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ABSTRACT

We present a systematic method to calculate the probability distribution func-
tional (PDF) for spatial configuration of an interacting field in curved spacetime.
As an example, we consider PDF for the minimally coupled massive Ap*-theory
up to the first order of the coupling constant and evaluate it both in Minkowski
and de Sitter spacetimes. We observe that PDF has an ultraviolet divergence even
after the ultraviolet renormalization. This divergence is unavoidable to reproduce
finite expectation values; thus some kind of regularization is necessary to write
down PDF. As an application of it, a scaling law among multi-point correlation

functions in the de Sitter space is found.
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1. Introduction

It is of great importance to formulate an expression which describes various
properties of a quantum field in curved spacetime. Though we have the effective
action method to characterize the behavior of the expectation value of a scalar field,
yet to be found is the general expression of a probability distribution functional

(PDF) that describes the statistical property of its fluctuations at a given instant..

One exception is that of a free scalar field which we know is random-phase
Gaussian for a suitably chosen vacuum state, as reviewed below. Consider the

. Fourier mode expansion of a real scalar field T

2

37, .
é(m,t)zf(—ﬁl—;qu(t)e’“, (1.1)

where the hermiticity requires ¢_p(¢t) = ¢5(¢). From Wick’s theorem and the

&3

momentum conservation, we see that

(0l gx, () -+ a, (£) 10) = O, (1-2)

provided all k; are different. This implies g1 (t) with a different & can be regarded
as an independent probability variable if we identify the vacuum expectation value
with an expectation value in a random process. To find the probability distribution

functional (PDF), it is sufficient to consider a specific mode k:

(0] g (8)"q-2(8)™ [0) = ! (0] gz, (t)a_x(2) [0)" Em,n- (1.3)
Compaﬁng it with the following Gaussian integration formula,

fooo dr f027r rdf e=@’T (reie)n (re_w)m _ _71_!—5 ' (14)
fooo dr 0?.7r rdf 6'"”‘2T2 q2n T

€ Throughout this paper, we only consider a spatially flat homogeneous isotropic space. The
extension to a general spacetime is straightforward in principle, but actual manipulations
will be much more complicated. We also assume (0| ¢(z) [0) = 0.
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we find the PDF,

exp [~} J % (0] i (Dak(®)10) ™ 60)(0) g |
J Ty darexo | =3 § & (0} g (Da_ () 1007 6C)(0) [a i

Pl{q};t]l = (1.5)

reproduces all the spatial correlation functions at time £. As an application of this

property of free theory to cosmology, see e.g., [1].

The above demonstration for free theory is simple but it is unclear how such
a statistical interpretation can be generalized for interacting field theories. On the

other hand, for sensible quantum field theory, we require the micro-causality,

[¢(z), 8(y)] =0, (1.6)

for spatially separated points = arjd y. Therefore ¢(z) behaves as a c-number on
a spatial hypersurface and the statistical interpretation of the spatial correlation
functions should also be possible in interacting field theories. But the general

framework to obtain PDF has not appeared to our knowledge.

In this paper, we derive a general expression of PDF for interacting quantum
field theory, that can in principle be evaluated by perturbation. The rest of the
paper is organized as follows. In the next section, we describe how to obtain PDF
whose expectation value reproduces spatial correlation functions in quantum field
theory. We utilize the closed-time-path functional formalism, to incorporate the
correct definition of the vacuum expectation value in curved space. In section 3, as
an example, we calculate PDF for the minimally coupled massive A¢*-theory, up
to the first order of the coupling constant. There we find PDF has an ultraviolet
divergence, even after the conventional ultraviolet renormalization. We see that
this divergence is unavoidable to reproduce finite expectation values. The closed
analytic form of PDF in Minkowski space is also obtained. In section 4, PDF in
de Sitter space is considered. In evaluating PDF, we encounter the intriguing fact
that perturbative expansion breaks down for a certain range of the mass. As an
application of PDF, a scaling law among multi-point correlation functions in the

de Sitter space is found. The last section is devoted to conclusion.
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2. Formulation

Let us start with the forma;l definition of PDF,
Plp(-);2] = (0| [ 6 ((=,8) — o)) [0-), (2.1)
z ,

where ¢(x,t) is a Heisenberg field operator, (z) is a c-number field configuration
that plays the role of the probability variable, and |0-) is the vacuum state at
t = —oo. Throughout this paper a convention z = (¢,2), y = (¥,y) ete. is
understood. The PDF (2.1) has a desired property,

/Hdso ) Plp(tip(@1) - o(@a) = (0_| d(@1,8)- - (za,t) [0_),  (2:2)

that is, it reproduces the spatial correlation function, or the vacuum expectation
value of an operator product at time ¢. The above naive picture, however, requires
a more concrete definition, because it contains a product of field operators at an

identical time . We make the definition (2.1) more precise by introducing a source

field J(z) as -

Plo(-);1]

d‘fz(:') (0_|exp [z / d%'J(:c')qS(az',t)} 10_) exp [—i / d?’z'J(m')go(a:')]

lim (0_| Te? j0_) emH%,
(27— T (') 6(t/—1) |
(2.3)
where J¢ and Jo imply, respectively,
Joim [ @ @), To = [ &Il (2.4)

* Instead of this, one may define PDT by using the wave functional in the Schrédinger picture;
Ple();t] = |¥[p(-);1]|* where ¥[p(-);] is a normalized solution of the time-dependent
Schrodinger equation with a suitable initial condition. The reality of PDF is manifest in this
representation and it could be evaluated by perturbation. In fact, in the case of Minkowski
spacetime for which the vacuum wave functional in the free theory and the perturbations
are rather trivial, we have checked this representation reproduces our result given in § 3. In
general curved spacetimes, however, it is hardly possible to solve the Schrédinger equation
and our approach is more appropriate.



From the definition (2.3), we find

[T det@) Plotytet@n)- () = lim 0| To(@,)-+ @) 10) . (25)

To do the perturbative expansion of (2.3), the path integral representation of
the matrix element is useful. However, here we encounter a subtle point: The
conventional path integral formalism over time ¢ from —co to +oco, which could
be made well-defined by the Wick rotation or the —ie prescription, results in the
transition amplitude between in-vacuum [0_) and out-vacuum |0_|_) at t = +oo,
such as(04|Te*/#]0_) .In the Minkowski space, fortunately, the in- and out-vacua
are identical to each other. In curved space, however, the in-vacuum defined at
-t = —oo is generally different from the out-vacuum defined at ¢t = +co and they
are related to each other by a non-trivial Bogoliubov transformation [2]. Since we
are interested in the vacuum -expe'rctation value with respect to a specific vacuum,
e.g., |0_), rather than a transition amplitude, we make use of a péth integral
with a different boundary condition, namely, closed-time-path (CTP) formalism
[3] in which the reality of PDF is manifest. For space with higher symmetry, (e.g.,
Minkowski space with the Poincare group and de Sitter space with the de Sitter
group), the vacuum that respects the symmetry may be uniquely singled out. For
such a situation, the conventional in-out path integral formalism and the CTP

formalism should give the same answer.

According to CTP formalism [3], the matrix element in (2.3) is given by ‘
(0-1Tc¥? J0-) = Z[J,0], (2.6)

where the partition function Z is defined by a “closed-time-path” functional inte-
gral
_ [ DD expi [S[gT] + JHgt — SH[oT] ~ T ¢7]

2= D" Do oxpi[516H = 5[4 - @D

Here the path integral of ¢ and ¢~ is taken over all field configurations that

coincide at ¢ = t*. (In practice, one may take t* = +oo0.) The path integral
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of ¢t proceeds from ¢t = —oo to ¢t = ¢* and that of ¢~ proceeds backward in
time, from ¢ = #* to ¢ = —oo. It is important to realize that ¢+ and ¢~ are not
independent fields, because of the boundary condition at ¢ = ¢*. In (2.7), functional
derivatives with respect to J¥ produce the vacuum expectation value of a time-
ordered product, while those with respect to J~ an apti-time-prdered product. By

construction, ¢~ always stands on the left of ¢* in expectation values.

It is straightforward to derive a perturbative expansion formula as in the con-
ventional path integral [3]. After taking the limit, J(z') — J(z")6(¥ —¢) in (2.3),
we find

lim Z[J,0]
J(z")— I (2")8(t'—1)

= exp B— / PPy zJ(a:)AF(fB - y;t)iJ(y)}

6 )
1 46 ) 6 6 1 6 ]
'Xexp_{%F'AF'W+3$?'A'EE+§37FAD'E?F}

¥

xexpi{ [ Lulsn) - [ L6

gt =¢-=0
where abbreviations like

5
6t (y)

)

A W(m,t) = /d4y Alz,y)

are understood and Ap, A, and Ap are respectively defined by

Ap(z,y) = (0-| Té(x)d(y) 0-) ,
Alz,y) = (0-] ¢(2)ly) 10-), (2.10)
Ap(z,y) = (0| Té()d(y) |0-),

with T being the anti-time ordering. Note that A*(z,y) = A(y, z). The integration

6 -



over J(z') in (2.3) now becomes a Gaussian one. We obtain the final expression:

Plp() |
o exp [—% /d3xd3y tp(:c)A}l(a: — y;t)c,o(y)}

X exp{/ Brddy p(2)A7 (x — y3t)

oo o
xexp{ / By [AF ; +g§— A}( HAF (@ — y;1)
<|or gt )
Xe"p{iéir b g +,6§—'A'6Z++%6£-'AD'%}
X exp 1 & Ling(6T) — z L] ,
{ [ dotmen) - [date}|
/ / R “21)

where Ap(z — y;t) := limy_; Ap(z,y) and the inverse of it, A}l, is defined by

/dBZ Ap(z — z;t)A;l(z —y;t) =60z — ). | (2.12)

In the free field theory, only the first line in the right-hand-side of (2.11) survives
as in (1.5). From (2.11), we can read off a general rule to evaluate PDF: It is
obtained by connecting ¢(x) and the spatial correlation functions using A:F‘.I in all

possible ways.

In the next section, we apply the above formulation to the minimally coupled
massive A¢t-theory, up to the first order of the coupling constant. We will also

obtain the closed analytic form of PDF in Minkowski space.



3. PDF for \¢*-theory

The minimally coupled massive A¢*-theory is defined by the action
/ d*z/—g ( 9" 0,60,6 + = m2¢2 + ,\¢4) (3.1)

The free field operator is decomposed as

3 L |
$(z) = / —(—fl—{;—ﬁ [ardr()e= +af gy (B)e*] (3.2)

where the mode function ¢ (t) is determined by solving the field equation,

(——twma o et d@ =0, (33)

with a suitable positive frequency condition. In terms of the mode function ¢g(t),

two-point functions in (2.10) are expressed as

Ar(z,y) = Ap(z,y)

31. ‘ "
_ / (%3 [0 = )er(SR(E) + 0 = (SR W] HE,

3
Amw—/f;mumu )

In particular, the spatial two-point function and its inverse are given, respectively,

by

3
Aﬂw—wﬂ—/kd;Wdﬂ e (o-v)

-1 Ly &’k 1 ik-(z—-vy)
AF@‘y“*i/@ﬂﬂmuwe 7
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Applying the perturbation formula (2.11) to the present model, we find
. . i
P [p(-);t] ox exp [—;/dswde'y o(2)AF (2 — 3 1)e(y)

A
X {1 +i[—2/d3$1 oo dPrgdty /—g(¥)AF (v, y)AF(y, z1)AF(y, 22)

x AFH (@1 — 23, ) AT (22 — 245 p(23)p(24)

§m?

-5 &z - LPaad'y /—g(y)AF(y, 1) AF (Y, 22)

X A}l(ml —x3; t)A}l,(:ng — x4; t)o(23)p(xs)

A
+ Z/d3ml - dPaedty /—g () AF(y,21) APy, 22) A (Y, 23) Ar(y, 24)

X A;l(ml — &9; t)A}l(mg, — :Bs;t)A;,xl (ZE4 — ¢ t)go(:cs)cp(:cs)

A

~ 51 dBzq - Bagdty /—g(W)AF(y,21)Ar(y,22) AF(y, 23)AF(y, z4)

x A @y — @53 ) AF (22 — z6; 1) AT (23 — 275 t)AFl(;é; — xg; 1)
X 99(“35)99(336)99(337)99(:63)]

ilap - AL+ 00 .

' (3.6)
A diagrammatic representation might be helpful to show the general structure of
the perturbation series in (2.11) and (3.6). In Fig. 1, we have depicted diagrams
corresponding to each term of (3.6). We have omitted the contribution of the first
diagram in Fig. 1, since it is a constant independent of (), which can be removed
by the over-all normalization. The inverse of the spatial two-point function A}l in
(3.5) is represented by the broken line and, the four dimensional propagator, that
is either A or A depending on the vertex, by the solid line.

In evaluating (3.6), we have introduced a mass counter term (m? = m% +§m?)
to compensate the ultraviolet divergence arising from the second diagram in Fig. 1.
The divergent quantity Ap(y,y) = A(y,y) is independent of the spatial coordinate
y due to the translational invariance. If Ap(y,y) = A(y,y) does not depend
on time‘either, as in Minkowski and de Sitter spacetimes, which we assume, the
divergence can be renormalized by a constant mass counter term ém?2. The cross

in Fig. 1 implies the counter term ém>. We will so choose the counter term that
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it completely cancels the divergence in the second diagram, i.e., on-mass shell

renormalization.

In the perturbation series in Fig. 1, we find a new type of diagram that has
" no analogue in the conventional calculation of Green’s functions, namely, a loop
closed by a broken line (the fourth diagram). We will see below this diagram
has ultraviolet divergence. Note that we have already done renormalization of
the conventional ultraviolet divergence that arises from the loops closed by a solid
line (the second diagram). This new kind of ultraviolet divergence in PDF, which
is present even after the conventional renormalization, however, turns out to be

essential to obtain finite expectation values.

It is often more convenient to express PDF in terms of the Fourier modes gz

defined by

. T By -
qr ::/Wgo(a:)e_”" . (3.7)

Using (3.4) and (3.5), PDF in terms of ¢ is expressed as

P [{q1};1]
1 Wk
x € —— | &k }
P [ 2/ EAOLE

1
x {1 + /\[Z/d3kpz(k;t) Tk

+ o7 / d*ky d®ky d®ks pa(koy, ko, k33 1) Qb Gy Ty Gty —kn—ka) + O(/\z)}

=: Pl{q};1],

(3.8)
where the functions p; and ps are given by
00 L o0
pa(k;t) = i/dt’ L(t,t") +1 / dt' I3(t,t") —1 / dt' I (¢,
1 —0o0 —00 (39)

4
= —2Re z’/dt'Ig(t,t’) ,

—00
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with

=y [ ELAEO Ay

$1r(2) 5 (1)
and,
i ‘ o
p4(k1,k2,k3, = —Z/dtlf4(t t)—’l / dt' I4(t t)+z / at’ I4(t t)
t T - (3.11)
= 2Re |2 / dt' Iy(t,t') | ,
)
with

= Vo) ‘)ququﬁ ) Bk, () by ()8t —r s (V) (3.12)
ke, (1) D1, (1) Bty (1) 6y oo —es (2)

In the above expressions, ps and ps are manifestly real. In the first lines of (3.9)
and (3.11), the first two terms in the right hand side are the contributions of
A in (3.6) and, the last term comes from A in (3.6). If we started from the
conventional in-out formalism instead of the CTP formalism, only the first two
terms would appear and hence the reality would not be guaranteed in general.
Even for Minkowski space for which both formalisms should give the same answer,

the reality therefore is not transparent in the in-out formalism.

For free field theory, A = 0, (3.8) reproduces the random-phase Gaussian
distribution (1.5), since the two-point function in the Fourier space is given /by
(0-l g (t)g-x(2) 10-) = l61.(1)63)(0).

At first glance, one may suspect if the term involving ps can be absorbed to the
free part by redefining the mode function ¢, (¢). However, this term turns out to be
necessary to obtain correct expectation values. To see the role of p2, let us evaluate
the two-point function (0_| gz, (t)q,(2) |0_) by using the first order formula (3.8)
with (3.9) and (3.11). Since we have already done the renormalization in O(}), the
consistency demands that the two-point function should be given by its bare form

|k, (£)1260) (kg + k4) when expressed in terms of the renormalized mass. By using
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the fact that a product of ¢, is factorized to that of pairs ¢r¢_j in the Gaussian
integration, we first integrate the right-hand-side of (3.8) over {¢},

[ Pliaki
k

- UII;[ko exp {—%/d%%” [1 +—2—/\dskpz(k;t)l¢k(t)|2’5(3)(0)J ;

- (3.13)
to obtain the correctly normalized PD.F:
Plait) = 3P Hat. (3.14)
Then we ﬁna
J TP kit = lon, OFSO ks ). 35)

as desired. Thus if p; were eliminated by hand, it would not give the correct

answer,

As we shall see shortly, or may be suspected from the general formula (3.10),
p2 has ultraviolet divergence. However, when {q;} is integrated over in (3.15), the
ultraviolet divergence in ps is canceled by a divergent contribution arising from
integration of the ps-part. The divergent quantity p, is thus necessary to reproduce
the finite expectation values. Although our analysis here is limited to the first order
perturbation, we expect this divergence structure is a generic feature of PDF. Thus
when one writes it down, even after the conventional ultraviolet renormalization,
some kind of regularization is necessary to give a sensible meaning to divergent
quantities, such as py. This situation is quite different, say, from the case of the

effective action.

As an explicit demonstration of the above results, let us examine the case in

12—



Minkowski space. The mode function is given by

bp(t) = o R,y = VEE M2, (3.16)

Awk

where and hereafter we denote the renormalized mass m‘j)z by m? for simplicity.
The mass counter term ém? in (3.6) is given by

A A Bk 1
2
bm* = —ZAF(y,y) = —Z/Ww_k' (3.17)

Then it is straightforward to evaluate p, and p4 in (3.9) and (3.11),

(bﬂ*lfd%l 1
PR ) = 9 (27‘-)3 'wk'(wk' + wk)’ (3 18)

' -2 1
Ly, ko kyit) = — .
P4( 1, K2, K3, ) (271.)3 Wi, + Wi, + Wi, + W_ oy ks

In the above, py has a linear divergence as noted previously. Since py4 is negative
definite, the distribution of the mode g tends to concentrate near the origin if
A > 0. This is in accordance with an intuitive expecté,tion that a repulsive force

should suppress the amplitude of fluctuations.

Since the in-vacuum is identical to the out-vacuum in Minkowski space, the
third integral in the first lines in (3.9) and (3.11), that are absent in the conventional

in-out formalism, should be vanishing. In fact we find from (3.16),

[ 40 b, (¢ (€61, ()
o (3.19)

27
= 8(wp, + Wi, + Wiy T Why )
NV TRV TRV ! : . !
which vanishes for m?2 > 0. Even for m? = 0, the only contribution comes from
the zero mode, k1 = ko = k3 = k4 = 0. But in (3.8), the zero mode is always
accompanied with vanishing measure; e.g., d*k; = k2dkidgdf = 0 for ky = 0.

Therefore the third integrals in (3.9) and (3.11) vanish as expected.
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4. A¢*-theory in de Sitter space

Now we consider the A¢*-theory in de Sitter spacetime whose metric is given

___.....___(
(“‘HT])‘

where H is the Hubble parameter and 1 is the conformal time. In Fig. 2, the Pen-

ds? = —dn® + da?), (4.1)

rose diagram of de Sitter space is depicted. To define the time ordering consistent
with the causal structure in Fig. 2, we introduce a time variable ¢ = —1/n) Then
an event at time ¢ is in causal future of a certain event at ¢’ if ¢ > t'. Therefore
the time ordering with respect to the new time ¢ is appropriate, except perhaps
at £ = 0 (n = Loo) where the hypersurface becomes null. However, it turns out
that this causes no trouble. In particular our formulas (3.9)-(3.12) in terms of ¢

are valid as they are.

In de Sitter space the most natural vacuum is the so-called Euclidean vacuum,
which is de Sitter invariant and for which the short distance behavior of the field
is identical to that in Minkowski space [4]. Then the positive frequency mode
function is given by

$uln) = 0L H ()22 1) (), (42)

&

where HSY is the Hankel function of the first kind, v = /9/4 —m?2/H?%, and
E=|k

represent the mass. The phase factor e

. For later convenience, we also introduce a new parameter c:=3/2 — v to
% is not determined from the commutation
relation but can be fixed by imposing a condition ¢(—n) = ¢r(e™'n) = $5(n) for

n < 0 [4]; then we have € = 4¢~%"/4. The mass counter term in (3.6) is given by

H(¢)

A A2 T
§m? = —;AF(y,y) = -—1-6;‘;;/(1( ¢
0

° (4.3)

where we have set ¢ = kln|. Note that Ap(y,y) is a (divergent) constant, as it

* Do not confuse this ¢ with the proper time {, by which the invariant length reads, ds? =
—df?+e*Htdz? and, —co < T < oo covers only the left upper-half of the maximally extended
de Sitter space in Fig. 2. '
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should be from the de Sitter invariance [4].

All we have to do is the integrations in (3.9) and (3.11). We first note they
have a common structure:

1

/dtI(tt /dn+/dn ) (4.4)

—0C0

where 7 =2 or 4, and we have assumed the hypersurface with the time ¢ is in the
expanding phase of the de Sitter space, i.e., 7 < 0. The integrand I;(n,n') contains

the following common form,

+oco n
/ dn' + / dn' | v/=9(n") b, (") b, (n") b1y (0" e, (1)
+0

410 o2 ( ) n z7(1) ' (4.5)
0 2imy / i + / dn' | (=n') Hy (k' ) Hy (= kan')
x Hﬁ”(—kw VH (—kar).
The asymptotic behavior of the Hankel function near the origin is
VT ST £ Wl PO ot ) B2 A
Hy7(2) sinvr [(—v + 1) (2) [1 - I'v+1) ¢ (2) ) (4.6)
Therefore the integrand in (4.5) behaves as ~ |7/|>~* = |/|**~* near 7' = 0. We

see that the necessary condition for the integral (4.5) to be finite is

Re[d >3, or m?> — H”. (@)
el > 7, o m” 16 i

Surprisingly, the convergence of the integral (4.5) imposes a lower bound to the

mass parameter m? in the de Sitter space.

It is not a specious condition that appears accidentally in (4.5) but intrinsi¢ to
- the Ag*-theory in de Sitter space. The integration over 7' in (4.5) corresponds to
that over the position of the Ag*-vertex. Therefore the divergence of (4.5) implies
that of the tree-level spatial four-point correlation function in the configuration

space, as may be observed from the structure of p4 (the fifth diagram in Fig. 1).
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This type of divergence in the spatialicorrelation function is not a peculiarity
- of the A¢*-theory. In ¢"-theory, the condition (4.7) is generalized to Re[c] > 3/n
or m? > 9(1 — 1/n)H?%/n [6]. Though ¢™-theory with n > 5 is not renormalizable,
the crucial point is that the divergence exists even at the tree diagram. Note that
a spatial correlation function is observable since it is a vacuum expectation value
of a product of hermite operators. The divergence comes from the integration near
7' = 0, which originates in the extreme expansion of the volume factor in de Sitter

space so that it is a kind of infrared divergence in nature.

This lower bound was essentially aware of already by Tagirov [5] in a slightly
different context. However, since he included the conformal coupling —R¢?/6 in
the Lagrangian from the beginning, the condition (4.7) itself had been hidden
behind it. In de Sitter space, the curvature coupling —ER$? is effectively absorbed

2 - m® +12¢6 H?. Thus our mass parameter

in a change of the mass parameter, m
m? is related to that in [5], M2, as m? = 2H? + M?. For A¢*-theory, the condition
(4.7) is thus always satisfied for M? > 0. For A¢3-theory, on the other hand, the
divergence appears at M? = (0 as was pointed out by Tagirov. Incidentally, another
of his statemént that a similar divergence appears in A¢3-theory irrespective of the
mass is incorrect [6]. It seems that this divergence has not been received much

attention in the literature. The detailed discussion)'on this divergence will be given

elsewhere [6]. In the present paper, we consider only the case that satisfies (4.7).

Let us return to the calculation of ps and ps. We first show that it is possible

to convert the integration region in (4.4) as

1 “+oo .
/dt’lj(t,t’):— / dt' 1;(¢,1), (4.8)
— t

or
+o0 7 -0 '
/ dn' + / dn' | L,(n ') = — / dn’ Ii(n, 1), (4.9)
+0 —0Q 7
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which is equivalent to the following equality.

+0o0 +oo
/dt' Li(t,t) = /dn'Ij(n,n') =0. (4.10)

For this being the case, it is sufficient to show that

“+00
/dn’(—n’)gﬂﬁl)(—-km')Hzgl)(—kzn')Hﬁl)(—ksn')Hﬁl)(—kw'):0. (4.11)

-

Let us consider an integration contour (Cy+C2) in Fig. 3, instead of the integration
on the real axis (C1) in (4.11). Since H,El)(z) is analytic in the upper half plane
of z, there is no pole singularity within the integration contour for Re[c] > 3/4.

Hence the integral (4.11) is equal to

2ciw
_ 4e° d?]’ e—i(k1+k2+k3+k4)"l
NN NI
&, (4.12)
Se?ciﬂ'

= §(ky + ko + k3 + k
R R )

where we have used the asymptotic form of the Hankel function at |z| — oo,

9 . :
H(z) ~ [ = el Cein)/a, (4.13)

From (4.12), we can repeat the same argument as in Minkowski case. Thus (4.10)

is established.

Actually the relation (4.10) is expected. In de Sitter space, the in- and out-
vacua are the same due to the de Sitter invariance. The conventional formalism

and the CTP formalism thus should give the same answer and this requires the
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third integrals in (3.9) and (3.11) to vanish. Then from (4.9), p» and p4 read

-0
p2(k; 1) = 2Re i/dn’ Ln, "),

! o (4.14)
pa(k1, ko, k3;n) = —2Re i/dn' Ii(n,7')

7

Now for ¢ = 1 or m? = 2H? (i.e., v = 1/2), it is essentially equivalent to a
conformally coupled massless field; m? = 0, ¢ = 1/6. Hence the mode function

(4.2) is conformal to that in Minkowski space;

1
2k

de(n) = e~ "*1(—Hry), ©(415)

and p; and ps (4.14) can be evaluated analytically. Using (4.15), we find

31t
b =3 [ K s (1 con 20K 4 )]} (),

-2 1 (4.16)
ki, ko, kg;n) =
P4( lalv2, 3777) (27‘_)3 k1+k2+k3+k4

x {1 — cos[(k1 + ko + k3 4 k) (—0)]} (=Hn) ™4,

where kg = lkl + ko + k3

. A notable fact is that p» and p4 in this case are not
conformal to those in Minkowski space even though the field itself is locally confbr-
mal invariant. The difference is due to the cosine factors in the above expressions,
without which they would be conformal to (3.18) with m? = 0. The origin of the
cosine factors is the presence of the integration boundary ' = —0 in (4.14), thus
they originate in the global structure of de Sitter space which differs from that of

Minkowski space.

For ¢ # 1, we have been unable to obtain the exact analytic form of py and
ps. However, for wavenumbers which satisfy —kn < 1, they can be evaluated by

using the asymptotic form of the Hankel function (4.6) at z = 0. We obtain for
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3/4 <c<3/2,or 21H?/16 < m? < 9H?/4,
p2(k;n)
—7 1 1 1 1 / B 1+<k 3—2c
_-ﬁcoscwr(c_%)l‘(%_c) dc—3 9 (27)3 % )

| 2 r 1 1 iy
p4(k1ak27k3;n)2WCOSCWFE 103 —-z—c-) (._.17) 2

- [(?) ! (?) * ?) \2) |
(4.17)

Note that ps > 0 while ps < 0 also in this parameter region. As discussed in detail
in the middle of this section, PDF is not defined perturbatively for ¢ < 3/4 due to

A~

the divergence at n’ = 0. Reflecting it, our results (4.17) blow up at ¢ = 3/4 when

approaching from above.

For m? > 9H?%/4 or v = 3/2 — ¢ =: ib with a positive b, the asymptotic form
of PDF could be evaluated similarly, but it is too complicated to be illustrative.
Only for the infinitely large mass limit m? 3> H? or b > 1, we have a simplified

form,

L- N‘ 7 167b2e="° A3k
Pa(kim) ~ T T @r)3 7

18
GreHE 16 +9°

(4.18)

pal(ky, ko, k3 ) ~

Thus p; and ps become independent of the wavenumber. Further, as b6 — oo, py
and py4 vanish, i.e., the correction due to the interaction disappears. This may be

expected because in this limit the mass term dominates the action.

Our PDF gives the spatial correlation functions as the expectation values of a
random process. Therefore if PDF has some (approximate) symmetries, we could
argue a general (approximate) property of the spatial correlations not restricted
to a particular n-point function. This is an advantage to consider PDF instead of

the correlation functions themselves.

As an example, we consider a scaling law of the correlation functions and

its violation due to the interaction. We first consider the case of m? < 9H?/4

- 19 -



(¢ < 3/2), for which the infrared behavior of the mode function, @ (n) at —kn < 1,

reads

' 2¢—3
P~ T () )

cos? enT'(c — 3)?

Therefore, in the case of the free field theory, A = 0, PDF (3.8) for —kn <« 1 is
invariant under a substitution, g, — s3qz,, t.e., P{{s°_3qk/s};77] ~ P{q};n)-

From this scale invariance, we obtain a corresponding “Ward identity”;

(0-| Gk, -+ ok, [0-) = s (0_| g, -+~ g, [0-), (4.20)

for —k;n < 1, or in terms of the configuration space correlation functions,

(0_|p(@1) - pln) [0-) = 5™ (0_] p(s21) - -~ p(sn) [0-) (4.21)

for —|z;|n > 1. For a sufficiently small c, this relation shows almost scale-invariant

behavior of the spectrum.

In the presence of the interaction, ps-part of the probability distribution in
(3.8) is not invariant under the substitution ¢, — sc‘3qk/s. This breaking follows

from the explicit form in (4.17). Unlike the free theory, we find

Pl qgs5}im]
~ P[{q}; 7]
2 _ )2 By d®had®ka py(key, ko, g
X ]'+(S 1)-)4 G R ry 31)4( 1, &2, 3’7])qk1qk2qk‘3q—k1—k2—k3 ?

F
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up to O(A?). As a result, we have the following relation instead of (4.20),

<0—| Qsky * " " G5k, IO—)

= s(e=3)m [(O—I Qhey " * Gk, [0-)
+ (520 _ 1)'2:\1/d3kd3kld3k”p4(k, kl,k”;n) .
(4.23)

X ((0—| e, *** Do, Qe Ther e I —ke— k' ke 10-)

| — (0| gg, - * qr,, 10-) (O-| Qe QR TR G-kl —ke7 IO—)>]
+ 0.

The last two terms are the effect of the interaction. For m? > 9H? /4, we do not
see any apparent scaling behavior at large scale, —kn < 1. Only for m? > H?,
from (4.18), we have a relation that is identical with the above expressions (4.22)
and (4.23) with ¢ = 3/2. Althéugh our consideration here relies on the explicit
form of p2 and p4, it may be further put forward by using the general form of PDF

in (2.11) and the scaling behavior of the two-point functions.

5. Conclusion.

In the present paper we have formulated the probability distribution functiona.l
for equal-time spatial configurations of a scalar field ¢(z,t) in curved spacetime
in terms of the closed-time path functional formalism. The PDF thus obtained
reproduces spatial correlation functions as the expectation values. As a specific
example, we have considered A¢* self-interacting field and perturbatively calculated
PDF up to the first order of A both in Minkowski and de Sitter spacetimes. We
have seen it has an ultraviolet divergence even after the conventional ultraviolet

renormalization, which is unavoidable to reproduce finite expectation values.

Although our formula for PDF is admittedly complicated, it has an advantage
that one can extract information of arbitrary higher-order correlation functions at

one time, such as their symmetry behavior discussed in section 4.
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Our approach is in principle applicable to describe the statistics of various types
of primordial fluctuations predicted in inflationary cosmology [7] without any ad
hoc» assumptions. Since an inflationary phase is well-approximated by de Sitter
spacetime, results presented in section 4 are relevant to it. Care must be taken,
however, to the boundary of integration. The inﬂationary. expanding universe may
emerge after, say, the radiation-dominated universe. r‘I‘hen only the left upper-half
of the maximally extended de Sitter space in Fig. 2 should be taken into account, so
that the conformal time runs only over —co < 7 < 0 and the integration region in
(4.5) is restricted to f”__ dn’. The resulting PDF in this case will differ significantly
from that in the maximally extended de Sitter space. For example, in the case of
¢ = 1 which corresponds to the conformal invariant field, the cosine factors in py
and p4 given in Eq. (4.16) will be absent; i.e., the resulting PDF will be precisely
conformal to that in Minkowski space. This is because the region —co < 7' < 7
is totally conformal to a regién —oo < t' <t in Minkowski space, where t denotes
the usual Minkowski time coordinate with an arbitrary value. Furthermore, we
will have no constraint on the mass parameter such as (4.7) in this case, since we
no longer have any divergence that have arisen in the integral at ' = 0. This
crucial dependence of PDF on the global structure of spacetime may lead to some

interesting theoretical as well as observational consequences.
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FIGURE CAPTIONS

Diagrammatic representation of the terms in (3.6) for the probability distri-

bution functional of A¢*-theory.

Penrose diagram of the maximally extended de Sitter space. The solid lines

represent hypersurfaces with constant 7 (or t).

Integration contour of (4.12) on the complex 7’-plane.
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