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The statistical distribution of baryon-number且uctuations, which may provide a proper initial condi-

tion for the minimal isocurvature scenario, is carefully investigated both analytically and numerica】ly・

For fluctuations associated with power-law inflation, we find that the distribution is highly non-Gaussian

on scales of pregalactic star formation while it is Gaussian on scales of large-scale structure. On the oth-

er hand, in the pure de Sitter universe, it is shown to be Gaussian on any astrophysical scale. It is also

discussed why the Gaussian nature appears in these models.

PACS number(s): 98.80.Cq, 98.60.Ac

I, INTRODUCTION

One of the most important problems in cosmology is to

explain how the observed cosmic structure was formed.

Many ideas have been proposed on the origin of large-

scale structure. Unfortunately, however, we have been

unable to single out the correct model among them due

to the lack of accurate observational data that should

determine the fun軸mental parameters, such as the Hub-
ble parameter, the density parameter, or the cosmological

constant, not to mention the mam ingredient of matter

contents. In this situation, taking both merits and de-

merits of each scenario into account, Peebles and Silk m
concluded that the cold-dark-matter scenario in the

in月ationary cosmology [2】 and the minimal baryon iso-

curvature scenario in a low-density u】inverse surpass oth-

er candidates at present.

The initial condition for the standard cold-dark一matter

scenario is an adiabatic fluctuation with a scale-invariant

spectrum that is predicted by typical m鮎tionary models.

Although its mitial col1dition is well motivated, it as-

sumes arti丘cial biasing, whose physical mechanism is yet

unclear, in the process of galaxy formation. Moreover,
this scenario has other serious difficulties such as too

large velocity dispersion on small scales [3J. It is also

difficult to reproduce very-large-scale structure on scales

over 100 Mpc [4] without contradiction to the observed

amsotropy of the cosmic microwave background (CMB)

radiation on the large scale [5】.

On the other hand, the minimal isocurvature scenario
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[6] proposed by Peebles attempts to explain structure for-

mation on a purely phenomenological basis in a low-

density universe, which is supported by recent observa-

tions [7J. Such a low-density universe may be dominated

by baryonic matter since i1 -0. 1 is marginally consistent

with the value allowed by the primordial nucleosynthesis

argument [8]. This scenario is attractive because the

cosmic structure is formed only by the matter whose ex-

istence we know, i.e., the baryon and the radiation. How-

ever, it assumes very ad hoc initial density fluctuations,

namely, isocurvature nuctuations with a steep spectrum.

Having less power on large scales, this scenario can be

consistent with the observed large-angle isotropy of CMB

[91. 0n small scales, the large amplitude of isocurvature
fluctuation allows star formation soon after the recom-

bination of matter. Presumably these stars reionized the

medium in the universe and as a result the small-angie

anisotropy of CMB was smoothed out through diffusion

in the plasma, though the reionization mechanism is not

well analyzed. Still more, a nice feature of large-scale

coherence in the peculiar velocity伝eld can be obtained

10,ll. In this ＼vay, the minimal isocurvature scenario

seems successful.

Recent】y, Yokoyama and Suto [10] and Sasaki and

Yokoyama [12] have shown that it is possible to provide

the baryon isocurvature月uctuations with a spectrum ap-

propriate for the minimal isocurvature scenario in the

context of inflationary cosmo一ogy, based on a mechanism

of baryogenesis in which baryon-number月uctuations are

generated through the soft CPviolation induced by a spa-
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tiallyvaryingpseudoGoldstone丘eld[15].Wenotethat

alow-densityuniverseiscompatiblewithinflationifthe

cosmologicalconstantisnonvanishing.Inparticular,

SasakiandYokoyama【12]havepresentedarigorousex-
pressionforthebaryonpowerspectruminthepower-law

inflationarybackground[13,14].Intheirmodelthepseu-

doGoldstone丘eldisidentifiedwiththeMajoron丘eldas-

sociatedwithaheavyMajoranalepton.Thecoherent

Majoronfieldisgeneratedintheinflationaryera.The

spectrumofthebaryon-numberfluctuationwasfoundto

bealmostscaleinvariantonsmallscalesandwhite-

noise-typeonlargescales,whichisexactlywhatone

needsfortheminimalisocurvaturescenario.
Ingeneraltheadiabaticdensityfluctuationinducedby

theinflatonfieldhasaGaussianrandom-phasedistribu-

tion.Ontheotherhandthebaryon-number負uctuation

predictedin[10,12]hasanon-Gaussiannaturebecauseit

...・-i.i・_*:er^^,,^^;。サ,^^^K。Kil_isgivenbyasinusoidalprojectionofaGaussianprobabil-

ityvariable.Thismay.havesignificantcosmologicallm-

plications.
Inthispaper,weinvestigatethepropertyofthe

baryon-numberfluctuation-byusingbothanalyticaland

numericalmethods.Inparticular,wesimulateitsproba-

bilitydistributiononvariousscalesinbothconfiguration

andFourierspacesusingtheMonteCarlomethod.To

dothisweconsidernotonlyafullythree-dimensional

modelbutalsoaone-dimensionalmodelthatreproduces

alltheessentialpropertiesintheoriginaltheorysuchas

correlationfunctions,sincethelatterallowsalarge

enoughdynamicrangeofscales.
Therestofthepaperisorganizedasfollows.InSec.

II,wereviewthepreviousresultsonthebaryon-number

fluctuationgeneratedthroughtheaforementionedmech-

anism.Adetailedstudyoftheprobabilitydistributionof

thebaryon-numberfluctuationinthepower-law

inflationarybackgroundisdescribedinSec.III.Thecase

ofpuredeSitterinflationisdescribedinSec.IV.Section

visdevotedtodiscussionandtheconclusion.

II.POWERSPECTRUM
OFTHEBARYON-NUMBERFLUCTUATION

Following[12],weconsiderthebaryon-numberflue-

tuationgivenby

B(x)-Btsin困(2.1)

whereA(ズ)istheMajoranfieldand/isitsassociated

massscale.AssumingA(x)tobeaneffectivelymassless

freefieldbyimposingsomesymmetry,onemayexpress
thepowerspectraofbaryon-number月uctuationsinterms

ofthetwo-pointcorrelationfunctionofA(x).Inpartic-

、ular,inthecaseofpuredeSitterbackgroundorpower

lawinflationarybackground,theexpressionmaybe

analyticallyevaluated.Wereviewtheseresults[10,12,16]

brie月y.
ThemetricofpuredeSitterspacetimemaybeex-

pressedas

ds2--dt2+a(t)2dxl(2.2)

wherea(t)-eHlisthescalefactorwithHbeingtheHub-
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bleparameter.Thefree丘eldA(x)isdecomposedas

A(x,-f器[QkAk(r])exp{ikx)

+合IAAり*exp(-ikx)}(2.3)

whereかandかaretheannihilationandcreationopera-
tors,respectively,andwehaveintroducedtheconformal

time-q,de丘nedbydり-dt/akt).Themodefunction

Ak(-q)isdeterminedfromthefieldequationintheex-

pandingbackground,anditcanbesolvedunderasuiト

ableboundarycondition

1/2

Ak(T])-7H(-v)i/2x{}l}2(-kv)-空2.4)

whereH¥l)2isthe(3/2)thHankelfunctionofthefirst

kindandthelastapproximationis」UStl丘edif-kt]ォ¥.

Theequal-timetwo-pointcorrelationfunctionofA(x)is

givenby

(A{r,rj)A(0,i))/f2)

-信くk。V盈Ak(7])¥2exv(ikr)/f2

- 2β1n ÷kIR回 (2.5)

where k,R is an infrared cutoff, kvv is an ultraviolet

cutoだwhich corresponds to the horizon scale, and

β≡H2/&n2f2. Following the prescription in [12] (see

also Appendix A), we can get the two-point correlation

function ofB(x) as

B¥

(B(r,ri)B(O,r]))=丁

Then the power spectrum of'B(x) is given by ′

p.Blk,T}):- Jd3r(B(r,V)B{0,刀)).-ikr

sin( l -/?hr

2(1-0)

-(2汀度締12β

r0-2β)

(2.6)

(for j8ォl)　(2.7)

Thus it has no characteristic scale except the horizon

size.

On the other hand, in power-law inflation, the metric is

given by (2.2) with the scale factor proportional to

rl+" (n >o). In terms of the conformal time17, the scale

factor and the time-dependent Hubble parameter are ex-

pressed as

l

α(7,)=

H[rt)=

-H,vr十1fn

HA-Htり¥/n

(2.8)
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whereH♯ is a constant, andthe mode function A^り) as

Ak(V)=

1/2

H(V)
vie/2

H(i})卜7?)3/2叫%+l/nl -kv)

l/ォ　　f/1+1/〟

v'2fc3/2+ 1/"
(2.9)

where we have assumed nサ1. The two-point correla-

tion function of A (x) is then expressed as

( A lr,^)A(0,7})/f2)-乃β(77) 1′〝潮/午
2.10

where r。 corresponds to the infrared cuto斤/CIR; and ¥r}¥

to the ultraviolet cutoだkUIJ, which is essentially equal to

the horizon scale. Similar to the case of pure de Sitter

background, β(t]) is defined by β(Tj):-H2iv)/&v2f2.

The expectat、ion value ( A(0,vY-) is regularized at the
horizon scale as

( A (0,vY/f2)空nβ(7)

-2/n

PBW-

nk-

nB'

A:3

enβ 'Jl

I' '、-

÷

国

for kサkr

for kォkr
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Note that we are interested in the range nβ(V)≦ 1 from

the cosmological point of view [12,16]. The same pro-

cedure in the pure de Sitter background can be used to

伝nd the power spectrum of the baryon-number nuctua-

tions. The two-point correlation function ofB (x) and its

spectrum are expressed as

B'

(B(r,り)B(0,刀))=TexP
np(7])1-　¥/n

2.12

and

pB(k,vy一票,1/3(1/)J dsssinsexp 1/n

豊eno{^J{n,k)　(2.13)
where k :-[nβ(V)] Av¥-　The function J(n,k) has

different asymptotic forms on the different sides of kc,

and the power spectrum PB(k,刀) takes the following

form in the two asymptotic regions:

(2.14)

Thus on the small scale ikサkc) the spectrum of fluctuations is almost scale invariant, while on the large scale

(kォkc) it is white noise. As discussed in [12], the power-law index ofn空10---20 may provide an appropriate initial

condition for the minimal isocurvature scenario.

III. PROBABILITY DISTRIBUTION IN POWER-LAW INFLATION

A. Analytic properties

First we consider a pointwise probability distribution of B (x). The probability distribution of A (x) at a given spatial

point pi, A (x)) is Gaussian with the average equal to zero and the variance equal to ( A{xY). The probability distribu-

tion ofB(x) at a given spatial pointp(B{x)) is given by

p(B(x))-j二dA
トA2/2(A(xY)]
[27T( A (x)2)]l/2

1

6(B♯sm(A//卜B(x))

∑ exp(蝣‖-1)"arcsin[fi(ズ)/Bt]+n可2/2(A.(ズ)2//2)) ,
lB上B(x)211/2[2rr( A (x)2/f2)]1/2 ′急

where we have used an identity &(g{x)}-∑′,,5U -x,,)/¥g'(ズ′誹with x′了s being the zeros ofg(x). Since Eq. (2.ll) is

rewritten as

(A(x)2//2)空

we find ( AixV/fl)サ1. In thislimit, thesummation ofn in Eq. (3.1) can be approximated by an integral toyield

p(B(x))= n[B上B{x)211/2

3.2

(3.3)

which has sharp peaks at B(x)-±Bt. Thus the probabi一ity distribution of B(x) at a given spatial point differs sub-

stantially from a Gaussian distribution.
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The distribution derived above describes the property of the fluctuation at a single spatial point that disregards the

correlation in the neighborhood of the point. In order to investigate the spatial correlation, one needs to know the sta-

tistical properties of the Fourier transform of B iズ),Bk

For small scale (kサkc ), we may separate the long- and short-wavelength parts of A (x) as

A(x,ti)-J叫盈脚(-(ifcc)+H.c.]+ fk <¥k¥<k,悪評Ak(T])exp(ikx)+H.c]5

-:A(x)L+A(x)s
(3.4)

where ks is an arbitrary scale with ksサkc. Since Eqs. (2.ll) and (3.2) yield ( A(x)主/f2)-{kc/ks)2/nォ¥, 5(x) may
be expanded as

B(ズ)-5サsin 二二!ォ蝣二
/

=」.sm

空Btsm

A(x),

∫

A(x),

, ∫

where B{x)s is regarded as a small-scale fluctuation

around a large-scale background value B(x)L. The spa-

tial variation of A (x)L/f over the scale ¥/ks is estimat-

ed by the expectation value

慧'/')-x*IR<!*!<*,
l

n 旧
>Wi岨

d}k A,

(2tt)3　f2　k;

ォ1　　　　　　(3.6)

while the distribution of B(x)L itself is highly non-

Gaussian as given by Eq. (3.3). Thus given a spatial point
x, the distribution of the mean value ofB(ズ), is highly

non-Gaussian but the fluctuation of it in the neighbor-

hood of radius r-¥/ks {ォ/kc) has almost the same
Gaussian nature as A{x)s/f. This leads to

BL,-BtAk/ffovkサkc.
For large scale {kォkc), since small-scale fluctuations

of B(x) are irrelevant, a spatially averaged丘eld should

give the information of the fluctuation. We dehe such a
丘eldby

B(x,ra)=
J diyB[x-y)9(ra-lx-yE)

} d3y8{ra-ズー.vl)

(3.7)

where 9(x) is the step function and ra is the averaging

scale. In fact, this field is composed of the superposition

ofBk satisfying k≦rn '. We note that B[x言77l)-fi<ズ)

because of the ultraviolet cutoff at the horizon scale.

From Eq. (2.12), the two-point correlation damps ex-

ponentially beyond the correlation length rc-¥/kc. As

for the four-point correlation function, it also damps with

the characteristic correlation length rc (see Appendix A).

Physically we expect that all the n-point correlations also

damp with this characteristic length rc in general- Thus

for raサrc, B(x,ra) becomes an average ofa large num-

ber of almost-independent probability variables. There-

fore, from the central limit theorem, we expect that the

probability distribution of B(∫,ra) will approach a

Gaussian distribution. This mutual independence of

B{x) on large scale also explains the reason why the spec-

・5-cOS厚s-辛
-:B{x)L+B(x)s ,　　(3.5)

trumbecomeswhitenoisethere_asgivenbyEq.(2-14).

Ontheotherhand,forra空B(x),andthe

probabilitydistributionofB(x,ra)willapproachEq.

3.3.

B.Numericalmodel

Fortheintermediatescale(k-kc)betweentheabove

twoextremecases,wenumericallyinvestigatetheproba-

bilitydistribution.Ournumericalmethodisbasedonan

observationthatafieldconfigurationofA(x,tj)with

fixedtime77canberegardeda

cesswithakandakbeingtb霊aussianrandompro-

d。m-phaseGaussianprobabilityvariables.ThedetailisdescribedinAppendix

B.Thenthebaryon-numberfluctuationB(x)iscalculat-

edfromEq.(2.1).CalculationoftheFourierintegralis

donebyusingthefastFouriertransformation(FFT).

Theratiooftheinfraredcuto斤'andtheultraviolet

cuto汀,,N…kia/kw,islimitedbytheavailablenumber

ofgridpoints.AlthoughwecangeneratetheFourier

modesofA(x)withink}R<k</cuv,theFouriermodes

ofA(x)outofthisrangemaybeessentialforthoseof

B(x)ink,R<k<kvvduetothenonlinearnatureof

B(x)in(2-1).Inpreliminarythree-dimensional(3D)nu-

mericalsimulations,wecouldnotrecoverthepower

spectrumofthetwo-pointcorrelationfunctionofB{x).

Thisdiscrepancywasduetothelackofasufficientnum-

berofgridpoints(inourpresentmachine,.onlyiV-64is

available).Therefore,inthissection,weanalyzeaone-

dimensional(ID)spacemodelthatsupposedlypreserves

theessentialfeaturesoftheoriginal3Dtheory.

WetakeaIDmodelinwhichthetwo-pointcorrela-

tionfunctionofA(x)hasthesameformasintheongi-

nal3Dtheory,i.e.,(2.10).Sinceallthen-pointcorrela-

tionfunctionsofthefreefieldA(z)aredeterminedbythe

two-pointfunction,allthecorrelationfunctionsofB(x)

intheoriginaltheorycanbereproducedintheIDmodel

bythisprescr】ption.Inthissense,ourIDmodelisthe

sameasanalyzingtheful3Dtheoryalongaline.
ThemodefunctionA上intheIDmodelcanberead

offfromtheintegralformofthetwo-pointcorrelation

functionofA(x)inthe3Dtheory,Eq.(2.10).Them-
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frared behavior (k-*0) of Ak in Eq- (2.9) determines

14"
#!'

l+l/n

γ/耳蒜.1/2十l/n
3.8

ItcanbeshownthatthismodefunctionintheIDmodel

(3.8)givesthetwo-pointcorrelationfunctionwhosebe-

haviorisidenticalwiththatofA(∫)inthe3Dtheory

(seeAppendixC).

Thespectrumofthe丑uctuationsintheIDmodel
nn<*,りisgivenby

pi
Bl)(k,rlh-f_xdx(隼↑])B(O,T]))e-ik.ズ

B2

--ie'"3(7')f--cfscossexp
kJ。日2/n

Bi-(1)(n,k)(3.9)

Herewehavede触edafunctionJ(n,k)inanalogywith

Eq.(2.13).Asinthe3Doriginaltheory,thefunction

J(n,k)hasdifferentasymptoticformsonthedifferent

sidesofkc,wherethepowerspectrumPB(k,rj)takesthe

form

for kサkr

for kォk-

pム¥k)- 3.10)

Compared with Eq. (2.14), similar properties of the spec-

trum are also manifest in this model. Hence we expect

that basic features of the fluctuationl will be understood

with this ID model.

C. Numerical results

For the ID model described in the above subsection,

we have carried out simulations with N-10. The

power-law index of the scale factor has been taken to be

〟-6. As a check of our numerical scheme, we have

evaluated the two-point correlation function ofB (x) and

its spectrum, and compared the numerical results with

the analytic ones. We show the two-pomt correlation

function in Fig. 1 and the spectrum in Fig. 2. As is seen
there, our numerical scheme works well.

We have investigated the probability distribution

p{B(x,ra)) as a function ofB(x,ra) defined by Eq. (3.7)

for various values of the averaging scale ra. The proba-

bility distribution is depicted in Figs. 3(aト3(d) for several

typical values of ra in units ofrc. To exhibit the degree

of deviations from the Gaussian distribution clearly, the

horizontal axis is rescaled so that the variance is equal to

unity, and the vertical axis is rescaled so that the area of

each distribution function is unity. According to the nu-

mencal results, the probability distribution of B(x,ra )

changes its feature drastically when ra crosses rc

In Fig. 2, we have indicated the wave number

k -2汀/ra corresponding to each ra of Figs. 3(a)-3(d).

Comparing the averaging scale indicated in Fig. 2 with

0.0　　　　　0.0　　　　0.2　　　　　0.3　　　　.　　　　0.4　　　　,5

FIG. 1. Two-point correlation function of B(x) in the ID

power-law in鮎tion model. The model parameters are chosen as

n -6 and β(77)-0.01. The dashed line is the analytic expres-
sion (2.12), and the solid line is the numerical result. The hor-

izontal axis is normalized by the box size L, where the periodic

boundary condition is imposed, and the vertical axis by 5*.

The gridnumber is taken tobe〃-105・

the corresponding distribution function, we丘nd the dis-

tribution becomes Gaussian Just when the power spec-

trum becomes white noise at kォkc or rサrc. Vanish-

ing of the correlation on large scale gives rise to the

white-noise spectrum there. At the same time, it also

makes the distribution Gaussian by the central limit

theorem. The above"picture was also confirmed in the

case of the power indices of inflation n =4 and n =8.

,I

]

1

i
I

、j

LJ
0.001　　　0.0 1　　　　　　　　　　　　　　　　　〔　　　　　　　　　　1000

m、-

FIG. 2. FunctionJ当n,k) asa function ofk/kc. The model
parametersare the sameas in Fig. 1. Thesolid lineistheresult

ot the ID Monte Carlo simulation, while the dashed line is that

of numerical integration ofEq. (3.9). The large deviation at the

high-frequency side is due to the爪mte-volume effect・ The ar-

rows (aト(d) indicate the 、vave numbers corresponding to the

averaging length scales of the probability distribution

p(B{x,ru)) shown in Figs. 3(a)-(d).
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0.1
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ー4.0　　-3.0　　-2.0　　-1.0　　0.0 i.0　　　2.0　　　3.0　　4.0

B(∫.rd

0.8

0.7

0.6

6:5

0.4

0.3

0.2

0.I

0

-4.0　　　-3.0　　　-2.0

FIG. 3. Probability distribution p(B(x,ra)) of the baryon-number fluctuation averaged over the same ra in the power-law

inflationary background. The model parameters are the same as in Fig. 1. The averaging scale ra is taken as (a) ra-2rぐ, (b) 19rぐ, (c)

nor and (d) 680/v The horizontal axis is rescaled so that the variance is equal to unity. The actual variances are (a)

0-S:=　くB(x)1)/B¥]l/2-0.32, (b) 0.16, (c) 0.059, and (d) 0.0012. The vertical axis is also rescaled so that the area of distribution

function is unity. The dotted line in each伝gure shows the Gaussian distribution function that should be realized in the limit raサrc,

and the dashed line is the distribution function in the limit r　ォr。, given by Eq. (3.3).

We have also investigated the probability distribution

in the Fourier space. We have calculated the probability

distributions of the real and imaginary parts of Bk. Ac-

cording to the numerical results, each Bk seems to behave

just like a mutually independent random-phase Gaussian
variable within the Poisson月uctuation of the numerical

calculations, irrespective of the value of A:. IfBk had the

random-phase Gaussian distribution and if each Bk were

independent, the probability distribution of B{x) would
have to be Gaussian too. This contradicts the result in

the configuration space. Thus we conclude that the state-

ment that each Bk is independent is wrong and the non-

Gaussian properties are hidden in the higher-order corre-

lations of Bk. In fact it is impossible to have B(x)
bounded

-B言B(x)-嵩JBke'kxdk ≦B,  (3.ll)
without correlations among B了S・

IV. PROBABII.ITY DISTRIBUTION

IN PURE DE SITTER SPACE

A. Ana一ytic properties

In the previous section, we have shown in'terms of ID
numerical simulations that the statistical distribution be-

comes Gaussian on scale k <kc though the pointwise dis-

tribution of B(ズ) is highly non-Gaussian. Here we

present a complimentary analysis, namely, 3D simula-
tions in the pure de Sitter back鮮血nd・
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We note that the behavior of A(x) and B(x) has

several different features in this space time compared

with the case of poweトIaw inflationary background.

First, B(∫) has no characteristic scale such as kc. Its

power spectrum obeys a simple power law上船2
∝　-3+2,β as shown in Sec. II. Second, the nuctuations

of A (x) is scale invariant up to a logarithmic factor. Us-

ing the mode function (2.4), we丘nd

・A(xY,-志r>,iv*一芸Iil/V (4.1)
where N-kuv/kIK. As before, the ultraviolet cuto汀

p(B(x))-- (Bl-B2)2¥l/2
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kvv is naturally identi丘ed with the horizon scale:

km-W届　On the other hand, the choice of the in-
frared cuto汀klR depends on scales of one's interest. For-

tunately, however, the dependence of ( A (ズ)2) on A:IR is

only logarithmic and hence relatively unimportant as

long as Nサ1 is satisfied. Thanks to these two proper-

ties, we may extract essential statistical information of

B(x) even if the dynamic range of a simulation is small.

This allows us to perform a reliable fully 3D numerical

simulation with relatively small N. In addition, we can

easily generate various different realizations of the model

by choosing various values of β・

From Eq. (3.1), the pointwise distribution is given by

n?Z去exp耳(-1)"arcsin針　a:-V師　(4.2)
For　β≪1, it is almost Gaussian since we have

sin[A (x)/f]-A(・x)/f. Hence B(x] has the same sta-

tistical property as A (∫). On the other hand, for β-1・

p(B) is highly non-Gaussian:

p(B(x))=
tt[BI -B2(x)]1/2

(4.3)

Inthiscase,thepowerspectrumofBkissteeperthanthe

scale-invariantone;i.e.,thespatialcorrelationdamps

moresharplyasthelengthscaleincreases.

B.Numericalresults

Inthissubsectionwereporttheresultsofnumerical

simulationswithparticularemphasisonthescaledepen-

denceofthestatistics.Themethodofsimulationsisthe

sameasthatinSec.Ill(seeAppendixB).
Simulationshavebeendoneon1283gridsinFourier

space,correspondingtoN-128.Wehavecheckedifwe
canreproducethepowerspectrum¥Bk|fortwocasesof

β≪1andβ-1.Inbothofthesecases,thepoweト1aw

behavior¥Bk¥∝--3+2βwasverifiedexceptforasome

deviationobservedatk<20kIRinthecaseofp-1.

Thepointwiseprobabilitydistributionp{B{x))forthe

caseof/3-1CT3isshowninFig.4,for/3-0.02inFig.
5(a),andforβ-1inFig.6(a).Theresultforβ-,n-3in-10"
Fig.4isconsistentwiththeGaussiandistribution,asex-

pected.Ontheotherhand,intheothertwocases,

p(B(x))exhibitsastronglynon-Gaussianfeature.These

resultsagreewiththeanalyticformulawehaveestimated

intheprevioussubsection-Forcomparison,wehavealso

donesimulationswithN-64butfoundnomeasurable

differenceintheresults,Thisjustifiesourexpectation

thatareliablesimulationcanbedoneinthecaseofpure

deSitterbackground,evenwitharelativelysmallN.

AsinSec.Ill,wehavecalculatedthedistributionfunc-

tionofthevolume-averagedfieldonscalera,p(B{x,ra)),

Theresultsareshownforβ-0.02inFigs.5(b)and5(c),

withra-5¥尋andrn-20帖respectively,andforβ=l

inFig.6(b)withra-2回.Interestingly,asthe聖eraging

scaleraisincreased,thedistributionfunctionp(B(x,ra))

approachestheGaussiandistributionmorerapidlyinthe

caseofβ-1,forwhichthenon-Gaussianfeatureisongi-

nallystronger,thaninthecaseofβ=0.02.

Thisresultcanbeunderstoodbyconsideringthe

higher-ordercorrelationfunctionsofB{ズ),whichcanbe

estimatedbytheproceduresimilartoAppendixA.We

findthe2m-pointcorrelationfunctionindeSitterspace

timeas

ftBUj

v=i酬引β(4.4)

wherer..、,g、denotesatypicallengthofseparationbetween

x's.Thusthehigher-ordercorrelationsofB(ズ)decrease

morerapidlyasrisincreasedandtherateisfasterfor

largerβ・Thisexplainswhythespatiallyaveragedfield

」　　　-3.0　　-2.0　　-1,L)　(川

れ蝣t.'-flj

2.0　　　3.0　　　-LO

FIG. 4. Probability distribution ofB(x) in the pure de Sitter

universe, which is equivale-it to B{ズ,ra) with r。-巨汗The

model parameter is β-10-1 The grid number is N-±!283.

The normalizations of the horizontal and vertical axes are the

same as in Fig. 3. The actjリal variance is aB=0.324.
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ter universe with β-0.02. The averaging sea】e r〃 is taken as (a)
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FIG. 6. SameasFig. 5,but withβ-1. Theaveragingseale ra

is taken as (a) ra-¥-q¥ and (b) 2¥~q¥. The variances are (a)

aB-0.707 and (b) 0.250.

approaches a Gaussian random field faster for p- 1 than

for 0-0.02.

0n the other hand, for βォ1, the fluctuation ofB(x)

is intrinsically Gaussian as discussed previously. There-

fore the baryon-number fluctuation in the pure de Sitter

universe is always Gaussian on scales beyond a few nor-

izon lengths in the inflationary era, and consequently on

any scとIie of astrophysical importance.

V. DISCUSSION AND CONCLUSION

In the present paper, we have investigated the nature

of probability distribution of the baryon-humber nuctua-

tion B{x) generated at the inflationary era of the

universe, which is a sinusoidal function ofa free massless

field A(x).

In addition to analytical investigations that we have

done for some limiting cas芭ri we have carried out numen-



4214 YAMAMOTO, NAGASAWA, SASAKI, SUZUKI, AND YOKOYAMA

cal simulations to clarify the statistical properties of the

baryon-number凱actuation. Simulations have been done

by the Monte Carlo method, based on the observation

that the quantum field A (x) on　丘xed spacelike hyper-

surface can be regarded as a random Gaussian丘eld.

For the baryon-number fluctuation associated with

power-law inflation, we have considered a ID model in

place of the original 3D theory, in order to realize a

sufficiently wide dynamic range of Fourier modes. Our

ID model preserves all the essential features of the ongi-

nal theory such as the n-point correlation functions. We

have calculated the probability distribution on various

scales in the configuration space.

We have found on small scale [kサkc), where the

baryon-number spectrum is almost scale invariant, the

distribution is highly non-Gaussian. Since it is peaked

near at the聖aximum possible value o自B (x)¥, this model
may result in efficient formation of pregalactic stars,

which is desirable for the minimal isocurvature scenario

in which reionization of the medium is presumed.

On the other hand, on large scale (kォk ), where the

spectrum approaches white noise, the baryon-number

負uctuation is Gaussian. Thus the predicted amplitude of

the large-angle CM】〕 anisotropy calculated by various au-
thors, which is based on the Gaussian statistics and

which imposes presently the most stringent constraint on

baryon isocurvature models, is applicable to our model as

well.

For comparison and completeness we have also calcu-

lated the probability distribution for a fully 3D model,

but in the pure de Sitter background. Interestingly, it

shows A very different behavior from the case of power-

law inflation. In fact, the distribution rapidly becomes

Gaussian as the averaging length exceeds -20〃~1. This

is because in the pure de Sitter space time each loganth-

Hi

mic interval of length scale gives the same contribution to

the月uctuation of A (x) and it is ultraviolet divergent

without a cuto庁'. Hence the higheトorder correlation

functions decrease rapidly as the averaging scale in-

creases.

On the contrary, since the fluctuation of A iズ) is ultra-

violet丘nite in the power-law inflationary background, the

volume-averaged負uctuation of B{x) is dominated by

large-scale modes. Thus it is not until the power spec-

trum becomes white noise that the distribution becomes

Gaussian.

As is seen above, exponential inflation and power-law

inflation have very different predictions on the statistical

properties of the baryon-number fluctuations. We plan to

clarify if it is a generic feature using various functions

other than B(x).
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APPENDIX A

In this appendix, we derive a general form of the

equal-time 2m-point correlation function [17] of B(x) in

the power-law inflationary background and show that in

addition to the two-point function, the fouトpoint tune-

tion also damps with the characteristic length -rc・

Using sinx -(e'-e-[当/(2i), the 2m-point function of
B(x) can be written as

(善B(xj)酎抽exp!2(TjA{xj)/f

j=i(AD

wherea-takesthevalue+1or-1,andthesummationistakenoverallthecombinationsof

a-≡(0-いal>…,-lm^∈(±1,±1,...,±1).Fortheright-handside,wehave

exp/2(TjA{xj)/f=expはげi-k,(A(xj)A(xk)/fl)(A2)

bytakingthesourcefunctionofA(x)asj(x)-i∑?'",<xSU-x)/f[12].Inparticular,thetwo-pointfunctionof

A(x)isgivenbyEq・(2.10):

・A(xj)A(症/n一舶1/n璃11/′' 三g(ro卜g(rJL) ,
(A3)

where we have abbreviatedβirj) asβ and de缶nedg{r):-nβ 1/t) ) " and rjk:-¥xj-xk¥. By separating the summa-

tion in theright-handsideofEq. (A2) toj=kandj・^k, we have

(真*(*;)-酎2EKexp

a;=1「+-

j<kg(ro)+-g(¥T}¥)+2,ajcrkg(rjk)

j<k

(A4)
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wherewehavesetg(rjj)-g{¥rj|)sinceI17Iistheultravio-

letcuto庁inthismodel.ForasufficientlylargerO,we

haveg(ro)サ1.Henceonlythecombinationsofathat

satisfy

∑ojOk≦一m(A5)

i<k

willcontributetothecorrelationfunctionofB(x)inEq.

(A4).Howeveritcanbeshownthatforallpossiblecom-

binationsofa,wehave∑j<kアjak≡-mandtheequali-

tyholdsonlyforacombinationofawith∑jJIOy-0,

i.e.,amixtureofequalnumbersof+1and-1.ThusEq.

(A4)reducesto

llm
T¥BUi誓「

x号expォ/32

j<k<yi璃廿(A6)

wheretheprimemeansthesummationistakenonlyover
thecombinationsofawith∑]�"i<7--0-Notethatthe

dependence~on-theinfraredcuto斤r。disappearsinthe

correlationfunctionofB(x).
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For the two-point function (m = 1), Eq. (A6) gives

・B(x])B(x2),孝exp -n/3紺(A7)
and this exponentially damps with the characteristic

length rc:-¥りAnβ,n/2

For a general m, if the exponent in Eq. (A6) is shown

to be negative de触ite for any configuration ofXj, we may
expect that

C;
j<k禍1/fl (A8)

and all the 2m-pomt functions dump with a length scale

that is of the same order of rc. Here ravg is an average

length of Tjk's, and the factor m arises from the difference

between the number of combinations of (_/,k) with

ojOk--1;m, and that of (j,k) with ojCrk

=l;2mC2-m(m -1). Although the negativity ofノthe

exponent in Eq. (A6) is physically reasonable (otherwise

the correlation will diverge when the system is scaled up),

we have not yet found a convincing proof for this

For the four-pomt function we can show the negativity

of∑,くkajCrkrfk as follows. Inthis case, Eq. (A6) gives

・Bix^Bix,)-3)5U4)>-2誓]2軒茅1-2/n, 1/n. ,2/n- -4 ^r34 >
+exp

+exp

一叢ir]/

l"-r}in+r}i"+rli"-r¥i"+r¥i"

~,2/n.2/n
2324n-,2/n・
34蝣

Now,wewritetheexponentofthe丘rsttermintheright-

handsideofEq.(A9)as

-('<′72/n
14-.2/n
232/A-rl'^r24′-rr34つ-‡1/ni2/n-2/")+(n("+rY"-
2334㌫つ

+(ni"+r¥{H-r¥{n)+(r¥{"+r昔,2/7,
23)]

(AIO)

Thenwecanusethetriangleinequalityonflatspace;

f¥l+f¥≧r2i,etc.,toshowthenon-negativityofthe

termsinthesquarebrackets:r¥-,"+>-[("-r-Ti≧0,etc.

Thesamelogiccanbeappliedtotheotherexponentsin

Eq.(A9),anditiseasilyseenthattheequalitiescannot

holdsimultaneouslyforanyconfigurationof
xj{j-1,2,3,4).Thisimplies∑)く人aya2/;,
k'jk<Ofor
Jわ=72.Itisthennaturallyexpectedthatthefour-point

functiondampswithacharacteristiclengthoforderrc.

Forexample,ifwechooser[1-r[i-rTi-rxandr,

=r24=r34-/蝣・),thentheabovefouトpointcorrelation

functionreducestoaproductofthetwo-pointfunctions:

(B(xl)B(x2)B(xi)B(x4))

-nB(rl)B(0))<B(r2)B(0)).(All)

APPENDIX B

Irrthis appendix, we show that theequal-time distribu-

tion ofa free field A ix,rj) can be interpreted as a Gauss-

ian random process, in which the creation and annihila-

tion operators of A[x,rj) are regarded as the random-

phase Gaussian probability variables. Our Monte Carlo
simulations are based on this observation.

For our purpose, we start with a free scalar　員eld

A (x,rj) in ^-dimensional月at space, normalized in a box

O≦x,・≦L (i-l,...,q) with periodic boundary condi-

tions

A(x,ri)

-"享.L ,′享Iq/lけAk(V,
Xexp(ikmx)十H.c.上

(Bl)

wherex笥*....*' ′n=2w(m,,...,可/L,andJ〃

We consider a generating functional [17] for the equal-
time correlation functions
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Z[j;V]-Uxp^J^d"xAix^Jix)^. (B2)
In terms of the mode decomposition (Bl), the above ex-

pression reads

z[j;y]-Uxi>　合　Ak (7,)j」 +H.c.  (B3)

where

JkJ-岩万f dqx /(jc)exp(-ik-x).  (B4)
On the other hand, using the fact that A (x,r}) is a free

丘eld, i.e., the action is quadratic in Aズ,V), Eq. (B2) is

evaluated as

z[j;y]-exv 1 [Ld"x dqyj{x)( A、(x,7])A[y,i)))j{y)

=exp曹Ak (r))jk　　　　(B5)
Then we take a product ofEq. (B5) and unity:

I-I誓蛭exp-22当(B6)
where the integration measure dzdz /iri means

2dudv/it with z-u -iv. If we shift the integration

variables as

zm-zmr‡At (v)Jk LiJI

Eq. (B5) is rewritten in the form

z[j;v]-f n
†71

dzm dz芸

exp -2号Ez-当

(B7

×exp l^-Ak (-q)j左+C.C.) . (B8)

Comparison of Eqs. (B3) and (B8) shows that all the

equal-time correlation functions are reproduced by the

replacements

ak
J71

千

0ム　-Zふ,
JH

(「つ)-Jn
lTl

dzmdz*

B9)

exp -->喜甲・つ・
With the above interpretation, we can regard a

configuration of the field A(x) as a Gaussian random

46

J∂

process. Finally, if we set zm=rme m, the probability

measure in Eq. (B9) is rewritten as

-dz^dz霊=五里drldQ.
-2|z一

打　　　　　　　　　　　　　IT

(BIO)

ThustheabovedemonstrationshowsthatA(x)hasthe

random-phaseGaussiandistribution.

APPENDIXC

Inthisappendix,weestimatethetwo-pointcorrelation

functionofAn¥x)intheIDmodel,wherethemode

functionisgivenbyEq.(3.8).LikeEq.(2-3)weexpand

Au>(x,T])as

A{l'{x,刀,-I器[3(1)a(¥
kAk旬)exp(ikx)

+si"†Al[](r])*exp(-ikx)],

(CD

wherexandkareonedimensional,Thenthetwo-pomt

correlationfunctionofA("(x,77)iscalculatedas

(Ai[](r)A{l>(o))-吉相1)122cos[kr]

Hi

2+2/n

-1訂i/Mrl/
Jl/r,d/c芸誓,

C2

wherer。'and¥t]¥aretheinfraredandultraviolet

cuto庁irespectively.IntegrationbypartsofEq-(C2)

yields

(C2)--.-2/′coskr1/lT

T1/irjin-rl/i

2rJI/r.dkk,-2/n.sinA:r

-′7β(77栂 軒　(C3)
This is in the same form as Eq. (2.10). The procedure to

伝nd the叩OiI-t correlation of B{x) from the two-point

correlation function of A (x) isjust the same as in the 3D

case. Thus the n-point correlation function ofB(x) has
the same form as that of the full 3D theory.
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