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ABSTRACT

We present a systematic method to calculate the probability distribution func-

tional (PDF) for spatial configuration of an interacting丘eld m curved spacetime.

As an example, we consider PDF for the minimally coupled massive対-theory

up to the first order of the coupling constant and evaluate it both in Minkowski

and de Sitter spacetimes. We observe that PDF has an ultraviolet divergence even

after the ultraviolet renormalization. This divergence is unavoidable to reproduce

finite expectation values; thus some kind of regularization is necessary to write

down PDF. As an application of it, a scaling law among multi-point correlation

functions in the de Sitter space is found.
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1. Introduction

It is of great importance to formulate an expression which describes various

properties of a quantum field in curved spacetime. Though we have the effective

action method to characterize the behavior of the expectation value of a scalar field,

yet to be found is the general expression of a probability distribution functional

(PDF) that describes the statistical property of its且uctuations at a given instant.

One exception is that of a free scalar五eld which we know is random-phase

Gaussian for a suitably chosen vacuum state, as reviewed below. Consider the

Fourier mode expansion of a real scalar丘eld¶

¢(x,t) -
Qk(tyk

ikx

1.1、

where the hermiticity requires q_k(t) -宛(t). From Wick's theorem and the
momentum conservation, we see that

(Okjbl(*)- - -<feB(*) |o) - 0, (1・2)

provided all k{ are di茸erent. This impliesァfe(t) with a different k can be regarded

as an independent probability variable if we identify the vacuum expectation value

with an expectation value in a random process. To find the probability distribution

ftmctional (PDF), it is su氏dent to consider a specific mode k:

(0%(ま)nq_kW聞-n¥(0厄(*)?-*(*)10)nc
o-n孤.

Comparing it with the following Gaussian integration formula,

pCo,r2
J。drI。汀rdOe-a*r2(re*6)"(re-*)'

ff dr ff rde e-'r* 芸'n,-i

1.3

1.4

¶ Throughout this paper, we only consider a spatially flat homogeneous isotropic space. The

extension to a general spacetime is straightforward in principle, but actual manipulations

will be much more complicated. We also assume (0|</>(ヱ) lO) = 0.
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we丘nd the PDF,

P[{qkY,t} -
exp 「i/^oiftOOs-feW lo)~ *(8)(o) l<&ls

/Ilfc<%exp 「喜fd*k {O¥ qk(t)q-k{t) ¥O)-1 」(3)(o)
一%r

reproduces all the spatial correlation functions at time t. As an application of this

property of free theory to cosmology, see e.g., [lj.

The above demonstration for free theory is simple but it is unclear how such

a statistical interpretation can be generalized for interacting五eld theories. On the

other hand, for sensible quantum field theory, we require the micro-causality,

[<Kx), <f>{y)] - O, 1.6

for spatially separated points x ap Therefore ¢ x) behaves as a c-number on

a spatial hypersurface and the statistical interpretation of the spatial correlation

functions should also be possible in interacting field theories. But the general

framework to obtain PDF has not appeared to our knowledge.

In this paper, we derive a general expression of PDF for interacting quantum

丘eld theory, that can in principle be evaluated by perturbation. The rest of the

paper is organized as follows. In the next section, we describe how to obtain PDF

whose expectation value reproduces spatial correlation functions in quantum held

theory. We utilize the closed-time-path functional formalism, to incorporate the

correct de五nition of the vacuum expectation value in curved space. In section 3, as

an example, we calculate PDF for the minimally coupled massive対-theory, up

to the first order of the coupling constant. There we丘nd PDF has an ultraviolet

divergence, even after the conventional ultraviolet renormalization. We see that

this divergence is unavoidable to reproduce丘nite expectation values. The closed

analytic form of PDF in Minkowski space is also obtained. In section 4, PD.F in

de Sitter space is considered. In evaluating PDF, we encounter the intriguing fact

that perturbative expansion breaks down for a certain range of the mass. As an

application of PDF, a scaling la、v among mult主point correlation functions in the

de Sitter space is found. The last section is devoted to conclusion.
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2. Formulation

Let us start with the formal de五nition of PDF,

p[vサ(.);t] :- (0-in*Wz,*)一甲(*))|0-),

3:

(2.1)

where ¢(x, t) is a Heisenberg五eld operator,甲(a;) is a c-number五eld con軸uration

that plays the role of the probability variable, and |0-) is the vacuum state at

i - -∞　Throughout thispaper a convention x - (t,x), y - (t,y) etc. is

understood. The PDF (2.1) has a desired property,

d甲(x)P p・);*]甲(*l)-甲(*サ)- (0_序(xut) -¢ x, ,*)|0-)  (2.2)

that is, t reproduces the spatial correlation function, or the vacuum expectation

value of an operator product at time t. The above naive picture, however, requires

a more concrete definition, because it contains a product of五eld operators at an

identical time t. We make the definition (2.1) more precise by introducing a source

field J(x) as

Pl甲(・);*]

dJ(x')

2tt

dJ{x')

zw

(0-| exp ¥i / d3x'J(x')<f>(x',t)¥ ¥0- )exp d3x'j(x')ip{x')

1illl

J(z′)-J(x')S(t′-i)

(0-1 Teu当o_) e~ijlp

where J¢ and JP imply, respectively,

J4> :- <rx'j(x')<f>{x'), J<p

(2・3)

dV J(x')甲(*').　　(2.4)

・ Instead ofもhis, one may de負ne PDF by using the wave functional in the Schrodinger picture;

Pl甲(・);*] ‥-凧'v(-);t]¥- where叫<p(-)]t] is a normalized solutioil of the time-dependent

Schrodingerequation with asuitable initial condition. The reality of PDF is manifest in this

representation and it could be evaluated by perturbation. In fact, in the case of Minkowski

spacetime for which the vacuum wave functional in the free theory and the perturbations

are rather trivial, we have checked this represeiltation reproduces our result given in § 3. In

general curved spacetimes, however, it is hardly possible to solve the Schrodinger equation

and our approach is more appropriate.
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From the definition (2.3), we find

d<p(x)P[y{-);t¥<p{ご1)-甲(zn) -短く0-|2V(ari,)-　≠(sサ)|0-). (2.5)

To do the perturbative expansion of (2.3), the p中h integral representation of

the matrix element is useful. However, here we encounter a subtle point: The

conventional path integral formalism over time t from -∞ to +- which could

be made well-defined by the Wick rotation or the -is prescription, results in the

transition amplitude between in-vacuum |0_) and out-vacuum |0-)-) at舌- +-,

such as(O+| TeiJ当o_).In the Minkowski space, fortunately, the in- and out-vacua

are identical to each other. In curved space, however, the in-vacuum defined at

i - -∞ is generally different from the out-vacuum defined at i - +∞ and they

are related to each other by a non-trivial Bogolmbov transformation [2]. Since we

are interested in the vacuum expectation value with respect to a speci五c vacuum,

e.g., |o_) rather than a transition amplitude, we make use of a path integral

with a different boundary condition, namely, closed-time-path (CTP) formalism

[3] in which the reality of PDF is manifest. For space with higher symmetry, (e-g.t

Minjkowski space with the Poincare group and de Sitter space with the de Sitter

group), the vacuum that respects the symmetry may be uniquely singled out. For

such a situation, the conventional in-out path integral formalism and the CTP

formalism should give the same answer.

According to CTP formalism [3], the matrix element in (2.3) is gi壷n by

<O_|TeiJ^|O_) - Z[J,O], (2.6)

where the partition function Z is de五ned by a "closed-time-path" functional mte-

gral

z [j+,j-] -
JD≠+鋤expi [S[c]>+}+J+<f>+ -S* √] -J~*-

/V4>+Vcf>-expi[S[≠当　S*[√]]
(2.7)

Here the path integral of ¢+ and 『 is taken over all五eld con五gurations that

coincide at t - t*. (In practice, one may take t* - +∞.) The path integral
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of ¢+ proceeds fromまニー∞ to t - t* and that of声proceeds backward in

time, fromt -t* tot - -∞ It isimportant to realizethat ¢+ and ¢　are not

independent fields, because of the boundary condition at t - t*. In (2.7), functional

derivatives with respect to J+ produce the vacuum expectation value of a time-

ordered product, while those with respect to J an anti-time-ordered product. By

construction, ¢　always stands on the left of ¢+ in expectation values.

It is straightforward to derive a perturbative expansion formula as in the con-

ventional path integral [3]. After taking the limit, J(x ) - J(x')8(t'- t) in (2.3),

we find

日日m

J(x')-J(x')6{t'-t)

= exp y

Z [J,O]

d3zd6yiJ{苧)△f(x - y;t)iJ(y

・exp dzxiJ{可△F
6　S

百折+両=

・exp<蒜・△F・蒜+宗・△・
1 8

言.-..+二~壬訂=

・expi d4ごAnt(朽-!d^xcur)

where abbreviations like

・・蒜(*,*) :- Jd4yA(x,y)

・D・蒜)
)

SB閲E」

are understood and Ap, A, and A^ are respectively denned by

△F{x,y) :- (OJT≠(*Mv) 0- ,

A(x,y) :- (0_序(x ¢(州0_),

△D&y) :- (0-W(捕(y) |o_主

(2.8)

(2-9)

(2.10)

with T beingthe anti-timeor'dering. Note that △*(*,y) - △(y, x). The integration
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over J(x') in (2.3) now becomes a Gaussian one. We obtain the final expression:

P [甲(・);*

α expj-| jdzxdzy v(x)Ajl(㌶ - y;*Mサ)

× exp〈ノ d6xd6yP(*)△y(x - y;t)

・ A.F蒜+蒜・△ (V,*)

・exp<　㌔d¥ △F・蒜十品AJoMjA^aj-y;*)

・ AF蒜+宗・△ (y,t)

・exp<蒜・△F T+土.A.土+吉井.△D.
∫

坤+ ..旬-　-　6¢+ '28声　-〟　6(1)-
・'{/

expi</J4x」int(^+)-d4x」U^ ?

4>+-6--o

(2.ll)

where Aj?(x - y;t) :- linty-t△j?(x,y) and the inverse of it, △p , is defined by

d3Z△f(X -z-t)△ ;1'{z-y]t)- 5W{x -y)-　　　(2・12)

Inthefreefieldtheory,onlythefirstlineintheright-hand-sideof(2.ll)survives

asin(1,5).From(2.ll),wecanreadoffageneralruletoevaluatePDF:Itis

obtainedbyconnecting<j>(x)andthespatialcorrelationfunctionsusing△-1
Finall

possibleways.

Inthenextsection,weapplytheaboveformulationtotheminimallycoupled

massive対-theory,uptothefirstorderofthecouplingconstant.Wewillalso

obtaintheclosedanalyticformofPDFinMinkowskispace.
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3. PDF for A<」4-theory

The minimally coupled massive A<ji> -theory is defined by the action

m -jd4x^/=9芸9liVd^dv4>+呈瑚+去¥tf

The free field operator is decomposed as

匝fc(*)eik一認+壷k(t>-ik-x ¥

where the mode function宛(t) is determined by solvi土Ig the field equation,

(-去∂p、-py∂〝 +--2 U(z) - 0,

(3.1)

(3.2)

(3-3)

with a suitable positive frequency condition. In terms of the mode function宛*),

two-point functions in (2.10) are expressed as

△F{x,y) - △も(z,y)

-∫

dzk

(2*r)< W-t')4>k{硯(*')+6(t'一腕(棉(*)] Jk(x-y) (3.4)

A(*,v)-f蒜舶)舶′ ik-{認-y)

In particular, the spatial two-point function and its inverse are given, respectively,

by

・F(x -y;t) - /蒜1^(Oi2e*fc.(as一蝣V)

・Jl(x-y;t)-j
Sk l

(2*y

-8-
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Applying the perturbation formula (2.ll) to the present model, we find

p[</>(・)- exp -^ Id3xd3y<f{x)AFl(x -y;t)^(y)¥

・ 1+i[--Jご1-tfxdy

6m2

2

-il

-g{y)△F(y,y)△F{y,xi)△F(y,x2)

・ △F (cci - x3;ま)△F(*2 - x4;t)甲(X2)(f(x4:)

dzxi蝣蝣蝣dxァd y -g{y)△蝣(y,xi]△?(y>x2)

× △妄1(xi - X3]t)△?.{x2 -認4;fM*3)甲(認4)

d3xi蝣蝣蝣drx^d4y

∫

-g(y)△F(y,xl)△ >{y,x2)A >(y,x3)△F{y,x4)

・ △Fl(xi - xr,t)△^(*3 - xs;t)△F (xa一認6,;*)甲(x5)<p(xe)

dxi-dxsdy -g{y)△F(y,xi)△F{y,X2)△ '(y, x3)△F(y, x4j

・△ (*1-xS;t)年貢1(x2-x6;t)△ (ォ3-x7-,t)△/(a:4-see;*)

×甲("*)甲(*6)甲(x7)<p[x8)

-il△F-△]+0(X")

(3-6)

Adiagrammaticrepresentationmightbehelpfultoshowthegeneralstructureof

theperturbationseriesin(2.ll)and(3.6)-InFig.1,wehavedepicteddiagrams

correspondingtoeachtermof(3.6).Wehaveomittedthecontribution、ofthefirst

diagraminFig.1,sinceitisaconstantindependentof甲(a;),whichcanberemoved

bytheover-allnormalization.Theinverseofthespatialtwo-pointfunction△-1
Fin

(3.5)isrepresentedbythebrokenlineand,thefourdimen去ionalpropagator,that

iseitherAforAdependingonthevertex,bythesolidline.

Inevaluating(3.6),wehaveintroducedamasscounterterm(m-三mも+6m2)

tocompensatetheultravioletdivergencearisingfromtheseconddiagraminFig・1・

ThedivergentquantityAf(y,y)-A(y,y)isindependentofthespatialcoordinate

yduetothetranslationalinvariance.If△F{y,y)-A(y,y)doesnotdepend

ontimeeither,asinMinkowskianddeSitterspacetimes,whichweassume,the

divergencecanberenormalizedbyaconstantmasscounterterm8m-.Thecross

inFig.1impliesthecounterterm8m-.Wewillsochoosethecountertermthat
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it completely cancels the divergence in the second diagram, i.e., on一mass shell

renormalization.

In the perturbation series in Fig. 1, we五nd a new type of diagram that has

no analogue in the conventional calculation of Green's functions, namely, a loop

closed by a broken line (the fourth diagram). We-will see below this diagram

has ultraviolet divergence. Note that we have already done renormalization of

the conventional ultraviolet divergence that arises from the loops closed by a solid

line (the second diagram). This new kind of ultraviolet divergence in PDF, which

is present even after the conventional renormalization, however, turns out to be

essential to obtain finite expectation values.

It is often more convenient to express PDF in terms of the Fourier modes qi-

de丘ned by

Qk・= 甲(x)e-ik-〇

Using (3.4) and (3.5), PDF in terms of q^ is expressed as

P IUkht]

oc exp

(3.7)

・ {- 4/d3kp2{k]t)qkq-k

・去/ cpki dzk2dzkzpァ(ki,k2,k3;t)qklqk21k3(i-kサ*,] + 0(X2)
-'P[{9kht],

(3-8)

where the functions p2 and 754 are given by

∞　　　　　　i              co

b2(棉)-車′I2(t,t')+i / dt'IZ(t,t') dt'h{tの
-∞　　　　　　　　　　　　　　　　-CO

= -2Re dt'h(吊,)

-10-
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with

and,

h(t,t') -

00

d3k'宛・(*')l¥2線(i)

(2*)a　宛・(i) >fc(*) J　(3.10)

i oo

p4(ki,k2,k3;t) - -i ldt'h(t,t') -i f dt'ii(t,恒'/ dt′h(t,t′)

-2ReildtlIA(tヰ　-∞
with

74(吊′) -
宛>(*')宛(0転(*')*-*,-*,_*,(0
(2*)s宛1 (舶k2 it)<i>k3(i)<t>-kl-k2-良. (*)

(3.12)

In the above expressions, p2 and pァare manifestly real. In the first lines of (3.9)

and (3.ll), the五rst two terms in the right hand side are the contributions of

Ajt in (3.6) and, the last term comes from A in (3.6). If we started from the

conventional in-out formalism instead of the CTP formalism, only the first two

terms would appear and hence the reality would not be guaranteed in general.

Even for Minkowski space for which both formalisms should give the same answer,

the reality therefore is not transparent in the in-out formalism.

For free field theory, A - 0, (3.8) reproduces the random-phase Gaussian

distribution (1.5), since the two-point function in the Fourier space is given by

(0-kfc(*)?_fc(i) |0-) - I<W)I2*(3)(O).

At first glance, one may suspect if the term involving p2 can be absorbed to the

free part by redefining the mode function </>&(*). However, this term turns out to be

necessary to obtain correct expectation values. To see the role of p2, let us evaluate

the two-point function (0-I %, (<)%,(*) |0-) by using the丘rst order formula (3.8)

with (3.9) and (3.ll). Since wehave already done the renormalization in O(A, the

consistency demands that the two-point function should be given by its bare form

l^fciWI2*^3^! + ^2) when expressed in terms of the renormalized mass. By using
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the fact that a product of qj, is factorized to that of pairs qk<J-k m the Gaussian

integration, we五rst integrate the rig虹hand-side of (3.8) over {qk},

in dqk P [{Qkht]

- [/n-H/d*k
-: iV,

Ik i-k

<jjfc <仕i' 1 + ^Jd3kp2(k;榊*(*)i2*(3)(o) ,

(3.13)

to obtain the correctly normalized PDF:

p[{qkht] - j;P[{qk甘

Then we五nd

(3・14)

dgk P {{qkht} qklqk2 - |*fcl(t)|25<3>(fei + t2),　(3.15)

as desired. Thus if -pi were eliminated by hand, it would not give the correct

answer.

As we shall see shortly, or may be suspected from the general formula (3.10),

p2 has ultraviolet divergence. However, when {<?&} 1S integi'ated over in (3.15), the

ultraviolet divergence in po is canceled by a divergent contribution arising from

integration of the p4-part. The divergent quantity po is thus necessary to reproduce

the五nite expectation values. Although our analysis here is limited to the first order

perturbation, we expect this divergence structure is a generic feature of PDF. Thus

when one writes it down, even after the conventional ultraviolet renormalization,

some kind of regularization is necessary to give a sensible meaning to divergent

quantities, such as po. This situation is quite different, say, from the case of the

effective action.

As an explicit demonstration of the above results, let us examine the case in

-12-



Minkowski space. The mode function is given by

l

-A-　一云- ""'*蝣∴ふ=
(3.16)

where and hereafter we denote the renormalized mass mもby m- for simplicity.

The mass counter term ∂m2 in (3.6) is given by

6-'-一芸△F(y,y) -一芸/

dzk 1

(2*)3 uk

Then it is straightforward to evaluate p2 and p4 in (3.9) and (3.ll),

r. !p2(fc;ま) -≡

Skl

(2tt)3 uk,(uk, + cok)

p4(kl,k2,kz;t)主

_9

(2tt)3 u>kl + wfe2 + wfc3 + u-kl-k2-k3

(3.17)

(3.18)

In the above, p2 has a linear divergence as noted previously. Since p4 is negative

definite, the distribution of the mode qj- tends to concentrate near the origin if

A > 0. This is in accordance with an intuitive expectation that a repulsive force

should suppress the amplitude of且itctuations.

Since the in-vacuum is identical to the out-vacuum in Minkowski space, the

third integral in the first lines in (3.9) and (3.ll), that are absent in the conventional

in-out formalism, should be vanishing. In fact we find from (3.16),

KWKMKWKW)

6(wfc! +wfc2 +^k3 +ukth

(3.19)

which vanishes for m2 > 0. Even for m2 - 0, the only contribution comes from

thezeromode, fei - k2 - k3 - k4 - 0. But in (3.8), the zero modeis always

accompanied with vanishing measure; e.g., d k¥ - k^dk¥d¢d0 - 0 for fci - 0.

Therefore the third integrals in (3.9) and (3.ll) vanish as expected.

-13-



4. A<^ -theory in de Sitter space

Now we consider the坤-theory in de Sitter spacetime whose metric is given

ds" =
1  , ,o

トdり2 + dx%　　　　　　　(4.1)
{-HrjY

by

where H is the Hubble parameter and 77 is the conformal time, In Fig. 2, the Pen-

rose diagram of de Sitter space is depicted. To de丘ne the time ordering consistent

with the causal structure in Fig. 2, we introduce a time variable t - -1/甲. Then

an event at time t is in causal future of a certain event at t if t > t. Therefore

the time ordering with respect to the new time t is appropriate, except perhaps

at f - 0 (り-士-) where the hypersurface becomes null. However, it turns out

that this causes no trouble. In particular our formulas (3.9)-(3.12) in terms of t

are valid as they are.

In de Sitter space the most natural vacuum is the so-called Euclidean vacuum,

which is de Sitter invariant and for which the short distance behavior of the field

is identical to that in Minkowski space [4J. Then the positive frequency mode

function is given by、

宛(V) - eサ&H(-vf'-VlfrH-h,),　　(4.2)

where Hi, 'is the Hankel function of the first kind, 〟 - J9/4-77^/H2, and

k -酢For later convenience, we also introduce a new parameter c :- 3/2 - 〟 ,to

represent the mass. The phase factor e is not determined from the commutation

relation but can be玉xed by imposing a condition宛(-り) =娠(e汀iり) -撹(り)for

り< 0 [4]; then we have tl6 -士,-ix/4. The mass counter term in (3.6) is given by

6mz -一言△r(y,y) - -
¥H2

M.V言
d(C h?Ho　　　(4.3)

where we haveset ( -軸主　Note that △F(y,y) is a (divergent) constant as it

* Do not confuse this t with the proper time t, by whicl- the il-variant length re阜ds, ds2 -

-dP+e2Htdz- and, -∞ ≦ [≦ ∞ coversonly the left upper-halfofthe maximally extended

de Sitter space in Fig. 2.
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shouldbefromthedeSitterinvariance[4].

Allwehavetodoistheintegrationsin(3.9)and(3.ll).Wefirstnotethey

haveacommonstructure:

t/+oov¥
Jdt'lj^t')-IJdv'+Jdrjl)1,(77,77'),(4.4)

-。。¥+0-00/

wherej-2or4,andwehaveassumedthehypersurfacewiththetimetisinthe

expandingphaseofthedeSitterspace,i.e.,rj<0.Theintegrand//(?/,り)contams

thefollowingcommonform,

(+oovN
fdv'+Jdv'

= e^e*打U曇
16

ヽ′!二前石'蝣'k-J o'^pk'Ail'i?え['/)叫W)

d-q'V-ト (-v'y-HPi-kww'H-W)
-00　　′

× H£1)トhv')H,£1}(-W)-

The asymptotic behavior of the Hankel function near the origin is

hP(*)
-I

sin^7rT(-u+ 1)

r -*+1)__,・

e-.w ^芸)2〝]r(〟+1)

(4.5)

(4-6)

Therefore the integrand in (4.5) behaves as　酬2-4j/ -酬4c-4 near 77 - 0. We

see that the necessary condition for the integral (4.5) to be五mte is

Re[c] > -,
or0
-->芸H2.(4.7)

Surprisingly, the convergence of the integral (4.5) imposes a lower bound to the

mass parameter m in the de Sitter space.

It is not a specious condition that appears accidentally in (4.5) but intrinsig to

the対-theory in de Sitter space. The integration over r¥'in (4.5) corresponds to

that over the position of the対-vertex. Therefore the divergence of (4.5) implies

that of the tree-level spatial four-point correlation function in the con且guration

space, as may be observed from the structure of p4 (the五fth diagram in Fig. 1).
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This type of divergence in the spatial correlation function is not a peculiarity

of the ¥<f> -theory. In ^"-theory, the condition (4.7) is generalized to Re[c] > 3/n

or m > 9(1 - 1/n)H2/n [6]. Though ¢"-theory with n ≧ 5 is not renormalizable,

the crucial point is that the divergence exists even at the tree diagram. Note that

a spatial correlation function is observable since it is a vacuum expectation value

of a product of hermite operators. The divergence comes from the integration near

r] - 0, which originates in the extreme expansion of the volume factor in de Sitter

space so that it is a kind of infrared divergence in nature.

This lower bound was essentially awareムf already by Tagirov [5] in a slightly

different context. However, since he included the conformal coupling -R<f>2/6 in

the Lagrangian from the beginning, the condition (4.7) itself had been hidden

behind it. In de Sitter space, the curvature coupling -^R4>- is e鮎ctively absorbed

in a change of the mass parameter, m* - vn? -f r2」i?2. Thus our mass parameter

m isrelatedtothatin臥M2, asm2 - 2H2+M2. ForA　-theory, thecondition

(4.7) is thus always satisfied for M- ≧ 0. For対-theory, on the other hand, the

divergence appears at M　- 0 as was pointed out by Tagirov. Incidentally, another

of his statement that a similar divergence appears in対-theory irrespective of the

mass is incorrect [6]. It seems that this divergence has not been received much

attention m the literature. The detailed discussion′on this divergence will be given

elsewhere [6]. In the present paper, we consider only the case that satis五es (4,7).

Let us return to the calculation of p2 and pァ. We first show that it is possible

to convert the integration region in (4.4) as

+co

j dt'Ij(t,t')- - 1 dtl13{t,t'),
S^^^^^^^^^^^^^K

(+oOv¥
Jdq'+JdAlj(viV')--

¥+0-。。/
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d77′ ij(v,り'),

(4.8)

(4.9)

Or



which is equivalent to the following equality.

+○　　　　　+oo

J dtlIjitj) - J dn'ljfari') - 0.
・-・Cl〇　　　　　　　　　　　　　　　一・ ∞

For this being the case, it is sufficient to show that

(4.10)

+∝)

J dv'{-1'fH^¥-k17]')H^¥-hrf)H^¥-hrll)H^¥-k^) - 0. (4.ll)
ここ-EォS

Let us consider an integration contour (Cl +C2) in Fig. 3, instead of the integration

。n the real axis (d) in (4.ll). Since H^¥z) is analytic in the upper half plane

of 2, there is no pole singularity within the integration contour for Re[c] > 3/41

Hence the integral (4.ll) is equal to

4e2ci-k

7T 2ノ訂、/転、/有ノ転

Se2C17T

7T ＼何＼・ 7T＼'7?7＼′石

∫
C2

dq/ e-i{kl+k2+k3+ki)叩'

8{h+k2+h+&4J,

(4.12)

where we have used the asymptotic form of the Hankel function at同一∞,

H£1)(*)
ヱi[*-(2ォM-1)*/4]
蝣KZ

(4.13)

From (4.12), we can repeat the same argument as in Minkowski case. Thus (4.10)

is established.

Actually the relation (4.10) is expected. In de Sitter space, the in- and out-

vacua are the same due to the de Sitter invariance. The conventional formalism

and the CTP formalism thus should give the same answer and this requires the
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third integrals in (3.9) and (3.ll) to vanish. Then from (4.9), p2 and p4 read

p2{k;rj) - 2Re

p4{kl,k2,k3;り) - -2Re

(4.14)

Nowfor c - 1 or m- - 2H- (i.e., v - 1/2), it is essentially equivalent to a

conformally coupled massless field; m- - 0, 」 - 1/6. Hence the mode function

(4.2) is conformal to that in Minkowski space;

1

毎(v) -両e叫(-Hv),

and p2 and p4 (4.14) can be evaluated analytically. Using (4.15), we find

p2[k;v) -
童.!:

d3k'

(2tt)3 k'(k'+ k)

p4{kl,k2,k3;T)) -

{l - cos [2(Jb'+ fc)(-り)] } (-^r2,

-2　　　　　1

(2tt)3ki +k2+h+k4

× {1 -COS[(&! +ko+ k3 +&4)(-7/)]}トHv)-4

(4・15)

(4.16)

where 」4 :-匝i +&2 +&3|- A notable fact is that po and ^4 in this case are not

conformal to those in Minkowski space even though the丘eld itself is locally confor-

mal invariant. The difference is due to the cosine factors in the above expressions,

without which they would be conformal to (3.18) with m,-1 - 0. The origin of the

cosine factors is the presence of the integration boundary 7/′ - -0 in (4.14), thus

they originate in the global structure of de Sitter space which differs from that of

Minkowski space.

For c ≠ 1, we have been unable to obtain the exact analytic form of p2 and

p4- However, for wavenumbers which satisfy -hr/ ≪ 1, they can be evaluated by

using the asymptotic form of the Hankel function (4.6) at z - 0. We obtain for
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3/4< c< 3/2, or 27iP/16 < m2 < 9/P/4,

p2{k; v)

-7T

i/*cosォrr(c-j)r(ァーc)

p4(ki, k2,kr,rj)竺 COS C7T

(孟完)ノ副+(芸3-2c
2　　　r(c-i)

(2ttYHa　〉　r(音-C) (石呈完トv)-2c

・"/;¥3-2c /,¥3-2c /;¥3-2c鮮2c
(4.17)

Note that p2 > 0 whilepi < 0 also in this parameter region. As discussed in detail

in the middle of this section, PDF is not de丘ned perturbatively for c ≦ 3/4 due to

the divergence at rj′ - 0. Reflecting it, our results (4.17) blow up at c - 3/4 when

approaching from above.

For m2 > 9H2/4 or v - 3/2- c -: ib with a positive b, the asymptotic form

of PDF could be evaluated similarly, but it is too complicated to be illustrative.

Only for the infinitely large mass limit m- ≫ H2, or b ≫ 1, we have a simpli五ed

form,

p2{k]T])竺

7T 167rb2e-Tb

H2 1662+9

p4(^i,^2,^3;り)竺

(2*)J

-1　　　Sb

・1,

(2tt)3#4 1662 + 9
(-v)~3

(4.18)

Thus p2 and p4 become independent of the wavenumber. Further, as 6 - -, p2

and p4 vanish, i.e., the correction due to the interaction disappears. This may be

expected because in this limit the mass term dominates the action.

Our PDF gives the spatial correlation functions as the expectation values of a

random process. Therefore if PDF has some (approximate) symmetries, we could

argue a general (approximate) property of the spatial correlations not restricted

to a particular?2-point function. This is an advantage to consider PDF instead of

the correlation functions themselves.

As an example, we consider a scaling law of the correlation functions and

its violation due to the interaction. We first consider the case of m- < 9H-/4

-19-



(c < 3/2), for which the infrared behavior of the mode function,玩(t?) at -k77 ≪ 1,

reads

l柚)I2 -芸H2(-vy
cos2 ctiT(c一書)2 (晋2c-3　(4.19)

Therefore, in the case of the free field theory, A - 0, PDF (3.8) for -krj <C 1 is

invariant under a substitution, q^ - sc-3qk/3, i.e., P[{sc-3qk/s};り]竺Pitikhv].

From this scale invariance, we obtain a corresponding "Ward identity";

<0-ksfcl - ・qsた10-)竺s(c-3)n (0-kfcl -- -<?fcJ0-> ,　(4.20)

for -kiT] ≪ 1, 0r in terms of the configuration space correlation functions,

(0-lp(*l)甲(*サ)恒)竺SCn(0-¥<p(sxi)-・>(** )|0-),　　(4.21)

for -¥xil77 ≫ 1. For a sufficiently small c, this relation shows almost scale-invariant

behavior of the spectrum.

In the presence of the interaction, 734-part of the probability distribution in

(3.8) is not invariant under the substitution q^ - sc qk/s- This breaking follows

丘om the explicit form in (4.17). Unlike the free theory, we且nd

P[{^qk/.hり]

竺Piiikhv]

・ 1+(52C-1射 d3kid3k2d3k3 p4(ki, fco,転V) %1<?fc2f/fc39-fcl-fc2-fc3
(4.22)
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up to 0(入!). As a result, we have the following relation instead of (4.20),

(0-ksfc1 - - - <zsfcjo-)

-ォ(c-3)n
=S (0-| <7fel - ft. 1--)

・ Kc - 1)孟ノd3kd3k'd3k"p4(k,k',k";r])
・一蝣I (0-1 %, - (iknVkik'触′　　　た.′臣)

- (0-kfc, -QK 10-) (0- QkQk^k'^-k-k′-た〝 IO-)

(4.23)

+o(㌔).

The last two terms are the effect of the interaction. For m- ≧ 9H2/4, we do not

see any apparent scaling behavior at large scale, -krj ≪ 1. Only for m- ≫ H2,

from (4.18), we have a relation that is identical with the above expressions (4-22)

and (4.23) with c - 3/2. Although our consideration here relies on the explicit

form ofp2 and ^4, it may be further put forward by using the general form of PDF

in (2.ll) and the scaling behavior of the t、vo-point functions.

5. Conclusion

In the present paper we have formulated the probability distribution functional

for equal-time spatial con軸urations of a scalar五eld ¢ x,t) in curved spacetime

in terms of the closed-time path functional formalism. The PI〕F thus obtained

reproduces spatial correlation functions as the expectation values. As a speci五c

example, we have considered対self-interacting field and perturbatively calculated

PDF up to the first order of A both in Minkowski and de Sitter spacetimes. We

have seen it has an ultraviolet divergence even after the conventional ultraviolet

renormalization, which is unavoidable to reproduce finite expectation values.

Although our formula for PDF is admittedly complicated- it has an advantage

that one can extract information of arbitrary higher-order correlation functions at

one time, such as their symmetry behavior discusse〔:1 in section 4.
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Our approach is in principle applicable to describe the statistics of various types

of primordial fluctuations predicted in inflationary cosmology [7] without any ad

hoc assumptions. Since an in鮎tionary phase is well-approximated by de Sitter

spacetime, results presented in section 4 are relevant to it. Care must be taken,

however, to the boundary of integration. The inflationary expanding universe may

emerge after, say, the radiation-dominated universe. Then only the left upper-half

of the maximally extended de Sitter space in Fig. 2 should be taken into account, so

that the conformal time runs only over -∞ < rj < 0 and the integration region in

(4.5) is restricted to j竺∞材The resulting PDF in this case will differ significantly

from that in the maximally extended de Sitter space. For example, in the case of

c - 1 which corresponds to the conformal invariant五eld, the cosine factors in p2

and p4 given in Eq. (4.16) will be absent; i.e., the resulting PDF will be precisely

conformal to that in Minkowski space. This is because the region -∞ < T)'< T)

is totally conformal to a region -∞ < t < t in Minkowski space, where t denotes

the usual Minkowski time coordinate with an arbitrary value. Furthermore, we

will have no constraint on the mass parameter such as (4.7) in this case, since we

no longer have any divergence that have arisen in the integral at 77　- 0. This

crucial dependence of PDF on the global structure of spacetime may lead to some

interesting theoretical as well as observational consequences.
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FIGURE CAPTIONS

Fig. 1 Diagrammatic representation of the terms in (3.6) for the probability distri-

bution functional of Aが-theory.

Fig. 2 Penrose diagram of the maximally extended de Sitter space. The solid lines

represent hypersurfaces with constant 77 (or t).

Fig. 3 Integration contour of (4.12) on the complex 77 -plane.
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