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Apparent horizons of an iV-black-hole system in a space-time with a cosmological constant

Ken-ichi Nakao

Department of Physics, Kyoto University, Kyoto 606, Japan

Kazuhiro Yamamoto

Uji Research Center, Yukawa Institute for Theoretical Physics, Kyoto University, Uji 611, Japan

Kei-ichi Maeda

D甲artment of Physics, Waseda University, Tokyo 169-50, Japan
(Received 23 October 1992)

we present the analytic solution of N Einstein-Rosen bridges ("N black holes") in the space-time with
a cosmological constant A and analyze it for one- and two-bridge systems. We discuss the three kinds of

apparent horizons: i.e., the black-hole, white-hole, and cosmological apparent horizons. In the case of

two Einstein-Rosen bridges, when the Htotal mass" is larger than a critical value, the black-hole ap-

parent horizon surrounding two Einstein-Rosen bridges is not formed even if the distance is very short.

Furthermore, in this case, the cosmological apparent horizon enclosing both bridges does not appear.

Hence, it seems that when the Htotal mass" is very large, the Einstein-Rosen bridges cannot collapse into

one black hole unless the "gravitational mass" is released in some way.

PACS number(s): 98.8O.Hw, 04.20.Jb, 04.30. +x

I. INTRODUCTION

Our Universe observed today is homogeneous and iso-

tropic. The standard big bang scenario is based on this

observational fact and can explain important observation-

al facts, i.e., Hubble's expansion law, 2.7-K cosmic mi-

crowave background radiation, and the abundance of

light elements. However, since homogeneity is the basic

principle in the big bang scenario, we cannot get a natu-
ral answer within the framework of this scenario for the

question of why our Universe is so homogeneous at

present. The m且ationary-universe scenario is one of the

most favorable models to resolve the above question, the

so-called homogeneity problem [1]. In this scenario, the

vacuum energy due to the phase transition by an inflaton

scalar field dominates at very early stages of the Universe.

Smce the vacuum energy of the inflaton丘eld behaves like

the cosmological constant, the Universe undergoes de

Sitter-like rapid cosmic expansion. After a phase transi-

tion, the vacuum energy is converted into radiation and

the standard big bang model is recovered. Initial inho-

mogeneities are stretched and go outside the horizon by

rapid cosmic expansion, resulting in the present homo-

geneity of the Universe.

However, even through there is a positive cosmological
constant, it is not obvious whether or not the de Sitter

like rapid cosmic expansion is always realized. Since the

mhomogeneities have Henergy a一一d generate the gravita-

tional丘eld by themselves, those may collapse into a black

hole or a naked singularity. In connection with this

problem, the "cosmic no hair conjecture" has been pro-

posed, which states that ‖all" space-times approach the

de Sitter space-time asymptotically if a positive cosmo-

logical constant exists 【2]. If this corJecture is true or aト

most true, we can understand why the present Universe is
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so homogeneous.

In the realistic inflationary scenario, the cosmological

constant is given by the vacuum energy of the in且aton

field and hence the inhomogeneity of the cpsmological

Hconstant" itself is important for the onset of inflation.

So several authors have investigated the inhomogeneities

of the mflaton丘eld both in analytic and numerical-ap-

proaches [3-5】. However, inhomogeneities other than

the cosmological constant are important too because,

when we discuss the onset of inflation, such inhomo-

geneities may also not be so small before the de Sitter-like

rapid expansion. As for the inhomogeneity by a dust

fluid in space-time with a cosmological constant, we have

an analytic approach which showsノthat some inhom0-

geneities collapse into a black-hole space-time [6,7]. The

gravitational waves, which are the inhomogeneities of the

space-time itself, can also form a black-hole space-time

[8].

In this paper, in order to investigate the behavior ofin-

homogeneity in the space-times with a cosmological con-,

slant A and get some physical insight about a many-

black-hole system in de Sitter background, we present ini-

tial data for Einstein-Rosen bridges in space-time with A.

By the appropriate choice of the extrinsic curvature, the

Hamiltoman constraint for the vacuum space-time with

A turns out to be that of the time symmetric initial value

problem without A ′and the momentum constraint be-

comes trivial. Hence, even through there is A, we can

easily obtain an jV-Einstein-Rosen-bridge solution for the

constraint equations as the time s>′mmetric initial value

problem without A..

Since the Einstein-Rosen bridges have homotopically

nontnvial structures, those topological structures do not

disappear in the course of their time evolution within the

framework of the classical Einstein theory. However, we
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may obtain some physical insight for how mh0m0-

geneities can grow up as we will show in this paper. We
investigate the existence of the apparent horizons in the

case of one- and two-Einstein-Rosen-bridge solution岳・

From its analysis, we may see a cosmic expansion e庁とct

on the inhomogeneities due to Einstein-Rosen bridges.

The one-Einstein-Rosen-bridge solution corresponds to a

three-dimensional spacelike hypersurface of the

Schwarzschild-de Sitter space-time. This example shows

us that the Einstein-Rosen bridge with a very large

Hgravitational mass" does not collapse into a singularity

but rather expands and approaches the de Sitter space-

time locally under the condition of a uniformly expand-

ing background universe. For the two-Einstem-Rosen-

bridge case, we血d that a black hole apparent horizon

surrounding two Einstein-Rosen bridges with a

su氏ciently large Htotal mass" does not appear for any

distance of two bridges. Furthermore, the cosmological

apparent horizon surrounding two Einstein-Rosen

bridges also does not exist in such a circumstance. This

feature is essentially the same as the one-Emstem-Rosen-

bridge case and, hence, it seems that when the total mass

is larger than a critical value, the two'Einstein-Rosen

bridges do not collapse into one black hole.

This paper is organized as follows. In Sec. II, we con-

struct the initial data for iV Einstein-Rosen bridges em-

bedded in a uniformly expanding background universe

with A. In Sec. Ill, we analyze the 'existence of the ap-

parent horizons for one and two Einstein-Rosen bridges.

Although the one-Einstein-Rosen-bridge solution is just a

three-dimensional spacelike hypersurface of the

Schwarzschild-de Sitter space-time, it gives us important

insight for apparent horizons m an 〟-black-hole system.
We, hence, show the basic feature of the

Schwarzschild-de Sitter space-time in Appendix A. The

method to obtain the apparent horizons for the two-

Einstein-Rosen-bridge solution is presented in Appendix

B. Some discussion and remarks are given m Sec. lv. In

this paper, we adopt the units ofc =G -1. Our conven-

tions for the Riemann tensor and Ricci tensor are

D[iDnvk-‡Rijkvi '

Rij-Rilj '

where D, is the covariant derivative.

(1.1)

II. INITIAL DATA

FOR AN N EINSTEIN-ROSEN BRIDGE

IN A UNIFORMLY EXPANDING UNIVERSE

Initial data for vacuum space-times with a cosmologi-

cal constant A must satisfy the Hamiltoman and momen-

turn constraints: i.e.,

3R -K/K'+K2-6H2

Dj{Kj-bJiK)-O

with

xJ=z 1/2 2.3

*・l

where {3)R is the Ricci scalar of the three-dimensional

spacelike hypersurface. K{ is the extrinsic curvature of

the three-space and K is its trace part. D; is the covari-

ant derivative with respect to the intrinsic metric of the

three-space.
Here we consider the case with the extrinsic curvature

which has only a trace part: i.e.,

Kj- -Hb¥　　　　　　　　　　　　　(2.4)

By virtue of the above condition, the Hamiltonian con-
straint reduces to the same as that of the time symmetric

initial value for the vacuum space-time without A: i.e.,

(3)'R -0　　　　　　　　　　　　　　　　　　(2.5)

and the momentum constraint is satis丘ed trivially.

In order to solve Eq. (2.5), we assume the conformally

虫at metric

dl子-S¥dr2+r2{dd2+sin2ddtp2)}　　　　(2.6)

where dl is the three-metric of the initial surface. With

this metric, the Hamiltonian constraint (2.5) becomes the

Laplace equation: i.e.,

上t'.- 1). (2.7)

where A is the flat Laplacian.

Here, it should be noted that, for an isotropic and

homogeneous space-time in which the scale factor a -ip

is spatially constant, the condition (2.4) turns out to be

the Friedmann equation in terms of cosmic time t, i.e.,

a　2(da/dtf-H2, resulting in the de Sitter solution

(a -eHc). Thus, the condition (2.4) is regarded as the as-

sumption of a uniformly expanding background universe.

As for the time symmetric initial value problem

without A, we know how to obtain the iV-Emstein-

Rosen-bridge solution, which isjust to set -ty ^s [9]

AT-

1p=l+
L・号i 2|r-r,.|

(2.8)

where 〟声-1, -. ,N) are integration constants and ri
is a Euclidean position vector of ith point in conformally

flat three-space. We consider only the case with M; ≡ 0 in

order to guarantee the positivity of the Hgravitational
mass.

Since, from the Birkho庁's theorem, the spherically

symmetric vacuum space-time with A is either the de Sit-

ter or Schwarzschild-de Sitter畠pace-time, the N-1

solution is Just a three-dimensional spacelike cross section

of the Schwarzschild-de Sitter space-time. The gravita-

tional mass M in the Schwarzschild-de Sitter space-time

agrees with the present mass parameter 〟 (see Appen-

dix A) [10]. It should be noticed that, by virtue of the

condition (2.4), the ordinary asymptotically flat condition

corresponds to the asymptotically de Sitter one m our

case. In the one-Einstein-Rosen-bndge case, there are

two de Sitter-like asymptotic regions:　　　　∞　and

r-rj-0.

The solution with N Einstein-Rosen bridges has

a similar asymptotic structure as the Schwarzschild-

de Sitter space-time as r-r, -oo. There also exists

the Schwarzschild-de Sitter-like asymptotic region
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S1
S2

FIG. 1. A two-dimensional embedding of the initial spacelike

hypersurface of a space-time containing Einstein-Rosen bridges.

lr-ril-0 and therefore there are (iV+D-

asymptotically Schwarzscmld-de Sitter sheets. Hereaf-

ter, St denotes the z'th asymptotic region. So is de丘ned as

the three-dimensional sheet including the asymptotic re-

gion of lr-r,- -co (see Fig. 1). Because of the asymp-

totically Schwarzschild-de Sitter region and of our

choice of the extrinsic curvatpre (2.4), the gravitational

mass of the Emstem-Rosen bridges can be de丘ned in the

same manner as m the asymptotically flat case. The "to-

tal mass" 〟　of〃 Einstein-Rosen bridges, which means

that for observers in the asymptotic region on ∫O, is given

by

N

Mu,t= ∑Mi ・
i　-

2.9

The gravitational mass ml of the Einstein-Rosen bridge

labeled /, which is that for the asymptotic observer on Sit

is obtained as

m,-M; 2.10

As in the asymptotically負at case, the total mass is

different from the sum of the "mass" of each Einstein-

Rosen bridge by the gravitational interaction energy 【9】.

The "interaction energy" m-mt is given by

M:

mint=Mtot- ∑ 171:=一号1吾1両iこ=1

(2.ll)

The interaction energy is always negative and when the

distances r, -r,-　between all black holes are in丘nite, the

interaction energy vanishes.

III. APPARENT HORIZONS

In order to get some physical insight into the inhomo一

geneities in the space-time with a cosmological constant

from our initial data, we shall search for apparent hoト

Izons of an./V-Einstein-Rosen-bridge solution. We de丘ne

three types of apparent horizon: i.e., black-hole, cosmo-

logical, and white-hole horizons, as a closed two-surface

such that the family of a future-directed outgoing null

geodesic orthogonal to the surface does not expand or

such that the family of future-directed ingoing null geo-

desics orthogonal to the surface does not converge. Here,

outgoing means the direction toward the asymptotic re-

gion on SQ, while ingoing means the opposite direction

since we are interested in the behavior of inhomogeneities
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seen from our side So.

To find the apparent horizons, we calculate the expan-

sion rate of congruence of nearby null geodesies orthogo-

nal to a closed two-surface. Let s to be the outward

spacehke unit normal vector of the closed two-surface.

Then the expansion rates of the outgoing null congruence

p+ and of ingoing null congruence p_ are given by

p±=±D'is'+KijS'sJ-K ,　　　　　　　(3.1)

respectively. We can obtain the apparent horizons by

setting /3+=O or /L=0. In order to see the physical

meaning of these apparent horizons, we first consider the

one-Einstein-Rosen-bridge solution and then investigate

the two-Einstein-Rosen-bridge solution.

A. One Einstein-Rosen bridge

For one-Emstein-Rosen-bndge solution, without loss

of generality we can set ri=0; then we丘nd the solution
aS

dl2-ii>4(r)[dr2+r2(dd2+sm29d甲蝣)] ,

with

lォr)-l+坐
2r

3.2

3.3)

where we have replaced Mx with M. As already men-
tioned, the `above solution is just a three-dimensional

cross section of the Schwarzschild-de Sitter space-time

IIOl.

The expansions /フ± of outgoing and of ingoing null geo-

desic congruences orthogonal to a spherical surface cen-

tered at r =O are given by

p±r)-土-2- r i> +2H,　(3.4)

respectively. The apparent horizons are obtained as posi-

tive roots ofp士(r)=O and agree with the event horizons

of the Scnwarzscmld-de Sitter space-time (see Appendix

A). There are three types of horizons as will be shown

below.

We de丘ne a critical mass by Mcrit≡ IAv27H), which

turns to be an important mass scale in the present

analysis and also in the m且ationary scenario. In the case

of M≦Mcrit, we負nd the following positive roots. For

the equation ofingoing horizon, we obtain

rl-‡[Rc-M+VRc{Rc-ZM)] ,

r2-‡[RB-M+VRB(RB-2M)] ,
3.5

where Rc and RB are the circumference radius of the

cosmological event horizon and black-hole event horizon,

respectively, explicit expressions for which are given in

Appendix A. For the equation of outgoing horizon, we
have

r3=÷lRB-〟イRB(RB-2M)] t

,4-I[Rc-M-%/Rc(Rc-2M)]
3.6
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We can show that the following relation is true:

r4≦rl<rl≦　　　　　　　　　　　(3.7)

The equalities in Eq. (3.7) are realized if and only if

M-McTit- When M>Mcrit, there is no positive root and
then there does not exist any apparent horizon.

As shown in Fig. 2(a), the apparent horizon at r-r.

corresponds to the cosmological event horizon for time-

like observers along R-const lines on So. On the other

hand, r-r2 is the black-hole event horizon but is ob-

served as a white-hole horizon for observers on So.

Hence we call the apparent horizons at r-γ　and at

r-r2 the cosmological apparent horizon (CAH) and the

white-hole apparent horizon (WAH), respectively. The

apparent horizon at r -r3 also co汀esponds to the black-
hole event horizon but is observed just as a black-hole

horizon for timelike observers on So and hence we call it

the black-hole apparent horizon (BAH). The apparent

horizon at r-r4 corresponds to the cosmological event

horizon for timelike observers along R -const lines on 5,

and has nothing to do with observers on Soヮ

B. Two Einstein-Rosen bridges

For simplicity, we consider cases in which each

Einstein-Rosen bridge has an equal mass, i.e..

(C)

FIG. 2. The Penrose diagrams of the Schwarzschild-de Sit-

ter space-time, (a), (b), and (c) correspond to those with

M < Mcrit, M-Mcrit, and M > Mcrit, respectively. The spacehke

hypersurface given in Sec. Ill is depicted by the thick solid line

in each Penrose diagram. The dashed line and thin solid curves

correspond to the position of the minimal surface and R-const

curves, respectively.

"ft

j^.-Mo-M. The conformal factor V of the two-

Einstein-Rosen-bridge solution is written as

〟
1//=1+

2VV+r孟-2rQrcos9

〟

2γ′ '-+r孟+2r。rcosQ

(3.8)

where rn is half of the Euclidean distance between two

Einstein-Rosen bridges. Here (r, 6) is the spherical coor-

dinates in the conformally flat three-space whose origin is

chosen to be the center of two Einstein-Rosen bridges.

The gravitational mass m of each Einstein-Rosen bridge

is given by

--M 1+粧　　　(3.9)
If rQ is enough larger, i.e., roサM, each Einstein-

Rosen bridge can be seen as an isolated system with mass
〟　Hence, in such a circumstance, each Einstein-Rosen

br鶴e has the same kind of apparent horizons as the one
Einstein-Rosen bridge. On the- other hand, if ro is not so

large ・and the interaction energy mlnt is not negligible,

each Einstein-Rosen bridge cannot be seen as an isolated

system・ we expect that there is some influence for the

apparent horizons by the interaction between those

Einstein-Rosen bridges. In fact, for the A-0 case, as ro

decreases, the black-hole apparent horizon surrounding

both Einstein-Rosen bridges appears. Thus one may ex-

pect that one black hole is formed by observers on SQ, if

two Einstein-Rosen bridges are su氏ciently close. We

shall, hence, investigate the apparent horizons formed

near those Einstein-Rosen bridges. In order to obtain the

BAH, WAH and CAH, we adopt the prescription pro-

posed by Sasaki et al. (see Appendix B) [11]. Here it
should be noticed that since the interaction energy mint is

a monotonically decreasing function of ro, we can recog-

nize ro as a measure of the distance between two bridges.

Furthermore, as seen in Fig- 3, the proper di占tance rp be-

r/M

10・　　　　　　10',/M

FIG. 3. The proper distance rp between the minimal surfaces

of each bridge is plotted with respect to ro. Rp is the monotom-

cally increasing function of.ro. Hence, we can regard ro as a

measure of the separation betweenlwo bridges.
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-2　　　　-i

0.5

r/H・ 1

FIG. 4. BAH's and CAH's are depicted in the conformally

flat three-space for (a) M-0.7iVfcru>ro-H l　(b)

M-0.4Mcrit, r0-0.2 H~', and (c) M-0.4A/criいr0-0.05 H"

The solid circles are BAH's enclosing each bridge, while the

dashed circles correspond to CAH's. In case (a), each bridge

can be seen as an isolated system, while in cases (b) and (c), each

bridge cannot be regarded as an isolated system. In particular,

for case (c), the BAH enclosing two bridges appears and two

bridges will collapse into one black hole.
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tween the minimal surfaces of two bridges monotomcally

increases with respect to ro. Hence, in the following dis-

cussion, we adopt ro as the measure of the distance be-

tween two bridges.

In order to get a qualitative understanding, we show

examples of BAH's and CAH's in Fig. 4. The solid cir-

cles are the BAH while the dashed circles correspond to

the CAH. In Fig. 4(a), the gravitational mass M is equal

to o.7Mcrit and the separation ro is H . In this case,

each bridge can be seen as an isolated system. Figure 4(b)

is the same as Fig. 4(a) but with 〟-0.4〟　and with

ro-0.2 H~　There exists a CAH which encloses two

bridges and hence we cannot regard each bridge as an

isolated system. Figure 4(c) is also the same as Fig. 4(a)

but with M-0.4Afcriit and with r0-0.05 H '. In this

case, a BAH appears surrounding two bridges and forms
one black hole. We shall discuss more quantitative

analysis below.

1. Black-hole apparent horizons

We present numerical examples for M=0.1Mc

O・7〟　and 2.0〟crit and discuss丘rst about whether or

not a 】〕AH exists as changing the distance ro of two

bridges.

In the case ofM-0. 1Mcrit, since the total mass Mtot of

this system is smaller than Mcrit and since this system

agrees with the one-Einstein-Rosen-bridge case with

2〟( <〟。rit) as r0-0, we expect that a王)AH appears

surrounding two Einstein-Rosen bridges when those

bridges are close enough to each other- In the case of the

asymptotically且at space-time without A, BAH s appear

inside black-hole event horizons [12】 Hence, when the

BAH surrounding two Emstem-Rosen bridges appears,

those bridges are also surrounded by a black-hole event

horizon. Of course, in general, it might not be true in the

case with a nonvanishing A. However, we can prove that

BAH's in our initial data also appear inside the black-

hole event horizon, which is de負ned by the boundary of

the causal past of the future conformal in丘nity, as in the

asymptotically貝at space-time without A [13]. Hence,

also in the present case, the existence of the BAH sur-

rounding two Einstein-Rosen bridges means that these

two bridges collide with each other and form one black

hole. In Fig. 5, for M=0.lMcrit, we show the proper

area of the BAH enclosingjust one Einstein-Rosen bridge

by the dashed line and twice that by the doトdashed line,
which means the total area of the BAH's surrounding

each bridge, with respect to ro. The solid line denotes the

BAH enclosing both fridges. As ro decreases, the proper

area of the BAH enclosing each bridge increases since the

gravitational mass m of each Einstein-Rosen bridge in-

creases with respect to ro for fixed A/t。l. The proper area

of the BAH enclosing two bridges is almost constant with

respect to ro but does not appear for rQ> 1.20×10~2

H , where the total area ofBAH's by each bridge be-

comes equal to the proper area of BAH by two bridges.

When M-0.7Mcrit, i.e-, Mm~¥AMQ[k, as expected,

BAH, which surrounds two Einstein-Rosen bridges, does

not appear, while t如BAH enclosing each bridge exists.''、仁′

The proper area of the BAH enclosing each bridge is
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AcOs/4t:H-2

I I

I

I I

I

l I

I

I I

I

l I

I

l　　＼

M=0.1Mcrit

0.05　　　　　　　　　　　　　0.1

FIG. 5. The proper area of the BAH for M=0. lMcrit is plot-

ted with respect to ro′H~'. The solid line denotes` the area of

the BAH enclosing two Einstein-Rosen bridges, while the

dashed line corresponds to that-enclosing each bridge.

plotted with respect to ro in Fig. 6. For the same reason

as in the case of M -0. lAferit, the proper area increases

as ro decreases. It is worth noticing that the BAH en-

closing each bridge vanishes for ro<7.86× 10~ H-l or

equivalently for m>1.00Mcrit. In the case of
M -2.OMcrit, no BAH appears.

2. Cosmological apparent horizons

The CAH gives us some physical insight about the

cosmic expansion effect by A. Here it should be noticed

that since our initial data becomes a de Sitter universe m

the asymptotically far region from those Einstein-Rosen

bridges, p--0 has no unique solution for a CAH. We

have to specify a point in the space-time which is en-

closed by one CAH. Since we are interested in the effect

of the Einstein-Rosen bridges on cosmic expansion, we

H/4nH-

M=0.7iVL

I.0

蝣VH" 1

FIG. 6. Same as Fig. 3 but for M-0.7Afcrit. In this case,

there is no BAH enclosing two bridges.

EM

FIG. 7. The proper area of the CAH for M-0.lMcrit is plot-

ted with respect to ro′H . The solid line denotes that of the

CAH centered at the origin, while the dashed line shows that of

CAH enclosing each bridge.

investigate the existence of a CAH which is centered at

the origin, and that which encloses just one Einstein-

Rosen bridge, for the same initial data as the cases of the

BAH. In Fig. 7, theproper area ofa CAH forthe case of

〟-0. 1〟 is plotted with respect to ro by the solid line

for that centered at the origin, and by the dashed line for

that enclosing each bridge・ Figures 8 and 9 are the same

as Fig. 7 but with M -OJMcrit and 2-0Mcrit, respective-
lv.

In the case of M-0. lMcrit, the CAH enclosing each

Einstein-Rosen bridge cannot be found for ro <0.60 H-l

It may move to the CAH enclosing both bridges and

change its proper area just as happens for the CAH cen-

tered at the origin as we will show below. For t-o>0.60

H , the proper area ofa CAH enclosing each bridge is
almost constant and the same as that of the one-

Einstein-Rosen-bridge case with the gravitational mass

Acos/4tcH・ 2

M = 0 .7 M ,r it

0.0　　　　　　　1.0　　　　　　　2.0　　　　　　　3.0

ro/H-

FIG. 8. SameasFig. 5 butforM=0.7Mcrit.
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AWH/ 47iH-2

M = 2 .OM crit

0.5　　　　　　　　　　　　　　1.5

ro/H-l

FIG. 9. Same as Fig. 5 but for M=2.OAfcrit. In this case,

there is no CAH enclosing each bridge.

Af-0.1Mcrit,i.e., 0.96×4ttH . Ontheotherhand,the

proper area of a CAH centered at the origin is equal to

that ofde Sitter space-time, AnH , for ro>H , while,

for ro <0.92 H~ , the proper area of the CAH is almost

the same as that of the Schwarzschild-de Sitter space-

time with the gravitational mass 〟 =0.2〟crit, which is
0.92×4tt H . This reason is simple because the CAH

for>o>H exists between two bridges while that for

ro<0.92　H x encloses two bridges. For 0.92

H-'<ro<H-　we could not find the CAH centered at

the origin numerically. We may understand this

di缶culty because the regions enclosed by the CAH for

ro<0.92 H are topologically different from that for
,>H-l

In the case of 〟-0.7〟　　the proper area of the

CAH centered at the origin is constant and equal to that

ofde Sitter space-time as long as ro≧H . However, as

expected from the one bridge case, once ro<O.68 H ,

the CAH centered at the origin disappears. The CAH

surrounding each bridge also vanishes for ro <0.44 H

or equivalently for m>0.737Mcrit. In the case of

〟 =2.0〟　　the CAH enclosing each Emstein-Rosen

bridge does not exist, while that centered at the origin ap-

pears as long as ro>0.42 H-l

Here it should be noted that when ro>H~ , theproper

area of the BAH and CAH enclosing each bridge almost

agrees with those of the one-Einstein-Rosen-bridge case.

Furthermore, with this separation, the proper area of the

CAH centered at the ongln is almost the same as that of

de Sitter space-time. Hence, each Einstein-Rosen bridge

is regarded as an isolated system ifro > H

3. White-hole apparent horizon

For completeness, we also analyze a WAH. We show

the proper area of the WAH for the cases with

M=0.lMcrit and ofM-0.7Mcrit in Figs. 10 and ll, re-

spectively, with respect to r。. In the case of

M=?2.0Mcrit, there is no WAH. In Fig. 10, the dashed

1 10"

3209

M=0.1M,

0.05 0.1

ro/H・l

FIG. 10. The proper area of the WAH for M=0.lMcri, is

plotted with respect to lo/H~　The solid line denotes that of
the WAH enclosing two bridges, while the dashed line corre-

sponds to that of the WAH enclosing each bridge.

line denotes the proper area of the WAH enclosing each
bridge and the solid line corresponds to that of the WAH

enclosing two bridges.

The WAH enclosing each bridge is the BAH for

asymptotic observers in 5] and S2- In the case of

M =0.7Mcrit, the WAH enclosing each bridge vanishes

at r0-8・3×10~　H , when the proper area is about

0.29×4tt H . The gravitational mass for the asymptot-

ic observers in S, or in S-, is m-0.9SMrrit for

ro空8・3×10~2H~ Inthe caseofM-0.1Afcrit, wealso

expect that the WAH enclosing each bridge disappears

for m -Mcrit, i.e., ro二ご1.07×10-3 H-1, but we could

not con負rm it numerically because of such a small sepa-

ration.

AwH/47tH-2

M=0.7M,.

0.5

ro/H-i

FIG. ll. Same as Fig.隻but for M=0.7Mcri。- As in the case

of BAH, there is no WAH enclosing two bridges.



KEN-ICHI NAKAO, KAZUHIRO YAMAMOTO, AND KEI-ICHI MAEDA 47

FIG, 12, We show the relation between the critical separa-

tion rcrit, at which the BAH enclosing two bridges app甲rS丘rst,
and the gravitational mass M. For M > 0.35Mcrit, rcrit decreases
as M increases. The maximum value of rcrit turns out to be
-0.025 H~1_

Critical separation

We shall estimate numerically the critical separation

rcrit such that the BAH surrounding two Emstem-Rosen

bridges disappears for '"o>''crir ln Fig- 12, we show

rcrit/H with respect to the gravitational mass M/Meiit.

In the case of the asymptotically flat space without

A,rcrit=0.766M [14]. This means that the large gravita-

tional mass produces strong gravity, by which the BAH

enclosing two massive bridges appears even for a large

distance. On the other hand, in our case with nonvamsh-

ing A.yrcTit does not monotomcally increase with respect

to Mbut has a maximum value at M-0.35Mcrit. Hence,

Abh/4tiH-2

M/.VL

FIG. 13. The proper area of the BAH enclosing two bridges

with ro=rcri。 is plotted with respect to Mby the solid line. The

dashed line denotes the proper area of the one-Emstein-Rosen-

bridge case.

0.2　　　　　　　0.4 0.6　　　　　　0.8

H/H,cri t

FIG. 14. For批ed M, we show the relation between rcrit and

H/H~,, where Hc. …1/(γノ27M)・ The critical separation

monotonically decreases with respect to H/HcTk.

it seems that the Einstein-Rosen bridges with a large

gravitational mass are hard to coalesce with each other to

form a black hole ifA exists. In Fig. 13, the proper area

of a BAH surrounding two Einstein-Rosen bridges with

is plotted with respect to M/Mcriv as shown by

the solid line. The dashed line corresponds to that with

ro=O, i.e., that of the one-Einstein-Rosen-bndge case

with Mt　-2M. It should be noted that the proper area

of the BAH with ro=rcrit is always larger than that of

the one-Einstein-Roserトbridge case with the same 〟t。r

In Fig. 14, rcrit/〟 is also plotted with respect to

H/Hcrit for fixed M, where i/crjt…l/(v27Af). As ex-

pected, the critical separation rcrit monotomcally de-

creases with respect to H/H^it. The cosmic expansion

0.2　　　　　　　0.4　　　　　　　0.6　　　　　　　0.8

H/Hcrii

FIG. 15. The proper area of the 】〕AH enclosing two bridges

with ro-rcrit is plotted with respect to H/Hcck by the solid line.

The dashed line denotes the proper area of the one-Einstein-

Rosen-bridge case.
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due to A seems to prevent two bridges from coalescing

with each other and forming one larger black hole. In

Fig. 15, the proper area of a BAH surrounding two

bridges is plotted with respect to H/HcTit with

while the dashed line denotes that of r0-0, i,e., that of

the one-bridge case. In this case with large A, the proper

area of a BAH with ro=rcrit is also larger than that of

the one-bridge case with the same Mtot, although it be-

comes the opposite for small Ajust as in the A=O case.

IV. SUMMARY AND DISCUSSION

We have presented iV-Emstem-Rosen-bridge solutions

in the space-time with a cosmological constant and ana-

lyzed three types of apparent horizons for one- and two-

Einstein-Rosen-bridge cases. The one-Einstein-Rosen-

bridge solution corresponds to a spacelike cross section of

the Schwarzschild-de Sitter space-time and brings us im-

portant insight into the features of our present problem.

The global structure of this space-time depends on M.

When M <Mcrit, there is a black hole with a cosmologi-
cal event horizon.- On the other hand, if M≧Mctit, this

space-time does not have a black hole but does approach

de Sitter space-time asymptotically locally assuming that

the space-time is initially expanding. Correspondingly a

BAH and a CAH exist in the case of M<Mcrit, while

both the　王BAH and CAH disappear in the case of

M>Mcrit. When M=Mcrit, the BAH and the CAH
coincide with each other.

In the case of two Emstein-Rosen bridges, the ex-

istence of the BAH or the CAH essentially follows the

same criterion of one-Einstein-Rosen-bridge case. The

BAH enclosing two Emstem-Rosen bridges does not exist

when the total mass 〟 is larger than 〟crit even if the

distance between two bridges is very short. In fact, the

critical separation rcrit, such that the BAH surrounding

two bridges disappears for the separation ro > rcrit, has a

maximum value ro-O.O25 H at M-0.35Mcrit, beyond

which rcrit decreases. Furthermore, the CAH enclosing

two bridges also disappears in this case. Hence, unless a

part of the total mass is released in some way (e.g., by

gravitational radiation), it seems impossible for two

Einstein-Rosen bridges with a large mass to coalesce with
each other and form one black hole.

Although, in this paper, we have analyzed the apparent

horizons under the condition of a uniformly expanding

background, we can also find the analytic solution for N

Einstein-Rosen bridges with a cosmological constant un-

der the condition of a uniformly collapsing background;

i.e., imposing the condition for the initial hypersurface,

K/-H8j　　　　　　　　　　　　　　　　　(4. 1)

we can obtain the same intrinsic metric as Eq. (2.8), but

the direction of time evolution is downward in Fig, 2.

Hence, all of space-time collapses into a singularity in the

case ofM ≧Mcrit, while for M <Afcrit, a black-hole singu-

lanty appears as m the uniformly expanding background

case. Although we can discuss the apparent horizons in

this case, it may not be so interesting from the point of

view of the cosmic no hair conjecture.
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The examples we have shown here are just initial data;

however, from the analysis of these data, we may get

some physical insight about the dynamics of inhomogene-

ous space-time with a cosmological constant. One of the

most important conjectures, which we find from the

present analysis, is that there is an upper bound on the

areas of apparent horizons in space-time with a cosmo-

logical constant: i.e.,

A ≦ 4-n-H-2.　　　　　　　　　　　　　　(4.2)

In fact, we can prove that the inequality (4.2) is true for

initial data with KJ=‡K8台where K is a constant 【13].

We can also conjecture that the area of event horizons in

a stationary space-time also has the same bound, This is

true for a static space-time with A single cosmological

horizon [15〕 We can also prove the black-hole area
theorem in de Sitter background 【13】. The area of the

black-hole event horizons must increase in time just as in

the case of asymptotically且at space-time. Suppose that

the Universe approaches a stationary space-time. There

is, then, likely to exist an upper bound also on the black-

hole event horizon in de Sitter background, i.e.,

ABH≦4i7 H . This fact with the above area theorem,

hence, yields the following expectation: Black holes in de

Sitter background cannot coalesce with. each other

beyond the critical area of the event horizon, resulting

that many small black holes still remain in de Sitter back-

ground.

This expectation brings us to a desirable in負ationary

scenario in inhomogeneous space-times as follows. Initial

inhomogeneities collapse into many small black holes, the

areas of which are bounded as ABH<4汀H~　but not

into large-scale inhomogeneities which may prevent the

global portion of the Universe expanding exponentially, if

the cosmic censorship hypothesis is true. These small

black holes are harmless in an m負ationary scenario, be-

cause they will not only be diluted away by the exponen-

tial expansion of the Universe but will also be evaporated

away soon by Hawking radiation. [The typical mass of

the black holes is - 10　g for grand unified theory-scale

vacuum energy.] In order to confirm this scenario, the

research concerning the above discussion is now m pro-

gress.
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APPENDIX A

By the use of the Schwarzschild coordinates, the

metric of the Schw隻rzschild-de Sitter space-time is wnト
ten as
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ds2--CdT*+C-1dR2+RHd8>i+sin2od甲;),(Al)

with

c-i一票-H*R2p2(A2)

where〟isthegravitationalmass.

AstheSchwarzschildspace-time,C-0givestheposi-

tionsofeventhorizons.However,theredoesnotexista

positiverootofC-0ifM>Mcrit=1/(V27H).Onthe

otherhand,inthecaseof〟≦〟criHweobtainthefol-

lowingpositiveroots:

2RB=五百cos[y(ir+arctanγ′ゥォ>].

(A3)
2
Rc=盲冴os【Mir-arctanvcoe)]

where

r&m
21MZH

2tj2

__1 (A4)

It is always true that RB≦R, RB-RC[-3M) is real-

ized if M-M^. The Penrose diagrams for

〟<〟crif〟-〟　t, and〟>〟　aredepictedin Figs.
2(a), 2(b), and 2(c), respectively. In the case of〟 <〟crit>

RB is regarded as the position of the black-hole event

horizon, while Rc is the position of cosmological event

horizon for timelike observers along R -const lines.

In the case of 〟<〟crit, there is the static timehke

Killing vector and hence the Penrose diagram has a

reflection symmetry with respect to the timelike.direc-
tion. On the other hand, since there is no static timelike

Killing vector in the case of 〟>〟crit, we should intro-
duce a direction of the time evolution, in order to discuss

the causal structure. Our initial hypersurface (3.2) is em-

bedded in the Schwarzschild-de Sitter space-time as de-

picted by the thick solid line in Fig. 2 and the direction of

its time evolution is upward in this figure due to the con-

dition of the uniformly expanding background universe

(2.4) [16]. Along this direction, the black-hole singularity

is formed for M < Mcrit, while the space-time approaches

the de Sitter space-time asymptotically and a black-hole

singularity does not appear in the case of 〟≧〟crif

Hence, in the case of 〟≧〟criいthere is no black-hole

event horizon. However, it should be noted that there is

always an event horizon for any observer along a timehke

curve A., which is de丘ned by the boundary of the causal

past of入, i.e., J'九) [17], but, in general, this does not

agree with the apparent horizon, in particular, for

dynamical problem.

APPENDIX B

We assume the topology of the apparent horizon is g2・

As long as the deviation of the shape of the apparent hoト

47

izonfromasphereisnotsolarge,thissurfaceisex-

pressedas

r-r{8),(Bl)

wherer-r{8)isassumedtobeasingle-valuedfunction.

Thentheequationfortheapparenthorizonβ士=Ois

writtenas

豊-A:dr

d6dd+A,dr

dd十(士*o>
B2

where

(士A。-2r(l+2r『1∂,+)芋2HN

,4,---cot0-4f-1∂o車,

^,-r~'(3+4r車Il∂rl>)

^3--サー~2(coto+4^-1a9^) ,

withN-rrl>-l r2+軒/2

B3)

(B4)

B5

B6)

(B7)

Here l+)Ao is taken forp+-0 and l Mo forp--0.
Since our system is axisymmetric, the boundary condition

is imposed on the symmetric axis as

霊-0 at8-Oand汀　　　　(B8)
we solve the above equation iteratively by the use of

the finite difference method. However, there is no solu-

tion or no unique solution under the above boundary con-

dition. As pointed by Sasaki et ah, in order to overcome

this difficulty, we add a certain term to both sides ofEq.

(B2):

霊+wor-A3酎+A2酎
+A,

_I.II: r

+ Ao+wQr　　　　(B9)

where wo is a constant.

For the case of one Einstein-Rosen bridge, there are

two positive roots rl and r2 forp--0 and-there are also

two positive roots r3 and i?4 for p+-0. Hence, if we

solve Eq. (B9) by the iteration method with fixed wo, we

can obtain one of two roots for p--0 or for p+-0.

Consequently, if we take Uo>0, we can obtain-rl and r4,

while we choose wo<O in order to get r2 and r3. In the

case of two Einstein-Rosen bridges, we can obtain the ap-

parent horizons corresponding to those for one-Einstein-

Rosen-bridge case by the appropriate choice of wo.
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