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Abstract—In this paper, we consider a repair-time limit replacement problem with imperfect
repair and discounting, and focus on the problem to determine the optimal repair-time limit
which minimizes the expected total discounted cost over an infinite time horizon. Based upon
a sophisticated graphical idea, we develop a non-parametric method to estimate the optimal
repair-time limit from the empirical repair-time data. Numerical examples are devoted to
estimate the optimal policy and to examine the asymptotic properties of the estimator.

Keywords—maintenance optimization, repair limit replacement policy, incomplete repair,
discounting, non-parametric estimation

1. INTRODUCTION

Since the seminal contribution by Hastings [1], a large number of repair limit replacement problems
were analyzed in the literature. This paper concerns a different type of repair-time limit replacement
problem with imperfect repair from Nguyen and Murthy [2]. More specifically, consider a single-
unit system where each spare is provided only by an order after a lead time and each failed unit
is repairable. When the unit fails, one estimates the completion time of repair, which may be a
possibly subjective one. If one estimates that the repair is completed up to a prespecified time-
limit at the failure point of time, then the repair is started immediately, otherwise, the spare unit
is ordered with a lead time. Since the repair is imperfect, the repaired unit or the ordered one
fails again during a finite time horizon. Nakagawa and Osaki [3] considered the similar problem
to determine the optimal repair-time limit which minimizes the expected cost per unit time in the
steady-state, though they did not take account of the imperfect repair.

Since the knowledge on the repair-time distribution is incomplete in general, any statistical
estimation method for the optimal repair-time limit will be needed in practical situations. Dohi et
al. [4] developed a non-parametric method to estimate the optimal repair-time limit applying the
total time on test (TTT) statistics for the problem with imperfect repair by Nguyen and Murthy [2].
Also, Dohi et al. [5] showed that the TTT method is applicable to a repair-cost limit replacement
problem with imperfect repair. Recently, Dohi et al. [6] proposed a new graphical method based
on the Lorenz transform (7, 8], for the repair-time limit replacement problem with imperfect repair
under the expected cost criterion per unit time in the steady-state.

However, if the maintenance operation is performed for a sufficiently large planning horizon,
then it is important to take account of an effect of discount factor in estimating the operating cost.

-17-



In other words, it will be useful under a fluctuating economic circumstance that the repair-time
limit schedule is designed so as to minimize the expected total discounted cost over an infinite time
horizon. In fact, for the repair limit replacement problem with discounting, the Lorenz method in
[6] can not be applied directly to determine the optimal repair limit policy. Main purpose of this
paper is to develop a new statistical method for the optimal repair-time limit under the expected
total discounted cost criterion, from the complete sample of repair-time data.

The paper is organized as follows. In Section 2, we describe the repair-time limit replacement
problem under consideration and define the notation and assumptions. In Section 3, the optimal
repair-time limit is analytically derived under the assumption that the knowledge on the repair-
time distribution is complete. In Section 4, the underlying problem to seek the optimal repair limit
replacement policy is translated to a graphical one. Then, the similar but somewhat different geo-
metrical idea from [6] is introduced and plays an important role for the translation. Next, we develop
a non-parametric statistical estimation method for the optimal repair-time limit from the empiri-
cal data. It is found that the repair limit problem with discounting shows quite different aspects
from the non-discounting problem. Numerical examples are devoted to illustrate the asymptotic
behaviour of estimates for the optimal repair-time limit and the corresponding minimum expected
cost in Section 5. Finally, the paper is concluded with some remarks in Section 6.

2. MODEL DESCRIPTION

The repair time X for each unit is a non-negative i.i.d. random variable. The decision maker has
a subjective probability distribution function Pr{X < ¢} = G(¢) on the repair time, with density
g(t) (> 0) and finite mean 1/u (> 0). Suppose that the distribution function G(¢) € [0, 1] is
arbitrary, continuous and strictly increasing in ¢t € [0, 00), and in addition has an inverse function,
i.e. G71(-). Suppose that the time to failure for a repaired unit, Y7, is a non-negative i.i.d. random
variable having the probability distribution function F(t) with density function f;(¢) and finite
mean 1/X\; (> 0). Also, the time to failure for a new (spare) unit, Y5, is a non-negative i.i.d.
random variable having the probability distribution function Fa(t) with density function fo(t) and
finite mean 1/\y (> 0). Further, we define:

to € [0, 00): repair-time limit (decision variable)

k¢ (> 0): penalty cost per unit time when the system is in down state
k. (> 0): repair cost per unit time

¢ (> 0): fixed cost associated with the ordering of a new unit

L (> 0): lead time for delivery of a new unit

B (> 0): discount factor

Consider a single-unit repairable system, where each spare is provided only by an order after a
lead time L and each failed unit is repairable. When the unit has failed at time ¢ = 0, the decision
maker wishes to determine whether he or she should repair it or should order a new spare. If the
decision maker estimates that the repair is completed within a prespecified time limit t¢ € [0, c0),
then the repair is started immediately at ¢ = 0 and completes at time ¢ = X. After the completion
of repair, the unit is started to operate again, but fails again for a finite time span since the repair
is imperfect.

On the other hand, if the decision maker estimates that the repair time exceeds the time limit
tp, then the failed unit is scrapped at time ¢ = 0 and a new spare unit is ordered immediately. A
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new unit is delivered after the lead time L. Further, the new unit also fails for a finite time span.
Without any loss of generality, it is assumed that the time required for replacement is negligible.
Under these model setting, we define the interval from the failure point of time to the following
failure time as one cycle. Figure 1 depicts the configuration of the repair limit repacement model

under consideration.
>E f’ time
X Vi,
7

¥ ﬁ—} time
L 172,
>

: failure (renewal point)

: recovery point for a unit
: operation period
rrepair period

:lead time

Pl lex

Figure 1: Configuration of the repair limit replacement model.

We make the following additional assumptions:
(A1) (b + k) [L{2(0)} exp(~BL) = LB} + L{A (B)} [fer (1 — exp(~BL)} + cBexp(—BL)|
> 0, '
(A-2) (ky + Fr) [1 = L{F2(6)} exp(=BL)]| > Bk {1 - exp(~BL)}/6 + cexp(~L) ],

where L{f;(8)} = [;° exp(—Bz)dFi(z) (i = 1,2) is the Laplace-Stieltzes transform of F;(t). These
assumptions might be somewhat technical, but will be needed to prove the unique optimal repair-
time limit.

3. EXPECTED TOTAL DISCOUNTED COST

Let us formulate the expected total discounted cost over an infinite time horizon. If the decision
maker judges that a new spare unit should be ordered, then the ordering cost for one cycle is
j;zo cexp(—BL)dG(t). In this case, the expected penalty cost for one cycle is ftzo fOL ks exp(—pz)dz
dG(t). On the other hand, if he or she selects the repair option, the expected penalty cost for one
cycle is fot 0 fot ks exp(—px)dxdG(t) and the expected repair cost for one cycle is foto fot kr exp(—pzx)dz
dG(t). Thus, the expected discounted cost during one cycle is

_ (ke ky) [* exp(—GL)}
Vito) = —5  / 3

where in general E() =1—1(-). Also, the discounted value of unit cost after one cycle becomes

{1 — exp(—B)}dG(H) + [kf{l - + cexp(—ﬂL)]—@(to), e

i(ts) = /0 ’ /0 " exp(— Bt + 2l)dF: (2)dG (1) + /t ” /0 " exp(—BIL + 2])dF>(2)dG ()

CLAB)) fo " exp(—)AG(t) + L{f2(8)} exp(~BL)T(ko). (2)
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~ Then the expected total discounted cost over an infinite time horizon is

o0

TC(to) =Y _ V(to)d(to)" = V (to) /d(to), (3)

n=0
and the problem is to determine the optimal repair-time limit ¢§ € [0, c0) satisfying

TC(ty) = min TC(tp). (4)

0<Ltg<o0

Differentiating T'C(¢¢) with respect to tg yields

d _ 9(to)
Tog [C o) = 'S(t00)2 ~go(to), | (5)
where
qo(to) [&%@f—){l — exp(— ﬂto)} hlls e);p(_ﬂL)} - CeXP(*ﬁL)]E(to)
— [£{£2(8)} exp(—BL) — L{F(8)} exp(~Bto) |V (to)- (6)

We have the following result to guarantee the existence of the optimal repair-time limit analyt-
ically.

Theorem 1: Under the assumptions (A-1) and (A-2), there exists a finite and unique optimal
repair-time limit ¢§ (0 < #§ < oc) which satisfies the non-linear equation go(t§) = 0, and the
minimum expected total discounted cost becomes

oty = b1t byl ep(CAD)/0—con(pL) -
L{72(8)) exp(—BE) — L{F(B)} exp(—BEg)
Proof: Differentiating go(fo) with respect to ¢y yields
- 0lto) = exp(~to) 2 (1), ®)
where
Z(t0) = (kr + ky)B(t0) — BLLA(D)IV (t0)- ©)

The further differentiation yields

d

G Z0) = glto) (b + B){ L{72(0)) exp(~BL) — LIA1(8)} |

+L{ (B} k{1 — exp(~BL)} + cBexp(-pL) }] > 0, (10)
which is due to (A-1). Also, since
2(0) = (ks +k) {1~ L{f2(8)} exp(~BL) }
=BL{ (B} ks {1l - exp(-AL)}/B +cexp(~L) } >0 (1)
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from (A-2), we have Z(to) > 0. From this result, it is seen that the function T'C(t) is strictly
convex in {g. Further, it is straightforward to confirm

(0 = = [k {1~ exp(=0L)}/B + coxp(—L)] [1 - L{AB)}] < 0 (12)
and
w(oo) = HZ [ 4 m{c{fzw bexp(—L) = L{AO)) } + LUAB)} ks (1 - exp(—BL))
+cﬁexp(—ﬂL>}] + 5[+ k) {1 - £ERE) exp(=81)} - B{ks {1 - exp(~8L)) /8
+cexp(—[5’L)H >0 (13)
from both (A-1) and (A-2), where £{g(8)} = 2 exp(—B1)dG(z). The proof is completed.
In the following section, we develop a graphical method for the repair-time limit replacement
problem, applying the concept of the similar idea to the Lorenz curve [7, 8]. The result is applied

directly to a statistical non-parametric problem to estimate the optimal repair-time limit from the
empirical repair-time data.

4. GRAPHICAL METHOD

Define the following transform;

’ G p)
bop) =1 - / exp(—f2)dC ), (14)
where
G~Y(p) = inf{to | G(to) > p}, 0<p<1. | (15)

From a few algebraic manipulation, we obtain

a1¢p(p) + aa(p — 1)
azps(p) + ap+as’ (16)

where a1 = (kr + ky)/B (> 0), az = k, /B4 {ks/8 — c}exp(—BL) (> 0), az = L{/1(B)} (> 0), ag =
L{f2(8)} exp(—BL) (> 0) and a5 = 1 — L{f1(8)} — L{f2(B)} exp(—BL). Hence, the optimization
problem in Eq.(4) can be rewritten by ming<p<1 7C(p).

TC(to) =TC(p) =

Lemma 1:

as - aja4/az < 0. (17)
Theorem 2: Under the assumptions (A-1) and (A-2), the minimization problem in Eq.(4) is
equivalent to

&s(p) +a |
b (18)



where {g(p) = {1 — ¢5(p)}/L{9(B)},

1 a2a4 + a1a4as/as  as
LEn Ut + 0 19
L{g(B)} { asa3 — A41Q4 as } (19)

o= -

and

_ag + (11(1,5/(13 (20)
ag — a1a4/a3

For the proof, see Dohi, et al. [4]. The theorem above means as follows. In the two-dimensional
plane (z,y) € R?, plot the curve (p,&3(p)) € [0,1] x [0,1] and the point B(—(, —c), where o > 0
and ¢ > 0 from the assumptions. Then the problem is the determination of p* to give the maximum
slope from the point B to the curve (p,€s(p)). Since there exists the inverse function G~1(-), the
optimal repair-time limit is given by t§ = G~1(p*). This result is essentially same as Theorem 1, but
it is interesting that one can graphically obtain the optimal repair-time limit when the repair-time
distribution is completely known. In other words, this graphical idea becomes an important hint
to develop a non-parametric method to estimate the optimal repair-time limit replacement policy
from the empirical repair-time data.

Next, we propose a statistical method to estimate the optimal repair-time limit using an empir-
ical curve from complete samples on the repair time. Suppose that the optimal repair-time limit
has to be estimated from an ordered complete sample 0 = zg < x; < 13 < -+ < z,, of repair times
from an absolutely continuous repair-time distribution G, which is unknown. The estimator of the
repair-time distribution should be the following empirical distribution;

_ _Jifn forz; <z < misq,
Gin(z) = { 1  forz, <z, (21)

where ¢ = 0,1,2,...,n— 1. On the other hand, the non-parametric estimator of £ g(p) in Eq.(18) is
defined by

] —zj-1) exp(— ﬂx])} (22)

&= (1-¢f,) /{1—,82[

where

g:exp(—ﬂxi){l—i/n-}—,@zi:[l— jgl](xj—wj—l)}- (23)

=1,

By plotting the point (i/n, .fiﬁn), i=0,1,2,---,n, and connecting them by line segments, we obtain
the sample curve.
The following result is the empirical counterpart of Theorem 2.

Theorem 3: The estimator of the optimal repair-time limit which minimizes the expected total
discounted cost over an infinite time horizon is £ = z¥, where

[} m e Snt O (24)

0<i%n z/n + C

Of our next interest is the convergence speed of the estimators £ and C(£}). We examine
numerically the strong consistent property of the estimator f{; in the following section.

-22—



5. NUMERICAL ILLUSTRATIONS

In this section, we present three examples to understand the graphical and statistical methods
proposed in the previous sections.

Example 1: Suppose that the repair-time distribution G(¢) is known and obeys the Weibull dis-

tribution;
Gt)=1— exp{—(-;-)”} (25)

with the shape parameter v = 1.5 and the scale parameter @ = 1.2. The other model param-
eters are ¢ = 10.0000(3), L = 5.0000 (day), k5 = 3.0000 ($/day) k» = 1.2000 ($/day) and
p = 0.0500. The determination of the optimal repair-time limit is presented in Fig. 2. In this
case, we have B = (—0.8524,—0.8540) and the optimal point with maximum slope from B is
(p*,€s(p*)) = (0.3530,0.5167). Thus, the optimal repair-time limit and the minimum expected cost
are t = G~1(0.3530) = 13.1971 (day) and TC(t%) = 79.2792 ($), respectively.

&1

L{g(B)} = 0.4543
L{(B) = 0.9550
LB} =0.9500

B =0.0500

L =5.0000

c=10.0000  0.5167

ky=3.0000

k= 1.2000

1o =13.1971
TC(R) = 79.2792

-0.8524 A 1
03530 »

B ~1.8540

Figure 2: Determination of the optimal repair-time limit.

Example 2: The repair-time data are made by the random number following the Weibull distribu-
tion with shape parameter v = 1.5 and scale parameter § = 1.2. The other model parameters are
same as Example 1 except that L{g(8)} = 0.5369. The sample curve based on the 20 sample data
is shown in Fig. 3. Since B = (~0.8524, —0.7226), the optimal point with maximum slope from
B becomes (i*/n, &5 n) (11/20, 551’20) = (0.5500,0.7273). Hence, the estimates of the optimal
repair-time limit and the minimum expected cost are £ = 17.1523 (day) and TC(£}) = 81.5756 ($),
respectively. ‘

Example 3: Suppose that the repair-time distribution and model parameters are similar to those
in Example 2. Then the real optimal repair-time limit and the minimum expected cost become
ty = 13.1971 (day) and TC(t§) = 79.2792 ($), respectively. On the other hand, the asymptotic
behaviour of estimates for the optimal repair-time limit and the corresponding minimum expected
cost are depicted in Figs. 4 and 5, respectively. From these figures, we observe that the estimates
converge to the corresponding real optima around where the number of data is 30. In other words,
without specifying the repair-time distribution, the proposed non-parametric method may function
well to estimate the optimal repair-time limit precisely.
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Lig(B)} =0.5369
LBy} = 0.9550
LB} =0.9500 (1% ] S, .
B =0.0500 :

L =5.0000

ad

fo = 17.1523
TC(fy) = 81.5756

; 1
05500 P

—0,8524 L

S A, ~0.7226

Figure 3: Estimation of the optimal repair-time limit.

;Ot A

o =13.1971

‘igure 4: Asymptotic behaviour of the estimate for the optimal repair-time limit.

TC (i)

TCUg) = 79.2792f—#~>

»
>
4

10 150 g

Figure 5: Asymptotic behaviour of the estimate for the minimum expected total discounted cost.
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6. CONCLUSION

In this paper, we have developed a new graphical device to calculate the optimal repair-time limit
replacement policy with imperfect repair and discounting. The basic idea is similar to the classical
one by the TTT transform, but it should be noted that the underlying maintenance problem is
quite different from the TTT-based problem. In numerical examples, it has been observed that the
non-parametric method based on the empirical curve has nice convergence properties, although any
estimator related with the empirical distribution does not converge to the real optimal at earlier
phase and more than 50 data are needed to get the satisfactory estimate from our experiences.
In that sense, the method proposed here will be useful to estimate the optimal repair-time limit
replacement policy in practice.
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Abstract—Knockout options are kinds of exotic contingent claims whose right to exercise is
nullified when the underlying asset price hits a knockout boundary. Beginning with a mathe-
matical model of Merton (1973), some extended models have been developed for the knockout
options, under a common assumption that the knockout boundary exists in the whole trading
interval. In this paper, however, we consider a new European knockout option whose knockout
boundary exists only in a certain part of the trading interval, so that we call it a switched
knockout option. Extensive numerical experiments show that the switched knockout options
have quite different properties from the ordinary knockout as well as vanilla options, especially
on the sensitivity with volatility.

Keywords—switched knockout options; incomplete knockout boundary; European call/put;
numerical valuation; Crank-Nicolson method

1. INTRODUCTION

For a vanilla European option, the payoff at exercise can be determined by the spot price of the
underlying asset, independently on its past history in the trading interval. The so-called exotic or
path-dependent options have values that depend on the history of the asset price in some non-trivial
way. Among various exotic options, we focus on a knockout option with an incomplete boundary
in this paper.

Knockout options are contingent claims whose right to exercise is nuilified when the undelying
asset value crosses a certain value. The set of those values over the trading interval is called a
knockout boundary. Knockout options are classified as either up-and-out or down-and-out.options
by the relative position between initial values of the asset price and the knockout boundary. Of
course, they are classified into two basic types, i.e, call or put. Hence, there are totally four different
types in knockout options: When the initial price is below the knockout boundary, there are up-
and-out calls and puts. On the other hand, when the initial price is above the knockout boundary,
there are down-and-out calls and puts.

In Merton [1], he has first studied a basic mathematical model of down-and-out European knock-
out options to obtain closed pricing formulas under an assumption that the knockout boundary is
an exponential function of remaining time to maturity. Rubinstein and Reiner [2] and Rich [3]
developed pricing formulas for all types of the basic knockout options. Rich also examined compar-
ative statistics for these formulas. In addition, more general knockout options have been proposed
by many researchers: Cox and Rubinstein [4] dealt with a down-and-out European knockout option
with a rebate, whose holder can receive a specified amount of money if the boundary is crossed.
Kunitomo and Ikeda [5] and Geman and Yor [6] obtained pricing formulas for knockout options
with two seperate boundaries that are located above and below the asset price at the initial time.
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Roberts and Shortland [7] analyzed the option price under an assumption that both of the drift
and volatility parameters are functions of time. Linetsky [8] proposed a new-type knockout option
called a step option, which is not instantaneously nullified when the asset price hits the knockout
boundary. These basic and generalized knockout options above have exponential knockout bound-
aries. Recently, Hanada and Kimura [9] developed an approximate pricing formula for a knockout
option with a general class of non-exponential knockout boundaries.

All of the previous results are based on a common assumption that the knockout boundary exists
in the whole trading interval from initial time to maturity. In this paper, however, we consider an
incomplete knockout boundary that exists only in a certain part of the trading interval. In other
words, there is a toggled switch in the knockout boundary; this option is equivalent to a vanilla
or an ordinary knockout option according as the switch is off or on. Hence, we call it a switched
knockout option in this paper. Obviously, the vanilla and ordinary knockout options are special
cases of our switched knockout option.

This paper is organized as follows: In Section 2, we mathematically specify the switched knockout
option to show that its price at arbitrary time satisfies a partial differential equation together with
some boundary conditions. In Section 3, we numerically solved this equation by the Crank-Nicolson
method to examine general properties of switched knockout options. To avoid redundancy, we are
mainly concerned with the analysis of the up-and-out call option, but we also refer to some general
properties of other three types shortly. Finally, in Section 4, we give a few concluding remarks.

2. MATHEMATICAL FORMULATION

We use the same assumptions as those in the Black-Scholes model [10] except for knockout bound-
aries: Assume that the capital market is well-defined and follows the efficient market hypothesis.
Let S(t) denote the underlying asset price at time ¢ and let 7 (> 0) be the maturity. Then, the
process {S(¢); 0 <t < T'} satisfies the stochastic differential equation
ds(t) = pdt + odW(t), 0<t<T, (1)
S5(t)
where p (o) is the drift (volatility) of the process S(-) and 7 is the risk-free interest rate, all of
which are assumed to be positive constants. In (1), {W(¢); 0 < ¢t < T} is the standard Brownian
motion process, so that the process S(-) becomes a geometric Brownian motion. Also, assume that
the option price written on S(t), say V, is a function of S(¢) and ¢, i.e., V = V(5(t),t) for S(t) > 0
and 0 < ¢ < T. From these assumptions and It6’s lemma, we have the partial differential equation

1 D2V (S(t),t) V(S(¢),t) » oV (S(t),t)
50’25(75)2—8—3(52——- + ’I’S(t)—as'@)— - T‘V(S(t), t) + T‘ = 0, (2)

St)>0, 0<t<T;

see Harrison and Pliska [11] or Jksendal [12].
For a vanilla call option with the exercise price K (> 0), the option price V satisfies the terminate
condition

V(S(T),T) = max(S(T) — K, 0), (3)

together with the boundary conditions

=1, 0<t<T (4)
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and

%inz.) V(¢ t) =0, 0<t<T. (5)

For a switched knockout option, however, these boundary conditions should be modified as follows:
Let Z,, be the set of time intervals where the nullified switch is on, and let Zog = [0, T|\Zon. Let
B(t) be the value of knockout boundary at time ¢ and assume that B(t) > 0 for ¢ € [0, T]. Then,
for the up-and-out call type, the boundary conditions should be

. V¢, t)
A e Ry b T
6
V(g t) =0, (&, 1) € [B(£), 00) X Ton, (6)
lime—o V(£,6) =0,  0<t<T,

whereas, for the down-and-out call type, the boundary conditions are given by

L Vgt
e Keray b 0=st=D
limg o V(§,t) =0, t € Zogr, 2
V(1) =0, (& t) € [0, B(t)] x Zon.

Similarly, we can formulate the price of the switched knockout puts with the exercise price K: The
terminate condition at time ¢ = T is given by

V(S8(T),T) = max(K — S(T), 0). (8)
The boundary conditions are, for the up-and-out put type,

limg_o0 Vi t) =0, t € Lo,
V({,t) =0, (€, 1) € [B(t), 00) X Lon, , (9)
limg_,o V(§,8) = Ke 7Tt 0<t<T,

and for the down-and-out put type,

limg o0 V(&) = 0, 0<t<T,
limg_o V(£,8) = Ke"T~9, ¢ € Tg, (10)
V(fa t) = 07 (f, t) € [O, B(t)] X Ion-

3. GENERAL PROPERTIES
3.1 PRELIMINARIES FOR NUMERICAL EXPERIMENTS

In general, it is quite difficult to obtain an analytical solution of the partial differential equation
(2) together with such complex conditions as described in Section 2. The purpose of this paper is,
however, no to obtain closed-form pricing formulas, but to examine general properties of the switched
knockout options, in particular, the differences from the associated options without the nullified
switch. Hence, we use a numerical method for the examination. In our numerical experiments,
we used the Crank-Nicolson method for solving (2) with the terminate and boundary conditions.
The Crank-Nicolson method has been known as a most accurate implicit finite-difference method;
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see Courtadon [13] for details. Also, see Hull [14] and Wilmott et al. [15] for the general theory of
finite-difference methods for option pricing.

To keep the original form of the knockout boundary as it is and to avoid the complication, we
directly apply the Crank-Nicolson method to (2) without using any transformation of variables in
the calculation. For convenience, we set the initial time to be ¢ = 0 and the maturity tobe t = T = 1.
As a computational requirement, we restrict the state space of S(¢) for all ¢ in an interval [0, S pax]
with Smax = 1,000 and divide this interval into 10,000 fragments with equal widths. Also, the
time interval [0, 1] is divided into 500 fragments. For the option parameters, we use K = 100 and
r = 0.05 in all cases, and o = 0.3 if not clearly mentioned. For the knockout boundary function, we
use a constant-valued boundary

_ | B, t€lon
B(t) B { Smaxa te Ioff; (11)

where both Z,, and Z.g are compact sets in [0, 1] and B = 180 in all cases.

- 3.2 THE UP-AND-OUT CALL TYPE

Figures 1 and 2 illustrate the curves of the up-and-out call price V(S(0),0) as a function of S(0) for
several knockout boundaries, where the intervals Z,, = 0 (i.e. empty set) and Zop = [0, 1] are added
~ for comparisons, which represent the vanilla and ordinary knockout options, respectively. Clearly,
the prices of these extreme cases give upper and lower bounds for V of the switched knockout
options. In Figure 1, the knockout boundaries exist in latter parts of the trading interval, whereas
in Figure 2 they exist in former parts. From these figures, we see that there are significant differences
between these two cases: The option prices for the former-part cases are higher and more sensitive to
the length of Z,, than those for the latter-part cases. No doubt, this result is due to the assumption
that the process S(-) follows a geometric Brownian motion with continuous sample paths. In actual
markets, it is reasonable to place a knockout boundary at a latter part of the trading interval for
hedging risk in future. In this sense, switched knockout options with latter-part boundaries can be
attractive alternatives to the vanilla option. Another marked difference is the value of each option
price when S(0) > B = 180. That is, the option prices for the latter-part cases have positive values,
while those for the former-part cases are always 0.

To see the effects of volatility to option prices, we compute the prices of switched knockout
options with o = 0.2, 0.3, 0.4. Figures 3 and 4 illustrate the curves of V(5(0),0) as a function 5(0)
when T, = [0.5,1] and Zo, = [0, 0.5], respectively. For the vanilla option, it is well known that
the price is monotonously increasing with o, i.e., 9V/80 > 0 for all ¢ > 0. However, we see from
Figures 3 and 4 that this property does not hold for switched knockout options: Roughly speaking,
for all o > 0, 0V/00 > 0 when S(0) << K and 8V/d0 < 0 when S(0) >> K. This result indicates
that a new scheme for risk hedging should be invented for switched knockout options. For more
numerical results, see Hanada [16]. :
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3.3 THE OTHER THREE TYPES

Some general properties of the other three types of switched knockout options can be shortly dis-
cussed by using similarity or symmetry: For the down-and-out call, it has properties similar to those
for the associated vanila option. This result is, in some sense, reasonable because of the similarity on
the boundary position. That is, both down-and-out and vanilla calls have the knockout boundaries
in the direction that the option value is decreasing. Unlike the up-and-out call, the price for the
down-and-out call is an increasing function of volatility, just as in the vanilla call.

Except for some trivial differences, general properties of the up-and-out put and the down-and-
out call are almost symmetric about the line S(0) = K. This result clearly reflects the symmetry
of the payoff lines for call and put options. We can observe a similar symmetric relation between
the prices of down-and-out put and up-and-out call switched knockout options; see Hanada [16] for
detailed numerical data.

4. CONCLUSION

In this paper, we have. introduced the switched knockout option whose boundary feature is in the
middle of the vanilla and ordinary knockout options. From extensive numerical experiments, we
saw that the position of Z,, in the trading interval significantly affects the option price, and that
the sign of the hedge parameter OV /0o varies depending on S(0). In addition, we saw that there
are some similar and symmetric relations among the four types of switched knockout options.

A future direction of this research is to examine the cases that

e I, contains many disjoint intervals,

e two knockout boundaries are located above and below S(0),

e the knockout boundary is either a certain function of time ¢ and S(¢) or a random variable.

Another future direction is to develop an approximate pricing formula for the switched knockout
option; see Hanada and Kimura [9] for a related research.
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Abstract—As a computer network technology has remarkably developed, microcomputers
which form a data terminal equipment (DTE) in a communication network have been used
in many practical fields and the demand for improvement of their reliabilities has greatly
increased. In fact, a microprocessor (1P) which is one of vital devices of a communication
network often fails through some faults due to noise and changes in the environment and
programming bugs. Therefore, it is necessary to take preventive measures for occurrences of
such errors. This paper considers the maintenance problem for improving the reliability of
a pP system with network processing. After the system has made a stand-alone processing,
it executes successively communication procedures of a network processing. When either uP
failures or application software errors in the system have occurred, a uP is reset to the beginning
of its initial state and restarts again. The reliability quantities such as the mean time to the
success of a network processing and the expected reset number, using the theory of Markov
renewal processes, are derived. An optimal reset number which minimizes the expected cost
until a network processing is successful, is analytically discussed. A numerical example is finally
given.

Keywords—Micfoprocessor, Network processing, Mean time, Expected cost, Reset number.

1. INTRODUCTION

As a computer network technology has remarkably developed, microcomputers which form a data,
terminal equipment (DTE) in a communication network have been used in many practical fields.
Recently, a new communication network combining the information processing and communication
plays an important role as the infrastructure in the information society. Therefore, the demand
for improvement of reliabilities and functions for devices of a communication network has greatly
increased [1].

In fact, a microprocessor (1P) which is one of vital devices of a communication network often
fails through some faults due to noise and changes in the environment and programming bugs.
Hence, it is necessary to take preventive measures for occurrences of such errors. Generally, when
we consider the reliability of the system on an operational stage, we should regard the cause of
error occurrences of a P as faults of software, such as mistakes of operational control and mermory
access, rather than faults of hardware. That is, when errors of a 1P have occurred, it is effective to
recover the system by the operation of reset [2].

This paper considers the maintenance problem for improving the reliability of a uP system with
network processing: After the system has made a stand-alone processing, it executes successively
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communication procedures of a network processing. When either uP failures or application software
errors in the system have occurred, a pP is reset to the beginning of its initial state and restarts
again. Most reliability evaluation models of a uP system until now have assumed that both errors of
a uP and failures of the data transmission occur unlimitedly [3],[4],[5],[6]. This paper assumes that
if the reset due to errors has occurred N times intermittently, then a uP interrupts its processing
and restarts again from the beginning of its initial state after a constant time. That is, if the reset
has occurred frequently, the system has latent faults, and takes preventive maintenances to check
the environment and to eliminate errors.

We derive the reliability quantities such as the mean time and the expected reset number until
a network processing is successful. Further, we regard the losses and times for the reset and the
interruption of processing and for the maintenance to restart the system as expected costs, and
discuss optimal policies which minimize them. A numerical example is finally given.

2. MODEL AND ANALYSIS

We pay attention to only a certain DTE which consists of a workstation or a personal computer
and connects with some networks, and consider the problem for improving its reliability.

Suppose that errors of a uP system occur according to an exponential distribution F(¢) with
mean 1/A. If errors of a uP have occurred, a uP is reset to the beginning of its initial state and
restarts again. It is assumed that any reset times are neglected.

(1) After a uP begins to operate, it executes an initial processing immediately and a stand-alone
processing.

(2) The times for an initial processing and a stand-alone processing have a general distribution
V(t) with mean 1/v and an exponential distribution A(t) with 1/, respectively.

(8) After a uP completes a stand-alone processing, it begins to execute a network connection
processing:

(a) A connection processing needs the time according to a general distribution B(¢) with
mean 1/, and fails with probability v (0 < v < 1).

(b) If a connection processing has failed, a uP executes the same processing again after a
constant time w where W(t) =0 for t < w and 1 for ¢ > w.

(4) After a connection processing has been successful, a pP executes a network processing.

(c) A network processing needs the time according to a general distribution U(¢) with mean
1/u, and is successful with probability 1 if it has not failed.

(5) If the N-th reset has occurred since a pP begins to operate, once it interrupts the processing,
and restarts again from the beginning after a constant time u, where G(t) = 0 for ¢ < u and
1fort > p.

Under the above assumptions, we define the folloWing states of the system:

State 0: An initial processing begins.
State 1: A stand-alone processing begins.

State 2: A stand-alone processing is completed and a network connection processing begins.
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State 3: A network connection processing succeeds and a network processing begins.
State F: A network processing is interrupted.

State S: A network processing succeeds.

The system states defined above form a Markov renewal process [7] where state S is an absorbing

state.
Let @ ;(t) (1=0,1,2,3;5=0,1,2,3,5) be one-step transition probabilities of a Markov renewal
process. Then, mass functions Q; ;(¢) from state ¢ at time 0 to state j at time ¢ are:

o) = [ V@r), )
Q) = [ F@ave, | o
@) = [ AGaF), &
@al) = [ FaAw), | @
Quolt) = gxw—”(t)* [ B +280) W0, o)
@uoft) = gxﬁ—”(t)*[(l—v) /;de)}, Q
@) = [ T@aFw, | @
@ustt) = [ Foaw), - )
where
x()=7 [ FHAB() » / F@aw ), ©)

the asterisk mark denotes the Stieltjes convolution and a(™(¢) denotes the n—fold Stieltjes convo-
lution of a distribution a(t) with itself, i.e., a ™ (t) = a®™ 1 (t) * a(t), a(t) * b(t) = [ b(t — u)da(v).

We derive the mean time £g from the beginning of system operation until a network processing
is successful. Let Hy g(t) be the first-passage time distribution from state 0 to state 5. Then, we
have

N
Hos(t) =Y DUV(t) x Z(t), (10)
j=1 )
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where

D) = Qoolt)+ Qo1(t) * Qro(t) + Qo1(t) * Qr2(t) * Qa0(t)
+ Qo1 (t) * Q1,2(2) * Qo,3(8) * Qs0(2), (11)
Z(t) = QO,I(t) % QLQ(t) & Qg’g(t) % Qg’s(t). (12)

It is noted that D(t) is the distribution function which a uP is reset by occurrences of errors and
Z(t) is the distribution function which the system moves from state 0 to state F directly without
being reset. Further, the first-passage time distribution Hy p(¢) from state 0 to state F' by a uP
the N-th reset is given by

Ho p(t) = DNV (1). (13)

Therefore, the first-passage time distribution Lg(¢) until a network processing is successful is
given by the following renewal equation:

Ls(t) = Hos(t) + Hor(t) * G(t) * Ls(t). (14)

Let ¢(s) be the Laplace-Stieltjes (LS) transform of any function ®(t), i.e, ¢(s) = [ e **dd(t).
Taking the LS transforms on both sides of (14) and arranging them, we have :

ho S(S) .
S T ) o)

Hence, the mean time £g is given by

G dls s) 20 +d'©0) , pdO)N
ts :/O tdls(t) = lim{ - =5 b= —— - dqo) T1-do)

where ¢/(s) is the differential function of ¢(s ), ie., ¢'(s) = do(s)/ds. From equatlon (16), £g is
strictly decreasing in N and is minimized when N = co.

Next, we derive the expected reset number Mg from the start of system operation or the restart
by the reset until a network processing is successful. Let My(t) be the expected reset number until
a network processing is successful in an interval (0,¢]. Then, we have

(16)

N-1
Mg(t) =Y jDU() * Z(t). (17)
J=1 :
Thus, the expected reset number is given by

N-1
) . . ; d(0) N-1 N
= = J -7 1 _ —

Mp = Jim Mg(t) = lim ; Jds)2() = 7= gy L~ VO T+ (N - 1O, (18)
where it is noted that 2(0) = 1 — d(0).

Further, let Mp(t) be the distribution of the expected interruption number of processing from
the start of system operation until a network processing is successful. Then, we have the following
renewal equation:

Mg(t) = Ho p(t) % [1 + G(t) * Mp(t)]. (19)

Similar to equation (18), the expected interruption number Mg until a network processing is suc-
cessful is given by
d(0)™

o (20)

Mp =
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3. OPTIMAL POLICIES

We obtain two objective functions which are the total expected cost C(N) and the expected cost
C(N) per unit of time until a network processing is successful, and discuss optimal policies which
minimize them, respectively.

3.1 POLICY 1

Let c; be the cost for the reset and cy be the cost for an interruption of processing. Then, we define
the total expected cost C'(N) until a network processing is successful as the following equation:

D(1— DY)

C(N)=ciMp+ coMp = ¢ )

(N=1,2,---), (21)

where D = d(0) which is the probability that a uP is reset.
We seek an optimal number N* which minimizes C(N). From the inequality C(N+1)—-C(N) >
0, we have

N(1-DM)(1-DN+)> 2 (22)
1

Denoting the left-hand side of (22) by L(N), we have

L) = (1-D)1-D?), (23)

L(co) = oo. (24)
Hence, L(N) is strictly increasing in N from L(1) to co. Thus, we have the following optimal policy:

(i) If L(1) < cz/c1, then there exists a finite and unique minimum N*(> 1) which satisfies (22).

(ii) If L(1) > cg/cy, then N* = 1 and the total expected cost is C(1) = (eaD)/(1 = D).

In this model, ¢; is the cost for the increase of system resources such as spaces of memory and
times by the reset, and ¢y is for the increase of system resources by the preventive maintenance to
eliminate the cause of errors. It could be generally estimated that cs is greater than c, i.e., ca > c;.
Thus, we have L(1) < cz/c1, and hence, N* > 1. Further, it is easily shown that N* increases with

ca/cy.

3.2 POLICY 2

In the policy 1, we have considered the total expected cost as an objective function. However,
it would be more practical to introduce the measure of the time until a network processing is
successful. Next, we consider an optimal policy which minimizes the expected cost per unit of
time until a network processing is successful. That is, from equations (16) and (21), we define the
expected cost C'(N) per unit of time as the following equation:

N-1 .1 A
O(N):C(N):Clzj’=l ]DJ(]-—D)_ECQ—I_E% (N=1,2,-) (25)
= s A_i_._lH})DNTV. u ) 4y ’
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where

2'(0) + d'(0)

A=~
1-D

> 0. (26)

We seek an optimal number N7 which minimizes C(N). From the inequality C(N + 1)—C(N) >
0, we have

N-1

N(—DY)(1— DY)+ EINDV(1 - DY) 1+ (1- D) Y jDi) > 2—2 (27)
, 1
j=1
Denoting the left-hand side of (27) by L;(N),
L) = (1-D)(1-D+5D), (28)
Li(0) = o0. (29)
Putting the second term on the bracket of the left-hand side of (27) by
N-1
Ly(N)=NDN(1-DN*Y4+(1-D) Y 5D, (30)
j=1
we have
Ly(1) = (1-DY)D, (31)
D
La(oo) = 15 (32)
Ly(N+1)~ Ly(N) = DNH[1-pN*2 L NDN(1 - D?)] > 0. (33)

Hence, Lo(N) is strictly increasing in N. Further, since N(1—D®¥)(1—DN+1) in (27) is also strictly
increasing in N, L1(NN) is strictly increasing in N from L1(1) to co. Thus, we have the following
optimal policy:

(i) If L1(1) < c2/c1, then there exists a finite and unique minimum N7 (> 1) which satisfies (27).

(ii) If L1(1) > co/cq, then Ny =1, and the resulting cost is

2 CQD

¢i1)= A(1=D)+ uD’ (34

Further, we compare the optimal policy 2 to the optimal policy 1. Since from equations (22)
and (27),
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N-1
Li(N) = L(N)= LINDV(1 - DY)+ (1-D) 3 jD >0 (N=1,2,-),  (35)
j=1

and hence, N* > N}.

This means that when the number N of reset is small, the mean time until a network processing
is large, since £g strictly decreases in N. Thus, it would be better to adopt the policy 2 where NN is
small when we consider only the cost of the system on the whole. On the other hand, if we want a
processing time to be small, we should adopt the policy 1.

4. NUMERICAL EXAMPLE

We compute numerically the optimal number N{ which minimizes c (N) for Policy 2. Suppose that
the mean initial processing time 1/v of pP is a unit of time and the mean time to error occurrences
is (1/A)/(1/v) = 30 ~ 60. Further, the mean stand-alone processing time is (1/a)/(1/v) =5 ~ 20,
the mean network connection processing time is (1/8)/(1/v) = 1, the mean waiting time when
a network connection processing fails is w/(1/v) = 1 ~ 4, the mean network processing time is
(1/u)/(1/v) = 10, the mean maintenance time after an interruption of processing is (1/p)/(1/v) =
10, the probability that a network connection processing fails is v = 0.2, 0.4, 0.6, and the cost ¢ ; for
the reset is a unit of cost and the cost rate of an interruption of processing is ca/c1 = 1.~ 3.

Table 1 gives the optimal reset number N[ which minimizes the expected cost C’(N ). For
example, when (1/X)/(1/v) = 60, wv = 2, v = 0.2, (1/a)/(1/v) = 10 and ca/c; = 2, the optimal
number is N{ = 3.

Table 1: Optimal reset number N to minimize C/(N).

(1/e)/(1/v)=5 | (I/o)/(1/v)=10 | (1/)/(1/v)=20
(1/XN)/Q/v) fwe | v ca/cy ca/c ca/c1
' 11512 (2513|1115 |2 (253|115 (2 |25 |3
022 213 3142 313 3142 313 414
1 1042 213 31412 313 41412 313 4 14
0.6 |2 313 31412 313 44413 314 4 14
022 213 31412 313 31412 313 414
30 2 1042 313 31412 33 41413 313 4 4
0.6 |2 313 3142 33 41413 3[4 414
02|2 213 31412 313 41412 313 414
4 1042 313 3142 313 41413 3|4 44
0612 33| 4142 33| 443 34| 4|5
022 213 31412 213 31412 213 3|4
110412 213 31412 213 3142 213 314
0.6 | 2 213 3142 213 3142 213 3 {4
0212 213 3142 213 3142 213 314
60 2 10412 213 31412 213 3142 213 3 |4
0.6 |2 213 3142 213 31412 213 314
0212 213 31412 213 31412 213 314
4 {042 213 3142 2|3 31412 213 314
0.6 |2 213 31412 23 31412 313 314
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This shows that the optimal number N} decreases with (1/))/(1/v), however, increases with
wv, v, (1/@)/(1/v) and ca/c;. This can be interpreted that when the cost for an interruption
of processing is large, N; increases with ca/ci, and so, the processing should not be excessively
interrupted. That is, we should keep on executing the processing as long as possible by the reset.
Table 1 also shows that N{ depends on each parameter when (1/))/(1/v)is small, i.e., when errors of
a P occur frequently, however, N{ depends little on wv, v and (1/a)/(1/v) when (1/X)/(1/v) > 60,
and NY is almost determined by ¢y/cy. '

5. CONCLUSIONS

We have investigated the problem for improving the reliability of a p.P system with network process-
ing, and have derived the mean time and mean reset numbers until a network processing is successful.
Further, we have discussed the optimal reset numbers which minimize the total expected cost and
the expected cost per unit of time.

It has been shown from the mathematical analysis that the optimal reset number which mini-
mizes the total cost is larger than that which minimizes the expected cost per unit of time. It has
been also shown from the numerical example that the optimal reset number which minimizes the
expected cost decreases with the mean time to error occurrences of a uP, however, increases with
the mean stand-alone processing time, the probability that a network processing fails and the cost
for an interruption of processing. Further, when the mean time to error occurrences is large, the
optimal reset number depends little on each parameter and is almost determined by the cost for an
interruption of processing.

It would be very important to evaluate the reliability of a P system with network processing.
Further studies for such subjects would be expected.

REFERENCES

1. K. Ono, Computer Communication, Ohmsha (1996) (in Japanese).
2. T. Nanya, Fault-Tolerant Computer, Ohmsha (1991) (in Japanese).

3. K. Yasui, T. Nakagawa and M. Motoori, A Two-Stage Error Control Policy for a Data Trans-
mission System with Intermittent Faults, The Transactions of the Institute of Flectronics, In-
Jormation and Communication Engineers of Japan, Vol.J75-A, No.5, pp. 944-948, May (1992)
(in Japanese).

4. H. Sandoh, T. Nakagawa and S. Koike, A Bayesian Approach to an Optimal ARQ Number in
Data Transmission, The Transactions of the Institute of Electronics, Information and Commu-
nication Engineers of Japan, Vol.J75-A, No.7, pp..1198-1192, July (1992) (in Japanese).

5. T. Nakagawa, K. Yasui and H. Sandoh, An Optimal ARQ Policy for a Data Transmission
System with Intermittent Faults, The Transactions of the Institute of Electronics, Information
and Communication Engineers of Japan, Vol.J76-A, No.8, pp. 1201-1206, August (1993) (in
Japanese).

6. K. Yasui, T. Nakagawa and H. Sandoh, An ARQ Policy for a Data Transmission System with
Three Types of Error Probabilities, The Transactions of the Institute of Electronics, Informa-
tion. and Communication Engineers of Japan, Vol.J78-A, No.7, pp. 824-830, July (1995) (in
Japanese).

7. S. Osaki, Applied Stochastic System Modeling, Springer-Verlag Berlin (1992).
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Abstract—FADEC(Full-Authority Digital Engine Control) was developed for aircraft gas
turbine engine controllers and now has been widely adopted to industrial ones because of its
high performance. Although aircraft FADECs are so expensive because they operate in severe
environment, industrial FADECs should be inexpensive considering the severe cost competi-
tion in the market. Recently, the recent progress of electronics produces high performance
and low price PLCs(Programmable Logic Controllers). Although they were originally devel-
oped as substitutive relay logic sequencers, they have been utilized as multi-purpose numerical
controllers now. When we adopt them, we shall develop inexpensive gas turbine FADECs.
However, the PLC makers do not assure to use them as gas turbine engine controllers. So en-
gine makers should consider adequate measures and assure their reliabilities when they utilize
them as FADECs. This paper considers the self-diagnosis policy for dual redundant FADECs.
The self-diagnosis is performed at every n-th control calculation cycles. Introducing expected
cost per unit time, an optimal n* which minimizes it is considered.

Keywords—Advice to authors, Important notice

1. INTRODUCTION

The original idea of gas turbine engine was represented by Barber in England at 1791, and the
engine was firstly realized in 20-th century. After that, they had advanced greatly during World
War II. Today, gas turbine engines have been widely utilized as main engines of airplanes, high
performance mechanical pumps, emergency generator and cogeneration systems because they can
generate high power compare to their size, their start time is very short and no coolant water is
necessary for operation.

Gas turbine engines are mainly constituted with three parts, i.e., compressor, combustor and
turbine. The engine control is performed by governing the fuel flow to engine. When gas turbine
engines operate, surge, stool and over-temperature of exhaust gas should be paid attention because
these phenomena cause serious damage for engine. To prevent such dangerous phenomena, the
turbine speed, inlet temperature and pressure, and exhaust gas temperature of gas turbine engine
are monitored and engine controller should determine appropriate fuel flow considering these data.

The gas turbine engine operates in serious environment and hydro mechanical controller (HMC)
is adopted to engine controller for long period because of its high reliability, durability and excellent
responsibility. However, the performance of gas turbine engines have advanced and customers need
to decline the operation cost. So HMC could not follow these advanced demands and the engine
controller has been electrified. The first electric engine controller which was a support unit of
HMS, was adopted for J47-17 turbo jet engine of F86D fighter at the late 1940-th. The change of
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device,i.¢e., from vacuum tube to transistor and transistor to IC, has changed the roll of electric
engine controller from the assistant of HMS to full authority controller because of the reliability
growth. In 1960-th, the analogue full authority controller could not follow the accuracy demand of
engines, and full authority digital engine controller (FADEC) was developed [1, 2, 3].

FADEC is an electric engine controller which can perform the complicated signal processes of
digital engine data. Aircraft FADECSs, which are expected high mission reliability and are needed
to decrease weight, hardware complication and electric consumption, adopt generally a duplicated
system [4, 5, 6].

Industrial gas turbine engines have been advanced absorbing key technologies which were es-
tablished for aircraft gas turbine engines. FADECs which were originally developed for aircrafts,
have also been adopted for industrial gas turbine engines. Comparing between general industrial
gas turbine FADECs and aircraft FADECS, the following differences are recognized:

1) Aircraft gas turbine FADECs have to perform high speed data processing because the rapid
response for aircraft body movement is necessary and inlet pressure and temperature change
greatly depending on height. On the other hand, industrial gas turbine FADECs not need
such high performance comparing to aircraft ones because they operate at steady speed on
ground. ’ '

2) Aircraft gas turbine FADECs have to be reliable and fault tolerable, and so, they adopt
a duplicate system because their malfunction in operation may cause serious damages for
aircrafts and crews. Industrial gas turbine FADECS also have to be reliable and fault tolerable,
and still be low cost because they have to be competitive in market.

Depending on the advance of microelectronics, small, high perfermance, low cost programmable
logic controllers (PLC) have distributed in market. Their origins were relay sequencers and they are
still utilized as sequencers of industrial automatic systems. Applying numerical calculation ability of
microprocessors, these PLCs occupy the analogue-digital and digital-analogue transformer and can
perform numerical control. When we use such PLCs, very high cost performance FADEC system can
be realized. However, these PLCs are developed as general industrial controllers and PLC makers
might not permit them for applying high temperature and pressurized hot gas controllers. Then,
gas turbine makers which apply these PLC as FADEC, have to design some protective mechanism
and have to assure high reliability of FADEC.

In this paper, we consider a self-diagnosis policy for dual redundant gas turbine engine FADECs.

2. ANALYSIS

A dual redundant system is commonly employed for aircraft FADECs. We consider the following
dual redundant FADEC:

(a) A system is constituted with two perfectly endependent channels 4.e., they have their own
engine sensors, fuel control valves, watch dog timers and power sources.

(b) A data communication line called CCDL (Cross Channel Data Link) connects two channels.
Each channel exchanges its engine sensor data and calculation results with another channel,
and can diagnosis each other (cross-diagnosis). Furthermore, each channel performs self-
diagnosis by its watch dog timer. We call the cross-diagnosis between two channels and
self-diagnosis of each channel as the self-diagnosis of FADEC.

(c) Although two channels perform the same control calculation at same time, only one channel
can conquer a whole system at one time. Initially, one channel has a priority to control a
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whole engine (active condition) and another channel is in standby condition. When the active

channel fails, the channel changes from active condition to standby one, and another channel

changes from standby condition to active one. When two channel fail, a whole engine system
stops.

We introduce the expected cost per unit time and derive an optimal diagnosis policy which

minimizes it. Consider the following control and self-diagnosis policy for dual redundant FADEC :

(I) The reliability of channel ¢ at time ¢ is Fj(¢), where i = 1,2.

(II) The control calculation of each channel is performed at time interval T and the self-diagnosis
and cross-diagnosis are performed synchronously between two channels at every n-th calcula-
tion. The coverage of these diagnoses is 100%. :

(IIT) Initially, channel 1 is in active condition and channel 2 is in standby condition. When channel
1 fails, channel 1 changes to standby condition and channel 2 changes to active condition with
no failure. We assume these elapsed time for changing are negligible.

(IV) When n decreases, the diagnosis calculation per unit time increases and it degrades the quality
of control. We assume that the degradation of control is represented as c1/(n + T1), where ¢;
is constant and T is the percentage of diagnosis time divided by 7.

(V) When n increases, the time interval from occurrence of failure to its detection is prolonged and
it causes the damage of gas turbine engine because of the extraordinary fuel control signal.
The damage of engine is represented as ca(nTp — t), where ¢ is the time that failure occurs
and ¢z is the system loss per unit time.

When channel : fails at time t;, the following two expected time intervals from occurrence of failure

to its detection depending on the timing of ¢;, are considered:
When to <1 <ty Or by <t < 19 < tm, the expected time interval is

Z Foltm) | (tm — t1)dF1(81) (1)

tm—1

where ¢, = mnTy(m=1,2,3-- )
When ¢ < -1 < to < &, the expected time interval is

co m—1 tm
S (t,c — 11 + b, — t2)dF1 (1) / dFy(ts) . ()
m=2 k=1 7 th-1 tm—1

The total expected time interval is the summation of equations (1) and (2), i.e.,

oo tm
> Fz(tm)/ (tm — t1)dF1(t1)
m=1

tm—1

oo m-—1

17 tm
+ Z Z / (tk —t1 +tym — to dF1 tl)/ dFQ tQ)
trm—1

m=2 k=1 " tk—1

1
= nTO Z Fl mnTo) — =
1

m=0

nTo
+ Z Fy(mnTy) / [Fo(t + mnTy) — Fy(mnTy)]dt (3)
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where 1/ = [° F1(t)dt, and F1(0) = 0.
Thus, the expected cost is

_ _a 7S P _1
C(TL) == n+T1 + C2 {nTon;JFl(mnTo) /\1
el TLTO
-+ Z Fy (mnTo)/ [Fz(t -+ mnTg) — Fg(mnTo)]dt} . (4)
m==1 0

Assuming Fi(t) = 1 — exp(—A;it) (i = 1,2), equation(4) is rewritten as

_ (5] 1 1 1
C(n) _ n+T; +c2 {nTO [1 — e—nTy + 1 — e—?enTo - 1— e*(/\1+)\2)nT0:|
1 _ —)\z'nTg 1 1
, 1-e S (5)
Qg1 —e~(utre)nTo) Xy Ay ,
We easily find that
- a
c(0) = T (6)
C(0) = o0. (M)

Therefore, there exist a finite n* (< go) which minimizes C(n).

3. NUMERICAL EXAMPLE

It is convenient to introduce x defined as 2 = nTj to calculate optimal n*. Using z, equation (5) is
rewritten as

_ 11y 1 1 1
C(x) - z+ TlT() + [85] {m [1 — e—/\1z-+ 1— e—AzJJ - 1— e—()\1+)\2):cjl ‘
1 — e he® 1 1
+)\2(1 — e—(/\l-i-)\z)w’) B Xl— - )\_2} ) (8)
We obtain the derivative of C(z) as
dC(.’E) _ ClTO 1 1 1
dz (v +T1T0)? + A Fpaps i g v 1 —e~(Atda)z,
e ME g~ N2% A1+ )\g)e_()‘ﬁ"\z)“
- (1 — e—)\lx)Q + (1 _ e—/\zfl‘!)z - (1 — e-()\l—l-)\z)"t)g
g~ A2z (A1 + Q) (1 ~ e~ P28)e~(MrtA2)z 9
+1 — g~ (M1t+A2)z - )\2(1 _ e—(/\1+/\2):c)2 ) ’ ( )

To obtain a minimum C(z), we search z* numerically which satisfies dC(z)/dx = 0.
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Table 1 gives the optimal self-diagnosis time interval z* and n*, and the expected cost C(n*)
for A1 = 1.0 x 1077,2.0 x 10°7,4.0 x 1077 per hour, ¢; = 1,5,10 and 77 = 0.1,0.5,1.0 when
Ao = 1.0 x 1077 per hour, ¢y = 10 and Ty = 1072 (10msec.). Optimal n*s are integers and are
also denoted parenthetically for comparison. When ¢ /co or 1/T; increases, z* or n*, and C(n")
increase. When A1 /A increases, x* or n* decreases and C(n*) increases.

Table 1. Optimal self-diagnosis interval z* and n*,
which minimize expected cost C(n*).

)\1/)\2 C]_/CQ T1 z* n* Ol(n*)
10 01 010036 4(36) | 054
20 01 0.1]0034 3(34)| 057
40 01 0.11/0.032 3(3.2)| 059
1.0 05 0.1 0081 8(81)| 1.22
1.0 1.0 0.1 0.114 11(11.4) 1.72
L0 01 050032 3(32) | 051
1.0 01 1.0 002 3(26)| 047

4. CONCLUSION

We have considered an optimal self-diagnosis policy for dual redundancy FADEC: A FADEC per-
forms the control calculation at time interval Ty and self-diagnosis is performed at every n-th
calculation. The expected cost is derived and there exists an optimal n* which minimizes it, when
reliability functions of two channels are exponential distributions. Numerical examples have shown -

optimal n*.
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Abstract—This paper considers an optimal life insurance for a householder subject to mor-
tality risk. The household receives a wage income continuously, which is terminated by the
householder’s death. In order to protect the sudden loss, the household buys a life insurance
from which they can receive some amount of insurance at the householder’s death. Also, the
household can invest their wealth into a financial market. The problem is to determine an
optimal insurance and investment in order to maximize the expected total, discounted utility
from consumption and terminal wealth. It is shown that an explicit solution is obtained for
some special case.

Keywords—TLife Insurance, Life ’Cycle, Investment/Consumption Model, Martingale.

1. INTRODUCTION

In this paper, we consider an asset allocation problem of a household. In the literature of such
problems, asset classes are limited to riskless asset (bank accounts), and risky assets (stocks). In
this paper, we extend the asset allocation problem in such a way to include life insurance contracts.
By including them, the problem becomes not only to obtain an optimal optimal consumption and
investment of the household, but also to decide how much amount of the life insurance should be
invested to prepare for mortality risk of its householder. '

Asset allocation problems are traced back to Merton [5] in which he derived optimal consumption
and portfolio selection rules by assuming that an agent has specific utility functions in a continuous-
time model. Subsequently, Merton [6] generalized his model for the case of general utility functions.
In these papers, an agent decides the amount of consumption for goods or services, and the amount
for investment into financial assets at each time so as to maximize their utility through their life
time. In a relatively recent research, a life time model of Bodie, Merton and Samuelson [1] considered
a human capital in order to add more reality to existing models. The human capital of an agent
represents the present value of the total wage income which he/she will obtain in the future. By
including the human capital in their model, they explicitly derived the relation between age and
optimal investment strategies for the agent.

This paper considers an optimal life insurance for a household. The household lives through
consumption by a wage income of the householder and a capital gain of investment into financial
assets. However, if the householder dies, the wage income will terminate. The household may then
want to buy a life insurance to prepare for risk of the householder’s death. The household decides
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an optimal insurance as well as optimal consumption and investment amount into financial assets
to maximize the expected total, discounted utility from consumption and terminal wealth.

This paper is organized as follows. In the next section, we formulate our model by assuming
that utility functions of the household are given, and derive an optimal insurance, consumption and
investment amounts. In Section 3, we consider the special cases of exponential and power utility
functions, and derive an optimal insurance, consumption and investment amounts explicitly.

2. THE MODEL

We consider a household which consumes a wage income of its householder to maximize the expected
total, discounted utility from consumption and terminal wealth. The income of the household is
only the wage of the householder, and if he/she dies, then the income terminates. Therefore, the
household may be willing to buy a life insurance to protect the sudden loss from mortality risk of
the householder. On the other hands, the household may want to invest its wealth into financial
assets. Let the current time be zero, and assume that the householder’s income terminates at time
T > 0, i.e., his/her retirement is time T. The problem for the household is then to maximize the
expected total, discounted utility from consumption over time 0 to T, and from terminal wealth
at time 7. The terminal wealth will be used for their lives after retirement or a bequest to their
descendants.

We assume that our economy consists of a financial market, which is frictionless and perfect,
and that every trade occurs continuously at time ¢ € 7, 7 = [0,7]. In order to make the model
tractable, we also assume that the resolution of uncertainty of the economy is described by evolutions
of a standard Brownian motion Z = {Z(t);t € 7} and a Poisson process N = {N(t);t € T} with
an intensity process A = {\(t);¢t € 7} defined on a given probability space (2, F, P), where Z is
assumed to be independent of N. Here, without loss of generality, we set Z(0) = 0 and N(0) = 0.
Let IF = {F3;t € T} be the P-augmentation of filtration with

Fe=0{(Z(s),N(8));0 < s < t}, viteT.

The intensity process A is assumed to be positive, Markov and predictable with respect to IFF, and
satisfies

T
/ AOldt< oo as.
0

Hereafter, equalities and inequalities for random variables hold in the sense of a.s. (almost surely);
however, we omit the notation a.s. for the sake of notational simplicity. The conditional expectation
operator given F; is denoted by E; with E = Ey.

The financial assets into which the household can invest consist of a risk-free asset and a risky
asset. Let Py(t) and Pi(t) be the time ¢t € T prices of the risk-free asset and the risky asset,
respectively. We assume that the price processes, Py(t) and P;(t), are defined by the following
stochastic differential equations (SDEs), respectively. '

Py(0) = po, ‘fg"g)) —r(t)dt,  t>0, (1)
and
Pi(0) = p, d; 1((:)) = u(t)dt + o(t)dZ(t), t >0, (2)
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where pg and p; are positive constants, and where r(¢), u(t) and o(t) are progressively measurable
processes with respect to IF that satisfy

/T Ir(t) + u(t) + o2(8)|dt < .
0

Let 7 denote the time of the householder’s death, and assume that it is generated by the first
passage time of the Poisson process N to state 1, i.e.

7 =inf{t > 0; N(¢t) = 1}.

A life insurance that the household considers to buy is as follows. An insurance company pays
the insurance amount f(t) if the householder’s death occurs at time ¢ before the terminal epoch
T, and nothing if it occurs after T It is noted that, in many situations, the insurance amount
is set to be constant; however, as we shall show later, it must be a stochastic process, in general,
to attain the optimal plan. Of course, in order to receive the insurance amount, the household
must pay & premium p to the insurance company at time 0. We assume that the insurance process
8 = {6(t);t € T} is bounded and adapted to IF. It is also assumed that the income process
y = {y(t);t € T} and the consumption process c = {c(t);t € T} are bounded and adapted to IF.
Let w(t) be the investment amount into the risky asset at time t. We refer to w = {w(t);t € T}
as a portfolio process. Given a portfolio process w, a consumption process ¢, an insurance process
¢, and an income process y, the wealth process W = {W(t);t € T} is defined by W(0) = Wy —p and

dW(t) = (y(t)1in(—)=oy — <(t)) dt + 0(t) 1 i )=0ydN (t)

+ w(t) u(t)dt + o (€)dZ(t)] + (W (t) — w(t)) r(t)dt
= (y(O)lnp—y=0p — c(t)) dt + 6 (t)l{N(t—)zo}dN (t)

L rOWEd + w(t) [(u(6) — r(@)dt + 0dZ()],  teT, (3)

where Wy is a given initial wealth which is assumed to be a positive constant, and where 1 1.} denotes

the indicator function.
Let ¢(¢) be the state price density at time ¢ which satisfies ¢(0) = 1, 0 < ¢(t) < oo, and for

eacht€7 andany s >t s€ 7,

Eilg(s)Pi(s)] = 9(OP;(),  j=0,1. (4)
The insurance premium is then given by |
T
p=| [ 608N ©

since otherwise there is an arbitrage opportunity.
Consider another risky security whose price process Py(t) is defined by P»(0) = ps’ and

dPy(t) = Py(t) (2-915 - 1) dN(),  t>0,

where ps is a positive constant. If we assume that the security is traded in the financial market,
then it is not difficult to show that the state price density is represented as

o(t) = exp {— /0 (5)d2(s) — % /0 (s)ds /0 w(s)ds + /O T (f—((;)) dN(s) — /O ((s) - )\(s))ds} ,
(6)

-49 -



where

=" )= ) (7)

The next definition is similar to the one given by Karatzas and Shreve [4].

Definition 1. The triplet (¢, w, #) of consumption, portfolio and insurance processes is admissible
for the household if the corresponding wealth process satisfies

oo+ £ | : SN (v r0ids| + F [ / ' H v y-0pdN(5)| 20, tET. (8)

The class of admissible processes is denoted by 4.

From (6) and (8), and by the arguments similar to Karatzas and Shreve [4], we can readily show
that if (¢, w, 8) is admissible, then the consumption process ¢ must satisfy the budget constraint

T T
B[ [ s+ s@mw)] < B[ [ o0np-ob] +
Lemma 1. For any pair of consumption process ¢ and terminal wealth W(T) that satisfies
T T
B[ storetedds + oW (n)| = Wor 2| [ s(6)ute)1ims-r-apds]
there exists a portfolio/insurance processes (w, ) such that (c,w,0) € A and
POV (t) = E; [/tT $(s) (c(s) = (y(s) + %(s)8(s)) L (s-)=0}) ds + ¢(T)W(T)]

foranyteT.
Proof. Let M(t) be a martingale defined by

T
M(t) = E; UO (s) (c(s) — (y(s) + ¥ (s)8(5))1 {n(s-)=0}) d5 + ¢(T)W(T)] - (9)

Then, by the martingale representation theorem (see, e.g., Bremaud [2] and Karatzas and Shreve
[3]), there exist a progressively measurable process m(t) and a predictable process wo(t) such that

T
/0 [53(6) + maft) dt < oo,
and satisfying
L t
M(t) =Wy +/O m1(s)dZ(s) —l—/o mo(8)(dN(8) — A(s)ds).

On the other hands, from (3) and (6), we can readily show that

deOW () = ) [(y(t) + 0 () Liv(e—)=oy — ()] di + §(e)(w(t)o () — EE)W (£))dZ(2)

+ (1) [9(t)1{N(t__)=0}3f—(% + W(t)z’[i%—))‘(t)] (AN () — A(B)db).
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Thus, if we define w(t) and 6(t) so as to satisfy

HOL()o (D)~ EOW ) = m (1) (10)
and
o1t) o0 o g + W LE2D ] (1)

respectively, then
d(¢()W () = dM(t) — $(t) [c(t) — (y(£) + 0()P(8)) 1w (i—)=0y] dt
The lemma now follows by integrating the above equation over [0, ). O

Now, suppose that the household has a time-discount factor e I P)ds, t € T, where p(t)
is bounded and adapted to IF, and has wutility functions u; : IR — (0,00), i = 1,2, which are
strictly increasing, strictly concave and twice continuously differentiable with properties uj(oo) =
limg o0 w}(z) = 0 and w}(0+4) = limy o u/(z) = co. The problem that the household faces is formally
described as follows:

(MP) Given the discount factor and utility functions, find an optimal consumption/portfolio
process (¢, w) and an optimal insurance process 6 to maximize the expected total, discounted utility
from consumption and terminal wealth

T t T
E [ / e~ Jo P93y (c(8))dt + e o p(s)dsm(W(T))] ,
0

over the admissible consumption/porttolio/insurance process (c,w, #) € A, that satisfy

E [/OT min {0, e”fntp(s)dsul (c(t))} dt] > —

and

E [min {O,e_ fOTp(S)dSw(W(T))H > -

respectively.
For each utility function u;, i = 1,2, and for each t € T , we shall denote by I;(z,t) the inverse
function of Edi ui(x)e” Js p(s)ds]. Under the assumptions stated above, for each t € T, the functions

Ij(z,t), i = 1,2, exist, and are also continuous, strictly decreasing, and map (0, oc) onto itself with
respect to =, with properties I;(0+,¢) = oo and I;{oco, t) = 0.

The householder’s optimal consumption/wealth process is given by the next theorem whose
proof is similar to that of Theorem 3.6.3 in Karatzas and Shreve [4], and it is omitted here.

Theorem 1. Under the conditions stated above, an optimal consumption process é and the corre-
sponding wealth process W are given, respectively, by

&t) =Lt ¢e(), teT,

where ¢ is a solution of equation

[ / BT (CH1), 1) dt + (T )IQ(C¢(T),T)J =W0+E[ / Tszs(t)y(tn{mt):(,}dt},
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and by
. 1 T .
W(t):MEt Ut B(3)(é(s) — (y(s) + ¥()8(s)) Lin(smy=op)ds + S(DOIW(T)|, teT, (12)

with W(T) = I,(¢p(T), T). An optimal portfolio/insurance process (), 8) is given by (10) and (11),
respectively, with W (t) being replaced by the optimal wealth W (t).

3. SOME SPECIAL CASES

In this section, we consider some cases in which the household has specific utility functions. Namely,
we study the cases of exponential and power utility functions, and explicitly derive optimal con-

~

sumption/portfolio/insurance processes (¢, @, ¢) given by Theorem 1 For simplicity, we assume that
r(8), u(t), o(t), A(¢), y(t), and p(t) are positive constants, from which £(¢) and (t) defined in (7)
are also constant, £(t) = £ and ¥(t) = o say.

3.1 EXPONENTIAL UTILITY FUNCTIONS

First, we consider the case in which the household has utility functions defined by

ui(x)=1_Lf;(_nﬂ, O<z<oo, =12 (13)
1

where 77; are positive constant which represent indices of risk aversion.
It is easily seen that the functions I; (z,t) are given by

1
Li(z,t) = —;(Inw%—pt), i=1,2.
(3

From Theorem 1, the optimal consumption process and the optimal terminal wealth are given,
respectively, by

1
é(t) = —n—(ln (t) + In¢ + pt)
1
and
- 1
W(T) = ——%(In H(T) +1In¢+ pT).
Using (12) and a tedious algebra leads to
W () = &(t)f(t)m — 9(8)A = h(t)l (vi)=o}, (14)
where _
1— —r{T—1)
i) = iz _1_6—T(T—t),
m T 2
11— —r(T—t) _ _ N\—r(T-1)
oy = L1meT —STEEUET Lo,
m r 72

1 — e=(btr) (Tt
v+

) T—t
h(t) = y + ¢/0 (s + t)e WHmsgs, teT,
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and

A:%§2+ln<%>¢~(w—)\)—f+p.

It follows, from (9) and (14), that

dM(t) = d(BE)W(D) + (EE) — (y+ 6L ny=oy)dt
= o) (#() - W(t)) dz(2)
+ 00 (W02 - (1 (3) 10 - 10wy ) §) (@ve) - 2,

Therefore, from (10) and (11), the optimal portfolio and insurance are given, respectively, by

w(t) = LT f(2)

o2
and
: 1 — e~ r(T-1)
o(t) = ~————y—In (—1’-&-) (ka(2) + ko(1))
r A

where

1 (1= @D _ (T —g)er@-8) 1 _ e r(T-1)

ka(t) = - ( = P+ . ,

and

Balt) = —e T (1 1+ (T — 1))
2

for all ¢ € 7. The insurance premium is then given by
_ Y 1 1
= — 1 —_— ——
p my n (/\ 7717”2 + "—7727”43 9

Y - -
+r(1_—e (¢+T)T)_ (1-e¥7)

where

'(/) )
%(1 — =Ty _ ﬁ—;—;—@(l —e ¥ ¢ 9:;3(1 — e — yTe VT,
ms = (1+¢T)(1—e¥T) ~ e T (1 — VT — yTe¥T).

Furthermore, from (14), the optimal consumption is given by

. 1 5
&t) = yior (W(t) +g(t)A+ h(t)l{N(t,):O}) . teT.
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3.2 POWER UTILITY FUNCTIONS

We next consider the case in which the household have utility functions defined by
(27

ui(x) = ug(z) = %, O<z<oo, ac€(-o0,1)\{0}, (15)

where « represents the shape parameter.
In this case, it is easily seen that, from Theorem 1, the optimal consumption process and the

optimal terminal wealth are given, respectively, by

oft) = (Ce*(t) ™
and
W(T) = (¢ 9(T)) 7 .
Again, (12) and a tedious algebra leads to
W (¢) = &(®)(t) — k() 1w (=0 (16)

where
B(T—t) _
1(t) = e___E__l + BT

with
L e e (VT ) e, _r
B_Q(l—a)2£+(()\> P )\) a~1((1/} )\)+r)+a_1.
It follows, from {9) and (16), that

dM (t)= -—% (h(t)l{N(t_)zo} + aW(t)) £dZ(t)

rf[f(7:)¢T_A N { ((% > =1 1) W) + (—;4) éh(t)l{N(t_)zo}} %’} (AN(2) — Adt).

(17)

It is clear, from (11) and (17), that 6(¢) generally depends on the value of wealth W(t). If
however, the household does not require premium for the mortality risk of the householder, i.e.
A = 1), the optimal insurance process and portfolic process are, respectively, given by

~ 1— e—T(T_t)
0(t) = ———y

r

+o(t)

and

. p—r R 1—e Tt
w(t) = 20w W(t) + Yl na—)=0}| -

The premium is therefore given by
p=my.
Furthermore, from (16), the optimal consumption is given by

R 1 (.. 1—e (Tt '
C(t) = m W(t) + yl{N(t~)=O} ; te”T.
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Abstract—1In this decade, a hard disk has become an essential key component, of a personal
computer system. It preserves important information which is frequently updated. In case the
hard disk fails, we may possibly lose such important information. This is called a hard disk
failure. One of the simplest methods to cope with such a possibility of a hard disk failure is
to periodically make a copy of the information to another secondary medium. This is called a
backup operation.

This study discusses an efficient backup warning policy which gives us a warning to back
up files at the prespecified time 7;, measured by the elapsed time since the previous backup
operation or the recovery from a hard disk failure. For the purpose of determining the value of
T, this study formulate the efficiency as a criterion, which is defined by the long-run average
ratio of (i) the time spent in processing jobs effectively in the sense that their accomplishments
are successfully backed up to (ii) the total time spent in processing jobs ineffectively as well as
effectively, and spent in backup or recovery operations. We then clarify the conditions under
which an optimal warning time exists. A numerical example is also presented. '

Keywords—Backup, Warning, Hard disk, Efficiency, Optimal warning time

1. INTRODUCTION

Hard disks used for an engineering work station or a personal computer can, in recent years, be
purchased at lower prices. Furthermore, a variety of application software products for a personal
computer are being developed, which require a hard disk. For these reasons, the hard disk has
become one of the essential components for a personal computer system as well as an engineering
work station system. _

A hard disk generally preserves various files, which are frequently updated. However, these files
are occasionally lost because of human errors or failures of hardware devices which the computer
system consists of. This is called a hard disk failure. One of the simplest methods for protecting
us from such a serious loss is to make a backup copy of the files on magnetic tapes, removable
disks, magnetic optical disks and so forth (backup disks for simplicity) periodically. In the case of a
hard disk failure, the backup disks can partially recover the hard disk. The recovery will be partial
since the data updated after the previous backup operation or the recovery from a hard disk failure
cannot be recovered.

Frequent backup operations could significantly reduce the loss at a hard disk failure although
they would spend much time in backup operations. On the contrary, rare backup operations could
save time in backup operations while the loss time incurred by a hard disk failure would become
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very large. These observations indicate the significance of determining an adequate backup timing
of files on a suitable criterion.

Similar problems to the above have been discussed for the main internal memory of a main
frame computer, where data stored in the main internal memory are sometimes lost because of
a system failure. For such a system, many studies have been reported on rollback and recovery
strategies[1-12], which provide adequate times to backup data in the main internal mMemory on a
hard disk. These strategies were originally devised for fear of a system failure of an online banking
system. In the case of a system failure of such an online banking system, all the data in the main
internal memory at a failure must completely be recovered at any rate. For this reason, all the log
files are also backed up on a magnetic tape. With both the data backed up on the hard disk and
the log files backed up on the magnetic tape, the system data can perfectly be recovered although
it spends a great deal of time and cost.

Assuming that the state of the system can perfectly be recovered up to the state at its failure, a
formulation based on the renewal reward process[13] is possible. The underling idea in the formu-
lation is quite similar to that in replacement policies for a system in the reliability context[14, 15],
where the cost structure depends on the age of the failed unit at its failure[16- 19].

In the problems associated with a hard disk for personal computers or workstations (backup
policy problems for simplicity), it should be reminded that the recovery from a hard disk failure
using backup disks is partial, i.e., the hard disk can only be recovered up to the state at the last
backup time. This peculiarity makes the backup policy problem more complicated than that of
rollback and recovery strategies for the main internal memory.

For backup policy problems, Sandoh, Kaio and Kawai[20] and Sandoh, Kawai and Ibaraki[21]
have proposed a backup policy, which suggests to backup files in the hard disk at time 7' measured
by the elapsed.time spent in updating or creating files after the last backup operation or the
recovery from a hard disk failure, whichever occurred most recently. This policy is called a time-
managed backup policy. For the purpose of determining the value of T, Sandoh, Kaio and Kawai[20]
formulated the expected cost per unit time over an infinite time span as an objective function to be
minimized. Sandoh, Kawai and Ibaraki[21] introduced the limiting availability as another objective
function to be maximized. Sandoh and Kawai[22] have also proposed another backup policy, which
insists on backing up files when N jobs of creating or updating files are completed. This is called a
job-managed backup policy. The limiting availability was introduced that was to be maximized for
the purpose of determining an optimal integer N*.

Under the time-managed backup policy, we may have to stop creating or updating files for a
backup operation when the elapsed time since the last backup operation or the recovery reaches 7.
Such a problem can be solved by adopting the job-managed backup policy. Under the job-managed
backup policy, however, some backup operations may be executed too early and others too late.
This is because the processing time of each job is random.

In order to overcome both problems under the time-managed and the job-managed policies,
this study proposes a warning policy for backup operations. This policy gives us a warning to
back up files at the prespecified time T,,(> 0) measured by the elapsed time since-the previous
backup operation or the recovery from a hard disk failure. The time to give us a warning is called a
warning time. In case a job is being processed at the warning time, a backup operation is actually
conducted immediately after the process of the job is completed. Such a job is called a warned job
in the following.

For the purpose of determining the value of T, this study formulate the efficiency as a criterion,
which is defined by the long-run average ratio of (i) the time spent in processing jobs effectively
in the sense that their accomplishments are successfully backed up to (ii) the total time spent in
processing jobs ineffectively as well as effectively, and spent in backup or recovery operations. If
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a warning time Ty, = T} maximizes the efficiency, it is optimum. We then clarify the conditions
under which such an optimal warning time exists. A numerical example is also presented.

2. ASSUPMTIONS AND PROCESS BEHAVIOUR
2.1 ASSUPMTIONS

This study makes the following assumptions:

(2) The hard disk failure time X, follows an exponential distribution with. failure rate A, since the
failures occur randomly in time. The hard disk failure can instantly be detected.

(b) We only consider the time during which a job is being processed, and thereupon we assume
that a hard disk failure occurs only when a system is processing a job.

(c) The processing time Y for each job of updating files is independently and identically dis-
tributed, and the cumulative distribution function(cdf) and the probability density function
(pdf)of a processing time are denoted by H(y) and h(y), respectively.

(d) The backing up time at each backup operation consists of a setup time 7 and the time pro-
portional to the total processing time of jobs whose accomplishments are backed up. The
proportional constant is denoted by a.

(e) The mean recovery time from a hard disk failure is given by .

(f) No hard disk failure occurs during a recovery operation although one might occur during a
backup operation.

Assumption (b) signifies that we regard a hard disk as an intermittently-used system[23]. Assump-
tion (c) indicates that the cdf and the pdf of the total processing time for n jobs are respectively
given by

H,(t) = [) Hy 1(t—y)dH(y) = H(t) * Hyp 1(t), n=2,3,---, | (1)
and
_ dH,(t) _
hn(t) = TR n=12,---. (2)

2.2 PROCESS BEHAVIOR

Let us here define the ercess age as the residual processing time of a warned job at Ty,. The
processing times of jobs generate a renewal process[13], and therefore the cdf, G(t) of the excess age
T is given (see, e.g. [13]) by

G(te) = H(Ty+ t.) — Tw H(T,, — t + t)m(t)dt, (3)
0
where
m(t) =Y hn(t). (4)
n=1
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From assumption (a), the process of the system behavior generates a renewal reward process[13],
where the renewal point is assigned to the time when one of the following two events occurs:

(i) The process of the warned job was finished and the backup operation has successfully been
carried out, that is, X > (a + 1)(Ty + T¢).

(ii) A hard disk failure occurred during or before a backup operation and a recovery from the
hard disk failure using backup disks has been completed, that is, X < (a + 1)(Ty, + Tb).

The above case (i) includes the effective time, which is expressed by T}, + T., and the time over
one cycle is (a + 1)(Tw + T¢) in this case, where one cycle refers to the time between tow successive
renewal points. In the case (ii), the time over one cycle is given by X and there is no effective time
over one cycle.

3. EFFICIENCY

Let A(Ty) and B(T,) respectively denote the expected time and the expected effective time over
one cycle, then the efficiency W(T,,) is written by

_ B(Tw) .
where
[o.0]
AlTw) = / [(a+1)(Tow + te) + 7] e MeFDTutteltrlga s, )
0 - .
o0 (a+1)(Tw+te)+r
+ / / (z + p)Ae™2dz | dG(t.), (6)
0 0
B(T,) = / (T + o)~ N Tl rlgi ) ™
0

The first and the second terms of the right-hand-side of Eq. (6) respectively express the above events
(i) and (ii), while the right-hand-side of Eq. (7) shows only the event (i). In many cases, however,
it is difficult to derive G(tc) in Eq. (3) in a closed form, and hence, it is also difficult to conduct the
subsequent analysis using Egs. (6) and (7). ‘
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On the other hand, A(T,,) and B(T,,) are also given by

o0
A(Ty) = / [(a+ L)vy + 7] e~ Mt Dvwtrlg gy, )

w

Tw oC
+/ {/ (a4 1)vy + 7] e—A[(a+1)'vw+T]h(vw _ t)de} m(t)dt
0 0

oo (a+Dvp+r
—I-/ / (z + p)Ae dz | dH (vy)

Tw o0 (a+1)vy+T
+A {/;{Lﬂ @+MMﬂm4hmfﬁm%}m@ﬁ

+ [ j(x + wH(z)
+ /OTw [/T:o(x + wyH (z - t)/\e_’\xde m(t)dt

Tw
-I—/ (z+ p)re " dz,
0

. o]
B(T,) = / Uwe_’\[(“+1)vw+T]dH(vw)

. Tw [e's]
+/ {/ vwe”’\[(“+1)"w+71h(vw — t)de} m(t)dt.
0 ,

0

(8)

(9)

where variables vy, z, t in the above equations, are used to express the accomplishment time of the
warned job, the hard disk failure time, and the completion time of the job processed just prior to
the warned job, respectively.

Each term in the right-hand-side of Eq. (8) respectively expresses each of the seven cases listed

below: :

(a) A warning had been given to the job immediately after the renewal point, and a backup

operation has successfully been completed after the warned job was processed.

(b) At least one job had been processed before the warning, and a backup operation has success-

fully been completed after the warned job was processed.

(c) A warning had been give to the job immediately after the renewal point, and a hard disk

failure occurred during a backup operation.

(d) At least one job had been processed before the warning, and a hard disk failure occurred

during a backup operation for the accomplishments of processed jobs.

(e) A warning had been given to the job immediately after the renewal point, and a hard disk

failure occurred after the warning and before the warned job was processed.
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(f) At least one job had been processed before the warning, and a hard disk failure occurred after
the warning and before the warned job was processed.

(g) A hard disk failure occurred before the warning.

The first and the second term in the right-hand-side of Eq. (9) express the above cases (a) and (b)
respectively since the other cases include no efficient time in themselves. From Egs. (8) and (9), we
obtain

1 T |
A(T,) = (X‘L") [1—Q+A6P / m(t)e_)‘btdt}, (10)
0
T
B(T,) = R+ / (R — XbPt) m(t)e ™ dt, (11)
0
where

— —AT ® = —)\btd
P e /0 H(t)e .t, (12)
Q = e / ” h(t)e Mdt, (13)

0

— —AT * —/\btd 4
R e /0 th(t)e t, (14)
b = a+1. (15)

The above results yield

R+ [ (R— MoPt) m(t)e gt
(3 +5) [1 — Q@+ NP [ m(t)e—)‘btdt} '

W(T,) = (16)

We have formulated the efficiency of the proposed policy. If T}, = T;; maximizes W (T},), it is
optimum. In the succeeding section, we will examine the existence of such 77.

4. EFFICIENT WARNING POLICY
By differentiating W(T,) in Eq. (5) with respect to 1%, we have
B (Ty)A(Tw) — A(T)B(Ty)

W’(Tw) = A2(Tw)
A(Ty) [B'(Tw)
) AT ) 1o
From Eq. (10), we have
Af(Tw) = A G + u) bPm(T,,)e 1w > (, (18)



It follows that the sign of W'(T,) agrees with that of D(1',), which is defined by

D(T) = ST ATL) = BIT.). (19)
From Egs. (10), (11) and (19), we obtain
Jim D(Ty) = —c0<0, (20)
. R
Tzll—l—»n-q-oD(TW) = %P (1—Q— AbP). (21)

Equations (12) and (13) reveal the relationship between P and @, which is expressed by
Q= —AbP +e 7, (22)

and thus we have

. _ R —\T = 0, T=0
i, D) = 55 (1 —° ) { >0, 7>0. (23)
On the other hand, Eq. (19) yields

B'(Tw)]’
"(Tw) = 2| A(Ty)- 24
D) = | Ty ] Atte) (24)

Since A(T,) > 0, the sign of D'(T),) coincides with that of [B'(T3)/A'(Tw)]', which satisfies
B’(Tw)]' 1 _

=— < 0. 25
F) T )

From Egs. (20), (23) and (25), the existence of an efficient warning time can be discussed for
the following two cases:
(1) 7 > 0 (i.e., the setup time cannot be neglected):
In this case, the sign of D(Ty,) changes from positive to negative, and thus there exists a
unique finite positive warning time T, (> 0).
(2) 7 = 0 (i.e., the setup time is negligibly small):

In this case, we have D(Ty,) < 0 for T\, > 0, and therefore T, — +0. This result suggests to
backup files as frequently as possible.

5. NUMERICAL EXAMPLES

This section illustrates the proposed warning policy assuming that the processing time of each job
independently and identically follows a gamma distribution with shape parameter 2 whose cdf and
pdf are respectively given by

Ht)=1—(1+at)e ™, (26)
and

h(t) = o’te™ ™. (27)
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Under H(t) in Eq. (26), we have

_ 2 + )\b — AT
S e VR )
2
_ o —XT
= et (29)
20&2 —AT
R = me s (30)
m(t) = % (1—e 24y, (31)
Hence, A(T,,) and B(Ty) in Eqgs. (10) and (11) respectively become
_ (1 ' aP T aAbP —(204A8) T
A(T"’)_<A~+"‘){1 @+ (1 € ) 4a+2>\b[1 € } (3
and
- O e, @ T (90T
B(Tw) R{H 2 (1= ) 5(2a T \b) - ]}
alP | 1 2T 1 — (204 20) T
T {(/\b)z (1= emm) a+ 32 1-e ]
e~ MTy o= (20426) Ty
~w [ X 20+ | (33)

o
o
©

Efficiency
=3
o
=]

ot
=3
)

0.96

Warning time

Figure 1: Efficiency

Figure 1 shows the efficiency when 7 = 0.01, 0.05 and 0.1 for (), a,u,a) = (0.001,0.001,
0.25,2.0). It is signified by @ = 2 in the gamma distribution with shape parameter 2 that the
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Table 1: Efficient warning times.

(a, p, ) = (0.001,0.25,2.0)
: 7=0.01 7=0.05 7=0.1

N T nlwap [ lweg) |1 | wz)
0.0010 | 3.72 | 0.9943 |9.21 | 0.9888 |13.31 | 0.9847
0.0020 | 2.41 | 0.9922 |6.29 | 0.9844 9.18 | 0.9787
0.0030 | 1.84 | 0.9905 | 4.99 | 0.9810 7.34 | 0.9740
0.0040 | 1.49 | 0.9890 | 4.22 | 0.9782 6.25 | 0.9700
0.0050 | 1.26 | 0.9877 | 3.69 | 0.9756 5.51 | 0.9665
0.0060 | 1.09 | 0.9865 | 3.30 | 0.9732 4.96 | 0.9633
0.0070 | 0.96 | 0.9854 | 3.00 | 0.9711 4.53 | 0.9604
0.0080 | 0.85 | 0.9843 | 2.76 | 0.9690 4.19 | 0.9576
0.0090 | 0.76 | 0.9832 | 2.56 | 0.9671 3.90 | 0.9550
0.0100 | 0.69 | 0.9822 | 2.39 | 0.9652 3.66 | 0.9526
0.0200 | 0.34 | 0.9726 | 1.47 | 0.9500 2.36 | 0.9324
0.0300 | 0.22 | 0.9632 | 1.07 | 0.9378 1.78 | 0.9165
0.0400 { 0.16 | 0.9538 | 0.83 | 0.9272 1.44 | 0.9030
0.0500 | 0.12 | 0.9446 | 0.67 | 0.9174 1.21 | 0.8909
0.0600 | 0.10 | 0.9354 | 0.56 | 0.9081 1.04 | 0.8798
0.0700 | 0.09 | 0.9263 | 0.48 | 0.8991 0.91 | 0.8695
0.0800 [ 0.07 | 0.9173 | 0.42 | 0.8904 0.81 | 0.8598
0.0900 | 0.07 | 0.9085 | 0.37 | 0.8819 0.72 | 0.8506
0.1000 | 0.06 | 0.8997 |[0.33 | 0.8735 0.65 | 0.8417

mean processing time of each job is equal to 1.0 (hour, e.g.). It can be observed in Fig. 1 that
the efficient warning time becomes larger as the setup time, 7 increases. In addition, the efficiency
becomes smaller on the whole when 7 increases. This is because the time for a setup operation is
regarded as being inefficient in this study.

Table 1 reveals the efficient warning times in the case of (a, u, o) = (0.001, 0.25, 2.0). Table 1
indicates the efficiency corresponding to the efficient warning time as well.

From Table 1, we can see that the efficient warning time decreases with increasing failure rate,
A. It is also seen that the efficiency decreases on the whole as the setup time increases and that the
setup time does not affect the efficient warning time significantly when A takes a large value.

6. CONCLUSIONS

This paper proposed an efficient backup warning policy for a hard disk of an engineering workstation
or a personal computer, where a warning for a backup operation is given at the elapsed time T, (> 0)
since the last backup operation or the recovery from a hard disk failure. If a warning is given while
we are processing a job, a backup operation is carried out immediately after we finish processing the
job. The efficiency was adopted as a criterion to be maximized. It was then shown that there exists
a unique efficient warning time T, if the setup time for a backup operation cannot be neglected.
A numerical example was also presented to illustrate the theoretical underpinnings of the proposed
backup warning policy formulation.
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Abstract—This paper considers a communication system which consists of two processors,
and studies the problem for improving its reliability by adopting the recovery techniques of
checkpoint and rollback : When either processor failure or communication error occurs, the
rollback operation for processors associated with such an event is carried out to the most recent
checkpoint. If the rollback recovery for processors has been executed at k times successively,
we regard that the system has become a faulty state permanently, and interrupt it. Then,
the inspection and maintenance are made and after that, the system is recovered successsfully
and restarts again from the beginning of its initial state. We formulate the stochastic model
with the above recovery techniques, and derive the mean time to checkpoint, the expected
number of rollback operation and interruption. Further, an optimal checkpointing interval
which minimizes the expected cost is analytically discussed under the assumption that the
number of rollback operation is limited. Finally, some numerical examples are given and useful
discussions are made.

Keywords—Rollback recovery, Limited rollback, Communication system, Expected cost,
Checkpointing interval.

1. INTRODUCTION

As a computer communication technology has remarkably developed, efficient control mechanisms
of a system have been actually realized by a number of processors [1]. Hence, the processing
of each processor has to be carried out accurately and fast. Moreover, a system needs to restore
rapidly a consistent state after transient faults, to improve the reliability of communications between
processors [2]. This paper considers a communication system which consists of two processors, and
studies the problem for improving its reliability, by adopting the recovery techniques of checkpoint
and limited number of rollback [3], [4].

Several algorithms of rollback recovery with checkpoints have been already proposed to keep a
system consistent when transient faults occur. In the previous model [6], we discussed the policy that
when either processor failure or communication error occurs, the rollback operation for processors
associated with such event is executed to the most recent checkpoint, and so that, the consistent
state in the whole system is always maintained. That is, it was assumed that both processor failures
and communication errors are transient, i.e., these are unlikely to recur after rollback operation. In
this paper, we assume that the system becomes like failure if the number of rollback operation for
processors is greater than a threshold level. That is, if the rollback recovery for processors has been
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executed at k times successively, we regard that the system has become a faulty state permanently,
and interrupt it. Then, we make the inspection and maintenance of the system, and after that, it
is recovered successsfully and restarts again from the beginning of its initial state.

We formulate a stochastic model of a communication system with the above recovery policy:
The mean time between checkpoints, the expected number of rollback operations due to processor
failures or communication errors, and the expected number of interruptions are obtained, using
the theory of Markov renewal processes [5]. Further, we derive the expected cost and discuss
analytically an optimal checkpointing interval which minimizes it, under the assumption that the
number of rollback operation is limited. Finally, some numerical examples are given. :

2. MODEL AND ANALYSIS

The system consists of two processors, which is called A and B, and the control mechanisms are
realized by communications between processors. We observe only about communicaton behavior of
processor A.

(1) The system begins to operate at time 0, and takes checkpoints for all processes that are relevant
" to the operation of A at scheduled time 7. Any transmissions which have not finished until
time T' deal with no transmission with each other.

(2) The demand for transmissions between A and B has a general distribution A(t) with mean
1/a.

(3) A message is divided into n pieces of segments because it is necessary to ensure the reliability
of transmissions, and each segment is sent from a sender to a recelver with acknowledgment

by handshake as follows:

(i) Each corresponding answer of ACK( positive acknowledgement) or NAK(negative ac-
knowledgement) from a receiver to a sender judges whether the transmission of a, segment
succeeds or does not. The communication of a message terminates when 7 times of ACK
have been accepted from a receiver.

(if) When NAK has been received or no answer has been recieved until a limited time, we
retransmit a message of the same segment. If the retransmission does not succeed again,
it is judged that communication errors have occurred.

(iii) The time needed for the transmission of a segment has a distribution a(t), and the
probability that it succeeds is p(0 < p < 1).

(4) Failures of processor A and processors B occur independently according to distributions F'4 (%)
and Fp(t), respectively. Then, we define the probability distribution F(t) = F, (t)Fg(t) with
mean 1/, where ®(t) = 1 — ®(t) represents a survival function of any function O(1).

(5) When either processor failures or communication errors have occurred, the rollback opera-
tion for processors associated with such events is executed from that time to its most recent
checkpoint.

(i) Any transmissions which have not finished until that time deal with no transmission with
each other.

(ii) The system is regenerated by the rollback operation.

(iii) The time required for rollback recovery has a general distribution G (t) with mean 1/p.
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(6) If the rollback recovery for processors has been executed at & times successively, the system

is inspected and maintained. After that, the system restarts again from the beginning of its
initial state.

(i) The system is regenerated by the inspection and maintenance.

(ii) The total time required for the inspection and maintenance has a general distribution
V(t) with mean v.

Under the above assumptions, we define the following states of the system:

State Sp: The system begins to operate or restart.

State Sp:

Either processor failure or communication error occur and the rollback recovery
starts.

State Sk

Rollback operation has executed at k times, and the inspection and maintenance
starts.

State S7: Checkpoint of the system is made at time T.

The system states defined above form a Markov renewal process [6], where S is an absorbing state
and Sy is a regeneration point.

We can derive the mean time (g, 5, from the beginning of operation to the next checkpoint,
from Appendix 1:

= ok
! SR i o[l - F(T)X(T)]
—_— F)X(t)dt+ 11 - F(T)X(1T)] | + L . (D
F(1)X(T) [ Jo . ] 1-[1 - FDX(1)"
Note that X (t) is a probability distribution that communication errors occur. The expected number

of rollback operations caused by processor failures or communication errors and the expected number
of interruptions are, respectively, from Appendix 2,

eSo,ST =

1
Y= Faxa ?
1 |
My = - L 3
L= [1 - F(T)X(D)]

3. OPTIMAL CHECKPOIN TING INTERVAL

Let ¢ be the cost for the operation of the system, cs be the cost for a rollback recovery of commu-

nication errors or processor failures, and c3 be the cost for inspection and maintenance. We define
that the expected cost per unit of time until the next checkpoint is

o) =4 + coMp + ec3My (4)
= T s :

We seek an optimal checkpointing interval which minimizes C(T) in Eq.(4) for c3 > ¢ > ¢1, and
discuss analytically it. From Eq.(1),Eq.(2) and Eq.(3), we can rewrite Eq.(4) as follows:
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aY (D)1 =Y (D) + Y (1)1 = Y(T)¥] + csY (T)Y(T)*

C(T) =
) 5 Tyt + LY ()] 1 = Y (D] + 0¥ (DY (D)

where

Y(T) = 1-F(T)X(T).

Let v(t) = y(t)/Y (t) where y(t) is a density of Y (t). Differentiating C'(T) in Eq.(5) with respect
to T' and setting it equal to zero, we have

T)[0
+ [

(£)dt + 1Y(T)} (—ﬁ-—) Y (T {

c2—C1

) [T Y (t)dt — (T)} [1

kY (D)~ Y(T(T)°

1-Y(T)*

— (62 01) Y(T)+1 [

1-Y(T)*

- Y(T)’“]

kY (T)
1-Y(T)*

kY (T)

-~ Y(T)]

-~ Y(T)} }

+ 'y(T)v{

- 14+ ()] (525 YDV (1)
[1+ 3] [1- v @)]

= (6)

Denoting the left-hand side of Eq.(6) by Li(T), we have the following policy, from Appendix 3:

(i) If 4(t) is strictly increasing in t, [° Y (t)dt+1/u > civ/(cz+co—c1) and Ly(00) > e1/(ca—c1),
there exists a finite and unique 77 which satisfies Li(T) = ¢1/(ca — c1).

(i) If ~(t) is strictly increasing in t, [;° Y (t)dt — 1/v(00) > c1v/c3 and Leo(o0) > c1/(ea — 1),
there exists a finite and unique T3% which satisfies Loo(T) = ¢1/(c2 — ¢1), and is T7 < T

(iii) If Ly(T) is strictly decreasing in k, there exists a finite and unique T ‘which satisfies Ly(T) =
a/(ca—c1),and TF < TF < Th(k=2,3,---).

4. NUMERICAL EXAMPLE

We consider the paticular case that A(t) is exponential and the transmission time of a segment can
be neglected because it is much smaller than the other times, i.e., A(t) =1— e~ and a(t) =1 for
t > 0. Let A(t) = f(¢)/F(t) where f(t) is a density of F'(t). Then, we can rewrite (6) as

0ot [ i 1) () vt [

+ N(T) + a1 — )] [fo tdt——Y(T)} [ -Y(1)]
R WS i
A - [ [A(T)+0é1—:v](cz—"°>c—l)Y(T

[1 + LIAT) + o1 - :v)]} [1 - Y(T)k}

- Y(T)]

- Y(T)] }
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C1
P (7)
where z = [p(2— p)|"(0 < z < 1) and Y (t) = 1 — F(t)e (12}t

We compute numerically an optimal checkpointing interval T* which satisfies Eq.(7). It is
assumed that failures of processor A or processor B are caused by random factors of processors.
Thus, failures occur according to a Gamma distribution with order 2, i.e., F(t) = 1 — (1+2At)e ~2X.

Suppose that the mean time 1/u of rollback is a unit of time, the mean time of failures is p/\
= 1800 or 3600, the mean time of inspection and maintenance is v = 60 or 360, the mean time of
demand for communcations between A and B is p/a = 30. For example, when 1/u = 1 second,
1/X = 30,60 minutes. The number of segments is n = 1,4, 8, and the transmission of undivided
message fails with probability ¢, and hence, the probability of accepting ACK for one segment when
a message is divided inton isp=1-— ¢/n.

Introduce the following costs : A cost of checkpoint is ¢; = 1, the loss costs of rollback recovery
for communication errors and processor failures are ca/c; = 10, and the loss costs of inspection and
maintenance are cz/cs = 2,4.

Table 1 gives optimal checkpointing intervals pT*/60 and expected cost C(T*) x 10™* when
¢ =0.1, p/a = 30 and ca/c; = 10. These values are scaled to a unit of minute in time. This shows
that T* decrease with c3/cy and n, increase with u/A and pv for the same value c3/cp. Similarly,
T™* also increase and the expected cost C'(T™*) decrease with k for the same value n. Hence, it is
better to make the checkpoint at a maximum 7* when k goes to infinity. However, when £ is large,
T* little depend on c3/cg, and become constant.

Table 1 Numerical values of optimal time pT*/60 and expected cost C(T*) x 1074
to minimize C(T") when ¢ = 0.1, u/a = 30 and ca/c; = 10.

n=1 n=4 n=2_§

csfea | po | p/ - k k k

1 4 | oo 1 4 o0 1 4 .| ©
C(T*)x10=* | 170.3 | 73.3 | 71.5 | 100.6 | 48.5 | 48.2 | 88.8 |44.5 [44.3
1800 wI™* /60 50 | 87 |10.7 | 48 | 9.7 [104 | 48 | 9.8 [10.3

60 o(T*)x 104 | 13.3 | 54.1 | 51.3 | 62.6 |28.3 [270 | 50.6 [24.2 [24.1

' 3600 ™ /60 10.1 [145 (224 | 9.7 [188 [209 | 96 |[194 |20.7

2 C(T*)x10-4 | 149.2 | 73.1 | 71.5 | 94.1 |48.5 |48.2 | 84.5 [44.5 [44.3
1800 uI™ /60 5.5 87 110.7 | 52 | 9.7 (103 | 5.1 9.8 |10.3

360 c(T*)yx 10~ | 119.0 | 53.9 | 51.3 | 59.8 |28.3 | 27.9 | 48.9 |24.2 |24.1

3600 uwI™ /60 10.9 | 14.8 (224 | 10.1 [18.9 |209 | 9.9 [19.4 |20.6
C(T*)x 1074 | 260.2 | 74.5 | 71.5 | 142.2 | 48.8 [ 48.2 |122.2 |44.7 |44.3
1800 pwI™* /60 3.6 79 1107 3.5 | 93 [103 | 3.5 9.5 ]10.3
60 o(r*)x 10t | 210.8 | 55.6 | 51.3 | 91.7 |28.6 | 279 | 71.5 |24.4 [24.1

.| 3600 wI™ /60 7.3 126 1224 71 |17.7 |209 | 7.1 |18.6 [20.6

4 C(T*)x107* | 229.9 | 74.4 | 71.5 [ 134.3 | 48.8 [ 48.2 |116.8 [44.7 [44.3
1800 uT™/60 40 | 80 (107 | 3.7 |93 (103 | 3.7 | 9.5 |10.3

360 C(T*)x10~* | 189.1 | 55.5 | 61.3 | 88.0 |28.56 |27.9 | 69.5 |24.4 |24.1

3600 uT™/60 7.8 | 127|224 | 73 |17.8 (209 | 7.2 |18.7 |20.6

5. CONCLUSIONS

We have considered the reliability of a communication system by applying the recovery tequniques of
checkpoint and rollback, under the assumption that the number of rollback operation is limited: - We



have formulated the stochastic model where the consistent state is restored by rollback when either
processor failures or communication errors have occurred, and if the rollback recovery for processors
has been executed at k times successively, we interrupt the system operation and make the inspection
and maintenance. We have derived the mean time to checkpoint, the expected number of rollback
recovery by processor failures or communication errors, and the expected number of interruption.
Further, we have discussed analytically the optimal checkpointing interval which minimizes the
expected cost.

From the numerical example, we have shown that the optimal checkpointing interval decreases
with the rate of costs for rollback operations and interruption, and increases with limited number
of rollback operations. Moreover, we have understood that optimal checkpointing interval reaches
mostly a fixed value which is given by the parameters of u/) and k. :

After this, it would be important to improve and evaluate the reliability of a system with multi-
communicaton mechanisms from various practical viewpoints.
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6. APPENDIX

1. Derivation of mean time g, g,

Using the mass functions of Markov renewal processes [5], Laplace-Stieltjes (LS) transforms g;;(s)
of the transition probabilities Q;;(t) from state i(i = Sp) to state J(j = SF, S, Sk) are given by
the following equations :

i T T
050,50 () = /0 e F(H)dX (£) + /O X (8)dE (1), (A1)
qSo,SK(S) = [qSD,SF(S)g(S)]k’ . (A2)
k
950,57 (8) = Z[QSO,SF ()g(s)) e TX(T)F(T), (A.3)

i=1

-72-



where

Wit) = A(t)* [pa(t) + (1 - p)pa® @)D (i=1,2,--,n),
X(@t) = Y wIO Y Wia(t)*[(1- pla)]®,
5=0 i=1

and ®U)(t) is the j-fold convolution of ®(¢) with itself and ® () (t) = 1 for £ > 0. Then, LS transforms
hs,,5,-(s) which is the mean time from the beginning of the operation to the next checkpoint is

4Sy,St (3)
45,5 (5)0()° (44

hSO,ST ('5) = 1

Therefore, the mean time £g, g is

£sy57 = ;13(1) lei.;‘ﬁ
F(D)X(T) [ o FOX(t)dt+ ;1 — F(T)X(T ] v 2

(A.5)

2. Analysis of Mg and My
LS transforms mp(s) and mg(s) of the expected number of rollbacks caused by processor fa,llures
and communication errors or the expected number of interruptions are, respectively

k(G — Dlase.se ()L TE(T)X(T) + kqsp.s.(5)
Fup(s) = > =100 — Dlgsy.s 1(8—)](150,51{(3)1;((33 (T) + kgsy,5% )’ | (46)

qu:SK (S) (A 7)
1 — gsp,8¢ (8)v(s)
Therefore, the expected number of rollback recovery Mg and interruption Mg per unit of time are,
respectively

m(s) =

1

M = limmp(s) = FOxXT " (A.8)
1
Mg = lim 7 = - 1. A9
) = I CF R )
3. Analysis of T} which satisfy Eq.(6)

Let Li(T) be the left-hand side of Eq.(6). First, when k = 1, we have
L,(0)=0, (A.10)

[¥(00) [ Y (t)dt — 1] (1 + a‘%;)
L = o (gc_lg) All
1(00)— 1+%/\(OO) ’ ( . )
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Y (14 52) [ T+ )] - (55) o}

Ly(T) (A.12)
|1+ 2T + o (1 - x)]]
where ®'(¢) is a density of ®(¢). Then, taking L} (T) = 0, we have,
cv
Y (t)dt Y T)= —r—— A3
./ * T)= cstea—cr’ ( )

which is strictly increasing in T'. Thus, if [;° Y(t Jdt+ 1/ > cv/(c3 + ca — c1), there exists a finite
and unique T1(0 < Ty < oo) which satisfies Eq.(A.13). Hence, when T > T3, L1(T) is increasing in
1.

Therefore, we have the following policy:

(i) If y(t) is strictly increasing in t, [~ Y (¢)dt+1/p > c1v/(cs+ca—c1) and Ly(00) > c1/(ca—c1),
there exists a finite and unique 77 (7} < 15 < oo) which satisfies L1(T) = ¢1/(c2 ~ c1)-

Next, when k = 0o, we have, from [6], if (t) is strictly increasing in t and L o(00) > €1/(c2—c1),
there exists a finite and unique 7% which satisfy Loo(T) = c¢1/(c2 — ¢1).
Further, we consider the case that L;(T) > Lo(T), i.e.,

Foa- YO o
/0 V{0t - s > 2o

Letting Q(T) = fo Y (t)dt — Y(;Z:)) , we have

=0 (414
oy YN @ .
“O= T 9

Then, if +(t) is strictly increasing in t, @Q(T) is also strictly increasing in T'. We easily have, from
T} which satisfies Eq.(A.13),

_ (O _Y(I)
QL) = /0 Y (t)dt T
_ o av 1 _Y(m)
st e—a /iY(Tl) ¥(T1)’
(A.16)
e (—c) 1 Y(T) |
Cc1v _ C1v({C2 — 1 L _ 1
Q(Th) — o = oot s o) #Y(Tl) T < 0. (A17)

Therefore, we have the following result:

(ii) If [;° Y (£)dt—1/7(00) > c1v/cs, then there exists To(T7 < Tz < oo) which satisfies fo Y (t)dt—
Y (T)/v(T) = cyv/cs, and we have that L1(T) > Lyo(T) for T > T5.

It would be very difficult to show that Lg(t) is strictly decreasing in k. We could show that
if Li(t) is strictly decreasing in k, there exists a finite and unique T} which satisfies Ly(T) =
c1/(ca—c1),and TF < TF < TE (k=2,3,---).
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Abstract—We deal with a situation where a worker processes two kinds of jobs. Job A (JA)
can be processed only at a queueing system. He must join the queue when he decides to process
JA and stays there until he completes JA. Job B (JB) is completed after processing several
steps and each step needs a constant time. At the end of each step, he can know whether JB
is completed or not and decides whether he joins the queue. If JB is completed, he joins the
queue to process JA. If he decides to join the queue, he processes the rest of JB after JA. The
objective is to minimize the expected time until two jobs are completed. We prove a monotone
property of the optimal policy by a dynamic programming formulation.

Keywords—Optimal join, Dynamic programming, Monotone policy.

1. INTRODUCTION

In queueing theory, a customer is usually assumed to arrive at the system without his own policy.
However, the customers sometimes decide whether to join the queue or not. Typically, the decision
depends on the waiting cost and service merit. Naor[1] proposed the system in which the customer
decides whether to join the queue. The decision is made on the basis of waiting cost, service merit
and toll to enter the system. He showed that the admission control by the toll yields the better
performance of the system. Bell and Stidham|[2] dealt with a static control in a multifacility model,
which assigns the arriving customers to the multiple servers with determined probabilities. It is
shown that the socially optimal control uses more servers than the individually optimal control. In
the shortest queue problem (Winston[3]), the behavior of joining the shortest queue, which is the
individually optimal control, is also the socially optimal control.

In this paper we deal with the model, in which one customer can decide whether to join the queue
and discuss his (individually) optimal policy. His objective is the minimization of the expected time
for processing two jobs. One job (job A) is processed in a queueing system and the other job (job
B) can be processed if he is not in the queueing system. To complete job B, several steps must be
processed. At each end of step he can decide whether to join the queue. If he decides to join the
queue, he resumes job B after finishing job A. To minimize the total processing time, it is desirable
to minimize the time in the queueing system. '

This problem may be considered as a model which explains the behavior of a man, for example,
in an amusement park. In an amusement park, there are many facilities that enjoy people. Some
of them are very popular and they usually have long queues. In this case, we sometimes enjoy the
other minor facilities and wait for the queue to be shorter. When we think the queue becomes short
enough, we join the queue. Though the objective and the situation in an amusement park are very
complicated, our model can be considered as a primitive model of this situation.
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Our problem is formulated as a dynamic programming problem (Ross[4]). It is shown that the
optimal policy has a monotone property. The monotone property is similar to the switch curve

structure introduced in Warland|5].
In the next section, we describe our model. In Section 3, the formulation and the analysis are
shown. In the last section, we supply the numerical examples to confirm our results.

2. MODEL DESCRIPTION

We consider a worker who processes the two types of jobs. Type A job (JA) can be processed only
in a queueing system. Type B job (JB) are processed while he is not in the queueing system. The
queueing system where JA is processed has Poisson arrivals and an exponential server. The arrival
rate may depend on the queue length 7 and it is denoted by A;. The service rate is denoted by u.
There is only one JA and one JB. To complete JB, we need to process several steps whose number
is distributed with distribution Rj. The distribution Ry denotes the probability that more than or
equal to k steps are needed to complete JB. Each step needs the constant time 7" and after each step
he can know whether there are more steps to complete JB. If JB is completed, he joins the queue
and waits until JA is finished. If the steps are still left, he decides whether to join the queue or to
continue JB, with the information of the queue length and the number of steps he has processed. If
he chooses to join the queue, he waits for JA to be finished and resume JB. If he chooses to process
JB, he will decide again after the step. Our objective is to minimize the total expected processing
time of two jobs. ‘

2.1 FORMULATION BY DYNAMIC PROGRAMMING

Let us define the following notation for optimality equation.

(i,k) : State (i,k) indicates that the queue length is ¢, and JB has not been completed after &
steps are finished.

V(i,k) : V(i,k) is the optimal expected time for state (i, k).

W (i, k) : W{(i, k) is the expected time for choosing to continue JB at state (4, k) and optimal be-
havior thereafter. :

D(i, k) : D(i, k) is the optimal action for state (¢, k).

D(i, k) = 1 if it is optimal to join the queue,
/71 2 if it is optimal to continue JB.

S;  : The conditional probability that the total number of the steps is k, given the total number
of the steps is more than k. (S, =1 — S)

Sk = (R — Rp41)/ Ri

My, : Expected residual time to complete JB for state (i, k),

o]
Mk”—'—T Z Rm/Rk+1.
m=k-1

P;; : The probability that the queue length changes to j after time T', given the initial length
i.
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Q; : The expected queue length after time 7', given the initial length i.
o0
Q=) iP;
=0

With these notation we obtain the following optimality equation.

Wi k) = T—i—ZPij(Sk+1(j+1)/#+§k+1V(j,k+1)) (1)
7=0
V@ k) = min{Mg+ (i+1)/u, W k)} 2)

Optimal action D(3, k) is determined by

1 M+ (i 1)/ < WL k)
D(i, k) = { 2 ifMZ+(i+1)/Z> W (i, k)

We assume the following conditions for our model.
Condition 1. The arrival rate A% and the probability Sy satisfy the following conditions.
1. X; is a decreasing function of i.
2. Sk is a monotone function of k and there exists N and € > 0 such that Sy > ¢ for allk > N.

Lemma 1. The transition probability of the queue length has the following properties.

oC
1. For all m, Z F;; is increasing in 1.

J=m
2. The inequality Q;1+1 — Q; < 1 holds.

This lemma is easily derived by Condition 1.1.

The value of V (i, k) is obtained by the following iteration (successive approximation, Wessels|6]).

VO, k) = 0 forallik (3)

WK = T+ Py(Sesl+1)/6+ BenaVoG b+ 1)) 4)
§=0

VPH(i k) = min{Mg+ (i + 1)/p, W(i, k)} (5)

We prove some properties of V (i, k) and W({i, k) by mathematical induction with respect to n.
Lemma 2. The functions V (i, k) and W (i, k) have the following properties.
1. If Sy is increasing in k,

V(i k+1)=-V(i,k) > Mpy1— My and (6)

W, k+ 1)~ W(i,k) > Mgy — M. (7
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2. If 5y is decreasing in k,
V(ia k+ 1) - V('La k) < Mk:-f—l — My and (8)

Wii,k+1)-W(@,k) < Mgy — M. (9)

Proof. '
We prove the case that Sy is increasing. When Sy, is decreasing, the proof is similar, therefore it is

omitted.
As the first step of the induction, the inequality obviously holds for V9(i, k). Then, we show
that if V2(i,k+1) — V™(3,k) > Myy1 — My, then WPTL(i, k+1) — Wi k) > My — M.

WG k+1) = W6, k)

= S By [(SM — Sk) G+ 1)/p

j=0

+ B2V b+ 2) = SaaV" (o b+ 1)

> f;Pz'j [(Sk+2 — Spr1)(G +1)/u

iz

+ Sk2{V (i k + 1) + Myyo — Myy1} ~ Sk V' (G b + 1)]
- i)P” (k2 = Sesn){G + /= VG + 1)

i

+ Sko(Mpgia — Mk+1)]
> ipij [(5k+2 ~ Spe41) (= Mi11) + Spr2(Mit2 — Mk-l—l)]

j=0
oo

= Z-Pij (Sk+2Mk+2 - Sk+1Mk+1)
=0 -

= Mgy — Mg

Vot k4 1) — V(i k) > Mgi1 — My is obvious by min{z,y} — min{a, b} > min{z — a,y — b}.
Since V*(i, k) and W™(i, k) converges to V (i, k) and W (%, k) respectively, Lemma 2 holds. O

By Lemma 2, the following theorem holds.

Theorem 1. The optimal policy has the following properties.
1. If Sy is increasing and D(i,k) =1 for some state (i, k), then D(3,1) =1 for I > k.
2. If Sk is decreasing and D(i, k) = 2 for some state (i, k), then D(4,1) =2 for 1 > k.
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Proof.
We prove the theorem when Sy is increasing.
D(i, k) = 1 indicates My + (i + 1)/p < W(i, k), then

Me+ i+ 1)/p<W(i, k) SW0EE+1) + My — My,
Therefore, Myy1 + (i 4 1)/p < W(i,k + 1) holds and it implies D(i,k + 1) = 1. Repeating this
argument, we obtain Theorem 1.
The next lemma is also concerning to the optimal policy.
Lemma 3. The functions V (i, k) and W (i, k) satisfy the following inegqualities.
V(i+1,k)-V(i,k) < 1/p (10)

W(i+1,k) - W(i,k) < 1/u | (11)

Proof.
For n = 0, the result obviously holds. We show that V"(i+1,k) — V"(i, k) < 1/u implies W™1(;+
1, k) — W™L(i, k) < 1/u. Here, let us define §(j, k) by

. _ Sy 1/,u+§k 1Vn(0; k) (j:O) )
o0 k) = { Sera/it Sen (VG K) = VoG — LK) (> 1) (12

Note that 6(j,k) < 1/u for 5 > 1. Then
Wn-l'l(z' + l,k’) _ WTH‘].(Z-, k)

= Y Puas(Senali + V/u+ Bona VG b))
§=0

=3 Pi{SenG+ D/u+ Benv (b))

=0

oo J ) J
= Y Py > 8m k) =Y Py Y 8(m, k)
§=0 m=0 j=0  m=0

1) 0 o0 el
= D dmk) Y Py = Y 8m k)Y Py
m=0 Jj=m m=0 j=m

o0 o0 o0
= Y 5(%/‘0(2 Piy1j— Y Pz‘j)
m=1 j=m j=m

< Z 1/#(2 Py~ Z Pz'j)
m=1 j=m j=m

= 1/u(Qi+1— Qi)

< 1/u
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The first inequality holds by é(m, k) < 1/p (m > 1) (by inductive assumption) and Lemma 1.1
and the last inequality holds by Lemma 1.2. V™M (i + 1, k) — V™¥1(i k) < 1/u is obvious by
min{z,y} — min{a, b} < max{z — a,y — b}.

By Lemma 3, we have the next theorem.
Theorem 2. If D(i, k) = 2, then D(j, k) = 2 (i < j).
Proof.
D(i, k) = 2 indicates My + (i + 1)/u > W (4, k), then
Therefore, My, + (i + 2)/u > W(i + 1,k) holds, which implies D(i + 1,k) = 2. Repeating this
argument, we obtain Theorem 2.
By Theorem 1 and Theorem 2, the changes of optimal action happen at most once, as ¢ or k

increases. Thus optimal policy has the following monotone structure.
b Sk is increasing i Sy is decreasing

A} V 4
JB
JA(Join)

.

IB JA(Join)

i - i

-

Figure 1: Monotone Property of Optimal Policy

3. NUMERICAL EXAMPLE

In this section we show numerical examples.
First, we show the case that S} is increasing.

1. The service and arrival rates of the queueing systems are p = 1.8,
=19, A =19, A=19 AI3=19, N=18,
As =15, As=1.5, Ay=1.0, Ag=1.0, Ag=1.0, XA;=0 (i>10).

. 2. The processing time and distribution of step of JB are T' =1,
So0=0, 51=0 S=01, S3=01, S;=0.2,
S5 =105, Se=05, S;=0.5, Sz=0.5, Sg=0.6,
S =0.9 (k > 10)

With these values, the optimal policy is shown in Table 1.
Next, we show the case that Sy is decreasing.

1. The service and arrival rates of the queueing systems are 4 = 1.8, T = 1,
A=19, A =19, A=19, A3=19, N=18,
As =15, Ag=15, A =10, Ag=10, A=10, X\ =0 (i>10).
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Table 1: Optimal policy for increasing Sy,

k
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1
1

1
1
2

10

2. The processing time and distribution of step of JB are 7' = 1,

Ss=0.5,
Sy
k>13

S5 = 0.7,

So=07, 8 =07, S=07,
Se¢=0.5, 87
S11

0.2,
)

S5 =05, Sg=

0.5,

S5 = 0.5,

0.2, S12=02 S,=0.1(

510 =0.2,

With these values, the optimal policy is shown in Table 2.

Table 2: Optimal policy for decreasing S,
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Abstract—All automatic tellers machines (ATM) in a bank make an unmanned driving on a
weekend and holidays, and an automatic monitoring system continuously watches the operation
of ATM through the telecommunication network. There are two kinds of troubles according
to the installed places of ATM. : One is the trouble which occurs inside the branch of a bank
where ATM make a manned driving except a weekend and holidays, and the other is the
one which occurs outside the branch where ATM always make an unmanned driving. Two
kinds of breakdowns are introduced, and the expected cost for an unmanned driving period
is obtained. A maintenance policy which minimizes the expected cost is analytically derived.
Finally, a numerical example is given and some useful discussions are made.

Keywords—ATM of bank, Two breakdowns, Expected cost, Maintenance policy.

1. INTRODUCTION

Most automatic tellers machines (ATMs) are connected with the online system of a bank and
improve the efficiency of business about since 1975. The operational times of ATMs are greatly
increased with the driving on a weekend and holidays in recent years. Further, ATMs have various
functions such as the transfer of cash, the contract and cancellation of deposit and account, the
reception of loan, and so on. Moreover, ATMs are now planning to connect with other organizations,
and so, their networks are expanded on every place and become an indispensable infrastructure in
a daily life. In such situations, it is very important to consider an automatic monitoring system of
ATMs, because adequate maintenance for troubles and breakdowns have to be promptly done from
the viewpoints of trust and customer’s service. ‘

A bank consigns the replenishment of cash, and the check and maintenance of ATMs to a guard
company[l]. There are roughly two kinds of ATMs according to their installed places: One is an
ATM which is set up in the branch of a bank, and the other is in department stores, stations,
supermarkets or other public facilities, which is called the outside branch ATM.

An automatic monitoring system continuously watches the operation of outside branch ATMs
because they always make an unmanned driving. However, the inside branch ATM is watched by a
bank employee in the branch on weekdays, and is done at the control center on holidays. Further, a
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bank employee checks an ATM at the beginning time of the next day after holidays. Even if some
troubles have occurred in an ATM on holidays, they are removed and a bank employee restores it
to a normal condition on the next day. At the control center, a monitoring system displays the
state of troubles in the terminal unit and outputs them. Moreover, there might be phone calls to
report the situation of troubles by users in an ATM. When troubles are displayed in the terminal
unit, a watch member at the control center can remove some of them, by operating the terminal
unit remotely according to their state. If a watch member cannot remove them, he reports this fact
to a guard company. A guard member can remove promptly troubles or breakdowns of ATM.

It is assumed in this paper that there are two kinds of troubles, which might break down
indirectly, and breakdown directly. This paper proposes a stochastic model with two kinds of
breakdowns: An ATM is checked at time tp after trouble occurrence. When the distributions of two
breakdowns, the checking cost and the loss cost due to breakdowns are introduced, the expected cost
of the inside branch ATM for an unmanned driving period is obtained. An optimal maintenance
policy, which minimizes the expected cost, is analytically derived. Finally, a numerical example is
given and some useful discussions are made.

2. MODEL

An automatic monitoring system watches ATM by the polling selecting method through a tele-
phone line, and displays the state of ATM. The state can be classified in the following four states:

state 0: ATM is normal. There is no trouble in ATM.

state 1: Some troubles occur in ATM. There is a possibility that it will break down soon. For
example, it is warning that the cash-and the receipt are running out soon, or ATM is choked
up with the cash and the card. If a watch member at the control center removes troubles,
they are not included in state 1.

state 2: ATM is checked at time #y after trouble occurrences in state 1. A guard member goes
to the ATM place and removes troubles before it breaks down. This is an easy work, which
changes the cashbox or replenishes the receipt and the journal form.

state 3: ATM breaks down until time ¢y after trouble occurrences(breakdown 1), i.e., it breaks
down before a guard member arrives at the ATM place. He recovers the breakdown by
changing the cashbox or replenishing the receipt and the journal form.

state 4: ATM breaks down by mechanical factors(breakdown 2). For example, the power supply
stops or ATM is choked up with the cash and the card. A guard member goes to the ATM
place and recovers the breakdown. Therefore, ATM cannot be used from the breakdown to
the arrival time of a guard member. The maintenance time of breakdown 2 is usually longer
than that of breakdown 1 in state 3.

Figure 1 shows the transition relation between above states.

In the operation of ATM, troubles associated with the cash, the receipt form and the journal
form would occur at most one time for a short time span such as a weekend and holidays. It is
supposed that an ATM has to operate during the interval [0, 7] and the trouble occurs only at most
one time in this interval.

It is assumed that troubles occur according to a general distribution Fy(t), and after trouble oc--
currences, the time to breakdown 1 has a general distribution F4 (¢). Further, the time to breakdown
2 is independent of the occurrences of troubles and breakdown 1, and has a general distribution
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Figure 1: Figure of state of transition.

F3(t). If there are two or more ATMs in the same booth, four states are defined as the state of the
last operating ATM. _

We give the following probabilities that events such as troubles and breakdowns occur during
[0,7], where F;=1-F;, (i=0,1,2).

(i) The probability that troubles and breakdown 2 do not occur during (0,T ] is

Fy(T) Fo(T). (1)

(ii) The probability that breakdown 2 occurs before trouble occurrence during (0,T |is

T
/ Fo(2)dFa(x). @)
0
(iii) The probability that ATM is checked at T without breakdowns after trouble occurrence is
—_ T e
A(T) /T BT — 2)dFy(z). (3)
: —to

(iv) The probability that breakdown 1 occurs after trouble occurrence (see Figure 2) is

T T2 _
/ dFy(z) /0 Boa + y)dFi(y). (4)

T—tg

Trouble occurrence

Breakdown 1

Figure 2: Breakdown 1 occurrence
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(v) The probability that breakdown 2 occurs after trouble occurrence is

T T
| @ [ R -aan) )
t—to z
(vi) The probability that ATM is checked at tg after trouble occurrence is

— T_to —

Aulto) /O Polto + )dFo(z). | (6)
(vii) The probability that breakdown 1 occurs until time tq after trouble occurrence is

T—tg to
/ dFy(z) / Fo(z + y)dFy(y). (7)
0 0

(viii) The probability that breakdown 2 occurs until time tg after trouble occurrence (see Figure
3) is

T—to T+t _
/ dFy(a) / Fily — 2)dFs(y). (8)
0 T

Trouble occurrence

0 X \i/ F
1 . l
I /T 1

y

Breakdown 2

Figure 3: Breakdown 2 occurrence

Evidently, we have
(3)+(4)+(5)

- [ T dFy(z) [FQ(T)Fl(T —a)+ | " Bofe R+ / "Ry~ m)sz(w}

T —
= | B@)dRa), 9)
(6)+(7)+(8)

T—to _ _ to z+io _
= / dFU(.’I:) l:FQ(tO + .T)Fl (to) + / FQ(SL‘ + y)dFl (y) + / Fy (y — w)dFQ(y)}
0 . 0 T

T—to '
= /0 Fy(z)dFy(z). (10)

Hence, it is proved that

— _ T — T e
1)+ (2) + (9)+ (10) = Fo(T)Fp(T) + /0 Fo(z)dFy(z) + /O Fy(z)dFo(z) = 1.
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3. EXPECTED COST

We introduce the following costs:

cp = cost at T. An ATM stops at time 7. A bank employee checks an ATM before it begins to
operate on the next day, and replenishes the cash, the journal and receipt forms.

c1 = checking cost at time fo. A guard member refills up the cash cassette, and if necessary,
replenishes the journal and receipt forms. A cost c; is higher than ¢y because a guard member
specially has ty go to the ATM place.

c2 = cost for breakdown 1. An' ATM has stopped until a guard member arrives at time ¢g after
breakdown 1 occurrence. Any customers cannot use it and have to use ATMs of other banks.
In this case, not only customers pay the commission to other banks, but also a bank pays the
commission for customers’ usage. A cost ¢y includes the whole cost which is the sum of cost
c1 and the loss cost for breakdown 1.

c3 = cost of breakdown 2. An ATM breaks down directly, and has stopped until a gnard member
arrives at the ATM place. The maintenance time and cost for breakdown 2 would be usually
longer and higher than those of breakdown 1, respectively. It can be seen in general that

c3 > Cy > €1 > Cp.
The total expected cost of ATM during [0, 7] is given by

T

B _ _ _ T—tg _
C(to) = (_B(JFQ(T) [Fo(T) + / Fl(T — x)dFo(x)] + ClFl(t()) [) Fg(to -+ :E)dFo(x)

T—f‘,g
to

T Tz T—1g ~
e [/T_to dFo(z) /0 Fy(z +y)dFi(y) + /0 dFy(z) A Fo(z +y)dF, (y)J

T T T
va| [ R+ [ e [ Ry -2

T
T—tp z+1o
+‘/(; t, dFo(fL‘)/I " Fl(y - $)dF2(y>] (O <t <L T) (11)

4. OPTIMAL POLICY

It is a problem to determine when a guard member goes to the ATM place after trouble oc-
currence. For example, if troubles occur near-at time 7', it would be unnecessary to send a guard
member. We find an optimal time ¢§ (0 < £§ < T') which minimizes the expected cost C(tp) in (11).
In particular case of ty = 0, i.e., when an ATM is maintained immediately after trouble occurrences,

the expected cost is
C(O) = COFQ(T)FU(T) + 01/0 FQ(x)ng(.TJ) + 63/0 Fo(x)ng(x). | (12)

In particular case of ¢ty = T, i.e., when an ATM is not maintained until time T even if troubles
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occur, the expected cost is

— — T —
C(T) = CoFQ(T) [Fo(T) + A Fl(T - :c)ng(x)]
T T—x
ver [ dR@) [ Paat n)dbi)

a3 { /0 " @) dFy(a) + /0 " aFy@) / X —a;)dFQ(y)] (13)

Next, suppose that distributions Fy(t) and F(t) are exponential, i.e., Fo(t) = 1 — e™?°¢ and
Fy(t) = 1—e~2t. Further, assume that Fi(t) has a density f;(t), and define that v;(t) = f1(2)/F1(t)
with 41(0) = 0 which represents the failure rate of breakdown 1. Then, differentiating C(t¢) with
respect to tp and setting it equal to zero, we have

» ePotA)(T—to) _ |
(ca — c1)mi(to) + (c3 — €1)A2 o T =1 — €. (14)

In general, it would be very difficult to derive an optimal time ¢§ analytically.

5. NUMERICAL EXAMPLE

Suppose that the distribution F;(t) of time to breakdown 1 has the IFR property [2],i.e., F1(t) =
1—e~M*™  (m > 1). Figure 4 draws the expected cost C(tp) for tg when T" = 16(hours), Ag = 5/1000
(1/hours), A; = 7/200 (1/hours), A2 = 5/200 (1/hours), cp = 4.5, ¢; = 6.0, co = 7.0, c3 = 8.5. It
is shown from this figure that ¢§ = 1.00 (hours) and C(¢§) = 4.745. We have to dispatch a guard
member after 60 minutes from trouble occurrence, and he make the maintenance of an ATM. In
actual operations, a guard member usually goes to the branch of ATMs from about 20 minutes to
60 minutes even if one of them in the booth breaks down, and sequentially makes the maintenance
of ATMs with troubles. The above model, where a guard member arrives there at 60 minutes after
trouble occurrence, would be suitable for the above real situations.

Clt)
495

490 /
485
4.80 /

47 B /

L e
0123 45678 910112131415716

L

Figure 4: Graph of total expected cost.
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6. CONCLUSIONS

We form a stochastic model of an automatic monitoring system for an ATM in a bank: Assuming
the occurrences of two breakdowns where one occurs after some troubles and the other occurs
directly, we obtain the expected cost during an unmanned period. Further, we discuss numerically an
optimal time t3 which is the checking time of an ATM after trouble occurrences. This maintenance
policy woul be applied to an actual monitoring system by suitable modifications.
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Abstract—This paper addresses a problem of how to determine the optimal auto-sleep sched-
ule when the computer user should turn the hard disk or the display to a sleep mode in order
to save the electrical power after the computer has not been accessed. We propose a stochas-
tic model to obtain the optimal sleep timing strategy which minimizes the expected electrical
power consumed per unit time in the steady-state, where access requirements arrive at the
system according to a renewal process and are processed by a general service time. Then the
phase-type approximations are proposed to generate the optimal auto-sleep schedule approxi-
mately. We investigate the performance of the phase-type approximation through a simulation
study.

Keywords—auto-sleep scheduling, power saving, renewal process, phase-type distribution,
EM algorithm, approximation.

1. INTRODUCTION

Recently, the auto-sleep function of the hard disk or the display in a computer system is rapidly
recognized to be important in terms of power management. In fact, the auto-sleep function is
equipped in almost computer systems as a standard function. Then the optimal design for the
auto-sleep function is the most important problem, in particular, for notebook computers with
limited capacity of battery. For example, on the hard disk of a computer, the electrical power
consumed to warm up from sleep mode is larger than that consumed in the normal operation.
Thus, it is not always effective to design the system such that moves its state to the sleep mode
whenever there is no access requirement.

First, the optimal design problem for the auto-sleep function was considered by Sandoh, Hi-
rakoshi and Kawai [1]. Dohi, Kaio and Osaki [2] proposed a statistical non-parametric method to
estimate the optimal sleep timing for the same problem. However, it is noted that the seminal
works above simplified the underlying problem extremely and was incomplete for representation of
stochastic behavior of the auto-sleep system. More valid formulations were made by Okamura, Dohi
and Osaki [3, 4]. They considered two kinds of models (Type I model and Type II model) with and
without cancellation of access requirements arrived at the system, respectively. More specifically,
Type I model with cancellation assumes that other access requirements arrived at the system while
one job has been processed are canceled, and focuses on the multi-use circumstance for a desktop
computer unit. On the other hand, Type II model corresponds to a buffer system in which other
access requirements are accumulated while one job has been processed, and deals with the multi-job
system such as network printers. Okamura, Dohi and Osaki [3, 4] proved that the optimal sleep
timing strategies for both models are the switching strotegies, i.e., turn always the system to a sleep
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mode after the process for a job is completed, or do not at all, if the access requirements arrive
according to the homogeneous Poisson process.

However, if the arrival of access requirements follows more general stochastic processes such as
the renewal process, it is difficult to obtain the optimal sleep timing explicitly. Okamura, Dohi
and Osaki [3, 4] applied the simple parametric approximation methods by Miyazawa. [5] and the
usual diffusion approximation to generate the optimal auto-sleep schedule, but could not obtain the
satisfactory approximation performance. The main reason is that the arrival process may belong to
a more wide class of stochastic processes. In this paper, we apply the phase-type approximations
to generate the optimal auto-sleep timing which minimizes the expected power consumed per unit
time in the steady-state for Type I model. Altiok [6] and Heijden [7] showed that the phase-type
approximations are useful to represent the general probability distributions. Asmussen and Koole 8]
also proved that the phase-type renewal process is weakly dense in the class of stationary simple
point processes.

The paper is planed as follows. Section 2 describes the auto-sleep model under consideration and
gives an implicit form of the expected power consumed per unit time in the steady-state under the
assumption that the arrival of access requirements follows the renewal process. Section 3 concerns
the approximation problem for the expected power consumed per unit time in the steady-state.
Then, the phase-type approximation is introduced to represent the access requirements process.
Furthermore, two statistical estimation methods with the phase-type approximation are developed.
Section 4 is devoted to investigate the approximation performance for the proposed methods through
a simulation study. Finally, the paper is concluded with some remarks.

2. MODEL DESCRIPTION
2.1 NOTATION AND ASSUMPTIONS

Suppose that the access requirements arrive at the system according to an ordinary renewal process
{N(t); t > 0}. Denote a sequence of inter-arrival times between (k — 1)-th and k-th arrivals by
{Xk; k=1,2,---}. Then, Xy, are the non-negative i.i.d. random variables, having the probability
distribution F'(t) with mean 1/A (> 0) and variance o, (> 0). The tasks required by the k-th
access are processed with the times Sy, which are the non-negative i.i.d. random variables having
the probability distribution H(t) with finite mean 1/u (> 0) and variance o4 (> 0). It is assumed
that the system under consideration can take the following states;

Busy: The system processes some tasks required by accesses, where the set-up time 7 (> 0) is
needed before processing each task. After the present task is completed, the state of system
moves to the idle state. During the busy state, the electrical power consumed per unit time
is P, (> 0)

Idle: No access requirement occurs, after one task is completed. If a new access requirement occurs
until the total spent time in the idle period becomes tg, the system begins to process it after
elapsing 7 time units. Otherwise, the state of system moves to the sleep state at the moment
when the total spent time in the idle period becomes . Throughout this paper, we call ¢y the
auto-sleep time. The electrical power consumed per unit time during the idle period is also
P (> 0)

Sleep: The sleep state is the lower-power state, so that the electrical power consumed per unit time
is less than that in the other states. To simplify the discussion, we assume that the electrical
power consumed per unit time in the sleep state is zero. When an access requirement occurs,
the sleep mode terminates immediately and the state of system moves to the warm-up state.
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Figure 1: Possible realization of the stochastic system.

Warm-up: In order to begin processing a task from the sleep mode, s (> 0) time units are needed
for warming-up. Hence, after s + 7 time units are elapsed, the process for the task is started.
In the warm-up state, the electrical power Py (> 0) is consumed per unit time, where P> > P.

In this paper, we assume that the other access requirements are canceled while the system is
busy. Hence, the state of system moves to an idle when each task is completed. Figure 1 is depicted
the possible realization of the auto-sleep system.

2.2 FORMULATION OF THE EXPECTED POWER CUNSUMED PER
UNIT TIME IN THE STEADY-STATE

Let us consider the expected power consumed per-unit time in the steady-state as a criterion to
evaluate the system performance. In this model, since the other access requirements arrive during
the processing of the previous task, the time length of an idle period can be represented as the
residual life of the arrival process. Define the residual life of the arrival process by 7; having the
distribution function I(x|t), where the subscript ¢ is the elapsed time. Define M (%) as the renewal
function of the arrival process. Then the residual life distribution is given by

I{zlt) = F(t+z) — /Otf(t +z —y)dM(y), (1)

where, in general, ¥(-) = 1 —¥(-).
Now we define the time period from the beginning of warm-up state to the next beginning of
that as one cycle. Using the residual life v;, we can derive the mean time length of one cycle;

T(to)=s+7+1/u+ /OOO E[Ystr+e]dH () + E[N] (7' +1/p+ /Ooo E[’Yr+x]dH(ﬂ7)) ’ (2)

where E[N] is the expected number of transitions from idle to busy during one cycle, and the
probability mass function is

Pr{N=n} = /Ooo I(tg|s + 7+ z)I(to|T + z)I(to|T + fv)n_ldH(w), forn=1,2,---. (3)

Hence, it is found that the expected number of transitions from idle to busy during one cycle is

Pr{fooo Ystr+z < toYdH(z) _ fooo tols + 7+ z)dH(z)

Pr{foo"’ Yriz > to}dH(x) fO (to|T + z)dH (z) (4)

E[N] =
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In a fashion similar to the mean time length, the expected power consumed during one cycle is

— 4 5%
Clo) = {725P+ Pofst 72 + A E=Elnesr] + Blnser At}
P
+BIN{ 1+ A (2Bl + Bl A ] (5)

where E[n; A tg] = E[min(n, to)] = g" udI(u | t) + tol(to | t). Therefore, from the usual renewal
reward theorem, we can obtain the expected power consumed per unit time in the steady-state,
V(to) = C(to)/T(to). Then, the problem is to find the optimal auto-sleep time ¢} which minimizes
the expected power consumed per unit time in the steady-state, i.e., ming<t,<co V (f0)-

3. THE PHASE-TYPE APPROXIMATION

3.1 FORMULATION OF THE EXPECTED POWER VIA THE
PHASE-TYPE APPROXIMATION

In general, it is difficult to obtain the explicit form of the expected power consumed per unit time
in the steady-state for the renewal arrival case. This is due to an analytical difficulty to represent

the renewal function. In this section, we propose a structural approximation scheme to generate the
optimal auto-sleep schedule effectively, applying the phase-type approximation method. These are
based on the fact that an ordinary renewal arrival process can be approximated well by a phase-type
‘renewal process, so that we give an approximation form of the residual distribution I(¢|z) in Egs. (2)

and (5). . . ‘ :

Before developing the phase-type approximation, we describe the phase-type renewal process.
Consider a Markov process on the state space {1,2,---,m + 1}, where {1,2,---,m} denote the
transient states called the phases, and {m + 1} means the absorbing one. The initial probability
vector for the Markov process is given by (c, 0), where « is the 1 X m probability vector. Until the
absorption in the state m-1, the process behaves similar to the Markov process with an infinitesimal
generator T', where T is a matrix with components A;; (> 0),1 <4, j <m, j#¢and —\; (< 0). In
our model, the absorption implies the occurrence of events, 4.e. the arrival of access requirements.
After the absorption, the process is restarted at the phase having the initial probability vector.
Then, the time interval of successive arrivals can be represented by the phase-type distribution with
parameter (a, T'), where the inter-arrival time distribution becomes Fppy(t) = 1 — aexp(Tt)e with
a column vector e of 1s. :

Let us now return our argument to the phase-type approximation. Denote N; and J; be the
number of arrivals in (0, ¢] and the internal state of arrival at time ¢, respectively, where the internal
states can be interpreted as the states of various factors which cause the arrival of access require-
ments. We define the transition probability; P;;(n,t) = Pr{N, =n, s = j | Ny = 0, Jo = i} and the
matrix P(n,t) with components P;;(n,t). Then, the Kolmogorov’s forward equation is given by

d
= P(0,t) = P(0,1)T,

%P(n +1,t)= P(n+ 1,)T + P(n, )T, forn=1,2,---,

P(0,0) =1, P(n,0) =0, forn=1,2,--, (6)
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where T9= —Te is the column vector and where I and O are an identity matrix and a zero matrix,
respectively. Letting P*(z,t) = > > P(n,t)z" be the matrix generating function, from Eq. (6),
we obtain

P*(z,t) = i P(n,t)2" = exp {(T + 2Tt} . (7)
n=0

Hence, we can derive the probability vector g(t) with component g;(#) which means the probability
that the state of process at time ¢ is j, that is, :

g(t) = aexp {(T + Ta)t} . (8)

Therefore, from the Markov property for the phase-type renewal process, it is found that the residual
life distribution can be written as

Ipu(z(t) = 1 — g(t) exp(Tz)e. (9)

Finally, the residual life distribution in Eqgs. (2) and (5) can be approximated by I(z|t) =~ I pg(z|t),
which leads to an approximation form of the expected power consumed per unit time in the steady-
state.

3.2 STATISTICAL ESTIMATION PROCEDURE

Since the phase-type renewal process is composed of two stochastic processes which are observable
and unobservable, usual statistical estimation methods such as the method of maximum likelihood
cannot be used for model parameters. Thus, we introduce the following two estimation methods for
the phase-type approximation method. :

(i) The moment maltching :

Heijden [7] proposed the following moment matching conditions. If there are n unknown-
parameters, they are determined by fitting the first n» moments to the sample moments estimated
from real data. If the inter-arrival time distribution of the phase-type renewal process obeys the
following Coxian-2 distribution;

_| M 0 _
T—[ o _)\2] and a=(1-aq,a), (10)

then the estimators for the parameters are given by

= 2(ma 1), (11)
A1
\ = 3mimg — mg — /m3 + 18m3 + 24m3ms — Imyma(3myma + 2m3) (12)
b 3m2 — 2mims
and
2 A1 —1
pg = 2midi = 1) (13)

mg)\l - 2m1’

where mj, mo and mg are the first three moments of inter-arrival time.
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(it) The EM-algorithm for phase-type distribution

The EM (expectation-maximization) algorithm is an iterative method for the maximum like-
lihood estimation [9, 10]. It is useful to parameterize statistical models including the incomplete
data. Suppose that ¥ = u(X) is observed and that X is unobserved, where Y and X have the
probability density functions g, and f,, respectively. Then, the (n + 1)-th step in the EM algorithm
is to find the value ;41 which maximizes

v — Eflog f4(X) | w(X) = y; 7n), (14)

where y is the observed data and -, is the current estimate after the n steps in the EM-algorithm
(see e.g. [11] for detail). In particular, when the inter-arrival time distribution has the phase-type
distribution, the EM-algorithm is given as follows:

Let (y1,%2,...,Yn) be the observed sample data. Then, the (k + 1)-th iteration of the EM-
algorithm is given by

E-Step: Calculate;

n

7Tz'(k+1) _ ZE["Fi(k)lyl; a® T®)) fori=1,-..,m, (15)
=1 :
n ~

5i(k+1) _ ZE[ﬁz-(k)lyl? &(k),T(k)], fori=1,---,m, (16)
=1

N X
Ag,“rl) = ZE[AE;?)m; a® T®) fori#ji=1,---,m and j=1,---,m. (17)
=1

M-Step: Generate the new estimates;

k+1 (k+1) k+1
.&§k+1) _ 7rz.( ) FRHD) Aij jR+D) Az(O ) n i k+1) (18)
4 n ij (k+1) (2 (k+1) (3] ?
& & j=1#1

where &; and fij are the elements of & and T, respectively. In the above expressions, m; is the
number of Markov processes starting from the state i, £; is the total time spent in the state i and
A;j is the total number of jumps from the state i to j. '

4. NUMERICAL EXAMPLES

In this section, we investigate the approximation performance of the phase-type methods proposed
in Section 3. Suppose that the arrival of access requirements follows the renewal process with the
Weibull inter-arrival time distribution; F() = 1 — exp {—(¢/Ba)™}, where m, = 0.5 and B, =
p/T'(1+1/m,) denote the shape and scale parameters of the Weibull distribution, respectively, and
where I'(-) is the standard gamma function. We also suppose that the processing time distribution is
the exponential distribution; H(t) = 1—exp(—t). The other model parameters are fixed as P, = 1.0,
Py =4.0,7 = 0.1and s = 1.0. In our approximation scheme, the inter-arrival time distribution of the
phase-type renewal process is equivalent to the Coxian-2 distribution. In addition to the phase-type
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Table 1: The optimal auto-sleep time based on the equilibrium approximation.

o | &5 V) V(i)

0.1 | 0.000 0.159 0.299 (0.278, 0.320)
0.2 | 0.000 0.298 0.484 (0.454, 0.515)
0.3 | 0.006 0.421 0.617 (0.579, 0.655)
0.4 { 0.189 0.529 0.762 (0.728, 0.797)
0.5 0476 0.620 0.804 {0.761, 0.846)
0.6 1 0.806 0.695 0.871 (0.825, 0.918)
0.7 | 1.154  0.756 0.896 (0.855, 0.937)

)

)

0.8 | 1.514 0.806 0.952 (0.911, 0.994
0.9 | 1.874 0.847 0.918 (0.873, 0.962

Table 2: The optimal auto-sleep time based on the phase-type approximations.

moment matching EM-algorithm

p |t V(K) V(ts) ty  VI(t) V(i)

0.1 [ 0.000 0.379 0.299 (0.278,0.320) |0.000 0.334 0.299 (0.278, 0.320)

0.2 | 0.000 0.608 0.484 (0.454, 0.515) [ 0.000 0.622 0.484 (0.454, 0.515)

0.3 | 3.128 0.705 - 0.665 (0.626, 0.704) {0.000 0.644 0.617 (0.579, 0.655)

0.4 | 3.265 0.747 0.790 (0.762, 0.819) [0.037 0.852 0.773 (0.736, 0.809)

0.5 | 3.058 0.778 0.815 (0.780, 0.851) [0.421 0.922 0.808 (0.764, 0.851)

0.6 | 2.826 0.805 0.861 (0.824,0.899) | oo  1.000 0.997 (0.991, 1.003)
) )
) )

0.7 | 2.625 0.828 0.881 (0.848, 0.914 oo 1.000 1.000 (1.000, 1.000
0.8 | 2.454 0.850 0.942 (0.906, 0.977 o0 1.000  1.000 (1.000, 1.001
0.9 | 2.310 0.870 0.918 (0.880, 0.956) [0.797 0.710 0.964 (0.908, 1.019)

approximation, we calculate the optimal auto-sleep time based on the equilibrium approximation [4]
and compare their precision, where the equilibrium approximation is to represent the residual life
distribution with the equilibrium distribution of inter-arrival time, that is,

1
I(tz) ~ Fu(t) = A /0 Fw)du. (19)

Tables 1 and 2 present the optimal auto-sleep times and their associated minimum expected
powers consumed per unit time in the steady-state, based on the equilibrium approximation and
the phase-type approximations. In the phase-type approximations, we use the moment matching
and the EM-algorithm to estimate the model parameters. Furthermore, we estimate numerically
the expected power by the Monte Carlo simulation, provided that the auto-sleep time is given
by the estimated optimal solution. On each table, the values in brackets indicate the lower and
upper bounds on the confidence interval with significant level 95%, and are calculated by the
simulation. From Tables 1 and 2, it is observed that the expected powers estimated by the
equilibrium approximation and the moment matching tend not to belong to the corresponding
confidence intervals. On the other hand, the phase-type approximation with EM-algorithm can
estimate the expected power consumed per unit time within the confidence intervals with significant
level 95%. These results show that the the phase-type approximation with EM-algorithm is efficient
to calculate the expected power consumed per unit time approximately. However, in estimating the
optimal auto-sleep time, the phase-type approximation with EM-algorithm does not always give the
best solutions. From Tables 1 and 2, it can be observed that the estimation results for the optimal
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auto-sleep time by both the equilibrium approximation and the moment matching are better than
~ that by EM-algorithm. Thus, we can conclude that the equilibrium approximation and the moment
matching are useful methods to estimate the optimal auto-sleep time. Also, if one wants to obtain
more reliable estimate of the expected power consumed per unit time, the EM-algorithm may
function better than the others.

5. CONCLUDING REMARKS

In this paper, we have considered the stochastic auto-sleep model under the renewal arrival process,
and have proposed two kinds of phase-type approximation methods to represent the expected power
consumed per unit time in the steady-state. Based on these approximations, we have calculated
the optimal auto-sleep schedule which minimizes the expected power consumed per unit time in the
steady-state. In numerical examples, we have investigated the approximation performance for the
proposed methods: As a result, we have shown that the phase-type approximations could be useful
for finding the optimal auto-sleep time approximately in the heavy traffic circumstance.
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Abstract—This paper considers replacement polices for an extended cumulative damage
model with maintenance at each shock and minimal repair at failure: Shocks occur at a non-
homogeneous Poisson process. A system undergoes maintenance at each shock when the total
damage does not exceed a failure level K, undergoes minimal repair at each shock when the
total damage exceeds a failure level K, and is replaced at time 7" or at failure N, whichever
occurs first. The expected cost rate is obtained and optimal T* and N* to minimize the ex-
pected cost are analytically discussed. It is shown that this model would be applied to the
backup of secondary storage files in a database system as an example.

Keywords—Shock model, Minimal repair, Replacement, Maintenance, Backup policy.

1. INTRODUCTION

In recent years, the database in computer systems has become very important in the highly
information-oriented society. In particular, the reliable database is the most indispensable instru-
ment in on-line transaction processing systems such as real-time systems used for account of bank.
The data in a computer system are frequently updated by adding or deleting them, and are stored
in floppy disks or other secondary media. However, data files in secondary media are sometimes
broken by several errors due to noises, human errors and hardware faults. In this case, we have to
reconstruct the same files from the beginning.

The most simple and dependable method to ensure the safety of data would be always to make
the backup copies of all files in other places as total backup, and to take out them if files in the
original secondary media are broken. But, this method would take hours and costs when files
become large. To make the backup copies efficiently, we make the backup copies of only updated
files which have changed or are new since the last full backup when the total update files do not
exceed a threshold level K. We call it incremental backup. This would reduce significantly both
duration time and size of backup [1]. Conversely, we perform full backup at periodic time 7', or at
N-th update since the total updated files have exceeded a threshold level K, whichever occurs first.
It is assumed that the database system returns to an initial state by the full backup.

Cumulative damage models, where a system suffers damage due to shocks and fails when the
total amount of damage exceeds a failure level K, generate a cumulative process [2]. Some aspects
of damage models from reliability viewpoints were discussed by Esary, Marshall and Proschan [3].

It is of great interest that a system is replaced before failure as preventive maintenance. The
" replacement policies where a system is replaced before failure at time T [4], at shock N [5], or at
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damage Z [6, 7] were considered. Nakagawa and Kijima [8] applied the periodic replacement with
minimal repair [9] at failure to a cumulative damage model and obtained optimal values 7°*, N*
and Z* which minimize the expected cost.

This paper considers an extended cumulative damage model with maintenance at each shock
and minimal repair at each failure. Reliability measures of this model are derived, using the theory
of cumulative processes. Further, this is applied to the backup of files in a database system.

2. PROBLEM FORMULATION

Suppose that shocks occur at a nonhomogeneous Poisson process with an intensity function A(%)
and a mean-value function R(t), i.e., R(t) = fo (u)du. Then, the probability that shocks occur
exactly j times during [0, #] is [10] :

Hj(t)z[R(t)]je“R“) (j=0,1,2,---). | | (1)

Further, an amount Y; of damage due to the j-th shock has a probability distribution G (z) =
P{Y; < z} (j = 1,2,--) with finite mean. Then, the total damage Z; = Zz=1Y to the j-th
damage shock where Zy = 0 has a distribution

G (z) =Pr{Z; <z} = G1+Gax-xGy(z) (j=0,1,2,---), (2)

where G(%(z) = 1 for 2 > 0, 0 for z < 0, and the asterisk mark represents the Stieltjes convolution,
i.e., axb(t) = fo b(t — w)da(u) for any functions a(t) and b(¢). Then, the probability that the total
damage exceeds exactly a failure level K at j-th shock is GU-D(K) — GU(K). Let Z(t) be the
total amount of damage at time ¢. Then, the distribution of Z(t) is [3]

Pr{Z(t) < z} = ZH G (z). (3)

=0

Consider the system which should operate for an infinite time span and assume: When the total
damage does not exceed a failure level K, the system undergoes maintenance at each shock, and
the maintenance cost is co + cp(x) when the total damage is (0 < z < K). It is assumed that the
function co(z) is continuous and strictly increasing and co(0) = 0. When the total damage exceeds
a failure level K, the system undergoes minimal repair at each failure, and the repair cost is c3,
where c3 = cg +cp(K). The system is replaced at periodic time T, or at failure N, whichever occurs -
first, and the replacement cost is ¢;, where c3 < ¢;. The maintenance time, the repair time and
the replacement time are negligible, i.e., the time considered here is measured only by the total
operating time of the system. Then, the probability Py that the system is replaced at time T is

oo j+N—1
Pr = Z TYGY)( K)+Z[G0 (K) — 7+1)(K)]JZ H;(T) (4)
j= j=0 i=j+1
o) J+N-1
= Y [GUE)-GUI(K) Y Hy(D), (5)
© =0 i=0 :
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and the probability Py that the system is replaced at failure N is

Py = SIGUK) - G 1Y B (6)
3=0 i=j+N
oo T '
= S GOEK) - GUHI(K) / Hppn_1 (MO 0
§=0 0

where G (K) =1 for i < 0. It is evident that

Pr+ Py = i H;(T)GU—NU(K) + iHj(T)[l — QUMUK =1
=0 =0

Let My(T) and M(T, N) denote the expected numbers of maintenances and minimal repairs
until replacement, respectively. Then, from (4) and (6), we have

M) = SIH@GIER) + YD K) - GOV S HAT)

3=0 j=0 i=j+1

= Y H;(1)Y GY(K), (8)
j=1 =1
o0 j+N-1 oo

My(T,N) = Y [GIK)-GUIIO > (- HH(T)+ >, (N-1)H(T)}

§=0 i=j+1 . i=j+N
0 j

= Y H/(T) >, [1-69K). (9
j=1 im=j~N-+2

Thus, the total expected cost E[C] to replaéement is

ElC]=c + ZH (T) Z / [c2 + co(z)]dGD(z) + esMy(T, N). - (10)

Jj=1
Let E[U] denote the mean time to replacement. Then, from (5) and (7), we have

o0

E] = S [GU(K) - GUHI(K)] / tH, 4 v ())A(t)dE + TPy
=0
_ ZG(J -N+1) () / Hj( (11)

Therefore, from (10) and (11), by using the theory of renewal process [11], the expected cost
per unit time is C(T, N) = E[C]/E[U].
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3. OPTIMAL POLICY

Suppose that shocks occur at a Poisson process with rate A, i.e., A(t) = A, R(t) = Mt and H;(t) =
[(At)7/§le=** (j = 0,1,2,---). Further, assume that the cost of maintenances is proportional to the
total damage, i.e., co + co(z) = c2 + cpz (0 < z < K). Then, the expected cost per unit of time is

C(T,N) ¢ —A(T,N)

- C3 + ; . ’ (12)
A s1 Hj(T) 321, GE-N(K)

where
o0 j—N %) J K
A(T,N)EC3ZHj(T)Z[G@(K)—G<i+1)(K)]+coZHj(T)Z / G (z)dz. (13)
i=1 =0 j=1 =10

If M(K) =322, GW(K) < oo, then C(0, N) = limg—o C(T, N) = oo for all N and C(oo, 00) =
MMy 00, N—c0 C(T', N) = cgA. Thus, there exists a positive pair (T*, N*) (0 < T*, N* < o) which
minimizes C(T, N).

Remark 1 The expected cost per unit of time when the system is replaced only at failure N is

CWN)_ . CT,N) _ c1— ez —co f3 M(z)de 3
X AT et M(K)+ N (N=1,2-) (14)

If fOK M(z)dz > (c1 — c3)/co then N* = 1, and the system should be replaced at the first shock
after the total damage has exceeded a failure level K. Conversely, if fOK M (z)dz < (c1—c3)/co then
N* = oo, and the resulting cost is C(00)/A = c3.

In general, let an optimal pair (T'*, N*) denote a positive solution which minimizes C (T,N). It
is evident that

S B Y GEN I - Y D Y ) = S mD - GIE) > o
J=1 1 i=1 j=N+1

i= J=1

and

A(T,N) — A(T,N+1) = c3 f: H;(T)[GYUM(K) - GU=N+D(K)] > 0.
j=N

Thus, we have the following property for (T*, N*):
Remark 2 If c; < A(T*,N) for some N then N* = 1, and if ¢; > A(T*,N) for all N, then
N* = 0.

3.1 MINIMAL REPAIR MODEL

First, consider an optimal policy for the minimal repair model, i.e., the system undergoes minimal
repair at each shock when the total damage exceeds a failure level K, and the system is replaced
at time 7. Since we put N = oo in (12), the expected cost per unit of time is

Ci(T) cTN) _ . . cr/A—co Y220 JiF GUD(z)dz [ Hj(t)dt

——— = lim ———— =g¢3

A N—oo A : T

(15)

Since C1(0) = limy—,0 Cy(T) = 00 and Ci(co) = limy—os C1 (T') = c3A, then there exists a positive
T7 (0 < T} < 00) which minimizes (15). A necessary condition that a finite 7 minimizes Cy(T) is
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~ given by differentiating C1(T") with respect to 7' and setting it equal to zero. Hence, from (15), we
have

© J K , . : C
S HY /O 69(e) - 69 @)do = 2. (16)

j=1
Letting Q(T') be the left-hand side of (16), we have
Q) = lim Q(T)=0,

T—oo

Qoo) = lim QT / M(z)de,

Q) =AY H@; /D " 69(@) = GO w)lda > 0.

Jj=1

Thus, Q(T) is a strictly increasing function from 0 to fOK M(z)dzx.
Therefore, we have:
Theorem 1 If fOKM (z)dz > c1/co then there exists o finite and unique Ty (0 < TF < 00) which

minimizes C1(T), and it satisfies (16). The resulting cost is

Q) _, _COZH @) [ ey a7

If fOK M(x)dzx < ¢1/co then Ty = oo and Cy(00)/A = c3.

Example 1 Suppose that a database is updated according to a Poisson process with rate \. Further,
an amount of only files, which changed or are new since the last full backup, arises from the j-th
update, is Yj. It 1s assumed that each Y; has a probability distribution G ; @) =1—e# je,
GW(z) =1— [(u:p) ‘fille™ (j =1,2,---) and M(K) = uK. We replace shock by update,
damage by dumped files, maintenance by incremental backup, minimal repair by total backup and
replacement by full backup. Then, equation (16) is simplifird as

z 1) G
ZH(T Z +1) (K)—co/u' (18)

Letting Q1(7) be the left-hand side of (18), we have that Q1(0) = 0, and Q;(o0) = (uK)?2/2.
Thus, Q1(T) is a strictly increasing function of T from 0 to (uK)?/2. If uK2/2 > ¢; /co then there
exists a finite and unique 77 (0 < T} < oo) which satisfies (18), and the resulting cost is

Cl(T IR (@)
=cy+ — ZH (T7) ZG (K). (19)

If uK?/2 < ¢1/cy then Ty = oo, and the resulting cost is c3\.

It is supposed that the total volume of files is 5 x 105 trucks and a threshold level K is 3 x 10%
trucks which correspond to 60% of the total volume. Table 1 gives the optimal full backup times
ATT, the resulting costs C1(I7)/A for ¢; = 70, 90, 110, 140, 200, 260, 320, 440, and pK = 12,24
when c; = 10 and ¢y = 2 x 1074, It is found from the optimal policy that if 30uK > c¢1 then

- 102 -



17 < oo, and conversely, if 30uK < ¢; then T} = oo and C; (c0)/A = 70. This shows that both
optimal T7" and costs C1(T7) are increasing with ¢1, and Cy(77) are decreasing with pK&. However,
17 are smaller for small ¢1, and conversely, are greater for large ¢1, when 1K is smaller. This reason
would be explained that if the cost ¢; is small then it is better to perform the full backup early, but
if c; is large then it is better to do it lately, especially when its mean updated file is large.

Table 1. Optimal full backup times AT} and resulting costs C; (T7)/ X for minimal repair model
c] 70 90 110 140 200 260 320 440

LK = 12 ATY 5.418  6.211 6.953 8.020 10.163 12.652 16.675 00
Ci(T7)/X | 41272 44.726  47.771 51.787 58.427 63.731 67.935  70.000

K = 24 MY 7.486  8.492 9.393 10.611 12.740 14.636 16.422  19.981
Ci(TT)/X | 31.206 33.710 35.947 38.947 44.089 48.475 52.341 58.961

For example, when the mean time of update is 1/A = 1 day, ¢; = 320 and pK =12, the optimal
full backup time Ty is about 17 days. In this case, K/()\/p) = 12 days, and note that it represents
the mean time until the total updated files exceed a threshold level K.

3.2 .PREVENTIVE REPLACEMENT MODEL

In this section, consider an optimal policy for the preventive replacement model, i.e., the system is
replaced at periodic time 7, or at failure, whichever occurs first. Putting that N = 1 in (12), the
expected cost per unit of time is

Co(T)  ct/A+ 352 fo (o + cox)dGU+D(z) [T H,(t)dt )
A %0 GO(K) JT H,(t)dt '

Since C5(0) = limg_,0 Co(T') = oo and from (14),

Ca(o0) _ (. C(T}1) _ LG Gs—c JE M(z)dz o)

A T—oo A s M(K)+1

there exists a positive T3 (0 < T3 < co) which minimizes (20). A necessary condition that a finite
T3 minimizes C5(T) is given by differentiating Co(T") with respect to T and setting it equal to zero.
Hence, from (20), we have

g[V(T)G(j)(K)— /O K(cz+cox)dG(j+1)(:c)] /0 THj(t)/\dt=c1, | (22)

where

% o Jo (ea + coz)dGY+D () H,(T)

=, GO (K)H;(T) =

V(T) =
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Letting U(T') be the left-hand side of (22), we have

U0) = lim U(T) =0,

T—0
K
Uee) = Jim U(T) = Vieo)li+ MU = [ (o2 + con)a (o),
o0 T
v = V()Y cO(K) / Hj(#)dt,
=0 0

where V(o0) = limp.oo V(T). If V(T) is a strictly increasing function, U(T') is also a strictly
increasing function from 0 to U(00).

Therefore, we have:
Theorem 2 If V/(T) > 0 and U(00) > ¢ then there ezists a finite and unique T which minimizes
Co(T), and it satisfies (22). The resulting cost is Co(T3)/X = V(T3). If V!(T) < 0 or U(o0) < ¢
then Ty = oo and Ca(c0)/A is given in (21). This corresponds to the case of N* =1 in Remark 2.
Example 2 In example 1, we perform full backup at periodic time 7', or when the total update
files have exceeded a threshold lever K, whichever occurs first. When Gj(z) = 1 — e™"*, i.e,

GU(z)=1- ]-:1 px)t/ille ™ (j =1,2,---) and M(K) = uK, equation (22) is simplifird as
§=0

i[V(T)G‘j)(K ) — e2GUTD(K) - %(j + )G (k)] i Hy(T) = a1, (24)
J=0 t=j+1

and equation (23) is

(25)

V) — ¢y g CIVEORT) | oo Soli + DGO+ (K Hy(T)
TSR GO HAT) | m ©  GU(K)H,(T)

Table 2 gives the optimal full backup times AT, the resulting costs Ca(T%5)/A for ¢; = 70, 90,
110, 140, 200, 260, 320, 440, and pK = 12, 24 when c2 = 10 and ¢p = 2 x 10~%. This shows that
both optimal T and costs Ca(T5) are increasing with ¢;, and ATy < pK.

Table 2. Optimal full backup times AT and resulting costs Ca(T5)/A

for preveuntive replacement model

c1 70 90 110 140 200 260 320 440
ATy 6.311 7.922 11.094 oo 00 00 00 00
wkK =12
Co(T3)/A | 40.318 43.225 45.555 47.692 52.308 56.923 61.538 70.769
K — o4 AT 7.515 8.553 9.505 10.843 13.443 16.396 00 00
M =
Co(T3)/A | 31.196 33.686 35.903 38.856 43.831 47.919 51.200 56.000

It is found from Table 1 and Table 2 that AT < ATy and Cy(T5)/A > Co(T5)/A, that is,
the preventive replacement model is better than the minimal repair one. But, if 75 = oo and

Ca(00) /A > Ci(o0) /A =c3, i€, c1 > c3 + fOK M (z)dz, then the system should undergoes minimal
repair at each shock foreever.
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In general, note that dA(T, N ) /dTr > 0 in (13) and A(T, N) is strictly decreasing in N. From

Remark 2, if ¢; > A(oco,1) = C3—i—f0 x)dx, then (T*, N*) = (00, 00), and if ¢; < C3—|-fOK M(z)dx,
then N* =1 and 7* = T3.
Remark 3 If c; > c5 + Jy M(z)dz then (I*,N*) = (c0,00); If ¢1 < c5 + [K M(z)dz then

(T*, N*) = (T}, 1).

4. CONCLUSIONS

We have proposed the extended cumulative damage model with maintenance at each shock and
minimal repair at failure, and is replaced at scheduled time T or at failure N, whichever occurs
first. Using the theory of cumulative processes, we derive the expected cost and discuss the optimal
replacement policy which minimizes it.

Further, we have shown that this would be applied to the backup of secondary storage files in
the database system. Thus, by estimating the costs of backups and the amount of dumped files
from actual data and by modifying some suppositions, we could practically determine a scheduled
time of full backup. These formulations and results would be applied to other management policies
for computer systems [12].

Acknowledgment This form a part of research results by the Hori Information Science Promotion
Foundation.
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Abstract—In the final stage of manufacturing some specific products such as chemical ones,
they weigh each product using a scale and mark the weighing result on each product. However,
the scale will occasionally undergo malfunction or a failure during the weighing process. The
products weighed by such a scale will be shipped with different marks from their actual weights.
In the case of chemical products, those products with wrong marks can be regarded as defective
products. '

This study proposes two types of periodical inspection policies for a scale to adjust it or
to detect its malfunction or a failure followed by repair. The inspection in this study involves
adjustment operations by which the malfunction or failures of the scale can be detected and the
scale will recover from its malfunction or failure. Under Policy I, the scale is inspected at time
iT(i = 1,2,---). Under Policy II, we consider a situation where the scale is inspected every
morning before we start daily work of weighing products, which can be observed in the actual
circumstances. For such a case, we can carry out an inspection at it /N(:=10,1,2,---,N =1},
where 7 signifies the working hours per day and an integer N denotes the inspection frequency
to be conducted per day.

Two types of objective functions are considered; (1) the fraction defective and (2) the long-
run average cost under each policy. Under Policy I (Policy II), we examine the existence of an
inspection interval T, (inspection frequency N, ) which guarantees that the fraction defective
does not exceed a prespecified value o(0 < o < 1). An economical inspection interval T*
(inspection frequency N*) minimizing the long-run average cost is also discussed. Numerical
examples are presented to illustrate the proposed inspection policy formulations.

Keywords—Inspection policy, Scale, Fraction defective, Long-run average cost.

1. INTRODUCTION

In the final stage of manufacturing some specific products such as chemical ones, there is a process
in which each product is weighed using a scale to mark each weight on the product. This.process
is not emphasized generally and its associated cost is reduced as much as possible since it does not
affect the product quality. However, the scale occasionally undergoes its malfunction or failures,
and this malfunction or a failure can be detected only by an inspection. When the scale becomes
out of order, it will indicate different weight for each product from the actual one, and hence each
product will be shipped with a different mark from each actual weight. In the case of chemical
products particularly, this will be a significant problem if their consumers believe the wrong weights
indicated on them and use them for chemical reactions.

The present study concentrates on the products that are marked with wrong weights and calls
them defectives. In addition, it is postulated that we cannot devote a large expense to this weighing

- 106 -



process as observed in the actual circumstances. We then discuss two types of inspection policies
for a scale.

Under Policy I, we conduct an inspection to a scale at 17°(i = 1,2,---) to adjust the scale or to
detect malfunction or a failure followed by repair. Under Policy II, we consider a situation where
the scale is inspected every morning before we start daily work of weighing products. For such a
case, we can inspect the scale at i7/N(i = 0,1,2,-.-, N — 1), where 7 signifies the working hours
per day and an integer V denotes an inspection frequency to be carried out per day.

T'wo types of objective functions are considered; (1) the fraction defective and (2) the long-run
average cost under each policy. Under Policy I (Policy II), we examine the existence of an inspection
interval T, (inspection frequency N,) which guarantees that the fraction defective does not exceed
a prespecified value a0 < o < 1). An economical inspection interval T* (inspection frequency
N*) minimizing the long-run average cost is also discussed. Numerical examples are presented to
illustrate the proposed inspection policy formulations.

On the other hand, inspection policies have a long validated history. Most of studies associ-
ated with inspection policies have considered to carry out an inspection with a view to detect-
ing a system failure which cannot be detected instantly[1-30]. Among these studies, Barlow and
Proschan[3], Munford and Shahani[4,5], Tadikamalla[14], Wattanapanom and Shaw{15], Nakagawa
and Yasuif16,17], Kaio and Osaki[20,21] have proposed methods for obtaining inspection points in
time {z1, 3, - }. Weiss[2] and Kaio and Osaki[23] have considered models under imperfect inspec-
tions, and Luss and Kander[9] have dealt with a model when time required for an inspection is not
negligible. Zacks and Fenske[6], Lussand and Kander[8], and Kander[13] have discussed inspection
policies for a n-unit system. Approximately optimal policies have been studied by Munford and
Shahanif4], and Anbar[10]. Yum and MacDowell[25] and Gassandras and Han[29] have applied
inspection policies to a manufacturing system.

The above studies assume that since we cannot detect a system failure instantly, we incur cost
depending on the period over which we leave the failed system as it is. The cost in is, however,
based on not a concrete but an abstract concept. In addition, most of the above studies focus on the
period from the time when we start to use a system to the time when the system failure is detected.
In addition, the above studies focus on the time interval from when we start to use the system to
when we detect the system failure. In this study, however, the period over which the scale is left to
be out of order corresponds to the volume of defectives. In addition, the scale is used again after it
is adjusted by an inspection.

2. ASSUMPTIONS

In this study, we make the following assumptions:

(1) The malfunction or a failure of the scale can be detected only by an inspection. Furthermore,
an inspection involves adjustment operations by which the scale can recover from its malfunc-
tion or a failure. Hence the scale enters its normal state immediately after an inspection.

(2) The number of products to be weighed is very large and thus we can regard it as being
continuous by corresponding their volume to the time to be spent in weighing them.

(3) The malfunction or failure time distribution of the scale is expressed by F(t) with mean y,
ie.,

b= /O tAF(t) = /0 F(t)dt (1)
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3. POLICY 1

This section discusses Policy I under which we conduct an inspection at time i7(i = 1,2,---) to
adjust the scale or to detect its malfunction or a failure. From assumption (1), the process behavior
generates a renewal reward process[31, 32] where a renewal point corresponds to the time when an
inspection is completed.

3.1 FRACTION DEFECTIVE

Since we regard products with different marks from their actual weights as defectives, the fraction
defective in this study can be defined by the ratio of the volume of shipped defective products to
that of all the shipped products. From the renewal reward theory[31, 32], the fraction defective
Q1(T") under Policy I is given by

OuT) = t 1i+m Eltime during which the scztxle is out of order over (0, t]]
—-00

- By(T) |
Ay(T)’ ®

where A;(T) and B;1(T') respectively denote the expected cycle length and the expected time during
which the scale is out of order over one cycle.
Since we have ‘

AT =T, (3)

B(T) = 0xF(I)+ /0 T(T—t)dF(t): /0 TF(t)dt, (4)

the fraction defective in Eq. (2) becomes

T T+
Qur)= 2 E0E_ o PO& 5)

We here consider an upper limit for the inspection interval T, which makes the fraction defective
equal to 100a% or less for a prespecified value of a (0 < a < 1). From Eq. (5), we have

TILH}_ L, @1 T) = 0, : o (6)

pAm Qu(T) = 1, (M
_ T

QUT) = —[TF(T) ; Qfo F(t)dt] _ (8)

Let R(T) denote the numerator of the right-hand-side of Eq. (8), i.e., let

R(T) = -TF(T) + /0 Tﬁ(t)dt, (9)
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~ then we have

R(T) = Tf(T)>0, (10)

Jim R(T) = o. (11)

This indicates that R(7) > 0 for T > 0, and thus we have Q}(T) > 0. From Egs. (6) and (7), there
exists a finite upper limit (> 0) for an inspection interval which satisfies Q1(Z,) < a(0 < a < 1).
3.2 ECONOMICAL INSPECTION INTERVAL

In this subsection, we discuss an economical inspection interval 7* which minimizes the long-run
average cost. From the renewal reward theory, the long-run average cost of the proposed inspection
policy is given by -

T
I'—t)dF
CuT) = tﬁg} Eftotal cos‘z over (0.]] _« J ( T)' (t) + ca
— 00

e1 [T F(t)dt + ca

T (12)

It should be noted that the above formulation coincides with that of Moldel II for block replacement
policy proposed by Osaki[33].
By differentiating C1(T") with respect to 7', we can show that C}(T) > 0 agrees with

Mﬂz%, (13)

where R(T) is given by Eq. (9). From Egs. (10} and (11), if

. C
| Ty=p>—= 14
A BT =p> =, (14)
there exists a unique finite economical inspection interval T*(> 0) which minimizes Cy(T’). If the
inequality in (14) does not hold, we have C{(T') < 0 and thus T* = +oc which suggests to conduct
no inspections. '

4. POLICY 1I

This section considers a situation where we perform an inspection to make adjustment to the scale
every morning just before we start our daily work of weighing products. In such a situation, we can
divide our daily work hours 7 into NV divisions. At i7/N(i=0,1,2, N—1, N = 1,2,--.), we perform
an inspection to adjust the scale or to detect its malfunction or failure followed by repair. It should
be noted that N = 1 corresponds to the policy which conducts only one inspection every morning
before we start our daily work. From assumption (1), the process behavior generates a renewal
reward process where a renewal point corresponds to the time immediately after the inspection is
finished. '
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4.1 FRACTION DEFECTIVE

The definition of the fraction defective is identical to that in 3.1. The fraction defective Q2(N)
under Policy II is given by

Eltime during which the scale is out order over (0, t]]

@ =, t

By (N)
= 29 nN=0,1,2,-,N—1, 15
Az(N) (15)
where As(N) and By(N) are the expected cycle length and the expected time representing the

volume of defective products per one cycle.
We here have

Az(N ) = % (16)
Ba(N) :Oxﬁ%%>+ﬁﬁc%—0dﬂw:ANFmﬁ, (17)
and therefore Q2(N) in Eq. (15) becomes _
@) = HLE0E ;W FOE (18)
N N

We here consider a lower limit for the inspection frequency N, that makes the fraction defective
of products equal to 100a% or less for a prespecified value of @ (0 < o < 1). It is convenient to
introduce u defined by

u:%, N=1,2---, (19)
and then we have
Qa2(u) = Qu(w), we (0,7 (20)
Hence, Q2(u) is strictly increasing in u from 0 to Q2(7). Consequently, if
Jo F(t)dt

Qo(T) =Qu(r) =1- > a, (21)

T

then there exists an upper limit uy(> 0) satisfying Q2(u) < « for a prespecified value of o. This
indicates that there exists a lower limit N, (> 1) that satisfies Q2(Ny) < a.

4.2 ECONOMICAL INSPECTION FREQUENCY
The long-run average cost of the proposed policy is, from the renewal reward theory, given by

a [ (& — 1) dF(t) + o

z
N

C2(N)

1 fO%} F(t)dt + ¢

= N=0,1,2---,N—1. (22)
N
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Let us again introduce u in Eq. (19), and we have
Co(u) = C1(uw), we€(0,7]. (23)
Hence if

R(r) = —1F(r) + /0 ’ F(ydt > 2, (24)

€1

there exists a unique »* minimizing Ca(u) in relation to u, and therefore there exists a finite
economical integer N*(> 1) that minimizes C2(IV) with respect to N. If the inequality in (24) does
not hold, we have C’(u) < 0 which signifies u* = 7, i.e., N* = 1. This indicates that it is the
optimum to conduct an inspection only just before we start our daily work of weighing products.

5. NUMERICAL EXAMPLES

This section assumes an exponential failure(malfunction) time distribution with failure rate A = 1/p.

5.1 POLICY I

Under the exponential distribution, the fraction defective @1(T) in Eq. (2) becomes

1—e AT
Ql(T)=1—T, T>O, (25)

and the long-run average cost C1(T) in Eq. (12) yields

e (e + AT — 1) + co)

AT ’

Table 1 shows values of inspection interval T, for o = 0.01, 0.05 and 0.1 in the case of A =

0.2(n = 5). Figure 1 indicates C1(T) for ca = 1 with ¢; = 10, 20, 30, 40 and 50, while Table 2 shows

T* with C1(T*). It is observed in Figure 1 and Table 2 that the economical inspection interval T*
decreases with increasing c;, which can intuitively explained.

Ci(T) = > 0. (26)

Table 1: Inspection interval.

o | 001 [ 0.05 | 0.1
T, 1 0.100 | 0.517 | 1.072

Table 2: Economical inspection interval.

c1 10 | 20 | 30 40 | 50
T 1.07 1 0.74 | 0.6 |0.52 { 0.46
Cy(T*) | 1.93 | 2.76 | 3.40 | 3.93 | 4.40
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Figure 1: Long-run average cost.

5.2 POLICY 1I

Under the exponential distribution with failure rate A = 1 /1, the fraction defective @ o(7") in Eq. (15)
becomes

1_6—)\T/N
QQ(N):l————m—, N:1,2,"', (27)

while the long-run average cost Co(N) in Eq. (22) becomes

¢ (e"\T/N +AT/N — 1) + co\
AT /N

Co(N) = , N=1,2--. (28)

Table 3 shows values of inspection interval N, for a = 0.01, 0.05 and 0.1 in the case of A =
0.2( = 5). Figure 2 depicts Ca(N) for cg = 1 with ¢; = 10, 20, 30, 40 and 50, while Table 4 reveals
N* along with Cy(N*). It is observed that the economical inspection frequency N* increases as ¢;
becomes large, which can also be explained intuitively.

Table 3: Inspection frequency.

a |0.01]0050.1
N, | 10 2 1

Table 4: Economical inspection frequency.

c1 10 20 30 40 50
N* 1 1 2 2 2
Co(N*) | 1.94 | 2.87 | 3.45 | 3.93 | 4.42
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Figure 2: Long-run average cost.

6. CONCLUSIONS

In the final stage of manufacturing some specific products such as chemical ones, there is a process
in which each product is weighed using a scale to mark each weight on the product. However, the
scale occasionally undergoes its malfunction or failures. When the scale becomes out of order, it
will show different weight for each product from the actual one, and hence each product will be
shipped with a different mark from each actual weight.

This study focused on the products that are marked with wrong weight and regarded them
as defectives. We then discussed two types of inspection policies for a scale. Under Policy I, we
conduct an inspection to a scale at <T'({ = 1,2,---). Under Policy II, we considered a situation
where the scale was inspected every morning before we started daily work of weighing products.
For such a case, we considered to inspect the scale at i7/N(i=0,1,2,---, N — 1), where 7 signified
the working hours per day.

Two types of objective functions were considered; (1) the fraction defective and (2) the long-run
average cost under each policy. Under Policy I (Policy II), we clarified the condition under which
an finite inspection interval T, (finite inspection frequency N,) exists, which guarantees that the
fraction defective does not exceed a prespecified value a(0 < @ < 1). An economical inspection
interval T* (inspection frequency N*) minimizing the long-run average cost was then discussed.
Numerical examples were presented to illustrate the proposed inspection policy formulations.

This study dealt with a case where an inspection involves adjustment operations, but there is a
case where an inspection does not include adjustment activities. A model considering such a case
will be discussed taking another opportunity.
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Abstract—In this paper we consider a two component system where component 1 failures

occur according to a Poisson process. Each component 1 failure cause a random amount of

damage to component 2 leading to its failure when the total damage exceeds a specified level.
We study a two parameter maintenance policy which minimize the expected cost per unit of

time for infinite time operation.

Keywords—Shock damage, Cumulative damage, Optimal policy, Control limit

1. INTRODUCTION

There is a vast literature on the maintenance of unreliable systems. Bulk of them deal with single
component system. Valdez-Flores and Feldman [1] present a comprehensive review where references
to earlier review papers can be found. In contrast, the maintenance of multi-component systems
has received less attention and is an area of considerable research activity. Most of the models deal
with the case where the component failures are independent. For a review of maintenance models
for multi-component system, see Thomas [2], Cho and Parlar [3] and Dekker [4].

In a multi-component system, the failure times are often stochastically dependent [5]. Ozekici [6]
deals with optimal periodic replacement policy with statistically dependent failure times. Murthy
and Nguyen [7] deal with a formulation where failure of a component has an effect on one or
more of remaining components. They call this “failure interaction” and suggest two different types
(Types 1 and 2) of interactions. In Type 1 failure interaction, a natural failure of a component
can induce the failure (call “induced” failure) of one or more of remaining components. In Type
2 failure interaction, the failure affects the performance (e.g., the failure rate) of one or more of
the remaining components. Murthy and Wilson [8] discusses the estimation problem for Type 1
failure interaction model with different data structures. Nakagawa and Murthy [9] deals with a two
component (labelled components 1 and 2) system. Whenever component 1 fails, it causes a random
amount of damage to component 2. The damage accumulates and leads to component 2 failure
when it exceeds a specified level K. Component 1 failures occur according to a non-homogeneous
Poisson process and are rectified through minimal repair. They considered two maintenance policies.
(one and two parameter policies) and derived conditions for the optimal parameters for the policies.

This paper deals with a two component system with component failures as in Nakagawa and
Murthy [9]. We formulate a maintenance policy involving two parameters (“2-parameter policy”)
and derive an expression for the expected cost per unit time for infinite time operation. We give
an optimal policy to minimize the expected cost per unit of time. We examine two special cases
of this policy by letting one of the parameters assume their upper limits. The 1-parameter poli-
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cies correspond to some well known policies studied by earlier researchers. These include the age
replacement [10] and the control limit policies with additive damage [11] and [12].

The outline of this paper is as follows. In section 2, we give the details of the model formulation.
Section 3 deals with the analysis of the 2-parameter maintenance policy. The special cases of this
policy are considered in the next section. Section 4 deals with three 1-parameter maintenance
policies. Section 5 deals with some numerical examples and we conclude with some comments in
Section 6.

2. MODEL DESCRIPTION

We consider a system composed of two components (denoted as units 1 & 2). Unit 1 is repairable
and it undergoes minimal repair at failure. The time to repair is small so that it can be ignored.

As a result, unit 1 failures occur according to a nonhomogeneous Poisson process with intensity
function T(t) and a mean-value function R(t), i.e., R(¢ fo r(u)du, and r(t) is increasing in t. Let
S; (7 =0,1,2,---) be the random variable denotmg the occurrence time of 5 unit 1 failure with
So = 0. Then, the probabﬂlty that 7 or more unit 1 failures occurring during (0,] is given by

Hy(t) = Pof(S; < 1) = ZR“” O (o012, )

=j

Let N(t) be the total number of unit 1 failures by time ¢. The probability that exactly 7 failures
occur until time ¢ is given by

Fi(t) =Pe{N(t) = j} = H;(t) - Hja(t) (=0,1,2,--). (2)

Whenever unit 1 fails, it causes a random amount of damage {Y;} (j = 0,1,2,--+) to unit 2. Y;is
a sequence of identical and independent r.v with distribution G(z), i.e., P;{Y; < z} = G(z). The
damage is additive and let Z; be the damage after the j%* failure of unit 1 with Zg = 0 . Then Zj

J
is a cumulative process (see [13]) with Z, = » V; (=1,2,---) and
3
i=1

P{Z <'T} G (m) (j=0»172>"')> (3)

where G)(z) is the j-fold Stieltjes convolution of G(z) with itself, and G (© (:1:) =1 for x > 0, and
Oforz <0.

Unit 2 fails whenever the total damage exceeds a failure level K. A system failure occurs
whenever unit 2 fails because both units fail simultaneously. We assume that unit 2 is not repairable
and as a result, a failed system needs to be replaced by a new one. Note that such replacements
are unplanned replacements.

A system failure, in general, results in a high cost. One way of reducing this cost is to replace
the system preventively, based on some policy, which reduces the likelihood of system failure. From
a cost point of view, a preventive replacement is cheaper than failure replacement. However, a
preventive replacement implies discarding some useful life of the system. Hence, preventive replace-
ment needs to be done in a manner which achieves a suitable trade off between this loss versus the
risk of a failure. We consider the following 2-parameter policy:

The system is replaced through a failure replacement when unit 2 fails (which corresponds to
the damage for unit 2 exceeding K) or earlier through a preventive replacement when one of the
following conditions occur:
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- (i) system reaches an age T,
(ii) the total damage to unit 2 exceeds a level k (< K).

Note that the policy is characterized by two parameters (T, k) with 0 < T' < o0, 0 < k < K.
When these two parameters assume their upper limits, then there is no preventive replacement and

the system is replaced only on failure.

Let C(T, k) denote the expected cost per unit time for infinite operation. Then the optimal
parameters of the policy are T* and k* which yield a minimum value for C(T, k).

We have a family of 1-parameter policies by allowing two of the parameter to assume their upper
limits. As a result, we have the following two 1-parameter policies:

Policy la: T — oo. In this case, the policy is characterized by k.

Policy 1b: k¥ — K. In this case, the policy is characterized by T
For the analysis of these policies, we make the following simplifying assumptions:

1) The failures of unit 1 and 2 are detected immediately.
2) The damage to unit 2 is measured after each failure of unit 2.

3) The time to repair unit 1 and replace the system is small so that they can be approximated as
being zero. In other words, the repair or replacements are instantaneous.

4) The cost of each minimal repair for unit 1 is ¢y,. The cost of each failure [preventive] replacement
for the system is ¢y [cp] with ¢f > ¢ > o

Finally, for a continuous distribution function G(z), let G(z) = 1 — G(z) = P{Y; > z} and
g(z) = dG(z)/dz, are the survivor and density functions associated with G(x) respectively.

3. ANALYSIS OF THE 2 PARAMETER POLICY
~ 3.1 THE EXPECTED COST PER UNIT TIME

Note that the system gets renewed with each failure or preventive replacement. As a result, the time
interval between two successive renewals defines a cycle for a renewal process. From the renewal
reward theorem [13] C(T, k), the expected cost per unit time for infinite time operation, can be
expressed as the ratio of the expected cycle cost and the expected cycle length. We proceed to
obtain the expressions for these two quantities.

The probability a(K), that the system is replaced at failure of unit 2 (due to total damage

exceeding K), is given by

oo
Oé(K) = ZZPr{N(T) = j7 Zl—l < k,Zl > K}
=1 1=1
o0 ko '
= 3 Hj(T) / GK - 2)d69(a). (4)

The probability 8(T), that the system is replaced preventively at age 7', is given by
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B(T) = ZP{N(T = j, Z; <L,}_ZF TYGD(k). (5)

J= 7=0

Finally, the probability v(k), that the system is replaced preventively when the total damage of
unit 2 exceeds k£ and is less than or equal to K, is given by

]
5(k) = DY Y PUN(T)=j,Zi-1 <k < Z <K}
i=11=1

- ZH+1(T) [ Gk — 2)ldG ) (z). (6)

It is easily seen that eqn(4)+eqn(5)+eqn(6)=

The expected cost per cycle is made up of corrective and preventive maintenance cost. Corrective
maintenance means the failure replacement of unit 2 and minimal repair of unit 1. The expected
number of minimal repairs over a cycle, (7, k), is given by

§(T,k) = Z]F TG (k +ZJHJ+1 (T) / G(K — 2)dGY)(z)
j=1

+ Z FH; i (T) / — Gk - 2)dGY) (@)

= i Hy(T)GY(k). (7)

Jj=1

Using the above expressions, the expected cycle cost is given by

AT, k) = cro(K) +¢lB(T) + y(k)] + emd(T, k), (8)

where ¢p and ¢y are the preventive replacement cost and failure replacement cost for the system,
and ¢, is the cost of each minimal repair for unit 1.
The expected cycle length is given by

S ) STe e G-1)
T;fyma k) + ; /0 tdH, (£) /O G(K — 2)dGY=) (g)

[os) T k
. — ) — -z (-1) x
+ ; /0 tdH; (t) /0 [G(K —z) - G(k — 2)]dGY ™V (z)

= iG(j)(k) /0 TFj(t)dt. (9)
7=0
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From eqns(8) and (9) and renewal reward theorem, the expected cost per unit time, for infinite
operation, is given by

(10)

A(T, k) |
S GOk TFAtdt
> GW(k) A (1)

=0

C(T, k) =

3.2 OPTIMAL POLICY FOR 2-PARAMETERS

T* and k* are the values which minimizes C'(T, k) given by eqn(10). The optimal T* and k* can
be obtained from the first order conditions, i.e., setting the derivatives of C(T', k) with respect to T
and k to zero. We assume that r(¢) = A. This implies that failures of unit 1 occur according to a
stationary Poisson process. Differentiating C(T', k) with respect to T and setting it to zero, yields

. . > B(T)B;(k)
N Hja(T)Bi(k) ~ S Hyd(T)G9) (k) L2 = ¢, (11)
=0 o F(1)GY (k)
j=0
where
k
B;(k) = / [(¢; — c)G(K — @) — emG(k — 2)]dG9(x). ' (12)
0

Denote the left-hand side of eqn(11) by J(T'; k).
Differentiating C'(T, k) with respect to k and setting it to zero, yields

, 00 koo .
(cr—cp) > Hypa(T) /0 [G(K — z) — G(K — k)|dGY(z)

j=0
N > Hi(1)g (k)
tem | D Hynd (1) GO (k) -5 =S H1GI(E)| = (13)
= > Hi(T)gW(k) 7= |
Jj=1 ' J

Denote the left-hand side of equ(13) by Q(k;T).
On comparing J(T; k) with Q(k;T), we see that Q(k;T) is always greater than J(T;k) for
(T, (0< T < o0), 'k, (0 < k< K)), as
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J(Tik) = Q(k; T) =

ZF(T/[GK k) — G(K — 2)|dG9) ()
=0

(cf = cp) Z H; 11 (T)GY (k)

j=0 iFJ T)G(J)
7=0
- f:Fj(T)G(””(k) f:Hj(T)g(j)(k)
+om Y His (TGP (k) | 52 - = <0. (14)
7=0 D EHMGIE). S Hj(T)gD (k)
L =0 i=1 ]

This implies that there does not exist (T'*, k*) which satisfies eqns(11) and (13) simultaneously.

4. 1-PARAMETER POLICIES

In this section, we consider the special case where one of the parameters assume their upper limits
so that the policy is characterized by a single parameter. As indicated earlier, we have two different
cases to consider.

4.1 POLICY la: CONTROL LIMIT POLICY (k)

The system is replaced preventively when the total damage of unit 2 exceeds k or on system failure
should it occur earlier. As a result, from eqn(10), the expected cost per unit time for infinite time
operation is given by

cf+<cp—cf>2/ G(K — 2)dGY™V() + (5 — cp + cr) M (K)
C(o0, k) hm C(T,k) = ’ (15)

) .
JEOG (k)/o Fy(t)dt

k*, the optimal level k¥ which minimizes C(oo, k), can be obtained by differentiating C/(o0, k)
with respect to k and setting it equal to zero. This yields

Z / G(K — z) — G(K — K)]dGU—1(z) = %‘_—CC’Z. (16)

Denote the left-hand side of eqn(16) by V(k). Note that
dv (k)

pa g(K - k)[14+ M(k)] > 0. (17)
where M(K) = iGU)(K). Note that
. j=1 : ’
%i_r)% V(k) =0 and ;}EI}( Vik) = M(K) (18)
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As a result, if
—c
M(K)> 2= (19)
cr—cp
then there exists a finite and unique &* which satisfies eqn(16). In this case, the optimal expected
cost per unit time is given by ‘

0(007 00, k*) = /\[(Cf - cp)tj(K - k*) + Cm], (20)

If equ(16) is not satisfied for 0 < k < K then k* = K. This implies that the optimal policy is no
preventive replacement, and in this case the expected cost per unit time is given by

Clo0, K) = A [w] (21)

1+ M(K)

4.2 POLICY 1b: AGE POLICY (T)

The system is replaced preventively at time 71" or on systém failure should it occur earlier. As a
result, from eqn(11), the expected cost per unit time for infinite time operation is given by

Cf+(cp—cf)ZF K)+cmZH(T>G (K)
C(T,K) = lim C(T,k) = = . (22

€) .
;a NK) /D Fj(t)dt

We assume that r(¢) = A. Differentiating C(T, K) with respect to T and setting it to zero, yields

S H{T)GOE) - Q)Y Hjm(T)GD(K) = c—_-—cpT— - (23)
=1 =0 » f p Cm
where
Z Fj(T T)GUTD(K)
QT) = : (24)

ZF T)GY(K

We need to consider the following three cases.
(i) ¢f — ¢y — cm > 0 ; Let U(T') denote the left-hand side of eqn(23) and let Q(o0) = Tlim Q(T).
— 00
If Q(T) is strictly decreasing then U(T’) is strictly increasing from 0 to U(oco). As a result, if

lim U(T) = M(K) — Q(oo)[1 + M(K)] > —2 (25)
T—00 Cfr—Cp— Cm
then there exists a finite and unique T* which satisfies eqn(23). If GUTV(K)/GY(K) is
strictly decreasing in 7 then Q(T) is strictly decreasing in T'.

The optimal expected cost per unit time is given by
C(T*,00,K) = Neg— cp— (c5 — ¢p — em)Q(T™))- - (26)

If eqn(23) is not satisfied for 0 < T" < oo then T™ = oo and the expected cost per unit time is
given by eqn(21).
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(ii) ¢f — ¢ — ¢ < 0 ; If U(T') is increasing then C(T, K) is decreasing in T'; therefore the optimal
T* — oo. The expected cost per unit time is given by eqn(21). When U(T') is not increasing,
we need to use a numerical method to obtain 77*.

(iii) ¢f — ¢y — cm = 0 ; In this case, C(T, K) can be rewritten as follows.

¢t + Cm iHj(T)Gm(K) - iFj(T)GU)(K)
j=0

j=1
C(T,K) = — - (27)
> Gx) [ R
§=0 0
Differentiating C(T, K') with respect to T, we have
(em —cf) Y Fy(T)GY(K)
dC(T, K) §=0
T 5 (28)

3 6lx) / " Fy(tya
=0

Since ¢, < ¢f, C(T, K) is decreasing in 7. Therefore, the optimal T* — co. In other words,
no preventive replacement is the optimal policy. The expected cost per unit time is.given by
eqn(21).

5. NUMERICAL EXAMPLES

Let G(x) be an exponential distribution with mean 1 /iy ie., G(z) =1—e™He,
For Policy la, the optimal &* can be obtained from (16) and this can be rewritten as

G(K — k*)M(k*) = ccf; __C;Z. (29)

For Policy 1b, T™* to be finite and unique requires (25) to be satisfied and this can be rewritten
as

%
MK) > —— (30)

Note that GU+Y(z)/GY)(z) is strictly decreasing in j when G(z) is an exponential distribution.
Therefore, if eqn(30) is satisfied then a finite T* exists and is unique.

We assume the following values for the model parameters, A = 1 (Mean time to failure for unit
lis1.) p=1 (Mean damage caused to unit 2 by each unit 1 failure is 1.)

Let ¢, = 1. We consider a range of value for ¢, (varying from 2 to 30) and cj (varying from
10 to 50). Table 1 and 3 give the optimal k* (for Policy 1a) and T* (for Policy 1b) for cp = 5; two
values of K (= 100 & 200) and a range of value for c;. Similar results for ¢ 7 = 50 and ¢, varying
are given in Tables 2 and 4. Also the optimal expected costs per unit time are given.
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Table 1 . Policy 1a Table 2 . Policy 1a

OPTIMAL k*, C(oo, k*) OPTIMAL k*, C(oo, k*)
A=lLu=1c=5,cp=1 A=1lpu=1¢c=50,cpn=1

K =100 K =200 K =100 K =200
cp | k¥ | Cloo,k*) | k* | Coo, k%) cp | kB | Cloo, k%) k* C(o0, k)
10 1 95.2 { 1.0419 |194.5 | 1.0205 2 1916 | 1.0109 |190.8 | 1.0052
20 | 941 1.0424 |193.4 | 1.0206 8 193.6 | 1.0746 [192.9 | 1.0362
30 | 93.6 | 1.0427 |192.9 | 1.0207 15 (94.5 | 1.1479 |193.8 | 1.0721
40 | 93.2 | 1.0428 [192.5 | 1.0207 20 94.9 | 1.1999 |194.2 | 1.0977
50 1 93.0 ] 1.0429 |192.3 | 1.0207 30 |95.8 | 1.3026 |195.0 | 1.14%6

Table 3 . Policy 1b Table 4 . Policy 1b
OPTIMAL T*, C(T*, K) OPTIMAL 7%, C(T*, K)
A=Lu=1¢c,=50cn=1 A=1lLpu=1.¢c=050,¢p, =1

, K =100 K =200 K =100 K =200

cge | T | CTHK)| TF | C(T* K) o | TF | C(T*K)| T | C(T",K)
10 | 83.8 1.065 171.9 1.030 2 64.7 1.032 145.8 1.014
20 | 74.9 1.071 160.0 1.032 8 1715 1.119 155.5 1.053
30 | 71.9 1.074 155.9 1.033 15 176.2 1.212 161.8 1.097
40 | 70.1 1.075 153.5 1.033 20 [79.2 1.273 165.8 1.126
50 | 68.9 1.077 151.8 1.034 30 186.0 1.384 174.6 1.182

The optimal results for 2-parameter policy is identical to Policy la.

One would expect the optimal expected cost per unit time for the two parameter policy to be
smaller than that for the one parameter policies. The numerical results indicate that this is not so.
The reason for this apparent counter unintuitive result is as follows.

The state of component 2 is best indicated by the total damage (Z(t)). If this information is
not available then the age (¢} of component 2 is the best indicator. In other words, given Z(t), then
t does not provide any extra information.

I(Z(t),t) = 1(Z(1)) (31)

where I represents the information about the state of component 2. Also, it is worth noting that

I(t) C I(Z(t)

This can be seen from Tables 1-4 where for a given set of parameter values, the optimal expected
cost per unit time for Policy 1a which is based on Z(t) is smaller than that for Policy 1b.

The results of section 3 showed that 2-parameter policy is no better than the better of Policy
la. Since Policy la is better than Policy 1b, we see that Policy 2a does not perform better than
Policy 1a. This is to be expected since the age of component provides no new information.

6. CONCLUSION

In this paper we considered a two component system where component 1 failures occur according to
a Poisson process and cause damage to component 2. The damage is accumulated and component
2 fails when the total damage exceeds a specified limit.
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We derived an expression for the expected cost per unit time for a two parameter policy. The
policy reduces to two one-parameter polies as special cases. We give analytical characterization to
obtain the optimal parameter value for these special cases. In the process we obtained an apparent
counter unintuitive result and gave an explanation for it.

The results of the paper highlight indicate an important issue, i.e., increasing the number of pa-
rameters does not necessary lead to lower expected costs. The parameters used provide information
about the state of one or more components of the system.

The important issue is whether the information provided by a parameter (A) is contained in
that provided by another parameter (B). If so, then the parameter (A) provide no new information

and hence will not lead to lower expected costs. _
This issue has not received sufficient attention in the maintenance literature as attested by the

number of two parameter policies that have been developed which perform no better than the one
parameter policies. There is scope for further study of this issue.
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Abstract—In this paper, we propose a software availability model considering the number
of restoration actions. We correlate the failure and restoration characteristics of the software
system with the cumulative number of corrected faults. Furthermore, we consider an imperfect
debugging environment where the detected faults are not always corrected and removed from
the system. The time-dependent behavior of the system alternating between up and down
states is described by a Markov process. From this model, we can derive quantitative measures
for software availability assessment based on the number of restoration actions. Finally, we
show numerical examples of software availability analysis.

Keywords—Software availability, Imperfect debugging, Software reliability growth, Markov
process, Quantitative assessment.

1. INTRODUCTION

Many methodologies for software reliability measurement and assessment have been discussed for
the last few decades [1]-[4]. A mathematical software reliability model is often called a software
reliability growth model (SRGM); this describes a software fault-detection or a software failure-
occurrence phenomenon during the testing phase of software development process and the operation
phase. A software failure is defined as an unacceptable departure from program operation caused
by a fault remaining in the software system. This model is available for measuring and assessing the
degree of achievement of software reliability, deciding the time to software release for operational
use, and estimating the maintenance cost for faults undetected during the testing phase.

Most of SRGMs so far provide quantitative software reliability measures for developers. However,
it begins to be necessary to assess software systems from the viewpoint of customers. In particular,
recent systems are required nonstop operation and utilities. One of the customer-oriented attributes
is software availability [5]-[7]; this is defined as the attribute that the software systems are
performing at a given time point, according to the specification, under the specified environment.
In other words, it represents the property that the systems are in available states whenever the
customers want to use them. Few mathematical models for evaluating software availability are
proposed.

In this paper, we construct a software availability model. Quantitative measures on reliability
derived from previous SRGMs, such as the mean time between software failures and the software
reliability representing the probability that the system can continue to operate for a given time
period, are often provided as the functions of the number of software failures or fault detections,
and useful for seizing the relationship between the number of detected faults and software reliability
growth. Oun the other hand, there are scarcely software availability measures for explicitly under-
standing the relation with the number of restoration actions. Here we discuss software availability
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measurement considering the number of restoration actions. The time-dependent behavior of the
software system is described by a Markov process [8]. The software failure and the restoration
characteristics are correlated with the cumulative number of corrected faults. Furthermore, we also
describe the imperfect debugging environment where the debugging activities corresponding to soft-
ware failure-occurrences are not always performed for certain [9]. The assumptions and modeling
are detailed in Sect. 2. Derivation of the stochastic quantities for software availability measurement
is presented in Sect. 3. Numerical illustrations of software availability analysis are shown in Sect. 4.
Finally, concluding remarks of this paper are summarized in Sect. 5.

2. MODEL DESCRIPTION

The following assumptions are made for software availability modeling:

Al. The softwaré system is unavailable and starts to be restored as soon as a software failure
occurs, and the system can not operate until the restoration action is complete.

A2. The restoration action implies the debugging activity; this is performed perfectly with prob-
ability a (0 < a < 1) and imperfectly with probability b(=1-—a). We call a the perfect
debugging rate [9]. One fault is corrected and removed from the software system when the
debugging activity is perfect.

A3. The next time intervals of software failures and restorations when n faults have already been
corrected from the system, follow exponential distributions with means 1/A, and 1 [t TE-
spectively.

A4. The probability that two or more software failures occur simultaneously is negligible.

Consider a stochastic process {X(t), ¢ > 0} whose state space is (W, R), where up state vector
W ={W,; n=0, 1, 2, ...} and down state vector R = {R,; n =0, 1, 2, ...} [10]. Then, the
events {X(¢) = W} and {X(¢) = R,} mean that the system is operating and inoperable due to
_ the restoration action at time point ¢, when n faults have already been corrected, respectively.
From assumption [2], when the restoration action has been complete in {X () = R, },

W, (with probability b)
X(0) = {Wn+1 (with probability a). (1)

We use Moranda’s model [11] to describe the software failure-occurrence phenomenon, i.e., when
n faults have been corrected, the hazard rate A, is given by

An=DE" (n=0,1,2,...; D>0,0<k<1), (2)

where D and k are the initial hazard rate and the decreasing ratio of the hazard rate, respectively.
The expression of (2) comes from the viewpoint that software reliability depends on the debugging
efforts, not the residual fault content. We do not note how many faults remain in the software sys-
tem. Equation (2) describes a software failure-occurrence phenomenon where a software system has
high frequency of software failure-occurrence during the early stage of the testing or the operation
phase and it gradually decreases after then [4], [9]. Early software availability models such as those
of Okumoto and Goel [12] and Kim et al. [13] often assume that the hazard rate is proportional to
the residual fault content and decreases by a constant amount with the perfect debugging, i.e., A,
is described as

)\n:¢(N—’l?,> (TL:O, 1, 23“-,N_1;N>Oa¢>0)7 (3)
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where N and ¢ are the initial fault content and the hazard rate per fault remaining in the system,
respectively [14]. X (¢) forms a finite-state Markov process if (3) is applied to A .

Next, we describe the time-dependent behavior of the restoration action. The restoration action
for software systems includes not only the data recovery and the program reload but also the
debugging activities for manifested faults. From the viewpoint of the fault complexity, there are
cases where the faults detected during the early stage of the testing or the operation phase have
low complexity and are easily corrected /removed, and as the testing is in progress, detected faults
have higher complexity and are more difficult of correction/removal [1], [15]. In the above case, it is
appropriate that the mean restoration-time becomes longer with the increasing number of corrected
faults. Accordingly, we express p, as follows:

pn=Er" (n=0,1,2 ..;E>00<r<1), (4)

where E and r are the initial restoration rate and the decreasing ratio of the restoration rate,
respectively. In the case of r = 1, i.e., u, = E means that the complexity of each fault is random [10].

Let Qa.5(7) (A, B € (W, R)) denote the one-step transition probability that after making a
transition into state A, the process {X(¢), ¢t > 0} makes a transition into state B by time 7. The
expressions for Q4 p(7)’s are given as follows:

Qo pa(r) = 1—e™7, (5)
QR’n,Wn—H (T) = a(l - 6_#nT)7 (6)
QRn,Wn (’7‘) = b(l — e_“”). : (7)

The sample state transition diagram of X (¢) is illustrated in Fig. 1.

Figure‘ 1: A diagrammatic representation of state transitions between X (t)’s.

3. DERIVATION OF SOFTWARE AVAILABILITY
MEASURES

3.1 DISTRIBUTION OF TRANSITION TIME BETWEEN UP STATES

Let S;, (¢ < n) be the random variable representing the transition time from state W; to state Wy,
and G;,(t) be the distribution function of S; , respectively. Then, we obtain the following renewal
equation with respect to G n(t):

Gi,n(t) = QWi,Ri * QRi,Wi_;_l * Gz’+1,n(t) + QWi,Ri * QRi,Wi * Gz,n(t)v (8)
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where * denotes a Stieltjes convolution and G, »(t) = 1(¢t) (step function, n =0, 1, 2, ...).
We use Laplace-Stieltjes (L-S) transforms [8] to solve (8), where the L-S transform of G ; ,(t) is

defined as
Ginls) = / et (B). (9)
0

Substituting the L-S transforms of (5)—(7) into that of (8) yields

~ aX;fi;

G; = ~i
n() 82 4 (N + 113)s + adipy Cirin(s)
_ LilYi
= (s—i—wz)(s—!—y) z+1n(5>7 (10)
where
; 1
;’} 3 [(/\ + 1) £ V(i + 115)2 4a/\iui] (double signs in same order). (11)

(3

By solving (10) recursively, we obtain CNJi,n(s)' as

n—1
~ TmYUm
Gin(s) = =
z,n( ) T{_IZ (S + mm)(s -+ ym)
_ nz_:l Az‘l,n(m)f’:m n A?,n(m)ym , (12)
where
n—1
H Z5yj
Al = T
fL'm H - mm)H
Hém
n—1
H 3y
Afp(m) = (m=1,i+1, ..., n-1), (14)
Ym H (yj Ym H('TJ - ym

J#m
respectively. By inverting (12), we obtain the distribution function of S in 88
Gin(t) =Pr{Si, <t}
n—1

=1-Y [Af,(m)e ™ + A2 (m)e™¥!] (n=1,2, ...;i=0,1, 2 ..., n). (15

m=t
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It is noted that

-1
(AL, (m) + A, (m)] = 1. (16)

m=1

3

Furthermore, the expectation and the variance of S; , are given by

n—1 1 1
E[Sin] = —+—, (17)
i Im  Ym
n—1
1 1
Var[Sin] = (—x 5+ —2), | (18)
m=1 m Ym

respectively.

3.2 STATE OCCUPANCY PROBABILITY

Let Pa p(t) (A, B € (W, R)) be the state occupancy probability that the system is in state B at
time point ¢ on the condition that the system was in state A at time point ¢t = 0, i.e.,

Pap(t) =Pr{X(t) = BIX(0)= A} (4, B€(W, R)). (19)
We obtain the following renewal equations with respect to Pw, w, (t):

PWq’,,Wn (t) = Gi)n * PWnywn (t)7 (20)

P, w.(t) = €'+ Qw, R, * Qrow, * Pw,,w, () (21)

From (21), the L-S transform of Py, w, (t) is given by

D 5(5 + lln)
Prnwa(s) = el +om)
B . s .5‘2 Tnln
B (a/\n + a/\nun) (s+xp)(s+yn) (22)

Substituting (22) into the L-S transform of (20) yields

Séi,nﬂ(s) SQéi,n-‘rl(S)
ah, + PN (23)

ﬁWi:Wn (S)
By inverting (23), Pw, w, (¢) is obtained as

Py, w,(t) = Pr{X.(t) = Wp|X(0) =W}

, t / t
gz,n—i—l( ) + gt,n—H( )) (24)
a/\n aAplin

where g;(t) is the probability density function associated with G ,(t) and g] ,(t) = dgi,n(t)/dt.
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Using the similar procedure for the derivation of Py, w, (t), we obtain the following renewal
equations with respect to Py, g, (t):

Pw,r,(t) = Gin*Qw, R, * PR, R, (1), (25)

Pr, g, (t) = "'+ Qr,w, * Qw, g, * Pr, r,(t). (26)

Substituting the L-S transform of (26) into that of (25) yields

P o) = “2220), (27)
i1

By inverting (27), Pw, r,(t) is obtained as
Pwralt) = Pr{X(t)= R|X(0) = Wi}
= gi,n+1 (t) ) (28)
afln,

3.3 SOFTWARE AVAILABILITY

Once we specify integer 4, the following equation holds for arbitrary time ¢:
o0
> 1Pw,wa(t) + P, g, ()] = 1. (29)
n=i

Here we consider the relationship between the number of the restoration actions and software
availability measurement. Let [ = 0, 1, 2, ... denote the number of the restoration actions.
Furthermore, we introduce the binary indicator variable I 4 (t) taking the value 1 (0) if the system is
operating (inoperable) at time point ¢, given that it was in state A € (W, R) at time point ¢ = 0,
respectively. Then A;(t) = Pr{lw,(t) = 1} (i =0, 1, 2, ...) denotes the instantaneous software
availability given that the system was in state W; at time point t = 0, i.e.,

A @) = Z Pw,w, (t)

=1—ZMWNL (30)

(see Fig. 2). It is noted that the cumulative number of corrected faults at the completion of the I-th
restoration action, Cj, is not explicitly observed since imperfect debugging is assumed throughout
this paper. However, C; follows the binomial distribution whose probability mass function is given
by

Pr{C; =i} = (i)aibl_i (i=0,1,2 ..., 1), (31)

where (i) = [I/[(Il — 1)!!] denotes a binomial coefficient. Accordingly, the instantaneous software
availability after the completion of the {-th restoration action is given by

A
A1) =) Pr{Cy = i} Ay(t), (32)
=0
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Figure 2: Sample behavior of the system and event {Iw;,(t) = 1}.

which represents the probability that the system is operating at time point ¢, given that the I-th
restoration action was complete at time point ¢ = 0. Furthermore, the average software availability

after the completion of the [-th restoration action is given by
Ag(t:1) = / Az 1)d (33)

which represents the ratio of the system’s operating time to the time interval (0, #], given that the
I-th restoration action was complete at time point ¢ = 0. In particular using (28), we can express
(32) and (33) as

i

_ i (l> il zz gi n+l(t (34)

i=0 n=t

l ’ o0 )
Auftil) = 1= 33 (()awrys Gt | (35)

=0 n=t

At 1)

respectively.

4. NUMERICAL EXAMPLES

Using the software availability model discussed above, we show numerical illustrations for software

availability measurement and assessment.
We define the maintenance factor as

Pn = An/,un
= Cv" (C=DJE, v=k/r), (36)

where we call C' and v the initial maintenance factor and the availability improvement parameter,

respectively.
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Figure 3 shows the time-dependent behavior of the average software availability, A g, (¢;1) in-
(35) for various numbers of the restoration actions, [, in the case of v < 1. This figure indicates
that software availability drops rapidly immediately after the beginning of re-operation and then
gradually increases. We can also see that software availability improves with the increasing number
of the restoration actions.

Figures 4 and 5 show the instantaneous software availability, A(t;1) in (34) for various values
of perfect debugging rate, a, in the cases of v < 1 and v > 1, respectively. These figures tell us
that the software availability becomes higher (lower) as the perfect debugging rate becomes larger
when v < 1 (v > 1). The case of v > 1 may be a paradoxical result that the software availability
decreases more slowly with decreasing a. This reasoning is that software availability is related to
the ratio of the software failure time to the restoration time rather than the software failure time
itself, i.e., py increases more slowly with decreasing a since smaller g means that the cumulative
number of corrected faults is more difficult to increase.

In the case of v < 1, we can find the minimum number of restoration actions, Ly, satisfying that
the minimum value of A(t;1) or Agy(%;1) exceeds the prespecified availability objective, . Table 1
summarizes lyn's on A(t; 1) and Ag,(#;1) for various values of a, in the case of o = 0.95. As shown
in Table 1, the higher certainty of debugging attains the objective of software availability earlier.

An(t;D)

0.98

0o 100 200 300 400 500

Time

Figure 3: Dependence of number of restoration actions on A 4, (; D{@=0.9, D=01,k=08, E =
1.0, r = 0.9). |

Table 1: Iy on A(t;1) and Agy(t;1) (=095 D=0.1, k=0.8, E=10, r= 0.9).

a | lmin on A(;1) | lmin on Agy(8;1)
10| 6 5
0.9 6 6
0.8 7 6
0.7 8 7
0.6 9 9
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A(,5)

0.98

0 100 200 300 400 500

Time

Figure 4: Dependence of perfect debugging rate on A(t;l) incaseof v <1 (I =5, D=0.1, k= .
0.8, E=10, r=0.9).

A(t;5)

0.92

0 100 200 300 400 500

Time

Figure 5: Dependence of perfect debugging rate on A(¢;l) incaseof v > 1 (I =5, D =01, k=
0.909, E = 1.0, r = 0.9).
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5. CONCLUDING REMARKS

In this paper, we have developed a stochastic model describing the relationship between the number
of restoration actions and software availability measurement. We have used a Markov process for
the description of the behavior of the system alternating between operable and inoperable states.
We have derived the instantaneous and the average software availability considering the number of
restoration actions. Numerical illustrations for software availability measurement have also been
presented to show that these measures are very useful for software performance assessment. This
model has been more generalized in terms of the imperfect debugging and the fault complexity than

several previous models.

The unknown parameters must be estimated based on the actual data for assessing software
availability with this model. But it is difficult to observe and collect the testing or the field data.
In particular, it is necessary to equip the collection procedure of the restoration times. Establish of
practical estimation of the model parameters remains a future study.
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