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The evolution of a wall-like structure in the universe is investigated by assuming a simplified
model of a domain wall. The domain wall is approximated as a thin spherical shell with domain
wall-like matter, which is assumed to interact with dust-like dark matter in an entirely inelastic
manner, and its motion in an expanding universe is numerically studied in the general-relativistic
treatment. We evaluate the lifetime of the wall, which is defined as the characteristic time for the
wall to shrink due to its own tension. It is necessary that this time is not smaller than the cosmic
age, in order that the walls avoid the collapse to the present time and play an important role in the
structure formation of the universe. It is shown that, in spite of the above interaction, the strong
restriction is imposed on the surface density of the domain walls and the allowed values are too small
to have any influences on the background model.

'§1. Introduction

QOur understanding about the origin and evolution of the universe is changing
under the influences of recent cosmological observations. They have revealed the
existence of very large-scale structures in the universe. For example, one of them i3
the Great Wall, which is a large-scale structure extending beyond a few hundred
Mpc."®  Broadhust et al. report a periodic distribution of galaxies with a character-
istic scale of 128h~'Mpc in the direction near the Galactic poles.” Moreover,
Dressler and Faber found a very large-scale gravitational source from the peculiar
velocities of galaxies, which is called “Great Attractor”.” '

On the other hand it has been reported that an anisotropy of cosmic microwave
background radiation (CBR) is very small, and only the upper-limits have been
observed.” Because baryons are interacting with photons until the decoupling time,
the present anisotropy of CBR represents the density perturbation of the baryons at
the decoupling time roughly. In general it is considered that after the decoupling
time the density perturbations evolved in proportion to the scale factor of the universe
due to the gravitational instability and formed the structures in the.universe.
However it is difficult to explain the present structures in our universe, because the
constraint on the anisotropy observations of CBR restricts strongly the density
perturbation at the decoupling time.

Theoretically domain walls have recently attracted a great deal of attentmn
because they may be a possible candidate to be the origins of structures in the universe
and they can also play a role of the positive cosmological constant. The existence of
the cosmological constant has been argued recently from an astrophysical point of
view. For instance, Fukugita et al. did a test of cosmological models using the
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relation of red-shift and number count of faint galaxies, and concluded that the
observations favored universe models with the positive cosmological constant.” The
study of ages of globular clusters in our Galaxy has also supported the necessity of the
positive cosmological constant.”® : ' ’

Domain walls are a kind of topological defects which are produced at the time of
cosmological phase transition, as is predicted in grand unified theories of particle
physics. Hill, Schramm and Fry showed a possibility that domain walls of very low
energy scale might be formed after the decoupling time by a cosmological late time
phase transition, and the structures in the universe might be formed by density
perturbations due to these domain walls.? As these domain walls do not interact
directly with photons but only through gravity, it may be possible to explain the
structure formation consistent with the observations of the anisotropy of CBR.

Several numerical simulations have been performed to study dynamics of domain
wall network and to clarify whether the domain walls are the possible origins of the
structure formation as we expect.'” In these simulations only the equations of the
scalar field were solved in the given background space-time. As a result of their
numerical simulations they have concluded that it is difficult for any simple models of
domain walls to be the origins of the structure formation. According to their
numerical simulations the domain walls are accelerated by the tension, their velocities
soon reach a speed near the light velocity, the wall collapses and reconnections occur
almost as fast as causality allows, and only the domain walls with the horizon size can
survive the collapses. Such domain walls cannot be the origins of the structure
formation. The rapid motion of domain walls is the most crucial difficulty of this
scenario. v- ,

To avoid the rapid collapse of the domain walls or decelerate their motion, =
several wall models are considered. As one of them we have domain walls which are
formed by a modified axion-like field. It has been, however, showed by numerical
simulations that these domain walls are also unstable.'” |

There is another possibility suggested by Massarotti,’? which we are paying
attention to. He assumed domain walls interacting with dark matter, and discussed
the possibility to decelerate the motion of the domain walls and the.application to the
large-scale structure formation. We also study such a possibility in the general-
relativistic treatment. Though such an interaction has not been discussed so far, we
assume the interaction between domain wall and dark matter phenomenologically
from the viewpoint of structure formation, and discuss the applications to the large-
scale structure formation. .

We investigate a simplified model of a domain wall which interacts with dust-like
dark matter in an entirely inelastic manner. Here the entire inelasticity is assumed
as the most effective interaction in this possibility. We restrict ourselves to a
spherically symmetrical case, in order to avoid unnecessary complexities, and we then
approximate the domain wall by a thin wall which contains dust and domain wall-like
matter. In order to treat a realistic thick domain wall, we must consider complicated
situations associated with the non-sphericity and the interaction between dust-like
matter and the scalar field forming the wall. Here we assume a spherical thin
domain wall for simplicity. Moreover we assume that the space-time inside the wall
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is approximated by the Friedmann universe and that the space-time in the outside
region is described by the Schwarzschild space-time, because the dust matter is
trapped by the wall as the wall shrinks. Outside of these two regions, there is the
background space-time described by the Friedmann space-time, which is not affected
by the system inside. We pay attention to the two regions, that is, inside Friedmann
space-time and Schwarzschild space-time, and study the motion Qf the domain wall
using Israel’s relativistic junction condition. We investigated the possibility of
preventing the wall from shrinking and collapsing by the above mechanism.

We shall show that there is an upper bound for the surface energy density of
domain walls which avoid shrinking and are slowly moving even at the present time.
To generate the seeds of primordial density fluctuations from such walls, we need
some modification in the scenario of the late time phase transition. The case when
the spatial curvature of the Friedmann space-time is negative will also be studied and
we get the results similar to those in the flat case. We shall also find that the full
relativistic numerical results are consistent with the analysis based on the approxima-
tion in which the.wall is moving slowly and that such domain walls cannot occupy so
much of the total energy of the universe to play a role of the dominant positive
cosmdlogical constant. ,

In § 2 we review Israel’s junction condition, apply it to our system, and derive the
basic equations which determine the motion of a domain wall interacting with
dust-like dark matter. In §3 we solve these equations numerically and show the
above results. Section 4 is assigned to a summary and discussion.

In this peper we adopt the convention in which a space-time metric has a signa-
ture, —+++, and ¢=1 unit, and G refer to the gravitational constant. '

§2. A simplified model of domain wall interacting with dark matter

As described in the previous section we consider a spherical domain wall which
interacts with dust-like dark matter in the entirely inelastic manner. We assume that
the energy of dust-like dark matter dominates that of baryon matter, and that the
domain wall is formed due to a late time phase transition at a certain time after the
decoupling time. If at the initial time a closed domain wall is co-moving to the
average matter motion, it begins to shrink thereafter due to its tension relative to the
average motion. Because the wall traps the dust-like dark matter during the shrink-
ing motion, the following three regions appear around the wall (see Fig. 1): 1. the inner
Friedmann region (I), 2. the vacuum region and 3. the outer Friedmann region (1I).
The space-time in the vacuum region is expressed by the Schwarzschild metric. The
domain wall is between the Friedmann region (I) and the vacuum region. If we
neglect the width of the wall, we can regard the motion of the wall as that of the
boundary surface, which contains the domain wall matter and the trapped dust-like
matter. The motion of such a boundary surface can be investigated by using the
junction condition which was formulated by Israel,'¥ and extended by Maeda' to
more general cases of bubbles either in the expanding universe or in the vacuum
Schwarzschild-de Sitter space. On the basis of [srael’s and Maeda’s works we derive
the basic equation in our system.
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Schwarzschild
space-time

Fig. 1. A domain wall and three regions. The innermost region is represented by the Friedmann
space-time I, and a domain wall surrounds this region. As the domain wall shrinks trapping the
dust in the wall, the outer region of this wall is represented by the Schwarzschild space-time. In
the outermost region there is the Friedmann spaée-time 11, which is independent of the motion of
the wall. ' ’

Let us consider a time-like hypersurface 5 which divides a space-time V into two
regions V*and V~. We define %% to be a space-like unit vector orthonormal to this
hypersurface. The intrinsic 3.dimensional metric 4« on X is written as Hap = Gab
— Mgy, WheTe Jab 1S & 4-dimensional metric of V. The extrinsic curvature Kg» on 2
is defined as follows:

Kab:hachbdycnd , ‘ (21)

where 7« is a covariant derivative operator associated with gae.
. Israel’s junction condition is composed of two parts.. One of them is derived from
the following Gauss-Codacci relations:

(S)R + KbaKab - (Kaa)z —_ 2 Gabnanb )
DbKab"Da[{bb: ch'nchad , . (2'2)

where Gas is the Einstein tensor, Da is a covariant derivative operator associated with
has (that is, Da=ha"V ) and @R is a 3-dimensional scalar curvature on .. These
relations must be satisfied on both sides of 2. Another one comes from the evolution
equation of the Einstein equation. Let the subscripts «+7 refer to values associated
with V= respectively. Israel showed that the following relation between Kay and Kas
must be satisfied, when the stress-energy tensor T.. on 5 has a &-function like
singularity,

Kgb—Ka_b:_87TG<Sab—"%—habScc> , A (2'3>

where Sa is an integral of Ta» on 2 with respect to the proper distance /, crossing 2
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in the direction of the normal vector »“, thatis, Sas=/d/Tes. As wasshown by Israel,
S, is interpreted as the energy-momentum tensor of the matter on the singular

surface.
We can combine these conditions (2-2) and (2-3) to get the following equations:

(3)R+ Xbakab “Kaazz - 167TZGZ<SbaSab __9— (Saa)2> - 87TG{ Tab?’lanb}i R (2 '4&)

K.’Se* =] Tawn’n®], (2-4b)
DKt — DoK =47G{ Tuent®hot}* | (2-4c)
DeSa?=—[Tucn®ha]", (2-4d)

+

where we use the notations {F)*=¥*"+ ¥~ and [F]*=¥"— ¥~ for an arbitrary
quantity ¥ on 2, and 2 Kap=Kin+ Kas.

We will write down the above equations in our system, where in the V' region
there is the Schwarzschild space-time and in the V™ region there is the Friedmann
space-time bounded by the spherical wall. Maeda has studied the junction condition
of a spherical symmetric system, to formulate the dynamical equations for a spherical
bubble in the expanding universe™ in more general background space-time. In
general the metric of a spherically symmetric space-time V' can be written as follows:

ds?= — T Jp2 4 2T oty }f<x’ £)?2dQ* . (2-5)
(dQ*=d8%+sinOdd*)

A sphericélly symmetric hypersurface 2 is represented as = ts(7), x=x:(1), where
we define r as the proper time on 3. Then the metric on X can be expressed as

dsst=—dr*+ R(7)*dQ7 (2-6)

by the use of coordinates 7, ¢ and ¢, and Eqgs. (2 4a)~(2-4d) are rewritten in the
following in terms of quantities on J.

First we show the explicit expressions for the components of extrmsm curvature
on  in the general spherical space-time (2-3). We define a unit time-like vector ve
and a unit space-like vector #“ orthonormal to 2, so that a set of vectors (v%, n®
¥~ U3/30)%, (rsin@)~'(8/3¢)®) becomes an orthogonal tetrad on 2. It is noted that the
basis vector in the r direction is v*. We can write v and . using the coordinate in
the metric (2-5) as follows:

vo=(Lr &z g o), - (2-7a)
— Aty __dl" if; ) .
fa=¢C ( dr ' dr’ 0,0 (2-7b)
~ ' 27172
([[E}E_L) :G—/l:[1+ C)Z,{;(_(ZI'I;,Z(_Z—l_) jl EC—H;}, . (2'7C)

where As and o are functions of f:(z) and r+(7). From these relations and the
definition of the extrinsic curvature we can write down its components as
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K= —Ker=— UanVanb

ey O ey i (S O (L) pemedis] 2e®)

Ty L dr? ot~ T dr dr odx /\ dr ox
K95=K¢¢=—}5—Vme= e*=#:3,(log7) a;.;crz + e *0:(log7)7, (2-9)

and the other components vanish due to the symmetry of the space-time.

Using the above relations, explicit expressions of the extrinsic curvature on 2 are
obtained, when the space-time is the Schwarzschild space-time or the Friedmann
space-time. In the V* region the metric is written in terms of the Schwarzschild
coordinate as follows:

d52=*(1“2%%%’1‘3"’(1*2—2%)_[61’363-1—&26192, @0
+ +

where M. denotes the Schwarzschild mass. From Egs. (2-8) and (2-9) the extrinsic
curvature on % in the side of V7 is reduced to

K +t= ji+ <R+ G}é%s)) K90+:K¢?+:%, (211)
A, =[1+R*—2GM/R]", (2-12)

where R=dR/dr. In the V™ region, on the other hand, the space-time is the Fried-
mann space-time. We first consider the case when the spatial curvature of the
Friedmann space-time is flat. When the spatial curvature is negative, it is possible to
give the similar formulation, as will be referred to later. We write the metric of the
Friedmann space-time as

dst= — dt?+ a(t )N dr 2+ £-2dQ%) | (2+13)

In the case of a dust universe, the Einstein equation gives the following relations
between scale factor @ and energy density o: '

_8nGo 2 d’a

2 Pty
H=="3", 4

L HP=0, (2-14)

where we express H =(da/dt)/a. We can write the components of the extrinsic
curvature by using Eqgs. (2-8), (2-9) and the above relations. Asinthe V' region, we
can again rewrite their expressions in terms of R(r), which satisty

R(t)=a(t(r)-)x(z)- . (2-15)
Their final expressions are

[ l > = | G- S P -~ .
K= (R+ChE), K=K =4 (2-16)

where we used the following notations:

M_-=m+4nR%0(ai-)?, : (2-17a)
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. . 1/2
A__=_[1+R2——#—2§3m} ) - (2-17b)
_AT g | (2:17c)
=30 y
aaf—:—}f—:—(]%)z;. (2-17d)

Next we consider the matter distribution on 2, Ses. The domain wall and the
dust trapped by a motion of the domain wall are. distributed on 2. Therefore we can

write Sas as'”

Sab=dvavb—dhab , ’ (218)

where ¢ and d are the surface energy densities of the domain wall and dust, respec-
tively, and depend only on r. Realistically there may be a dissipation term represent-
ing the interaction between the wall and dust, but we omitted it for simplicity.

“We can now write down the explicit expressions for Egs. (2-4a)~(2-4d). Ttis
shown in Appendix A that only the following two equations obtained from Eq. (2-3)
are independent:

1 (4. GM\_ 1 (5, GM\_ B .
e <R+ ] > L <R+ o >——47rG(d 5) . (2-19)
——A+}A“=—4n6(d+a). (2-20)

Equation (2-20) is an integral form of energy conservation equation, and Eq. (2-19)
can be regarded as an equation of motion for the radius R. For three variables, R,
d and o, we have another equation which comes from the conservation law for the
number of dust particles in addition to the above two equations. The number of
particles constituting the dust matter is always conserved. It is shown in Appendix
B that the surface density of the dust is constrained as ‘ ‘

drdR*+47oR%/3=m(constant) . | S (2-21)

On the other hand, we can easily verify that the basic equations (2-19) and (2-20)
are invariant under the following scaling transformations:

R-aR, d-dla, o-ola,
t—ar, Ms—aMs, t(r)-at(r). (2-22)

In the case when the Friedmann space-time in the inner region has a negative
spatial curvature, we can derive similar basic equations for the motion of the wall and
" the only modification is replacing (2-15) and (2-17d) by ‘

R(t)=a(t(r))sinhx(r)-, (2-15)
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. 2 2 »
R[H(gj }” _ HRA.

axr-= 1+<§>2—(HR)2 (2-17d)

§3. Numerical calculation and the results

In the previous section we derived the basic equations for the motion of a domain
wall which interacts inelastically with dust-like dark matter. These equations can-
not be solved analytically and so we investigate them numerically under the following
initial conditions: : A‘

(1) The domain wall expands at the same speed as that of a co-moving shell in the
background universe, that is, R=FRH.
(2) The dust surface density @ is equal to 0.

We write the radius of the domain wall at the initial time as R:, where R; can be
chosen arbitrarily outside the Schwarzschild horizon. Initial value of ¢ is also an
arbitrary parameter at the initial time. We determine Ms so that Eq. (2-20) is
satisfied at the initial time. |

The basic equations consist of Egs. (2-19), (2-20) and (2-21). From Eq. (2-21) d
is given in terms of K, and we determine o on each time step by using Eq. (2-20). The
integration of Eq. (2-19) is performed in the Runge-Kutta method.

Arbitrary parameters in our model are K., 0 and the initial state of the Friedmann
space-time, which is specified by the Hubble parameter and the density parameter.
We define the following dimensionless parameters:

R o: _1 4zR’0; | | (3:1)

Ry’ 7= 0:R: 3 4nR*p:/3"

where R, is the initial Hubble radius 1/H;, and o: and e: are the domain wall surface
energy density and the dust energy density of the Friedmann space-time at the initial
time, respectively. Therefore § represents a ratio of the radius of the domain wall
to the horizon radius at the initial time, and 7 represents a ratio of the domain wall
energy to the energy of dust inside the domain wall. When the spatial curvature of
the Friedmann space-time is flat, there exists a scaling law, as was described in the
previous section. As these parameters are invariant under the scaling transforma-
tion, motions of the domain wall are determined by only these two parameters. For
simplicity we first consider the case when the Friedmann space-time is spatially flat.

We are interested in the region of # and y in which the wall does not shrink so
fast. In general, motions of the domain wall deviate with time from those of a
co-moving shell, even if they are initially equal. This deviation is represented by
using & defined by '

R=R,(1-6),

where R, représents the radius of the co-moving shell. We define the characteristic
time for the domain wall to shrink, as the time when § reaches 0.1. This time is
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Fig. 2. The relation between the characteristic shrink time (@), £ and 7. «is a scale factor of the
Friedmann space-time normalized to unity at the initial time. The vertical axis represents y and
the horizontal axis represents 5. Some lines of ¢=constant are drawn on this plane.

~haracteristic, because the spherical walls soon collapse after that time and the
Surface density of domain walls are almost constant during this period. We express
this characteristic shrink time, in terms of the scale factor @ of the Friedmann
space-time which is normalized to unity at the initial time. Here we calculated
numerically the characteristic shrink time and show the results in Fig. 2. The
vertical axis represents y and the horizontal axis does 8. In this plane we draw the
lines of a=constant corresponding to the shrinking time.

In a region where 7 is less than 107°, the relation a®>=0.0255%/7 reproduces the
numerical results well. In Appendix C we analyzed the behavior of the approximate
solution representing the domain wall which is slowly moving relative to the back-
ground and has small §. We obtained the same relation between a, 3 and ¥ as that
in the-numerical results. Figure 2 shows that it is necessary that the energy contribu-
tion of a domain wall to the total energy within the wall is very small, in order to
prevent the domain wall from shrinking so fast. ' ‘

We consider a role of such domain walls in the large-scale structure formation,
‘assuming that the large-scale structures are formed by the slowly moving walls.
According to the above calculations, it is confirmed that the walls can avoid the
collapse and move slowly, only when the ratio of domain wall energy density to the
total energy density of the universe is very small. We therefore neglect the gravita-
tional influence of the domain walls on the evolution of the universe which is described
by the Friedmann space-time. We adopted the condition §=0.1, as the criterion
whether a domain wall is slowly moving or collapsing, and calculated the upper limits
for the surface energy density of the domain wall, which was formed at the time with
red-shift 2(=5~30) and is slowly moving still at the present time. This result is
shown in Fig. 3. The vertical axis represents the surface density of the domain wall
by units of MeV®. The horizontal axis represents the present radius of the slowly
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Constraint on ¢ (Q0=1)
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Fig. 3. The upper limits of the surface energy density ¢ for the domain wall with the characteristic
shrink time fs=the present time f, where this is the case when the present density parameter, £,
is equal to 1.0. The vertical axis represents the surface energy density of the domain wall in units
of MeV?, and the horizontal axis represents the present curvature radius of the domain wall which
have expanded. The dotted lines are the upper limits for the walls which were formed at red-shift
5, 10 and 30. In the region under these lines the walls satisfy the condition fs=f. The solid line
shows the critical line where the energy of the domain wall becomes comparable to the dust energy
in the universe.

moving domain wall, B;. For example, if the surface density of the domain walls
which were formed at time z=5 is less than the dotted line in Fig. 3, then the domain
walls are slowly moving still at the present time and have the curvature radii shown
at the horizontal axis. As was shown in Fig. 3, the lines representing the upper limits
are similar and do not so depend on the formation times of the wall. This reason can
be explained as follows: When the initial red-shift z becomes larger, the time intervals
from the formation time to the present time become longer, while the initial energy
ratios of the domain wall to the universe become smaller, and these effects to the
upper limits of the wall surface density cancel each: other.

The solid line in Fig. 3 shows the critical case where the domain wall energy in
the universe is equal to the dust energy. Here we assumed that the domain walls are
located in a lattice-like manner at the intervals R. This also shows that the energy
contribution of the domain walls to the background universe must be very small to
keep the walls to move slowly relative to the background. In the model of Hill,
Schramm and Fry the surface density of their domain wall is 1 MeV*~10* MeV*®
corresponding to a neutrino mass, 0.1 MeV ~107* MeV.

When the spatial curvature of the Friedmann space-time is negative, the situation
is not so simple, because there are not such scaling transformations. We have,
however, investigated the upper limit of the surface energy density in the domain wall,
in which the wall is moving slowly still at the present time, when the present density
parameter &2 is 0.1, and the Hubble parameter is equal to 100km/s/Mpc. The result
is shown in Fig. 4. According to a decrease of the density of the Friedmann space-
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Fig. 4. The uf)per limits for the surface energy density ¢ of the domain wall in the case when 5 is
equal to 0.1,

time, the upper limit of the surface density decreases. The behaviors are similar to
those in the case, &=1. This implies that the curvature effect is negligible and the
motions of the walls are determined by /5 and 7.

In addition we also investigated the case when the dark matter changes its
equation of state, after it is trapped on the domain wall. In particular, we considered
the case the dust-like dark matter changed into radiation-like matter. This case is
represented replacing Eq. (2-18) by the following equation:

10-15 T T T lllIE

B a=2 :
O ]
\o'; 5 i
o 107k a=6 £
S | §
l a=11 :

E a=31 %

-5 TR N S S N { 1 1 1 S N T S
10 0.10 1.00

B=R/R_

Fig. 5. The relation between the characteristic shrink time (2), 8 and y, when the equation of state
for the dark matter change into that of radiation-like matter. The axes are the same as in Fig.
9 In this case the characteristic shrink time is independent of 3.
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Fig. 6. The upper limits for the surface energy density ¢ of the domain wall corresponding to Fig. 5,
where the present density parameter, £, is equal to 1.0. The axes are the same as in Fig. 3.

Seo=dvals ‘f‘]ﬁ(hab + Uavb> — oM as ,

where p is the pressure of the radiation-like dark matter on 2, and p=d/2. As the
negative pressure of the domain wall causes the shrinking -of the wall, it is expected
that the pressure of radiation-like dark matter set off that of the domain wall and
prevent the wall from shrinking. The numerical results in the case with radiation-
like matter are shown in Figs. 5 and 6 for £=1. Figure 5 shows the characteristic
shrink time in this case. Different from Fig. 2 the characteristic shrink time
depends only on y and the relation a?=0.04/y reproduces the numerical results.
Figure 6 shows the upper limit on the surface energy density of the domain wall. -In
this case the upper limit is not so severe as in the case of Fig. 3, but it is also difficult
to play an important role as a cosmological constant. /

§4. Summary and discussion

In this paper we investigated the motion of a spherical domain wall which
interacts inelastically with dust-like dark matter by using Israel’s general relativistic
junction condition. In our model the motion of the slowly moving domain wall 1s
characterized by the two paramete'rs. One of them is the initial ratio of the wall
radius to the horizon radius. Another one is the initial ratio of the energy of the
domain wall to the energy of dust matter inside the wall. We defined the characteris-
tic time for the wall to shrink and begin to collapse, and investigated the relation
between this time and the above two parameters analytically and numerically.

We obtained the upper limit for the surface energy density of the domain wall
such that the domain walls are slowly moving till now, relative to the background.
To explain the large-scale structure extending to 100 Mpc using this wall model, it is
necessary that the surface energy density of the domain wall is less than 0.1 MeV?,
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when the present density parameter of dark matter is 1. If the dark matter changes
its equation of state on the domain wall, it is possible to weaken the constraint.
Figures 3 and 6, however, imply that such a wall also does not play an important role

as a cosmological constant.
In the case when the interaction between the wall and dust is smaller and parts

of dust pass through the wall, the role of dust preventing the wall from collapsing is
smaller evidently. In this paper we assumed the vacuum region outside the inner
Friedmann region (I). In the case when there is surrounding matter near the region
(I), it falls at a slower speed that the wall, even if it freely falls. Accordingly it has

no influence on the dynamics of the wall.
It is a remaining problem to make a model of interactions between domain wall

and dark matter, to get the amplitude or spectrum of density perturbation which may
be made by such a domain wall, and to discuss a possibility of large-scale structure
formation due to such a scenario.
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Appendix A

In Appendix A we show that the equations obtained from Eqs. (2-4a)~(2-4d) are
reduced to two independent equations (2-19) and (2-20) obtained from Eq. (2-3).

From Eq. (2-18) we write the following expressions by projecting Sas onto the
coordinate basis on the hypersurféce 2 :

Se=—d—0o, S/=S/=—0. . (A1)

We easily get Egs. (2-19) and (2-20) from Eq. (2-3) by using Egs. (2-11), (2-16) and the
above expressions. :

Here we pay attention to Egs. (2-4a)~(2-4d). First we show that the equation
obtained from Eq. (2-4b) is satisfied, if Eqs. (2-19) and (2-20) are satisfied. Using
(A-1), Eq. (2-4b) is written down as follows: '

KA (—d—0o)+2K(—0)=—Tann". (A-2)

Because we get the following relations from Eqs. (2-11) and (2-16):

e L (5 GMs\, 1 (s GM-
Re =g (R+5 )roa (#+5)
~@_~¢#_1_<A+ &) .
Ki=Re=5\"R "R ) | (a3)

and we have Taonn®=o(az_)*, Eq. (2-4b) is rewritten down as follows:
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<R+ GM3>___ d+o (E-FGM—)“— G<A++A_):‘“p(ai‘—)2. (A-4)

_d+o
R? 2A_ R? R

2A+

B is eliminated from this equation by using Eq. (2-19),

25<Mé2 Ms) 4 2G(d— o) (As+A- )+2“(A+?d‘ﬁ§)‘;‘g_f“+)
=2 —p(az (A—A.). | (A-5)

From Eq. (2-20), the definitions of A., Egs. (2 -12) and (2-17b), we can write Az in
terms of & and ¢ as :

A Mmoo .
A= [ T s +47rGR(d+a)} , (A-6)
respectively. We insert the above A: and the definition of M- into (A-5), then we can
show that Eq. (A+5) is trivially satisfied.

Second let us consider 3-dimensional scalar curvature on 3, ¥R, Ttis calculated
as

@R 4%+ L (B2+1), (A7)

and Eq. (2-4a) is written down as follows:

4—R—+ (B 1)— 2R R+ 2K ) = — 872 G¥(d + 0)(d —30)—87Golaz - .

R
(A-8)

We insert £ =(p(zi_)?—20K")/(d + 6) obtained from Eq. (A-2), and the expression
of K4’ into Eq. (A-8), then we get the following equation: '

A+ A ((d—30)(A+A- )+2p(ax _) >
R\ 2R(d+0) d+o

R 2
4R+ (R +1)—

=—872GXd +0)d—30)—8rnGolaz -)*.

Eliminating R and R by the use onEq. (2-19) and the definition of A-, we get

AT GAMe—AM)  4rG(d—0)ALA T, 2 (2G )
R[ R(A.—A.) A } el Rm+A')
(d—30)0(A+A)  20(ax- YA +A)
SR d +0) RdT0)
+87T?G2(a’+0)(d~36)+87er(aJ&_)2

=0.

If we again insert A: of Eq. (A-6) into this equation, then we can show that the
left-hand side of this equation is equal to 0 after a little troublesome calculations.
Next we write down the r component of Eq. (2-4¢) and obtain
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_2__(ng) 2——([{r — K =4nGolaz ) {1+ (az-)]"*. (A-9)
If we eliminate K.® using the relation Kff:(p(ai—)z—ZGKeB)/(d'f‘G),'then the left-

hand side of (A-9) is reduced to

d 7o o R(d+30) Ro(ai-)
rhs. of (A-9)=—2-0- (B =2 7 oy K prgt o) -

Inserting the expression of K.® into the above expression, we get

d (At A 2(d+30)R/A++A 2Ro(az_)
rhs. of (A-9)=— Z’?( 2R > (d+0)R \ 2R >+ R(d+o0)

(A+\A)R RR/1+1>+R<GM3R GmR Gm>

S R\ A. ART TARTTRA
_(d+30)( At ADR 2Ro(az-)
(d+o)R? R(d+o)

RZA — 2 — (m+4xR*Ro(az-)?),
where we used Eq. (A-4) to eliminate R. On the other hand we can show the
following relation by using (2-17a)~(2-17d):

m+AxR*Ro(az - P=4nR*0ad_[1+(az )] A, (A-10)

so that the left-hand side of Eq. (A-9) is equal to 47Goaz -[1+(az-)?]'"*, which is equal
to the right-hand side of Eq. (A-9). The equations obtained from § and ¢ compo-
nents of Eq. (2-4c) are trivially satisfied. :

Last we differentiate Eq. (2:20) with respect to t,

4n—(R2(d+a>>—— d <G(A+ A ))

If we eliminate R using Eq. (2-19) and adjust it using (A-10), then we get the following
equation after a little troublesome calculations: '

4”5%- (Rz(d+0))—47rdz,d{f?2=——4/’{Rzpai_[v1+(ait)z]”2. - (A-11)
This is nothing but the equation obtained from the r component of Eq. (2-4d).
Thus Egs. (2-19) and (2-20) are the only independent equations, which satisfy

junction conditions (2-4a)~(2-4d).
Appendix B

In Appendix B we describe the number conservation law of dust in our system.
Introducing a new radial coordinate 7, we can set up the following metric around
hypersurface 2

ds*=—dr*+d7i+ R*dQ2* . (B-1)
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This coordinate is interpreted as the local Lorentz frame on the hypersurface 2. In
this coordinate, 2 is located at .7 = 7o (constant). The number conservation law is

written as follows:

o:(V =g out)+37(/—g ou")=0. (B-2)
. If we integrate this equation crossing 2,
tm -.Fied?[afw —gou)+or(y—geun)=0. (B-3)

In this coordinate we have /—¢g =R’ind, and the surface energy density of dust on.
¥ is written by definition as follows:

: Fote
d=1im dro,
€—0

Fo— €

so that Eq. (B-3) becomes
2 (Rea) ~limlR*pu}rrime=0. | (B4
T -0
As we can obtain the relation 7 |7=7,e=—aZ- by the coordinate transformation, the
number conservation law of dust is described as

—C?—T(de):'f?zp< %) | (B-5)

and this equation can be integrated to give

ilir—.01?3:(:onstant . o (B-6)

4rdR*+ 3

Appendix C

When the wall is moving at a speed near that of a co-moving shell in the
background universe, we can treat a deviation of the wall from the motion of the
co-moving shell as a small perturbation. Here we consider the case when the
Friedmann space-time in the inside region is spatially flat.

Let us express the radius R of the wall as

R=RA1-8), '- @

where R, represents the expansion of the background universe, that is, a co-moving
shell in the expanding universe, and we assume 5<€1. R, is written as R,=Ra,
where R; is an initial radius of the domain wall and @ is a scale factor of the
Friedmann space-time which is normalized to unity at the initial time. As aZ- is of
the first order with respect to &, we get {-=1 within the linear approximation because
ot Jor=[1+(az-)*)""* and the following expression differentiating Eq. (C-1):

[e;RfH(r— —%—) , (C-2)
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where we used H=d/a. Moreover let us express o and m as

=5, m=mi{1-30), (C-3)

where p: and m: denote the initial values of p and m. Then we can expand A-, Ms,
A.. ai- and M- in terms of & using Egs. (C-1)~(C-3) as follows: '

A =1—(RH*S, | (C-4)
Mo=mi+47GoR 2, (C-5)
_ of 3. s 4nGoR#(1+5) '
A+—1+(RfH)< 3 6H> o (C-6)
Cli'—:—RiCZS, (C7)
M.=m. . (C-8)

Using the abové equations we can expand Eq. (A-11) in terms of & and get the
following equation:

% (47dRY)=4rm0:R3 S ,

and this is easily integrated to give
47RAd=3m:b . 4 (C-9)

This equation represents the number conservation law for dust. This expression is
realized in spite of whether g=constant or not, so that the number conservation law
does not conflict with the condition o=constant in the linear approximation.

As we have solved with respect to d, we will next derivé 0. We rewrite

Eq. (A-4) as

pm b =G M) 2ol A)  20led )] (C-10)

/A F1/A_| R* \ As Rld+a0) ' d+o

This equation can be interpreted as the equation of motion for radius K. The first
term represents a deceleration rate of the Friedmann space-time, the second term is
mterpreted as a deceleration rate due to the tension within the domain wall, and the
third term is neglected, because it is the second order of §. If ¢ dominates ¢ in the
second term and if the second term is kept smaller than the first one, then the domain
wall would remain to be slowly moving, relative to the background. We expand this
equation in terms of & using Egs. (C-1)~(C-9), and we get

‘e . -1
5+2H5—%H25~2<34m66+17f> =0 (C-11)
If the domain wall is slowly moving, & must be negligible and the inequality, 0<d is

satisfied as described above. Then we approximate Eq. (C-11) as
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3
4

: 2o 37’”;8 )_1 ‘
2H5 —SHre=2( AL ) (C-12)
This differential equation is solved to give
_ 9 eh
as——B—é\Z—yj . : (C-13)

If we set §=0.1 to define the characteristic lifetime for the domain wall to shrink, then
we get @*=0.0115%/y. This is roughly the same as our numerical condition for the
characteristic shrink time.
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