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Abstract

We investigate the phase structure of the SU(3) lattice

gauge system coupled with a scalar field on the basis of the

lowest-order mean field approximation.　Two cases are considered

for the SU(3)　representation of the scalar field.　For the

fundamental representation,　the resultant phase diagram is shown

to agree qualitativdIy with the Monte Carlo results, if we take

into　争CCOunt the analyses made in the limiting cases fo the

parameters of the system.　For the adjoint one,　however,　the

transition caused by the gauge fields of the residual subgroup

SU(2)×0 1　　0es not appear du号to the too simple form we assume

for the mean gauge-field.



51.Introduction

Gauge model has a variety of phases according to the values

of its characteristic constants such as a gauge coupling and

masses of fundamental fermions.　工n the quantum chromodynamlcs

the confined phase is smoothly connected to the asymptoと土cally

free phase and no phase trans土と土on (at least up to second order)

is expected. '　The single phase structure assures that quarks

are never liberated but behave as if they were free in hadrons at

a short distance.　when the system is held ln the thermal

equxlibr土um with a finite temperaturel however, the situation

changes.　Theoretical considerations2' and the investigations

using Monte Carlo simulations (MCS)3' have ointed out the

possibility that a first-order deconfining transition exists at

some critical temperature.　工f it is the case, we will f上nd a

quark-gluon phase in high-energy heavy-ion collisions and a new

interesting physics will emerge.　Phase transitions play an

important role also in the grand unified theories.　Since the

symmetry assumed　土n such theories ls not the one observed at low

energies,　we have to break it by introducing scalar fields.　The

symmetry is kept unbroken at high temperatures. After the system

is cooled down below a criと土cal temperature the vacuum turns to

be false and makes a transition to the true one with a broken

symmetry. This transition gives a hint for the interpretation of

the flatness and the `homogeneity of the universe in the

inflationary senario.4^　parameters in the potential for the
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scalar fields should be chosen so that the system shows a desired

breaking pattern at low energies. Thus it is very interestingノto

study phase structures of various gauge models.

In this report we discuss the SU(3) lattice gauge system

coupled with a scalar field.　Recently the autho has

investigated the model using computer simulations in

collalboration with some members of his laboratory.5'6^ In the

case that the scalar field belongs to the fundamental

representation/　they have found that the two-parameter phase-

plane is governed by a single phase although a transition line

lies in the weak coupling region.　They have also studied the

case of the scalar field in the adjoint representation.

According to their result it is seen that even such a simple

model gユves rise to the quite complicated phase structure.　In

particular.　they have found that the line of the trans土t土on of a

Heisenberg spin system existing at a weak coupling limit extends

to a cross-over region and is connected to that of an Ising-like′

transition at a strong coupling limit.

The Monte Carlo simulation may be the most powerful method

to study亡he phase structure, but a full analysis of the system

requires too long a CPU time.　In practice, although the above

authors have used a rather small la比ice (3^　or　63×3). more

iterations are needed to determine the precise location and the

order of critical structures.　The present author has realized a

necessity of theoretical analyses based on the other methods.
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This situation was the main motivation of the present work.　Thus

it should be considered as a supplementary part to the previous

Monte Carlo simulations.
1

The m<宇thod used here is the mean field approximation (MFA)

工t can predict a gross structure of the phase,　though it often

leads o erroneous predictions on the order and/or the location

of transition.　Brezin and Drouffe have reformulated it in a way

that the approximation may be iraproved by adding correction terms

order by order. ' For lattice gauge-higgs systems with a gauge

group U(1)′　Pendleton has shown that results of the lowest-order

MFA agree qualitatively with Monte Carlo data.8' we extend his

analysis to the case of the group SU(3). In order to compare our

result with MCS,　the scalar field is assumed to belong to the

fundamental or the adjoint representation of SU(3).

工n the next section,　we explain the model　土n a rather

detailed manner and review the results of the Monte Carlo

analyses in this model.　　工n　§3　we apply the mean field

approximation to the cases of the scalar fields belonging to the

fundamental and adjoint representations respectively and we

derive the self-consistency equat土ons in the mean　　土eld

approximation.　The numerical solutions are given in　§4.　In　§5

we discuss the phase structure of the system based on the

numerical results.　The final section is devoted to concluding

remarks.
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§2. SU(3) lattice gauge system coupled with a scalar field

we consider the SU(3)　gauge-higgs system on a four-

dimensional euclidean lattice.　A gauge variable -=主手・ is assigned

ノヽ　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　ノヽ

to each link (s′s+ya) where s denotes a site, and y a unit vector

pointing the positive direction of xリ　The lattice spacing a is

taken to be unity in the followings.　Superscripts i and j run

over the indices Of the fundamental representation of SU(3).

i.e., 1 to 3.　A scalar field <!>;: (<f>g) is defined on each site s

and it is assumed to belong to the fundamental　(adjo土nt)

representation.　The action of the whole system is a sum of a

gauge and a scalar part:

S=Sjj+S車

We take the Wilson action for the gauge part

su = βZl1-jReTr(Up)]
p

(2.1)

(2.2)

where U is an ordered product of Ug- along a plaquette, β=6/g'

(g is a gauge coupling constant) and the summ云tion is taken over

the whole plaquettes.　On the scalar field we impose a fixed norm

condition

中吉　-1 (fundamentalrepr.)
1
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Or

=(<f>|)2 - 1  (adjoint repr.) . (2.3b)

for convenience.　Then a naive discretisation of the minimally

coupled Lagrangian gives

S冨-Y ∑<【1-Re^S+yUs轟)]
s,u

S雷-Y^[1-Tr(サs+|jUsil

s,y◎sUsy>]

Or

(2.4a)

(2.4b)

where superscripts F and A denote the fundamental and the adjoint

repre畠entation,　respectively.　Here in the case of the adjoint

representation, ◎S-◎ is a matrix form ◎S-∑a哩a/万, where大豊]

(a=1.‥..8)　is a Gell-Mann matrix.　　The parameter y is

proportional o the vacuum expectation value squared of the

scalar field in the continuum limit.　The partition function is

defined as

z　= (dU)(dcj>) e-S

Functional integration measures are
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・dU)-N-1
Un,18璃6(U十U-1)6(detU-1)
SrU

-1
(d(J))F=Np

(d<j>)A - N云1

d6車皇6(刷:-1)

d-.j>:占(I2-1) ∫

(2.6)

(2.7a)

(2.7b)

where Ny, Np and N^ are normalisation constants.　Various gauge

fixing conditions can be imposed and then the MFA will give a

different result, ' It is suspected that the difference may be

explained by taking into account higher-order corrections.　It

is.　however.　beyond the scope of this report t pursue this

problem any further.　Here we adopt the model without a gauge

fixing.　A state of the system is determined by minimizing a free

energy densit少　F=　-(且nz)/volume.

Let us comment on behaviours of the system in the extreme

cases.　The detailed discussions have been given elsewhere. ' '

(i) Y=O

The system reduces to an SU(3) pure gauge one.　As mentioned

in the previous section, it has no phase transition at a zero

temperature although it is expected to have a first-order

critical point at a finite temperature.

(ii) y=∞

工七　五s the limit of an infinite vacuum expectation value of

the scalar field.　工n the case of the triplet scalar field,　the

system is nothing but an SU(2) pure gauge one with an inverse
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temperature scaled by a factor　2/3, i.e.　β/3.　The phase

structure is similar to that of the SU(3) case except that the

deconfln土ng transition of the finite temperature is of the second

order.

工n the case of the octet scalar fleld′　there are two

possible residual symmetries. SU(2)XU(1) and U(1)×U(1).　工n Ref.6

it has been conjectured and confirmed by MCS that the former is

the real residual symmetry.　Two sqbsysteras with symmetry SU(2)

and with U(1)　have their own crlt1cal natures　土independently.

Then two critical points exist,　corresponding to the finite-

temperature deconfining transition of the SU(2) pure gauge system

and the U(1)-deconfining transition.　The latter occurs at a

smaller value of　β.

(iii) β=0

工n this llmlt.　the partition function of the system with a

triplet scalar field is written as an analytic function of yi

sxnce it factorizes, in the unitary gauge, into the product of

integrals of gauge variables.　For the system with an octet

scalar field,　no factorization occurs,　but the system is

described by a variable D・-=det(◎白) if we perform integrationsS

over gauge variables.　The small y expansion gives an effective

action for D. similar to that of the Ising system and predicts a
s

transition at around y=5.

(iv) β=oo

In this limit both the fundamental and the adjoint scalar

8



system become a four-dimensional Heisenberg spin system with a

symmetry of 0(6) and 0(8), respectively.　It isノknown that the

Heisenberg-spin system has a second-order critical point in four

dimensions.　The critical point is estimated by applying an

infra-red bound'") for 0(N) system

yc副:ds[exp(-s)'Iqls)1 ・　　(2.8)
where Iq is a modified Bessel function of the zeroth order.

The analyses using Monte Carlo simulations have given phase

diagrams shown in Fig.1.　The 0(6)-Heisenberg-spin transition

starting at　(β,Y)空(∞′1)　extends to the crossover region and

terminates around (3,y)=(5,1) in Fig.1(a). It is consistent with

the above study of the limiting cases.　There is no critical

point to which the line　土s connected.　Because there　土s no

critical point to which the line is connected, it must terminate

before reaching the strong coupling limit.　The end point lies in

the crossover region,　since the orderedness of spins loses its

meaning in the disorder region of the gauge system.　The dotted

llne　土s a critical-like structure connecting the crossover points

of the SU(3/ (β=O limit) and SU(2) (β=m limit) pure gauge system.

This structure may be due to a size effect arising from smallness

of the lattice.　The phase diagram (Fig.1(b)) of the adjoint-

scalar system is drawn for the finite-temperature case.　The

phase plane is divided into five parts by critical lines.　Region
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I and II are SU(3)-symmetric phases,　where the former is the

confined phase and the latter the deconfined.　The broken phase

consists of three parts,　the SU(2)×U(1トconflned.　the su(2ト

confined*but U(1)-deconfined.　and the fully deconfined one.　The

location of the Ising-like transition line in the strong coupling

region is Obscure owing to the rather small number of iterat土ons.

The phase diagram at a zero temperature is obtained by removing

the finite temperature transition line from Fig.1(b).　In order

to verify these phase structures,　we study the system based on

the mean field raethod.
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§3. Mean field approximation

_′f

The mean field approximation can be considered as a saddle

point estimation of the partition function,　where the variables

are replaced by a new set of unconstrained var土ables.　self-

consistency equations are,　thereforel derived as a stationary

condition for the effective action.　Let us derive them for the

SU(3) lattice gauge-higgs system in the case that the scalar

field belongs to the fundamental representation.　For the case of

the adjoint representation,　we will note the difference and give

resultant formulae at the end of the section.

The unconstrained fields are introduced by inserting a unity

into the integral of the partition function (2.5).　For gauge

variables′ it reads

HL:d18vs(V-U)

d18Vd18Mexp{-ReTr[M(V-U)]},(3.1)

-100

S¥

where we have dropped suffices s, U and superfices i,コ.　For the

scalar fields we have

1　=
d6n6(n-柄

d6nloo

-1ォ5-p{-Re[」十(-=I・

It

3.2)



The partition function is rewritten as

y　　-
(dU)(dc[>) exp{-S(U,(j>)}　.

dVdn(dU)(d<j>) 6(V-U)6(n-車) expトs(v,n)>　,

dVdMdndE(du) (d<J>)

Xexp{-S(V.nトReTr【M十(V-U)]-Re【了(n_車)]}. (3.3)

エf we perform the integration over the original varlables　土n such

a way as

w(M)=l(dU)exp{ReTr(M+U)}
eJ

euバ) --- (dのexp{Re(石目・

sir製

then we have

z　=
dVdMdnd(j> exp{-Seff(V′M,n,ら)I I

where the effective action is defined by
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・eff(V,M,n,の-s(v,r>ト∑【w(Ms-)-ReTr(M^VgG)】

ノヽ
s,u

一三-t
[oi(5s)-Re(5sns)](3.7)

S

Saddle point conditions are obtained by differentiating Se」」 by

each unconstralned fields:

a eff aw

憲「+ h^
:　　+

コ1　　　コ1

dSeff ao)　1

-　「　　+言n i
二.:i　　二二

a 'eff aS

aVT.　∂Vl
コ1　　　　　　コ1

a Jeff aS

・nli a宣

Jwij

弓Ei ,

(3.8a)

(3.8b)

(3.9a)

(3.9b)

and their hermitian conjugates.

substituting Vl] And nl into Eqs.(3.9a,b) by use of Eqs.

(3.8a,b), we obtain coupled equations for Ml^　and・ ら We impose′

as usual′　the condition that solutions are invariant under

translations.　Further we assume that M　-* is proportional to a

unit matrix,　for convenience.　This assumption is an unpleasant

point of the present analys土sl since with this assumption we are

indifferent to the residual degrees of freedom which survive

after the symmetry breakdown.　　The disadvantage of this

assumption will be discussed in the next section.　Thus we assume
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甥-m61〕

∈吉　-∈nl ,

and

(3.10a),・

(3.10b)

where n is a complex three-dimensional unit vector, i.e.∫

Ejjnl1 -1.　Characteristic functions w(M) and両). and their

derivat土ves are calculated so that (for details of calculations

see apbendix)

w(M) M=m皿=w(m)

KB

=An　∑　det

n=---

DMr.
コ1 M=m皿

ぢ1r X

∈1f-1

In(m)　xn^^>　V^1*'

工n+1(m)工n(m)　工n_i(m)

エn+2(m)工n+1(m)工n(m)

-fw-(mjSl〕 .

=uU)=」n

-享_ォ-.)r---÷享i ,
2工2(ら)

14
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Eヨ

where !n(x) is a modified Bessel function of the n-th order.

Substltut土on of these expressions leads o the following

stationary conditions

4β★w'(m)J+y ojl(ら)2-ra=o

87★w'dnJw'K)-∈=0　′

(3.15)

(3.16)

where β★-β/54 and y★-y/3. The mean-field free energy density is

written as

MFA = 4【 β★-β★wl(m) -w(m)+mw'(m)

+Y★-7㌦-(m)u)f(ら)2トu(∈)+Ew'U)

43 -4w(m )+3ra w (m*)

・4Y★- uU )+言E*u-(5*)

(3.17)

(3.18)

where m and 」　are solutions of Eqs.(3.15) and (3.16)

For the case of the adjoint representation,　the

approximation is carried out in the same way.　The characteristic

function for a scalar field turns out to be

coAU> -o)a(E; )-」n

-a-'n

481.は)

15
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The stationary conditions are

4β★wl (ra)3+TYl'w・ (m嘱U)2-m-o

8*

3Yw'(m)^(ら)-ら-0.

and

The free energy density is given by

MFA = 4【 β★-β★W-(m) -w(m)+mw'(m)
★

* Y　-(m)2u)-(∈)2トtom+緑(ら)

4β★-4w(m★)+3m★wl(m当

A*
+4y-w(」*)+音(5*)

16
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§4　Results of numerical calculati°ns

Before presenting results, it is helpful for us to see the

property of first-derivatives of characteristic functions.　we

plot them in Fig.2.　They approach to limiting values as the

relevant parameters tend to infinity and their values are bounded

in the ranges,　-3/2<w'(ra)<3　and　-Kml(ら)<1.　This behaviour

reminds us that they are directly related to the mean fields Vlコ

and n through stationary conditions.　For scalar fields they are

odd functions of　己,　but w-(m) is not because　とhe measure for

Tr(U) is not symmetric under the change of a sign.　All of them

are increasing functions and their derivatives, i.e.　the second

derivatives of characteristic functions, are positive.　Thus, the

result is consistent with the negligence of w''(m) and w"(ら) in

the derivation of stationary conditions.

We have searched solut土ons for the stat五〇nary conditions

(3.15,16)　and (3.20,21) by nuraerlcal calculations in the region

O王β三10　and O≦_Y王15.　In both cases of the representation of the

scalar fields.　we have obtained three types of solut土ons:

(i) ∈=m=O

EquatiOns　(3.15)　and　(3.16),　or (3.20)　and　(3.21)　are

trivially satisfied for any values of　β　and y.　All the mean

王1elds vanishl showing both gauge and scalar fields are

disordered (a confined phase).　The free energy density receives

a contribution only from constant terms:

17



・・.思　4fl*+4、-・★ (4.1)

For convenience,　we redefine the free energy density by

subtracting the above value in the following discussions.

Therefore, F=O for this solution.

(ii) >;=O. lTL≠O

The condition (3.16) or (3.21) is satisfied trivially, and

the other one reduces to that of the pure gauge system

4β★wl (m)J-m=O (4.2)

we show the behaviour of w'(ni) and m/(4β*) for a typical value

of　3　in Fig.3.　Solutions are given by the values of m at

crossing points of two curves.　For　3　less than a certain

critical value′　there is no solution other than m=0′　but for β★

large enough, there appear two positive solutions.　The larger

one corresponds　-to the minimum of the free energy.　　The　β

★

dependence of the solution m can be obtained by Eq.(4.2).　工f m

is large enough,　wl(ra) can be considered to be a constant.　Then

we have

m聖2β . 4.3

The numerical solutions are shown in Fig.4(a) (a solid line).　As

expected,　a solution appears in the weak coupling region (3>7　and
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m grows with along the line parallel to the line of (ノ4.3) (a

Eコi

broken line).　We note that this solution exists for any y.　The

free energy density for the pure gauge system　土n the mean field

approximation is given by

F畠圭去* - -4w(m )+3m w-(m*)

工f we use (4.3). we have an approximate form

F畠)聖-4w(2β)+18β .

(4.4)

(4.5)

The resultant free energy density is plotted in Fig.4(b),　where

the approximate one is also shown (a broken line).　The system

undergoes a transition at the value of m where壷去)(m★) vanishes

(-F<M吉^). From Fig.4(b) the critical point is determined so that

β聖8. Because the stationary point appears before the transition,

1七　五s the first order critical point.　For the solution wlth　∈=O

we see that the spin configuration is disordered and hence we

mterprete the phase above the critical point as a deconfined

symmetric phase.　As described in the introductionJ the non-

existence of such a critical point has been verified by MCS.　It

is discussed by Flyvbjerg et al.　for the SU(2) pure gauge system

that the mean-field critical point which appears also in the

SU{2)　case xs expected to vanish. if we take into account the

higher-order effects.　we expect that the mean-field critical
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po土nt　土n the SU(3) case also vanishes.

・lII

In the case of extremely large values of β (βも100), there

appears negative solutions.　We have made a simplified analysis

and found that it is a local minimumwith a larger value o the

free energy.　So we will neglect it in the following discussions.

(iii) ∈≠0, m≠O

A solution of this type corresponds to the higgs phase.　An

existence of such a solution can be seen as follows.　For large

values o m and　∈,　we can take w-(m)=3　and d-(B,)-1　and the

stationary condition gives

m*^23+|Y

m*^2β +号Y

r-8y

and

(for the case of fundamental repr.) .　(4.6a)

(for the case of adjoint repr.) (4.6b)

(4.7)

According to the consistency with the large values of m and　∈　one

requires that this type of the solution appears in the region of

large y.　Using above equations, the free energy density (3.18)

and (3.23) beeome

F出i)隻-4w(2β+与Y)-w(8y)+18β+8y (fund. repr.) (4.8a)
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and

壷去叛-4w(2βキトu>(8y)+18β+12y (adj. repr.). (4.8b)

Stereographical views of solutions m★ and E★′　and of the free

energy (in the figure, -F is piotted for convenience) are

given in Fig.5　for the case of the fundamental representation and

in Fig.6　for the case of the adjo土nt one.　工n both cases,　the

solutions are obtained at the mesh points of solid lines.　The

dotted lines are drawn in order to display the position where

the solutions exist.　The broken lines are intersections of the

above approximate forms with the boundaries.　The Eqs. (4.6)∫

(4.7)　and (4.8) well reproduce the real solutions,　土n spite of

such a simple estimation.　A mesh of broken lines in the Fig.5(c)

and Fig.6(c) shows that the free energy　土s positive there.　　or

the sake of the later discussions, we plot the free energy of the

type-(ll) solution in connection with the type-(iii) one (in the

region near the pure gauge limit).
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§5. Discussxons of the results

Now we can draw phase diagrams based on the numerical

results.　Tiie determination of the phase is carried out by

exam土n土ng`'the behaviour of the free energy.　We have to choose a

solution with a minimum free energy density (maximum for　-F).

First we discuss the system with a scalar field belonging to

the fundamental representaion.　In Fig. 5(c) we have plotted　-F

for the type-tin) solution.　The free energy density for the

type-(ii)　solution is also plotted in the region yく　　　It may,

however,　be extended to the region of larger values of y,　since

the type-(ii) solution does not depend on y.　The free energy for

the type-(i) solution vanishes for any values of parameters and

it is represented by a　-F=O plane in Fig. 5(c).　It is easy to

see that there are three phases corresponding to the three

solutions.

(I)　confined phase for small values of　β　and y

(II) deconfmeet symmetric phase for　βと8, and yも1

(Ill) higgs phase for the remaining part

Let us discuss the property of phase boundaries.　As,

described　土n　§4. the boundary between (I) and (工工) ⊥s expected to

vanish for the SU(3) pure guage system, if we incorporate the

higher-order corrections.　　工n the present model′　there is

addlLional contributions from the scalar field.　　Stud土es of this

contribution to the higher-order corrections are an interesting

problem. but here we consider na土vely that it does not change the
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situation since y is small in the relevant region.　Thus we

expect that the phase boundary between (I) and (II) is not a true

transition line and that the confined phase is smoothly connected

亡o the deconfined symmetric one.

The boundary between (II) and (III) runs along y=1 in the

weak coupling region (βと8).　The free energy for the type-(III)

solution seems to be smoothly connected to that of the type-(II)

one.　The y-dependense of the solution 」　verifies this fact. It

decreases l土nearly with and vanishes at around y=0.5′　土.e. it

coincides with the type-(工工) solution.　Å11 0f these behaviours

point to the suggestion that this line is of the second order.

We have made a further analys上s on this point.　we have

calculated the free energy (3.17) as a function of　∈　by fixing m

to m★　Note that it may be considered as an effectIve potential

for the scalar field.　In Fig. 7,　we exhibit the shape of the

free energy for typical values of y (at　β=10).　The variation of

the shape clearly shows that this transition　土s of the second

order.

The line separating (I) and (III) is of the first order in

the region　β之3, since the local minimum of the type-(iii)

solution appears when the system lies still in the confined

phase. In the strong couplキng region鴨3, however. the surface

representing F出x'seems to be tangent to the F-0 plane. The
solution appears as a global minimum.　This fact suggests that

the line of this region　土s of the second order.　Since the
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transition is not caused solely by the scalar field, the　卑nalysis

similar to that of Fig. 7 is ineffective.　As described above,

however, in the strong coupling limit no transition is expected.

Therefore,　we consider that it is actually of the second order

and that this weakness indicates that the true transition line

terminates before reaching the　β=O lineJ

Thus we obtain the phase diagram shown in Fig. 8.　The solid

( broken )　line represents the first-order　( second-order )

transition and the dotted line at　3^8 is considered to be a false

one due to the inaccuracy of the lowest-order mean field

approximation.　If we add an end point to the transition line in

the strong coupling region,　the phase diagram looks the same as

that of the Monte Carlo result (Fig. 1).

Next we consider the case of the scalar field in the adjoint

representation.　　The behaviour of the free energy density

Fig. 6(c) is very similar to that of Fig. 5(c).　The difference

is that the boundary between (I) and (工工エ) is always of the first

order. As mentioned in　§31 there is a possibility that an Islng-

like transition exists in the strong coupling limit,　o there is

no reason that the transition is weakened in this region in

contrast with the above case.　Thus we obtain the phase diagram

as shown in Fig. 9.

The comparison with the Monte Carlo results ' (Fig. 10)

reveals a shortcoming of the mean field approximation

supplemented by the assumption of Mi:)=m51コ　　　Monte Carlo
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simulations have shown that the parameter plane　土s divided into

three parts at zero temperature:　the SU(3トconfmed phase,　the

su(2)×U(1 )-confined phase. and SU(2)-confined but U(1)-deconfined

(higgs) phase.　The last two are separated by the line starting

from the U(1トtransitiOn and run into the SU(3)　broken phase

(Y>5).　It should be reminded that the region of large values of

y is governed by the type-(iii) solution in the whole range of　β

for the mean field results.　　The non-existence of the critical

structure is regarded as a consequence of the assumption (3.10a)

Because we have neglected the degrees of freedom surviving the

SU(3)-breaking transition, it is natural that it cannot predict

the transition caused by the U(1) gauge field.　If we are to

obtam such a transition,　we have to use a mean field which can

describe a detailed structure of the gauge fields.

Thus we conclude that the lowest order mean field

approx土mat土on with the ,assumption (3.10a) predicts the phase

diagram qualitatively consistent with Monte Carlo result in the

case of the triplet scalar field,　but, in the case of the octet

scalar fields, it fails to give a transition caused by the gauge

field of the residual symmetry of the spontaneously broken phase.
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§6. Concludxng remarks

We have studied the SU(3) lattice gauge system coupled w土th

a scalar field on the basis of the mean field method.　The

lowest-order approximation gives a qualitat土vely good phase

diagram in the case that the scalar field belongs to the

fundamental representation.　工n the case of the scalar field in

the adjoint representation,　the resulting phase diagram is far

from the expected one according to the fact that the assumed form

of the mean gauge field is too simple.　In order to improve the

situation.　we have to keep the residual degrees of freedom.　One

possibility is to permit diagonal elements of the mean field

matrix to have different values.　工n that case the formulation

resembles the analysis of the U(1)　gauge system.　　The

characteristic function for guage fields becomes. however, rather

complicated and it is difficult to solve the self-consistency

equations.　Nevertheless investigations in this direction are

needed to obtain the true phase structure.

The critical point predicted by MFA for the pure gauge

system is expected to disapper by introducing the higher-order

effects.　How about the critical line in the strong coupling

region?　　or the triplet scalar field it should terminate before

reaching the　β=O limit,　while for the octet one the critical

structure is expected not to disappear.　Can the higher-order

analysis explain this difference?　This is also an interesting

p工・oblem to be studied.
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Finally we comment on the finite temperature structure.　The

mean field method in the form developed in　§3　has no informat土on

on the size of the lattice, since the assumption of translational

invariance makes the free energy independent of it.　The author

have studied the system by admitting the time-component of gauge

fields to have a different value.　but the result obtained up to

now has been always isoとropic,　工f we take the different lattice

spacing in the direction of time, it is possible to take the

unisotropy into consideration.　This method seems to be useful

for the comparison wxth the Monte Carlo results of the finite

temperature system.　The conclusive statement is left for the

future investigations.
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Appendxx

Here we show the detailed calculation of characteristic

functions.　First we derive that of the gauge field,　w(M J),

which ld defined by

ew<M> - f(dU) eReTr<MU> .　　　　　(A,1'

since we assume that Mコis proportional to a unit matrix Slコ

with a proport土onalxty constant m′ it is written as

ew(m) - ew(M)

M=ml

(dU) emReTr(u>

Wd express it as an integral of the diagonal elements,

(A.2)

{1-cos(el-e2)}{i-cos(e2-e3)}{i-cos(e3-el)}

×6(∑-i>mod 2T exp(m∑cos9i)

It reduces to the sum of four integrals

・w(m) -音Io一言Il一言I2+!I3

o ==　dJ64 6(Eii) exp{mECOsBi) ′

(A.3)

(A.4)

(A.5a)

・1 -=　dJ9, fi(Eqァ) exp{mEcos9j-} cos(e-|-e2) , (A.5b)
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I2 =　d38i SUe^ exp{mEcoieァ>　os(2e.,-292) , (A.5c)

I3 -　d^i <S(= ) exp{m=cosep cos(39.|).  (A.5d)

Using an integral form of the modified Bessel function

I(m)-Ifd9ein+mcos1

27TJ-tt

we obtain

(A.6)

・wdn) ∑tI孟-2ln_ilnln+1-In-2InIn+2+I孟(In+3+In-3)>- <A'7>
n

We have not found an analytic form of th⊥　infinite sum.　In

practical calculation. we have added the number of terms as many

as　土s necessary by using a computer.

The derivative of w(M) is given by

-か(m)613
M-ml

(A.8)

where the facter　り6　土s obtained by comparing traces of both

sides.　Differenciating Eq.(A.7), we obtain

w'(m) - e-w ∑ (=孟【In+1-In+2+In+4
n

-工n【工n+3エn1-工n+4工n+1十工n+5工n+2] }
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Next we calculate the characteristic functions for scalar

fields.　Here we consider the scalar fields as real N-dimensional

vectors.　For the fundamental representation we take N=6　and for

the adjoint one, N=8.　The characteristic function is defined by

eu由- fd*?5(|S|2-1)吊　　　　(A.10)

Replacing the delta function by its integral form we have

eu(日当dsdN| >-s(描-1)+冒

弓dss言-s一花・

Taking into aceOunt the normalization, we Obtam

-(ミ)-ニ巨
where v=N/2-1.　The derivative is given by

ol-U) = We)
1＼J(S)
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Fxgure captions

Fig.1tThephasediagramforthesystemwithascalarfield

(a)土nthefundamentalrepresentationand(b)土nthe

adjointrepresentationobtainedbyMonteCarlosimulations′

takenfromRef.5)and6),respectxvely.

Fig.2:Thefirstderivativesofcharacteristicfunctionsfor

(a)thegaugevariable,(b)thescalarfieldinthe

fundamentalrepresentationand(c)thescalarfieldin

thead〕ointrepresentation.

Fig.3:Thefxrstderivativeofthecharacteristicfunction

cubedforthegaugevariableasafunctxonofm.

Solut土onsofthesaddle-pointequationforthepure

gaugesystemaregivenasafunctionofmatthepoints

crossingwithalinem/(4β),whichisshownfora

typicalvalueofβ★.

7CFig.4:(a)Asolutionmofthestationaryconditionforthe

puregaugesystemasafunctionofβThebrokenline

representstheapproximatesolutionofEq.(4.3).(b)The

freeenergydensitycorrespondingtothesolution,also,

asafunctionofβThebrokenlineisagainthefree

energydensityestimatedbytheapproximatesolution.
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Fig.5:　Stereographical view of solutions for (a) m and (b) ら

of the type (iii), and (c) the corresponding free energy

density, in the case of the system with a triplet scalar

field.　Dotted lines show the positions where the

solutions appear.　Broken lines are intersections of

the approximate　云olutions and boundaries. In (c)′

a broken mesh represents that the free energy is positive

there,

Fig.6:　Stereographical view of solutions for (a) m and (b) ∈

Fig.7:

of the type (lii), and (c) the corresponding free energy

density′ 1m　とhe case of the system with an octet scalar

field.　The differences of line types are same as Fig. 5.

The free energy F^p-(m=m ) at　β=10 as a function of　5

for three values of y.

Fig.8:　Phase diagram obtained by MFA for the case of the scalar

field in the fundamental representation.　A solid

(broken) 1⊥ne is considered to be of the first (second)

order.　The dotted line is expected to disappear if we

take into account higher-order effects.

Fig.9:　Phase diagram obtained by MFA for the case of the scalar

field in the adjoint representation.

Fxg.10: Phase diagram at zero temperature obtained by Monte

Carlo simulations for the case of the scalar field　土n the

adjo⊥nt representation, taken from Ref. 6).
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