs.
(3.8a,b), we obtain coupled equatioﬁs for Mij and gi. We impose,
as usuél, the condition that solutions are invariant under
translations. Further we assume that MiJ is proportional to a
unit matrix, for convenience. This assumption is an unpleasant
point of the present analysis, since with this assumption we are
indifferent to the residual degrees of freedom which survive
after the symmetry breakdown. The disadvantage of this

assumption will be discussed in the next section. Thus we assume

13



Mil = m i3 (3.10a).

Sy
and
el =&gnl , S (3.10b)

where n' is a complex three-dimensional wunit vector, i.e.,

Zilni|2=1. Characteristic functions w(M) and w(&), and their
derivatives are calculated so that (for details of calculations

see appendix)

w(M) =w(m)
M=ml
=tn I det| I (m) I, _q(m) I, ,(m) (3.11)
n:—OO
In+1(m) In(m) In_«] (m)
I,,2(m) I, q(m) I,(m)
EAY I N ij
oW = zw'(m)std (3.12)
oM ¢
I+ M=m 1
. 8I, (%)
w(E) =u(g)=tn|——| , (3.13)
gi=en’ :
. I (8)
. ez’ (enta2 b, (3.14)
aet |, 21, ()
: €l=£nl 2

14



where 1I,(x) 1is a modified Bessel function of the n-th order.
Substitution of these expressions leads to the following
~ stationary conditions

48w (m) 34y 0" (£)2-m=0 , (3.15)

8y "w' (m)w' (§)-£=0 , (3.16)

where B*=B/54 and Y*=Y/3- The mean-field free energy density is

written as

a1 g*-g™w' (m)4-w(m)+mw' (m)

Fura

oy oyt (m)w' (£)21-w(E) +Ew' () (3.17)

i

48*—4w(m*)+3m*w'(m*)

sy - w(E)42e% 0 ), (3.18)

where m” and £° are solutions of Egs.(3.15) and (3.16).
For the case of the adjoint representation, the
approximation is carried out in the same way. The characteristic

function for a scalar field turns out to be

3 (3.19)

wa(€) =wA(£)=2n(
3

ga=gna

4813(€)]

15



The stationary conditions are
48% " (m)3+3yM ! (m)w) (£)2-m=0 (3.20)
and
8 x , 2 |
3V wi(m)“wa(€)-8=0 . (3.21)
The free energy density is given by

Fupa = 4[_B*-B:w'(m)4—w(m)+mw'(m)

wy T (m) 20" (£)21-0(E) +Ew' (E) (3.22)

48 —4w(m™ ) +3m™w' (™)

sy~ w(EF) g et (5% O (3.23)

16



§4 Results of numerical calculations

Before presenting results, it is helpful for us to see the
property of first-derivatives of characteristic functions. We
plot them in Fig.2. They approach to limiting values as the
relevant parameters tend to infinity and their values are bounded
in the ranges, -3/2<w'(m)<3 and -1<w'(£)<1. This behaviour
reminds us that they are directly'related to the mean fields Vij
and ni through stationary conditions. For scalar fields they are
odd functions of &, but w'(m) is not because the measure for
Tr(U) is not symmetric under the change of a sign. All of them
are increasing functions and their derivatives, i.e. the second
derivatives of characteristic functions, are positive. Thus, the
result is consistent with the negligence of w"(m) and w"(&) in
the derivation of stationary conditions.

We have searched solutions for the stationary conditions
(3.15,16) and (3.20,21) by numerical calculations in the region
0<B<10 and 0<y<15. In both cases of the representation of the
scalar fields, we have obtained three types of solutions:

(i) E=m=0

Equations (3.15) and (3.16), or (3.20) and (3.21) are
trivially satisfied for any values of 3 and vy. All the mean
fields wvanish, showing both gauge and scalar fields are
disordered (a confined phase). The free energy density receives

a contribution only from constant terms:

17



FiE)l = 4pTeay | (4.

1)

For convenience, we redefine the free energy density by

subtracting the above wvalue in the following discussions.

Therefore, F=0 for this solution.

(1) £=0, m#0

The condition (3.16) or (3.21) is satisfied trivially, and

the other one reduces to that of the pure gauge system

48%w" (m)3-m=0 . (4.

2)

We show the behaviour of w'(m)3*and m/(4B*) for a typical value
of B* in Fig.3. Solutions are given by the values of m at
crossing points‘ of two curves. 'For B* less than a certain
critical value, there is no solution other than m=0, but for B*
large enough, there appear fwo positive solutions. The larger
one corresponds - to the minimum of +the free energy. The B
dependence of the solution m* can be obtained by Eq.(4.2). If m
is large enough, w'(m) can be considered to be a constant. Then
we have
m*¥2g . | ' (4.3)

The numerical solutions are shown in Fig.4(a) (a solid line). As

expected, a solution appears in the weak coupling region B>7 and

18



m* grows with along the line parallel to the line of (4.3) (a
broken line). We note that this solution exists for any Y. The

free energy density for the pure gauge system in the mean field

approximation is given by

FiEE) = —qwm®)e3mw' (m¥) . (4.4)

If we use (4.3), we have an approximate form
Fhis) ¥ -4w(28)+188 . (4.5)

The resultant free energy density is plotted in Fig.4(b), where
the approximate one is also shown (a broken line). The system

undergoes a transition at the value of m where F&%i)(m*) vanishes

(=F&%A). From Fig.4(b) the critical point is determined so that
828. Because the stationary point appears before the transition,
it is the first order critical point. For the solution with £=0
we see that the spin configuration is disordered and hence we
interprete the phase above the critical point as a deconfined
symmetric phase. As described in the introduction, the non-
existence of such a critical point has been verified by MCS. It
is discussed by Flyvbjerg et al. for the SU(2) pure gauge system
that fhe mean-field critical point which appears also in the

SU(2) case 1is expected to vanish, if we take into account the

higher-order effects. We expect that the mean-field critical

19



point in the SU(3) case also vanishes.

In the case of extremely large values of B f(8%100), there
appears negative solutions. We have made a simplified analysis
and found that it is a local minimumwith a larger value of the
free energy. So we will neglect it in the following discussions.
(iii) &#0, m#0

A solution of this type corresponds to the higgs phase. An
existence of such a solution can be seen as follows. For large
values of m and &, we can take w'(m)=3 and o'(£)=1 and the

stationary condition gives

m*¥28+%y (for the case of fundamental repr.) , (4.6a)

m*225+%y (for the case of adjoint repr.) (4.6b)
and

£ =8y . (4.7)

According to the consistency with the large values of m and £ one
requires that this type of the solution appears in the region of
large vy. Using above equations, the free energy density (3.18)

and (3.23) become

L )
FrFa ) ¥-4w(28+3y)-u (8y)+188+8y (fund. repr.) (4.8a)

20



and
F&%ii)%—4w(26+%y)-w(8y)+188+12Y (adj. repr.). (4.8b)

Stereographical views of solutions m* and E*, and of the free
energy (in the figure, -F is plotted for convenience) are

given in Fig.5 for the case of the fundamental representation and
in Fig.6 for the case of the adjoinﬁ one. In both cases, the
solutions are>obtained at the mesh points of solid lines., The
dotted 1lines are drawn in order to display the position where
the solutions exist. The broken lines are intersectionﬁv of thé
above approximate forms with the boundaries. The Egs. (4.6),
(4.7) and (4.8) well reproduce the real solutions, in spite of
such a simple estimation. A mesh of broken lines in the Fig.S(c)l
and Fig.6{(c) shows that the free energy is positive there. For
the sake of the later discussions, we plot the free energy of the
type-(ii) solution in connection with the type-{iii) one (in the

region near the pure gauge limit).
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§5. Discussions of the results

Now we can draw phase diagrams based on the numerical
results. Tiie determination of the phase is carried out by
examinihg‘the behaviour of the free energy. We have to choose a
solution with a minimum free energy density (maximum for ~F).

First we discuss the system with a scalar field belonging to

the fundamental representaion. In Fig. 5(c) we have plotted -F
for the type-(iii) solution. The free energy density for the
type-(ii) solution is also plotted in the region y<1. It may,

however, be extended to the region of larger values of Yy, since
the type-(ii) solution does not depend on y. The free energy for
the type-(i) solution vanishes for any values of parameters and
it 1is represented by a -F=0 plane in Fig. 5(c). It is easy to
see that there are three phases corresponding to the three
solutions.
(I) confined phase for small values of 8 and ¥
(IT) deconfined symmetric phase for g>8, and yg1
(ITI) higgs phase for'the'remaining part

Let wus discuss the property of phase boundaries. As,
described in §4, the boundary between (I) and (II) is expected to
vanish for the SU(3) pure guage system, if we incorporate‘ the
higher-order corrections. In the present model, there is
additional contributions from the scalar field. Studies of this
contribution to the higher-order corrections are an interesting

problem, but here we consider naively that it does not change the
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situation since vy is small in the relevant region. Thus we
expect that the phase boundary between (I) and (II) is not a true
transition line and that the confined phase is smoothly connected
to the deconfined symmetric one.

The boundary between (II) and (III) runs along y=1 in the
weak coupling region (82>8). The free energy for the type-(III)
solution seems to be smoothly connected to that of the type-(II)
one. The yv-dependense of the solution E* verifies this fact. It
decreases linearly with and vanishes at around y=0.5, i.e. it
coincides with the type-(II) solution. All of these behaviours
point to the suggestion that this line is of the second order.
We have made a further analysis on this point. We have
calculated the free energy (3.17) as a function of £ by fixing m
to m*. Note that it may be considered as an effective potential
for the scalar field. 1In Fig. 7, we exhibit the shape of the
free energy for typical values of y (at 8=10). The variation of
the shape clearly shows that this transition is of the second
6rder.

The line separating (I) and (III) is of the first order in
the region 23, since the local minimum of the type-(iii)
solution appears when the system lies still in the confined
phase, In the strong coupling regiqn 853, however, the surface
representing F&%&i) seems to be tangent to the F=O plane. The
solution appearé as a global minimum. This fact suggests that

the 1line of this region is of the second order. Since the
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transition is not caused solely by the scalar field, the analysis
similar to that of Fig. 7 is ineffective. As described above,
however, in the strong coupling limit no transition is expected.
.Therefore; we consider that it is actually of the second order
and that this weakness indicates that the true transition line
terminates before reaching the B=0 line.

Thus we obtain the phase diagram shown in Fig; 8. The solid
(broken) line represents the first-order (second-~-oxrder)
transition and the dotted line at B=8 is considered to be a false
one due to the inaccuracy of the lowest-order mean field
approximation. If we add an end point to the traﬁsition line in
the strong coupling region, the phase diagram looks the same as
that of the Monte Carlo result (Fig. 1).

Next we consider the case of the scalar field in the adjoint
representation. The behaviour 6f the free energy density
Fig; 6(c) is very similar to that of Fig. 5(c). The difference
is that the boundary between (I) and (III) is always of the first
order. As mentioned in §3, there is a possibility that an Ising-
like transition exists in the strong coupling limit. So there is
no reason thatv the transition is weakened in this region 1in
contrast with the above case. Tﬁus we obtain the phase diagram
as shown in Fig. 9.

The comparison with the Monte Carlo results®) (Fig. 10)
reveals a shortcoming of the mean field approximation

supplemented by the assumption of Mij=m6ij. Monte Carlo
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simulations have shown that the parameter plane is divided into
three pafts at zero temperature: "the SU(3)-confined phase, the
sU(2)XU(1)—¢onfined phase, and SU(2)-confined but U(1)-~-deconfined
(higgs) phase. The last two are separated by the line starting
from the U(1)-£ransition and run into the SU(3) broken phase -
(y>5). It should be reminded that the region of large values of
v is governed by the type-(iii) solution in the whole range of B
for the mean field results. The non-existence of the critical
structure is regarded as a consequence of the assumption (3.10a).
Because we have neglected the degrees of freedom surviving the
SU(3)-breaking transition, it is natural that it cannot predict
the transition caused by the U(1) gauge field. If we are to
obtain such a transition, we have to use a mean field which can
describe a detailed structure of the gauge fields.

Thus we conclude that the lowest order mean field
approximation with the .assumption (3.10a) predicts the phase
diagram gualitatively consistent with Monte Carlo result in the
case of the triplet scalar field, but, in the case of the octet
scalar fields, it fails to give a transition caused by the gauge

field of the residual symmetry of the spontaneously broken phase.
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§6., Concluding remarks

We have studied the SU(3) lattice gauge system coupled with
a scalar field. on the basis of the mean field method. The
lowest-order approximation gives a qualitatively good phase
diagram in the case that the scalar field belongs to the
fundamental representation. In the case of the scalar field in
the adjoint repfesentation, the resulting phase diagram is far
from the expected one according to the fact that the assumed form
of the mean gauge field is too simple. In order to improve the
'situation, we have to keep the residual degrees of freedom. One
possibility is to permit diagonal elements of the mean field
matrix to have different values. In that case the formulation
resembles the analysis of the U(1) gauge system.  The
characteristic function for guage fields becomes, however, rather
complicated and it is difficult to solve the self-consistency
equations. Nevertheless investigatibns in this direction are
needed to obtain the true phase structure.

The «critical point predicted by MFA for the pure gauge
system is expected to disapper by introducing the higher-order
effects, How about the critical line in the strong coupling
region? For the triplet scalar field it should terminate before
reaching the p=0 limit, while for the octet one the critical
structure 1is expected not to disappear. Can the higher-order
analysis explain this difference? This is also an interesting

problem to be studied.
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Finally we comment on the finite temperature structure. The
mean field method in the form developed in §3 has no information
on the size of the lattice, since the assumption of translational
invariance makes the free energy independent of it. The author
have studied the system by édmitting the time-component of gauge
fields to have a different value, but the result obtained up to
now has been always isotropic. If we take the different lattice
spacing in the direction of time, it is possible to take the
unisotropy into consideration. This method seems to be wuseful
for the comparison with the Monte Carlo resulfs of the finite

temperature system. The conclusive statement is left for the

future investigations.
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Appendix
Here we show the detailed calculation of characteristic

functions. First we derive that of the gauge field, w(Mij),

which is defined by

+
eW(M) = I(dU) eReTr(M U) (A,1)

Since we assume that mid is proportional to a unit matrix 6ij

with a proportionality constant m, it is written as

eW(m) _ Sw(M) = J(dU) eMReTr (U) (A.2)

M=ml

We express it as an integral of the diagonal elements,

a3e.
1

(2m)

ew(m)

3{1—COS(91—92)}{1—COS(92‘93)}{1‘005(93—81)}
xS (041 ) noa 27 exp(mzcosgy ) (A.3)

It reduces to the sum of four integrals

w(m) _ 3 3 3 3
e = 110—511—112+7I3 ’ (A.4)

IO = Id3ei 5(261) exp{mzcosei} ' (A.5a)

I, = fd3ei §(zo5) exp{mgcosp;} coslpq-6) , (A.5D)
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fd36i S(Zei) exp{mzcosei} cos(261—282) , (A.5¢c)

H
V]
1}

Iy = ‘d3ei S(Z0;) exp{chosei} cos(391) . (A.5d4)

Using an integral form of the modified Bessel function

m . .
In(m) - [ dg eln +mcos0 , (A.6)

L
2ﬂ~—ﬂ

we obtain

eWim) - Z{Ir31'21n—1InIn+‘l"In--ZInIn+2+Ir21(In+3“"]:n--3)}' (A.7)
n
We have not found an analytic form of this infinite sum. In
practical calculation, we have added the number of terms as many
as is necessary by using a computer.

The derivative of w(M) is given by

S = Lty std (A.8)
aM'i
I M=m1

where the facter 1/6 is obtained by comparing traces of both
sides. Differenciating Eg.(A.7), we obtain

w'(m) = e™ {Iﬁ[1n+1"1n+2+ln+4 ‘ (A.9)

n
InlIne3ln1-InsaIne1+Inesine2l }
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Next we calculate the characteristic functions for scalar
fields. Here we consider the scalar fields as real N-dimensional
vectors. For the fundamental representation we take N=6 and for

the adjoint one, N=8, The characteristic function is defined by

(]

N
(5) de$ s (|§]2-1) 3t | (A.10)

Replacing the delta function by its integral form we have

cW(E) [dst$ e—s($-$ -1)+§-$
2
—— S—-—.
v st s 2 ds . (A.11)

Taking into account the normalization, we obtain

I (&)
wlg) = zn{zv vl = ‘ (A.12)
, E AY] . .

where y=N/2-1. The derivative is given by

I (&) o
0'(g) = YL T | (A.13)

T (8)
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Figure captions

Fig.1: The phase diagram for the system with a scalaf field
(a) in the fundamental representation and (b) in the
adjoint representation obtained by Monte Carlo simulations,
taken from Ref.5) and 6), respectively.

Fig.2: The first derivatives of characteristic functions for
'(a) the gauge wvariable, (b) the scalar field in the
fundamental representation and (c¢) the scalar field in
the adjoint representation.

Fig.3: The first derivative of the characteristic function
cubed for the gauge variable as a function of m.

vSolutions of the saddle-point equation for the pure
gauge system are given as a function of m at the points
crossing with a line m/(4B*), which is shown for a
typical value of B*.

Fig.4: (a) A solution m* of the stationary condition for the
pure gauge system as a function of g. The broken line
represents the approximate solution of Eqg.(4.3). (b) The
free energy density corresponding to the solution, also,
as a function of RB. The broken line is again the free

energy density estimated by the approximate solution.
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Fig.5: Stereographical view of solutions for (a) m and (b) §
of the type (iii), and (c) the corresponding free energy
density, in the case of the system with a triplet scalar
field. Dotted lines show the positions where the
solutions appear. Broken lines are intersections of
the approximate solutions and boundaries. In (c),

a broken mesh represents that the free energy is positive
there.

Fig.6: Stereographical view of solutions for (a) m and (b) £
of the type (iii), and (c¢) the corresponding free energy
density, in the case of the system with an octet scalar
field. The differences of line types are same as Fig. 5.

Fig.7ﬁ The free energy FMFA(m=m*) at B=10 as a function of §
for three values of vy.

Fig.8: Phase diagram obtained by MFA for the case of the scalar
.field in the fundamental representation. A solid
({broken) line 1is considered to be of the first (second)
order. The dotted line is expected to disappear if we
take into account higher-order effects.

Fig.9: Phase diagram obtained by MFA for the case of the scalar
field in the adjoint representation.

Fig.10: Phase diagram at zero temperature obtained by Monte
Carlo simulations for the case of the scalar field in the

adjoint representation, taken from Ref. 6).
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