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The evolution of a wall-like structure in the universe is investigated by assuming a simplified

model of a domain wall. The domain wall is approximated as a thin spherical shell with domain

wall-like matter, which is assumed to interact with dust-like dark matter in an entirely inelastic

manner, and its motion in an expanding universe is numerically studied in the generalィelativistic

treatment. we evaluate the lifetime of the wall, which is de丘ned as the characteristic time for the

wall to shrink due to its own tension. It is necessary that this time is not smaller than the cosmic

age, in order that the walls avoid the collapse to the present time and play an important role in the

structure formation of the universe. It is shown that, in spite of the above interaction, the strong

restriction is imposed on the surface density of the domain walls and the allowed values are too small

to have any induences on the background model.

§ 1. Introduction

Our understanding about the origin and evolution of the universe is changing

under the in乱Iences of recent cosmological observations. They have revealed the

existence of very large-scale structures in the universe. For example, one of them l§

the Great Wall, which is a large-scale structure extending beyond a few hundred

Mpc.1 ,2) Broadhust et al. report a periodic distribution of galaxies with a character-

istic scale of 128h :Mpc in the direction near the GalaCtic poles.　Moreover,

Dressier and Faber found a very large-scale gravitational source from the peculiar

velocities of galaxies, which is called ‖Great Attractor".4)

On the other hand it has been reported that an anisotropy of cosmic micro、vave

background radiation (CBR) is very small, and only the upper limits have been

observed.　Because baryons are interacting with photons until the decoupling time,

the present anisotropy of CBR represents the density perturbation of the baryons at

the decoupling time roughly- In general it is considered that after the decoupling

time the density perturbations evolved in proportion to the scale factor of the tmiverse

due to the gravitational instability and formed the structures in the. universe.

However it is di柘cult to explain the present structures in our universe, because the

constraint on the anisotropy obserJations of CBR restricts strongly the density

perturbation at the decoLIpling time.

Theoretically domain walls have recently atti~acted a great deal of attention,

because they may be a possible candidate to be the origins of structures in the universe

andthey can also play a role of the positivecosmological constant. The existence of

the cosmological constant has been argued recently from an astrophysic云　point of

view. For instance, Fukugita et al. did a test of cosmological models using the
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relation of red-shift and number count of faint galaxies, and concluded that the

observations favored universe models with the positive cosmological constant. The

study of ages of globular clusters in our Galaxy has also supported the necessity of the

positive cosmological constant. ,8)

Domain walls are a kind of topological defects which are produced at the time of

cosmological phase transition, as is predicted in grand uni丘ed theories of particle

physics. Hill, Schramm and Fry showed a possibility that domain walls of very low

energy scale might be formed after the decoupling time by a cosmological late time

phase transition, and the structures in the universe might be formed by density

perturbations due to these domain walls.9' As these domain walls do not interact

directly with photons but only through gravity, it may be possible to explain the

structure formation consistent with the observations of the anisotropy of CBR.

Several numerical simulations have been performed to study dynamics of domain

wall network and to clarify whether the domain walls are the possible origins of the

structure formation as we expect.10) In these simulations only the equations of the

scalar丘eld were solved in the given background space-time. As a result of their

numerical simulations they have concluded that it is di氏cult for any simple models of

domain walls to be the origins of the structure formation. According to their

numerical simulations the domain walls are accelerated by the tension, their velocities

soon reach a speed near the light velocity, the wall collapses and reconnections occur

almost as fast as causality allows, and only the domain walls with the horizon size can

survive the collapses. Such domain walls cannot be the origins of the structure

formation. The rapid motion of domain walls is the most crucial di伍culty of this

scenario.

To avoid the rapid collapse of the domain walls or decelerate their motion,

several wall models are considered. As one of them we have domain walls which are

formed by a modified axion-like丘eld. It has been, however, showed by numerical

simulations that these domain walls are also unstable.in

There is another possibility suggested by Massarotti,12'which we are paying

attention to. He assumed domain walls interacting with dark matter, and discussed

the possibility to decelerate the motion of the domain walls and the・application to the

large-scale structure formation-　We also study such a possibility in the general-
relativistic treatment. Though such an interaction has not been discussed so far, we

assume the interaction between domain wall and dark matter phenomenologically

from the viewpoint of structure formation, and discuss the applications to the large-

scale structure formation.

We investigate a simplified model of a domain wall which interacts with dust-like
dark matter in an entirely inelastic manner. Here the entire inelasticity is assumed

as the most effective interaction in this possibility-　We restrict ourselves to a

spherically symmetrical case, in order to avoid Lunnecessary complexities, and we then

approximate the domain wall by a thin wall which contains dust and domain wall-like

matter. In order to treat a realistic thick domain wall, we must consider complicated

situations associated with the non-sphericity and the interaction between dust-like

matter and the scalar field forming the wall. Here we assume a spherical thin

domain wall for simplicity. Moreover we assume that the space-time inside the wall
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is approximated by the Friedmann universe and that the space-time in the outside

region is described by the Schwarzschild space-time, because the dust matter is

trapped by the wall as the wall shrinks. Outside of these two regions, there is the

background space-time described by the Friedmann space-time, which is not affected

by the system inside. We pay attention to the two regions, that is, insids Friedmann

space-time and Schwarzschild space-time, and study the motion of the domain wall

using Israel's relativistic junction condition. We investigated the possibility of

preventing the wall from shrinking and collapsing by the above mechanism.

we shall show that there is an upper bound for the surface energy density of

domain walls which avoid shrinking and are slowly moving even at the present time.

To generate the seeds of primordial density飢ictuations from such walls, we need

some mod沌cation in the scenario of the late time phase transition. The case when

the spatial curvature of the Friedmann space-time is negative will also be studied and

we get the results similar to those in the flat case. We shall also find that the full

relativistic numerical results are consistent with the analysis based on the approxima-

tion in which the-wall is moving slowly and that such domain walls cannot occupy so

much of the total energy of the universe to play a role of the dominant positive

cosmological constant.

In § 2 we review Israel's junction condi・tion, apply it to our system, and derive the

basic equations which determine the motion of a domain wall interacting with

dust-like dark matter. In § 3 we solve these equations numerically and show the

above results. Section 4 is assigned to a summary and discussion.

In this peper we adopt the convention in which a space-time metric has a signa-

ture, -+++, and c-¥ unit, and G refer to the gravitational constant.

§ 2. A simpli丘ed model of domain wall interacting with dark matter

As described in the previous section we consider a spherical domain wall 、vhich

interacts with dust-like dark matter in the entirely inelastic manner. We assu甲e that

the energy of dust-like dark matter dominates that of baryon matter, and that the

domain wall is formed due to a late time phase transition at a certain time after the

decoupling time・ If at the initial time a closed domain wall is c0-moving to the

average matter motion, it begins to shrink thereafter due to its tension relative to the

average motion. Because the wall traps the dust-like dark matter during the shrink-

ins; motion, the following three regions appear around the wall (see Fig. 1): 1. the inner

Friedmann region (I), 2. the vacuum region and 3. the outer Friedmann region (II).

The space-time in the vacuum region is expressed by the Schwarzschild metric. The

domain wall is between the Friedmann region (I) and the vacuum region. If we

neglect the width of the wa仕we can regard the motion of the ～vail as that of the

boundary surface, which contains the domain wall matter and the trapped dusLIike

matter. The motion of such a boundary surface can be investigated by using the

junction,condition which was formulated by Israel,13'and extended by Maeda 4) to

more general cases of bubbles either in the expanding universe or in thとvacuum

Schwarzschild-de Sitter space. On the basis of Israel's and Maeda's works we derive

the basic equation in our system.
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Fig 1. A domain wall and three regions. The innermost region is represented by the Fnedmann

space-time I, and a domain wall surrounds this region. As the domain wall shrinks trapping the

dust in the wall, the outer region of this wall is represented by the Schwarzschild space-time. tin

the outermost region there is the Friedmann space-time II, which is independent of the motion of
.

thewall.

Let us consider a time-like hypersurface I which divides a space-time V into two

regions V+ and V-. We define na to be a space-like unit vector orthonormal tojhis
hypersurface. The intrinsic 3-dimensional metric hab on 1 is written as fcォー^

-nanb, where gab is a 4-dimensional metric of V. The extrinsic curvature Kab on J

is de丘ned as follows:

Kab- hachbdvcnd ,
(2-1)

where Va is a covariant derivative operator associated with gab.

'Israel's junction condition is composed of two parts. One of them is derived from

the following Gauss-Codacci relations:

・3,月+KbaKab -- (Kaa)2- -2Gabnanb

DbKab -DaKbb- Gcdnchad
(2-2)

whereGabistheEinsteintensor,Daisacovariantderivativeoperatorassociatedwith

hab(thatis,Da…habvb)and{3)Risa3-dimensionalscalarcurvatureon.1-These

relationsmustbesatis丘edonbothsidesof2.Anotheronecomesfromtheevolution

equationoftheEinsteinequation.LetthesubscriptsH±refertovaluesassociated

withV±,respectively・IsraelshowedthatthefollowingrelationbetweenKZband7Q,

mustbesatisfied,whenthestress-energytensorTabonIhasa5-functionlike

singularity,

Ktt
ab-Kab--8万G[Sab‡kabScc(2-3)

whereSabisanintegralofTabon2withrespecttotheproperdistance/,crossing2
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mthedirectionofthenormalvectorna,thatis,Sab-fdlTab.AswasshownbyIsrael,

sisinterpretedastheenergy-momentumtensorofthematteronthesingular

surface.
wecancombinetheseconditions(2-2)and(2-3)togetthefollowingequations:

・R+KbaKab-Kaa2-02-16tt2G2SbaSa∴¥(Saa)2)-%nG{Tabnanb}±(2-4a)

KabSba-[Tabnanb]ア,(2-4b)

DaKba-DbK-AnG{Tdcndhbc)±(2-4c)

DbSab--[Tdcndhac]±(2-4d)

whereweusethenot顛ons畔-・++・~and[・}±-zp-+-qr-foranarbitrary

quantity・onI,and2Kab-Kab+Kab.

Wewillwritedowntheaboveequationsinoursystem,whereinthel′十region

thereistheSchwarzschildspace-timeandintheVregionthereistheFriedmann

space-timeboundedbythesphericalwall.Maedahasstudiedthejunctioncondition

ofasphericalsymmetricsystem,toformulatethedynamicalequa、tionsforaspherical

bubbleintheexpandinguniverse14'inmoregeneralbackgroundspace-time.In

generalthemetricofasphericallysymmetricspace-timeVcanbewrittenasfollows:

ds2=---e2Mix-t)dt2+e2*lxJ)dx2+r(x,t)2必T.(2-5)

(dQ2-cw2+sm28d¢2)

Aspheric去IlysymmetrichypersurfaceEisrepresentedast-tz(r),x-xz{v),where

wedeherasthepropertimeonI.Thenthemetric01-Scanbeexpressedas

dsz2=-dr2+R(r)2dQ2(2-6)

bytheuseofcoordinatesr,6and<f>,andEqs.(2-4aト2-4d)arerewritteninthe

followingintermsofquantitiesonE.

Firstweshowtheexplicitexpressionsforthecomponentsofextrinsiccurvature

。nsinthegeneralsphericalspace-time(2-5).Wedefineaunittinie-likevectorv

andaunitspace-likevectornaorthonormaltoI,sothatasetofvectors(va,nc

r当∂!∂^)fl7(rsin^)-1(∂/∂のa)becomesanorthogonaltetradonZ.Itisnotedthatthe

basisvectorintherdirectionisva.Wecanwrite£)aandnausingthecoordinatein

theilmetric(2-5)asfolioWs:

乙,-(告窓,O,oj,

プ′ia-e-(一諾主, -告O. oj ,

詔∫(ど)

〔た -」>-"* 1+e2-響,2"11′2-,,-/`ユγ,

2-7a)

(2-7b)

(2-7c)

whereんand !Ll・こire fui-ctions of /∫(r) ancl tr上,(r). From these relations and the

definition of the extrinsic cLlrV雨ure we cこIn ＼＼/rite do＼vn its components as
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Krr- -KrT- - vavbFanb

-%[窓　　窓+(普+普)(普+e-2Ar普(2-8)

Ke"-Kp¢-享V9n8- eXs-"zdt(¥ogr)普+ e-x」dx(¥ogr) γ　　　(2 -9)

and the other components vanish due to the symmetry of the space-time.

Using the above relations, explicit expressions of the extrinsic curvature on ∑ are

obtained, when the space-time is the Schwarzschild space-time oHhe Friedmann

space-time. In the V+ region the metric is written in terms of the Schwarzschild

coordinate as follows:

ds2--¥上空dt+2+ト讐-1dx十2+x+2dQ2　　　(2-10)
where Ms denotes the Schwarzschild mass. From Eqs. (2-8) and (2-9) the extrinsic

curvature on ∫ in the side of l′ is reduced to

KrT+-去(R十竿　Kee+-K/+-昔　　　　　(2-ll)
A+-[l+R2-2GMs/R]1/2　　　　　　　　　　　　　(2-12)

whereカ…dR/dr. In the V- region, on the other hand, the space-time is the Fried-

mann space-time. We貢rst consider the case when the spatial curvature of the

Friedmann space-time is flat. When the spatial curvature is negative, it is possible to

give the similar formulation, as will be referred to later. We write the metric of the
Friedmann space-time as

ds2= -dt-2+れ)2{dx-2+x-2dQ2).　　　　　　　　　　(2-13)

In the case of a dust universe, the Einstein equation gives the following relations

between scale factor α and energy density 〟:

H2-旦碧, ‡貿+H2-0　　　　　　　　(2-14)3

where we express H-(da/dt)/a. We can write the components of the extrinsic

curvature by using Eqs. (2-8), (2-9) and the above relations. As inthe V region, we

can again rewrite their expressions in terms of R(t), which satisfy

R(r)-a(t(r)-)x(z「

Their伝nal expressions are

K/--去(短等　K0-----窓,
where we Lised the following notations:

M_三m+4KR?'p(ax-)2 ,

(2-15)

(2-16)

(2-17a)
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(2-17b)

(2-17c)

(2-17d)

Next we consider the matter distribution on I, Sab-　The domain wall and the

dust trapped by a motion of the domain wall are・distributed on I. Therefore we can

write Sab as15)

Sab-dVavb- Ghab ,　　　　　　　　　　　　　　　　　(2-18)

where a and d are the surface energy densities of the domain wall and dust, respec-

tively, and depend only on r. Realistically there may be a dissipation term represent-

ing the interaction between the wall and dust, but we omitted it for simphci年
we can now write down the explicit expressions for Eqs. (2-4a)-(2*4d). It is

shown in Appendix A that only the following two equations obtained from Eq. (2-3)

are independent:

去(A+晋十去(R・賃-)-iKG(d-o) ,
A+-A-
--47rG(d+o)

(2-19)

(2-20)

Equation (2-20) is an integral form of energy conservation equation, and Eq. (2-19)

can be regarded as an equation of motion for the radius R. For three variables, R,

d and a, we have another equation which comes from the conservation law for the

number of dust particles in addition to the above two equations・ The number of

particles constituting the dust matter is always conserved. It is shot,vn in Appendix

B that the surface density of the dust is constrained as

4KdR2+47ipR3/3三m,-(constant).　　　　　　　　　　　　(2-21)

On the other hand, we can easily vet・ify that the basic equations (2-19) and (2-20)

are invariant under the following scaling transformations:

R-αR, d-d/α　a- o!>α,

T-α　　Ms-αMs, t(r)-αt(r). (2-22)

In the case when the Friedmann.space-time in the inner region has a negative

spatial curvature, we can derive similar l〕asic equatioi-s for tHe motion of the wall and

the only modification is replacing (2-15) and (2蝣17d) by

i?(r)-fl(/(r)-)sinh.r(r)- , (2弓5)′
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§ 3. Numerical calculation and the results

In the previous section we derived the basic equations for the motion of a domain

wall which interacts inelastically with dust-like dark matter. These equations can-

not be solved analytically and so we investigate them numerically under the following

initial conditions:

(1) The domain wall expands at the same speed as that of a co-moving shell in the

background universe, that is, R-RH.

(2) The dust surface density d ¥'s equal to 0.

We write the radius of the domain wall at the initial time as Rit where Rt can be

chosen arbitrarily outside the Schwarzschild horizon. Initial value of ♂ is also an

arbitrary parameter at the initial time. We determine Ms so that Eq. (2-20) is
satisfied at the initial time.

Thebasic equations consist ofEqs. (2・19), (2・20) and (2・21). FromEq. (2蝣21) d

isgiveninterms ofR, andwe determine a oneachtime stepby usingEq. (2・20). The

integration of Eq. (2-19) is performed in the Runge-Kutta method.

Arbitrary parameters in our model are Rit o and the initial state of the Friedmann

space-time, which is specified by the Hubble parameter and the density parameter.

We de員ne the following dimensionless parameters:

β-若, γ-請
1　AxRro;

3　AxRfpi 3
(3-1)

where Rh is the initial Hubble radius 1/'Hi, and aL and pi are the domain wall surface

energy density and the dust energy density of the Friedmann space-time at the initial

time, respectively. Therefore 0 represents a ratio of the radius of the domain wall

to the horizon radius at the initial time, and γ represents a ratio of the domain wall

energy to the energy of dLISt 1-iside the domaii-all. When the spatial curvature of

the Friedmann space-time is flat, there exists a scaling law, as was described in the

previous section. As these parameters are invariant under the scaling transforma-

tion, motions of the domain wall are determined by only these two parameters. For

simplicity we first consider the case when the Friedmann space-time is spatially flat.

We are interested in the region of β and γ il- which the wall does not shrinlくSO

fast. In general, motions of the domain wall deviate with time from those of a

c0-moving shell, even if they are initially equa上　This deviation is represei-ted by

using d denned by

R-RAl-♂),

where R/ represents the radius of the c0-ll-oving she仕　We de丘ne the characteristic

time for the domain wall,to shrink, as the tit-le when d reaches O工　This time is
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Fig. 2. The relation betⅥeen the characteristic shrink time (ォ), β and 7. a is a scale factor of the

Friedillannspace-time normalized to unity at the initial time. The vertical axis represents γ and

the horizontal axis represents β. Some lines of a-constant are drawn Oll this plane.

〇haracteristic, because the spherical walls soon collapse after that time and the

surface density of domain walls are almost constant during this period. We express
this characteristic shrink time, in terms of the scale factor α of the Friedmann

space-time which is normalized to unity at the initial time. Here we calculated

numerically the characteristic shrink time and show the results in Fig. 2. The

vertical axis represents γ and the horizontal axis does β In this plane we draw the

lines of α-constant corresponding to the shrinking"time.

In a region where γ is less than lC「 the relation a3-0.025β2!γ reproduces the

numerical results well. In Appendix C we analyzed the behavior of the approximate

solution representing the domain wall which is slowly moving relative to the back-

ground and has small ∂　We obtained the same relation between α, β and γ as that

in the-numerical results. Figure 2 shows that it is necessary that the energy contribu-

tion of a domain wall to the total energy within the wall is very small, in order to

prevent the domain wall from shrinking so fast.

We consider a role of such domain walls in the large-scale structure formation,

assuming that the large-scale structures are formed by the slowly moving walls.

According to the above calculations, it is confirmed that the walls can avoid the

collapse and move slowly, only when the ratio of domain wall energy density to the

total energy density of the universe is very small. We therefore neglect the gravita-

tional influence of the domain walls on the evolution of the universe which is described

by the Friedmann space-time. We adopted the condition 5-0.1, as the criterion
whether a domain wall is slowly moving or collapsing, and calcLdated the upper limits

for the surface energy density of the domain vvalいvhich was formed at the time with

red-shift ^(-5-30) and is slowly moving still at the present time-　Thi畠result is

shown in Fig. 3. The vertical axis i・印resents the surface 。e-ISlty′ of the domain wall

by units of MeV3. The horizontal axis represents the present radius of the slowly
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Fi岳3. The upper limits of the si-rface energy density a for the domain wall with the characteristic

shrink time　≧the present time to, where this is the case when the present density parameter, Q>,

is equal to 1.0. The vertical axis represents the sLirface energy density of the domain wall in units

of MeV3, and the horizontal axis represents the present cv-rvature radius of the domain wal一 which

have expanded. The dotted lines are the upper limits for the walls which were formed at red-shift

5, 10 and 30. In the region under these lines the walls satisfy the condition ts>to-　The solid line

shows the critica一 line where the energy of the domain wall becomes comparable to the dust energy

i11 the universe.

moving domain wall, R/. For example, if the surface density of the domain walls

which were formed at time 2-5 is less than the dotted line in Fig. 3, then the domain

walls are slowly moving still at the present time and have the curvature radii shown

at the horizontal axis. As was shown in Fig- 3, the lines representing the upper limits

are similar and do not so depend on the formation times of the wall. This reason can

be -explained as follows: When the initial red-shift z becomes 'larger, the time intervals
from the formation time to the present time become longer, while the initial energy

ratios of the domain wall to the universe become smaller, and these effects to the

upper limits of the wall surface density cancel each,other.

The solid line in Fig. 3 shows the critical case where the domain wall energy in

the universe is equal to the dust energy. Here we assumed that the domain walls are

located in a lattice-like manner at the intervals R. This also shows that the energy

contribution of the domain walls to the background universe must be very small to

keep the walls to move slowly relative to the background. In the model of Hill,

schramm and Fry the surface density of their domain wall is 1 MeV3-10'1MeV

corresponding to a neutrino mass, 0.1 MeV-10　MeV.

when the spatial curvature of the Friedmann space-time is negative, the situation

is not so simple, because there are not such scaling transformations. We have,

however, investigated the upper limit of the surface energy density in the domain wall,

in which the wall is moving slowly still at the present time, when the present density′

parameter Qa is 0.1, and the Hubble parameter is equal to lOOkm/s/Mpc. The resLllt

is shown in Fig. 4. According to a decrease of the density of the Fnedmann space-
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Fig. 4. The upper limits for the surface energy density a of the domain wall in the case when.& is

equalto 0.1.

time, the upper limit of the surface density decreases. The behaviors are similar to

those in the case, i2b-l. This implies that the curvature effect is negligible and the

motions of the walls are determined by β and γ・

In addition we also investigated the case when the dark matter changes its

equation of state, after it is trapped on the domain wall. In particular, we considered

the case the dust-like dark matter changed into radiation-like matter. This case i岳

represented replacing Eq. (2-18) by the following equation:

I I I I I I . . l .

a = l .l

a = 2

a = 6

a = l l

a = 3 1

l . .

0.10　　　　　　　　　　　　　　1.00

β-Ri/Rh

Fig. 5. The relation bet、vee一一the characteristic shril-k 〔ime (a), β抑Cl γ- vvhei- Lhe equatioli of state

for the darlm1aLter change into that of radiation-like n-ZIiter. ′1'he axes are亡he same as in Fig.

2. In this case the charZicteristic shriilk tilll is independent of β.
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10-

R(h'Mpc)

Fig. 6. The upper limits for the sLirface energy density ♂ of the domain "′all corresponding亡o Fig. I

where the present density parameter, -Q>, is equal to 1.0. The axes are the same as in Fig. 3.

sab-dvavb+カza」>+Vavbトahab

whereカis the pressure of the radiation-like dark matter on I, andカ-d/2. As the

negative pressure of the domain wall causes the shrinking of the wal口t is expected
that the pressure of radiation-like dark matter set off that of the domain wall and

prevent the wall from shrinking. The numerical results in the case with radiation-

like matter are shown in Figs. 5 and 6 for Q>-1. Figure 5 shows the characteristic

shrink time in this case. Different from Fig. 2 the characteristic shrink time

depends only on 7 and the relation a2-oM/y reproduces the numerical results.

Figure 6 shows the upper limit on the surface energy density of the domain wall. In

this case the upper limit is not so severe as in the case of Fig. 3, but it is also difficult

to play an important role as a cosmological constant.

§ 4. Summary and discussion

In this paper we investigated the motion of a spherical domain wall which

interacts inelastically with dust-like dark matter by using Israel's general relativists

junction condition. In our model the motion of the slowly moving domain wall is

characterized by the two parameters. One of them is the initial ratio of the wall

radius to the horizon radiLis. Another one is the initial ratio of the energy of the

domain wall to the energy of dust matter inside the wall. We defined the charactens-

tic time for the wall to shrink and begin to collapse, and investigated the relation

between this time and the above two parameters analytically and numerically.

We obtained the upper limit for the surface energy density of the domain wall

such that the dom;lin walls are slowly moving till now, relative to thとbackgrc〕Lmd.

To explain the large-scale structure extending to 100 Mpc using this wall model, it is

necessary that the surface energy density of the domain wall is less than 0.1 MeV ,
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when the present density parameter of dark matter is 1. If the dark matter changes

its equation of state on the domain wall, it is possible to weaken the constraint.

Figures 3 and 6, however, imply that such a wall also does not play an important role

as a cosmological constant.

In the case when the interaction between the wall and dust is smaller and parts

of dust pass through the wall, the role of dust preventing the wall from collapsing is

smaller evidently. In this paper we assumed the vacuum region outside the i-iner

Friedmann region (I). In the case when there is surrounding matter near the region

(I), it falls at a slower speed that the wall, even if it freely falls. Accordingly it has

no in且uence on the dynamics of the wall.

It is a remaining problem to make a model of interactions between domain wall

and dark matter, to get the amplitude or spectrum of density perturbation which may

be made by such a domain wall, and to discuss a possibility of large-scale structure

formation due to such a scenario.
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Appendix A

In Appendix A we show that the equations obtained from Eqs. (2-4a)-(2-4d) are

reduced to two independent equations (2-19) and (2-20) obtained from Eq. (2-3).

From Eq. (2-18) we write the following expressions by projecting Sab onto the

coordinate basis on the hypersurface ど:

SrT--d-a See-S¢¢ニーa.　　　　　　　　　　　　　　　　　A-1)

we easily getEqs. (2・19) and (2・20) from Eq- (2・3) by using Eqs. (2蝣11), (2・16) and the

above expressions.

Here we pay attention to Eqs. (2-4aト(2-4d). First ㌧ve show that the eqLiation

obtained from Eq- (2-4b) is satisfied, if Eqs. (2-19) and (2-20) are satisfied. Using

(A-1), Eq. (2-4b) is written down as follows:

KTT(-d-ff)+2K99(-a)--　Tabnanb

Because we get the following relations from Eqs- (2-ll) and (2-16)‥

KS-志(短音)+左R+笠),

Ke"-雛‡ (普+音).,
and we have Tabnanb-p(aアーY, Eq. (2-4b) is rewritteil down as follows:

. A-2)

(A-3)
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名君(短等十名君(R十等十
6(A十+A_)

R is eliminated from this equation by using Eq- (2-19),

2G(M--Ms)
R2
+4ttG(^-a)(A++A-)+

2

-一才手首p(ax-)2(A- - A+)

2g(A++

--p(ax-Y　(A-4)

A-KA--A十)

(d+a)R

(A-5)

From Eq. (2-20), the de血itions of A±, Eqs. (2-12) and (2-17b), we can write A± in

terms of d and a as

A±-‡[

1r Ms-m
27tR2(d+ o)
-GR(d+ a)　　　　　　　　　　(A-6)

respectively. We insert the above A± and the definition of M- into (A-5), then we can

show that Eq. (A・5) is trivially satis五ed・

Second let us consider 3-dimensional scalar curvature on I,�"R. It is calculated

aS

・3)i?-4昔+音(磨+1)　　　　　　　　　　(A-7)

and Eq. (2-4a) is written down as follows:

4昔+妄(R2+l)-2Kee(K/+2KrT)- S方2G2(d+ a)(d-3ff)-8万Gp{aの2 ・
(A-8)

we insert K/-(p(aアー)2-2aKge)/(d+ a) obtained from Eq. (A-2), and the expression

of KaS into Eq. (A-8), then we get the following equation:

4昔+音(R2+lト
A++A~ (d-3a){A, +A-) , np(flj-)-

2R(d+a)

--sx2G2(d+o){d-3G)-S7rGp{ax-)2

Eliminating R andカby the use of Eq. (2-19) and the definition of A-, we get

G(A-Ms-A+M-)
R2(A, A.)

(d-3a)(A十

AnGid- a)A+∠L

+A-)2
2R2(d+a)

A+-A-

2p{ax-f{

ト音(豊+AJ
A++A-)

R{d+a)

+8K2G2(d+o)(d-3(j)+8xGp(ax-y

-0.

If we again inserHl± of Eq. (A-6) into this equation, then we can show that the

left-hand side of this equation is equal to 0 after a little troublesome calculations.

Next we write down the r compone-it of Eq. (2-4c) and obtain
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-2-^ (Kee)-2昔(Krr-Kse)-4万Gp(ax-Y[l+(ax-)2}1/2　　(A-9)

If we eliminate K/ using the relation KTT-(p(aア-)2-2OKe-)/(d+a), then the left-

hand side of (A-9) is reduced to

r.h.s. 。f (A-9)--2ま-(K距2
R(d+3a) Rp{ax-f

Inserting the expression of Kb9 into the above expression, we get

r.h.s. of (A-9)--2-dr

A++A-
2R

-A-)R RR
RI R (

2{d+?>a)R

(d+a)R

去+去
+3a)(A十-A-)R

A++A-

GMs R

2Rp(ax-)2

2Rp{aアーf

R(d+a)

tln-R

-孟(m+4xR2Rp(ax-)2) ,
where we used Eq. (A-4) to eliminate A On the other hand we can show the
following relation by using (2-17a)-(2<17d):

m+4:xR2Rp(ax-)2-47rR2pax-[l+(az-)2]1′蝣A- ,　　　　　　(A-10)

so that the left-hand side ofEq- (A-9) isequal to 47cGpax-[l+(ax-)2]1'-, which is equal

to the right-hand side of Eq. (A-9). The equations obtained from 6 and <p compo-

nents of Eq. (2-4c) are trivially satis丘ed・

Last we differentiate Eq. (2-20) with respect to r,

4媛{R¥d+o))-一意(芸(ArA-)).

If we eliminate R using Eq. (2・19) and adjust it using (A・10), then we get the following

equation after a little troublesome calculations:

4媛(R2(d+o))-4万媛R2--4xR2pa揖l+iax-TY′　　(A-ll)

This is nothing but the equation obtained from the r component of Eq. (2-4d).

Thus Eqs. (2-19) and (2-20) are the only independent equations, which satisfy

junction conditions (2-4a)-(2-4d).

Appendix B

In Appendix B we describe the number conservation law of dust in our system.

Introducing a new radial coordinate戸we can set up the following metric around

hypersurface ∫:

ds2- -dr2+dr^2十RzdQz B-1
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This coordinate is interpreted as the local Lorentz frame on the hypersurface ∑・ In

this coordinate, 2 is located at r - ro (constant). The number conservation law is

written as follows:

∂T(√寺pur)+∂,-(√寺puf)-O.

If we integrate this equation crossing I,

hraw
ど-0 玩

J'n-r e

o~∈

dr [∂r(√寺pur)+∂rV二百pMr")]-0.

(B-2)

(B-3)

In this coordinate we have √寺-R2s'md, and the surface energy density of dust on
ど is written by de丘nition as follows:

d-¥i

e豊上二二drp

sothatEq-(B-3)becomes

音(K*d)-lim[R2puf]r-r.-e-0-

」-0

(B-4)

As wecan obtainthe relation u　。-蝣--ax- by the coordinatetransformation, the

number conservation law of dust is described as

j^(R2d)--R2p{a-dx-

dx.

andthisequationcanbeintegratedtogive

4xdR2+-^rpR3-constant.

(B-5)

(B-6)

Appendix C

When the wall is moving at a speed near that of a c0-moving shell in the

background universe, we can treat a deviation of the wall from the motion of the

c0-moving shell as a small perturbation. Here I,ve consider the case- when the

Friedmann space-time in the inside region is spatially flat.

Let us expres己the radius R of the wall as

R-Rf(l-S) ,
(C-1)

where Rf represents the expansio一.i of the background universe, that is, a c0-moving

shell in the expanding universe, and we assume　≪1. Rf is written as R/-Ria,

where R, is an initial radius of the domain wall and a is a scale factor of: the

Friedmann space-time which is normalized to unity at the initial time. As ax- is of

the伝rst order with respect to S, we get t--r within the linear approximation because

dt-/dr-[l+(ax-)当1/2 and the following expression differentiating Eq. (Ol):

R^RsHh- - 8-j;
(C-2
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where we used H-d/a. Moreoァer let us express p and m as

p-含　m-nii(ト3<5),

1019

C-3

where pi and mt denote the initial values of p and-ra. Then we can expand A-, Ms,

A+, ax- and M- in terms of 8 using Eqs. (C-1)-(C-3) as follows‥

A--l -(RfH)2jI ,

Ms- mi+i7rGaRi

A+-l+(RfH)2ト音8- dH)-

ax--　-Rid8

M--m.

AxGoRai+ d)
Rj

(C-4

(C-5

(C-6)

(C-7

(C-8

Using the above equations we can expand Eq. (A-ll) in terms of 8 and get the

following equation:

音(4xdR2)-4方PiR?占,

and this is easily integrated to give

i7cR/d-3mid. C-9

This equation represents the number conservation law for dust. This expression is

realized in spite of whether ♂-constant or not, so that the number conservation law

does not conflict with the condition cr-constant in the linear approximation.

As we have solved with respect to d, we will next derive o. We rewrite

Eq. (A-4) as

R=
1/A++1/A一

-G,
告+芸

2a{A⊥+AJ
R{d+a)

2p(ax_)2

(I　　(.'

(C-10)

This equation can be interpreted as the equation of motion for radius R-　The first

term represents a deceleration rate of the Friedi-lann s¥〕aCe-time, the second term is

interpreted as a deceleration rate due to the tension within the domain wall, and the

third term is neglected, because it is the second order of ♂- If d dominates a in the

second term and if the second term is kept smaller than the first one, then the domain

wall would remain to be slowly moving, relative to the background. We expand this

equation in terms of d using Eqs. (C-1)-(09), ancl we 'set

台+2H8-‡H28-2(霊芝+Rr2.-l-0.　　　　　(C-ll)

If the domain wall is slowly moving, 8 must be negligibleとmd the inequality, a≪d is

satis員ed as described above. Then we approximat: Eq. (Oil) as
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2H8 -fH2d-2(豊)~l ・
This di庁erential equation is solved to give

a3 -昔62号

(C-12)

(C-13)

If we set a-0.1 to de丘ne the characteristic lifetime for the domain wall to shrink, then

we get a3-0.011β2/γ　This i云roughly the same as our numerical condition for the

characteristic shrink time.
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