
ICS '84

DRAON : An Intelligent Local Area Network

Tadashi Ae, Tetsuya Toi, Reiji Aibara, and Noriyasu Takahashi

Faculty of Engineering, Hiroshima Univercity
Saijo, Higashi一上王iroshima, 724 Japan

Abstract

This paper discusses the design and

fabrication of a local area network which keeps

distributed systems off from system deadlocks

in resource sharing with low overhead.

We propose an Intelligent Network that

exten由　the network concept in Its

communication capability.　This intelligent

network provides the upper layer protocols,

such a3　transport protocol and session

protocol, which are normally carried out by

host computers,　and offers deadlock-free

resource access method to its client, i.e., a

distributed operating system.

The design specification of DRAON, which

is a kind of entirely di醜ributed controlled
intelligent networks, i3　briefly introduced.

DRAONア3 a network of intelligent nodes each of

which performs communication procedures with

high performance, and resource lock/unlock

operations ln an inborn manner.

Finally, an experimental resource sharing

system using a prototype-DRAON is presented as

an example of applications of loosely coupled

distributed computing systems.

Key Words:local area network, resource sharing,

system deadlock, intelligent network,

distributed operating Syatem.

1 Introduction

First, the logical Structure of DRAON w五五五

be discribed for introduction.　工n section　2,

the access control strategy for the

deadlock-free operations, which ha3 employed by

DRAON to avoid the system deadlocks　まn

resource sharing, will be described.　　三m

section 3サ　the network configuration of DRAON

will be described.　Finally, in sectまon　4,

distributed system whまoh may be constructed

using DRAOがwill be discused.

An intelligent network DRAON has　もh6

logical structure just as a centralまzed

operating system, as shown in Figure 1, whePe a

process on a host computer which is connected

to DRAON can access、 any reaource(s) that may be

settled far away through the communication

link which are supported by DRAON.

工n Figure 1 , the network manager` controls

the whole network and the link controller sets

up, maintains, and tears down the communication

link(s).　It Should be noted that the l土nk

controller may set up and maintain more than

one co皿unication links simultaneously.

An application process attempting to use

the shared resouree(s)血ust submit a command on

demand (e.g. send) to t中e network manager,
as shown in Figure 2.　A command is a kind of

record type data which contains both indirect

and direct object of the command action, and

the restriction on execution tim shown as

follows :

Application Processes

Sha細Resources

Figure 1 Logical Structure of DRAON

-1177-

Figure 2 Network Access through Network Manager

action(argl , arg2 , arg3)

Vhere action is the operation of a

command ,

arg 1 ia indirect object(3J of

the command action-

arg 2 is direct object(s) of the

command action,

arg 3　is the restrict.ion on

execution time.

Some examples are shown as follows:

send (disk.BOX , list file , 5)

that means "begin to transfer the file named

list file on the local strage to the shared file

server named BOX within　5　seconds,　and save

the file on it."

Send (printer.PEN ,

disk.がOTE:text file , 20)

that means "ask the file server named NOTE to

transfer the file named text file on it to the

print server named PEN within　20　seconds."

Figure 3 illustrates this operation.

order (disk.NOTE , /ABORT/ ,)

that means "make the execution of the submitted

command abort on the file server named NOTE."

The network manager replies to the request

from the application process and decides a

unique link identifier (link ID) with the

submitting process name and accepting time, and

subsequently wakes up one of idle link

controllers.　The waked-up link controller

check3　the status of the requested resources,

if any, after starting a local timer managed by

the link controller itself.　If all resources

requested in the submitted command are

available at that time, the link controller

set3 up new communication links as many as the

Indirect objects in the command, after having

obtained their access rights.　If some of

resources requested in the command have been in

use by another process, the link controller

wait3 until they are released within the limits

of the time restriction.　When the execution

of the command terminates, the link controller

falls asleep.　On the other hand, if the link

controller can not confirm the col叩Ietion of

the command within the limits of the time

restriction, it makes the execution terminate

and reports a time-out error to the network

manager.

The only thing that the client of DRAON

(i.e., the distributed operating　3ystem, and

further, the application process) must do when

it wishes to use the communication facility is

to make a request in the form of a system

command.　Subsequently, DRAON automatically

checks the status of the requested resources,

if any, and the communication link(3) is

established if all the resources are available

at that time.　　The communication links are

also automatically released and the resources

become available for other processes When a

current user completes it3 work on them.

consequently, it is not necessary for the

client of DRAONもo take care to create mutual

exclusion and to guard against the system

deadlocks and, moreover, the client can use

various services of DRAON only by the system

commands.　Since every system command has Its

maxim雌 permissible time in which DRAON must

start to carry out the command,　DRAON

recognizes the persistency of the process for

that operation.　　Furthermore,　real-tine

applications can expect the high-speed response

to DRAON, since the network level solution for

the deadlocks makes the overhead extremely

low.

From another point of view, DRAON looks

-1178-

Figure 3 Remote File Transfer

In the latter approach, every application

process that wishes to use more than one

resources at a txme must request them

simultaneously, and no additional requests are

never permitted before the release of the

resources obtained previously,　as shown in

Figure 6.　Therefore, the application process

will obtain the access rights either for all

resources that it has requested or for none of

them.　　This strategy is called the

lump-request lump-acquisition method which

completely excludes the system deadlocks from
DRAON.

The defect of this method is to restrict

the behavior of application processes on

accessing to the shared resources under the

condition that the resources to be used

together 団ust be requested simultaneously.

However, it is easier to implement this method

in a distributed system than the former method.

3　Network Configuration

Figure　　7　　shows the liAON network

configuration, where DIN (DRAON　エntelligent

Node) is a network controller which carries

out the communication protocols and realizes

the sy3tem functions.　It is generally

coロposed of high-performance microprocessor(s) ,

input/output controller^), DMA controller,
control memory, buffer memory, e.t.c.

Figure　8　　shows the RAON software

hierarchy, where Data Transceiver provides an

error-free communicati on channel ,　Link

Controller provides reliable node-to-node

communication, Network Manager is responsible

for- setting up, managing, and tearing down

process- to-process connections ,　and also

handles certain aspects of address conversion,

access control, and recovery, SCI (System

Command Interpreter) is a part of a

distributed operating system, which performs

high-level protocols mentioned in the following

section,　and the contents of Application

Process includes to the users.

DRAON has various faculties on each D工Zq

for its autonomous operations, described as

follows :

Real-time Clock

Every link controller ha3　a real-tま血e

clock and皿anages it.　A job command, which is

submitted by an application process　まn the

form of a system command mentioned in section

1, must be done within the time restriction of

the command.　Each link controller sets its

own local timer, and after that, imposes time

restriction on the following action.　　When

time-ouも　error occurs,　the link controller

termmates the execution of command,　and

notifies the occurrence of the failure to its

client through the network manager.

If it is necessary, all local clocks on

link controllers in a network are synchronized

with each other by setting to the master clock.

Address Management
Since DRAON contains a number of various

type resources, the designatまon of them based

on their device na皿es or physical addresses

will decrease the flexibility and the

usefulness of the syste血　　Therefore, DRAON

assigns a logical resource name to each actual

shared devices at its system generation.　The

Aoplication Process

Distributed Operating System

(User Interface)

System Com iand Inte工pIでter

NetwOrk Manager

Link Controller

Data Transceiver

↑
　
H

o

s

t

l
↑
　
　
D

R

A

0

N

Each node consists of a ne加rk interface and a communication
processor.

Figure 7 DRAON Network Configuration

-1179-

.I 1

_

I

-

1

1

」

Physical Device

ー

　

　

　

　

　

　

　

　

_

,
・

I

Figure 8 Software Hierarchy

l
Y

like a oomand interpreter (see Figure　叫)

which accepts commands from its users, and

which interprets,　executes them,　and

subsequently returns the results, if necessary,

as shown ln Figure　2.

2　Access Control for Deadlock-Free Operations

T汀o access control strategies which

prevent DRAON from falling into undesirable

system deadlocks will be discussed in this

section.　　One is a deterministic approach

where the information table which maintains the

access situation of aユ1　processes for every

shared resource is used for forecasting

deadlock si tuati on ,　and ano ther is

nondeterministic approach which is easily

implemented at the cost of unrestricted access

for the shared resources.

In the former approach, DRAON has a table

called the Resource Access Right Table　(

shortly RART) which indicates what process is

using each resource now, as shown, in Figure 5.

When an application process att飽pting to

use shared resource(s) offers a request to the

network manager, the table is checked by the

link controller assigned to the process instead

of the process itself.　If the corresponding

resource is available at that time, the status

細e工Interpreter on Centralized System

Network工interpreter Om Distributed System

Figure 4 Network Command Interpreter

and Language Interpreter

of the resource maintained in the table is

changed from什idle什state to "in use什　state.

On the other hand, if it is not available (

i.e., is in use), the application process

waits until the request is accepted when the

resource becomes available.

Therefore, 3ince DRAON always recognizes

the condition of resource asai四ment in the
syste皿　DRAON easily detects the critical

situation before any deadlocks occur.　三g

these situations occur, DRAON automatically

tries to avoid them upon restricting the

accesses for shared resources.　Even in thまS

sltuatiuon, the application processes do not

have to deal with anything except their prope㌘

works.

The defect of this approach are the hまgh

overhead and the diffi culty for its

implementation in distributed environment

especially because of their complexity about

the maintainance of consistency on the

distributed multiple tables in the

decentralized control scheme l1】[2】.

Resource r1 r2 r3

g Status P8 idle pS

Figure 5 Resource Access Right Table

-Requests from Host　-+一一一Lock/Unlock Operations

rl r2　r3

「　request r, -

ー

I

t

　

　

_

　

　

t

.

I

I

1

!

1

一

-

;

L

L

-1180-

request r- -.I

requestro-
0-.

lock r.

uxL∝k rl

lock 」% ,!*,,

・--　tn1-k r r

` i-kr ,r2,r

- ---　unl-kr2

unlock r-

-一一一- -1-kr3

>zmi叫　us

(Shared Resources)

Figure 6 Lump-Request Lump-Acquisition Method

Fa m i l y N at把 Personal Naie

Figure 9 Logical Resource Name

1〉 prirはe【lA deslgnaヒeS each resource

111

pn nte【lB

printer. designates any one O」the saine devices

lit P【Inter′2 designates any two Of the saine devices

iv P【iJ1ヒer.- designates all of same at≡viceS

Figure 10 Designation of Resources

logical resource name which is unique in the

system consists of the family name and the

personal name, as shown in Figure 9, the former

indicates the resource type (e.g., disk,

printer, or processor), and the latter

indicates individual attribute or identifier.

This management enables application processes

to designate the shared resources with some

mbiguity, as shown in Figure 10.　In this

case, DRAON recognizes the logical name and

converts it into an actual physical address

using the address mapping table which maintains

the correspondence between the logical names

and the physical addresses.　　Figure ll

illustrates the address management of DRAON.

System Tuning

DRAON ha3 a user-programable part in it3

network manager, because DRAON must be adapted

to any type of underlying network and it has

complicated functions which a type of DIN

cannot provide all together.　Subsequently,

DRAON adapts Itself flexibly to various

application environments.　At the system

generation, a size of address mapping table, a

set of functions which is provided, error

recovery method, and access control method皿uSt

be prescribed according to user's demands.

As the future subject, to make the be醜

use of user-programable ability, a tuning

support tool, Which log3　the frequency of

failure on the establishment of communication

link3　and of time-out errors, e.t.Cり　and

supports the generation of the most desirable

system according to a format chart that the

users of syst em draws up for their

requirements, will have to be developed.

As mentioned above, DRAON has the partial

autpnomio control structure which the

conventional local area networks do not have

provided.　　This structure introduces low

system overhead, light load on hosts, and

efficient resource utilization into distributed

systems.　Figure 12　shows the communication

sequence between a host and a remote resource

Shared Printers

Figure ll Address ManagemeTlt of DRAON

-1181-

遡beg

Hos t DD寸

Resourc e

D工FI Resourc e

Figure 12 Communication Sequence

through DRAON, where it is obvious that DRAON

reduce amounts of co:皿unication between a host

and its network node.

斗　Distributed System using DRAON

In this section, the construction of

distributed system using DRAON is discussed.

First, we have to consider what kind of system

iS most appropriate for being constructed using

DRAON.　　RAON has the characteristics Which

are the low overhead access control ability.

and the well-defined interface to its upper

layer.　Therefore, a typical example of

distributed systems using DRAON, which contains

several work stations and various kind of

shared resources, and offers useful abilities

such as file transfer-　　re30urce sharing,

electronic mail service,　time-sharing and

remote job entry service based on the

processing server, and so on.　　Figure 13

illustrates a distributed system using DRAON.

Each work station 【3][*サ]　is usually

coJ叩osed of a super pe門onal computer with a

high resolution wide disply, Winchester type

disk unit, pointing device, and communication

interface.　　　Each shared resource with

controller is called a server a3 against a work

station, which offers various services o

users on the work statio野, for example, file
strage service by file servers [5]【6], printing

service by print servers, job entry service by

from its users.　The print server provides

high-speed letter quality printing ability, the

processing server provides high-performance

processing ability in the form of tine-sharing

or remote job entry service,　and the

communication server provides reliable

inter ne twork communication abil i ty which

enables its users to communicate with each

other though the sa血e or different type

networks.　　Moreover ,　other　　まnforma ti on

processing equipments just a3　plotters,　OCRs,

high-resolution graphic displays are considered

as useful servers, which may provide　・the

special data input/output ability for u3ers.

エn order to realize these systems

mentioned above,　a di3tributed operating

system, as shown in Figure 8, has to provide

the high-level protocols　【7】　such as fまIe

transfer protocol, virtual terminal protocol,

interprocess communication protocol, remote job

entry protocol, electronlc mail protocol, and

so on.

SCエand a operating sy地租　must provide

these high-level protocols by request, since

DRAON itself supports end-to-end data

communications.

Then, more detailed explanation of each

protocol is as follows 【8】;

File Transfer Protocol

The most common uses of local area

networks at present are for transferring files

be加een stations.　Since there is a need for
programs to .read a variety of inoompatible

files, systems must define a syst飽　standard
format and provide a mappi喝from and to each
existing file format.　　FTP provides this

[;≡:コ: Resource Controller

Prqc ess∬唱
Server

D R A 0 N

D

processing servers, interne如ork oomunication Work station
service by communication servers, and so on.

U3erB of the distributed system work

anytime on data processing,　document

processing, data'base retrieval, time sharing

service and remote job entry,　communicating

other work stations and using the shared

resources in the system.

On the other hand, each server provides

these users with each special ability.　　The

file server provides large-capacity storage

ability, and it loads/saves the private

program/data files according to the request

-1182-

Print Server

C〕

work Station

Cormunication

Server

to

Other Ketworks

File Server Work Station

Figure 13 Distributed System on DRAON

conve門ion and other procedures in file

transfer.　Another aspect of file transfer is

file manipulation such as create, delete, copy,

append, rename on remote files.　　Most file

transfer protocols on local area networks also

support them.

Virtual Terminal Protocol

Since dozens of types of terminals may be

usedin a system,　and no two of which are

identical ,　systems must prevent such

difficulties to hide terminal idiosyncrasies

from application (i.e., user) programs.

Therefore, systems employ protocols which are

known as virtual terminal protocols and attempt

to map real terminals into a hypothetical

terminal.　When this type of protocolア3 used,

the designers invent a fictitious virtual

terminal into which all real terminals are

mapped.　　　Application programs output

vertual-terminal characters, which are mapped

onto the real terminal's character set by the

operating system at the destination.

Interprocess Communication Protocol

An application program on ho3t　皿ay work

communicating with other programs on remote

hosts for data exchange or SynchronizatIon.

IPC provides the data format, synchronization

method, and procedures for the communications

between application processes.

Remote Job Entry Protocol

When users have RJE service upon remote

host machines, they have to transfer job-files,

and subsequently receive the results of their

jobs.　RJEP defines the job-control language,

file format, and entry procedures.　　RJEP is

really畠upported by FTP to transfer job-files.

Electronic Mail Protocol

The electronic mail services enable users

to create, edit various mail such as private,

circular, bulletin, and to send or receive on

normal or express delivery, and to save it on a

toolication

Lower Protocol

Figure 14 Relationship among High-Level Protocols

file server, if necessary.　EHP provides　もhe

mail format and procedures for systems.

Figure川shoVs the relationship among these
protocols.

Since these high-level protocols support

the communication between the application

processes (just aS user process,　server

process, e.t.c.), the standardization of

high-level protocols among the distinct

networks enables the users to communicate each

other through various networks.

In Figure 15, we demonstrate a prototype

of DRAON which has been fabricated at our

laboratory.

dummy statio work statio work station

file server print server onitor station

Figure IS Configui・ation of Pilot System

-1183-

References

l1】　G.Gardarin and W.W.Chu;　"A Reliable

Distributed Control Algorithm for Updating

Replicated Databases,"　Proc.　Sixth Data

Communications Symposium ,　　Nov.　1 979ォ

California, pp.42-51.

[2】　T.Hirota et al;打Protocol Assignment

Method Using Lo唱ical Time in Multiple Data

Acoess," 24th IPS of Japan, National Meeting,

2F一句　pp.461一斗62, Feb. 1982. (in Japanese)

[3]　N.Kamibayashi; "Object Oriented User

Interface Model, " International Micro Computer

Applications Conferrence, pp.25-36, Dec. 1982.

(in Japanese)

【4]　工.Ohta,　et al;　"Multi-functional

workstations," Journal of IPS of Japan, vol.24,

No.10, pp.12的-1254, Oct. 1983. (in Japanese)
[5] A.D.Birrell and H.M.Needham; "A Universal
File Server,M IEEE Trans.　on Software

Engineering, Vol.SE-6, No.5, pp.叫50-453, Sep.

1980.

[6] M.Yoshi血et al:工mplementation of File
server in a Local Network," 27th IPS of Japan,

National Meeting,斗J-7, pp.839-840, Oct. 1983.

(in Japanese)

[7】 G.V.Bochmann; 【Architecture of Distributed

Computer systems," springer, Inc., N.Y. 1976.

[8]　I.Matsushita ;　"Computer　　打etwork, '

Baifuukan, Tokyo, 1983- (in Japanese)

-1184-

