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Parametric collective resonances and space-charge limit in high-intensity rings
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Resonance-driven collective instabilities of charged-particle beams were extensively studied in
connection with high-current transport systems, leading to restrictions imposed on the zero-current
phase advance. In this paper, we discuss application of such parametric instabilities to circular
machines. This effect is directly related to the space-charge limit in rings and its understanding is
of crucial importance. Its relation to the coherent resonance condition of an integer type is explained.
Practical application of such resonant responses to both structural and imperfection driven harmonics is
addressed.
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tional high-intensity storage rings and synchrotrons) the
space-charge limit corresponds to a completely cold beam n=2 � �2: (2)
I. INTRODUCTION

Space charge is a fundamental limitation in circular
machines. When choosing the operating point in the tune
space, one carefully avoids resonances driven by the
lattice periodicity which are typically referred to as
structure resonances. However, the unavoidable presence
of errors in the magnetic field sets a restriction associated
with the imperfection resonances. The most severe re-
striction is expected to come from the integer and half-
integer resonances due to the absence of a self-stabilizing
feature which is present in the higher-order nonlinear
resonances. Although beam loss due to the nonlinear
resonances can be very strong, the integer and half-
integer single-particle tunes are assumed to be of the
most concern. Such restrictions are conventionally be-
lieved to impose limits on the maximum accumulated
currents in circular accelerators. As a result, the condition
that the individual particle tune should not be depressed
by space charge to the integer or half-integer values is
known as the space-charge limit. We note that such a
definition of the space-charge limit is different from the
one used in a special class of circular machines where
additional efforts are undertaken to compensate for the
emittance growth. For example, in a conventional cooler
ring, the emittance growth induced by crossing of the
imperfection resonances may be compensated by the
cooling force, depending on the strength of the cooling
force and the magnitude of lattice imperfections. As a
result, in such machines (to which we refer in this paper
as ‘‘special’’ in order to make a distinction from conven-
1098-4402=03=6(9)=094201(9)$20.00 
with the betatron tune depressed towards its zero value.
Approaching such a limit requires a proper design of the
lattice which allows one to avoid the major stop bands
corresponding to parametric resonances of collective
beam modes with the lattice structure [1].

The maximum achievable intensity associated with the
crossing of integer or half-integer tunes was calculated
using the single-particle approach and single-particle
space-charge tune depression [2]. This formulation was
later extended to include the effect of wall images [3].
Subsequently, more accurate treatment of collective beam
dynamics, using the beam envelope equation (for the
half-integer single-particle resonance n=2 � �, where
� � �0 � ��sc), gave better understanding of beam re-
sponse to such a resonance in high-intensity rings [4,5].
This coherent resonance condition, corresponding to the
half-integer single-particle resonance, can be written as

n � �2 � 2�0 ���2;sc; (1)

where �2 is the frequency of the 2nd order coherent beam
mode (beam envelope). Here, the zero-current frequency
of the beam envelope oscillation is �2;0 � 2�0. The co-
herent resonance condition in Eq. (1) was derived using
the approximation of smooth focusing with an extra
linear time-dependent perturbation. Subsequently, it was
shown that alternating gradient focusing can lead to an
additional subset of collective instabilities [6]. For the
simplified case of an isotropic beam, such an instability
corresponds to a coherent resonance of the parametric
(half-integer) type:
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This type of parametric response of beam envelope has
become known as the ‘‘envelope instability’’ [7].

As one can see from Eq. (2), the envelope instability
can limit the allowable tune space to only 0.25 and thus
may have a severe impact on the performance of a high-
intensity machine. It is therefore extremely important to
understand situations when such an envelope instability
should be considered and whether it can alter the space-
charge limit governed by Eq. (1). The primary goal of this
paper is to explain the difference between coherent inte-
ger and half-integer envelope responses and thus provide
practical guidelines for the case of envelope instability
and its application to the space-charge limit. For com-
pleteness, we also discuss the coherent resonances for
higher-order beam modes and also provide guidelines as
to when and to what extent such resonances should be
considered.
094201-2
II. GENERAL ANALYSIS

We start by considering the response of the second-
order m � 2 beam modes which allows us to employ the
envelope equation. A simplified analytic treatment is
presented to provide a qualitative description of the
beam response near the resonant tunes. The envelope
equation has the form

a00 � K�s�a�

2

a3
�
�
a
� 0; (3)
where K�s� is the periodic focusing function, 
 is the
beam emittance, � is the space-charge parameter, and a
is the radius of a round beam. The linearized envelope
equation for small oscillations a! a0�1� u� is then
u00 ��2
2u� �nonlinear terms� �

X
n

n cos�n�� � u
X
n

n cos�n�� � �nonlinear terms�: (4)

Such an equation can be obtained either by taking the

smooth approximation and introducing the concept of
‘‘gradient errors’’ or by performing a Floquet transfor-
mation for the exact periodic envelope equation and then
keeping the appropriate terms in the expansion. Here we
assumed a0 to be constant in order to have a simple visual
representation of the matched periodic solution in the
presence of the time-dependent perturbation, which is
given by the first term on the right-hand side (r.h.s.) of
Eq. (4). The second term on the r.h.s., which is propor-
tional to u, represents an oscillation around the matched
stationary solution. When the strength of the time-
dependent perturbation is large, such an assumption is
not valid, and an accurate matched solution is obtained by
solving Eq. (3) exactly, with the parameter a being re-
placed by a0. The simple form of Eq. (4) allows one to see
right away that the collective mode of beam oscillation
(in this case, the beam envelope) will grow when the
frequency of the collective mode is close to the harmonic
of the time-dependent perturbation. The resonant growth
of the stationary envelope states near the half-integer
single-particle tunes becomes an important effect,
known as the Smith/Sacherer space-charge induced co-
herent beam response to the imperfection resonances.
When the stationary state is treated exactly and only
the second term on the r.h.s. is considered in the beam
stability analysis, an important implication of the first
term may be overlooked. In this section we discuss the
effect of both terms. The resonant response is considered
both for the case when the integer and half-integer coher-
ent responses occur at different tunes, as well as for the
situations when the driving harmonics provide both reso-
nance conditions at the same tune.

A. Zero-current limit
In the absence of space charge, the single-particle

equation of motion can be written as
x00 � �20x � x�20
X
n

n cos�n��; (5)

where we assumed a linear time-dependent perturbation
(gradient errors). Here n is the strength of the nth
harmonic of the perturbation which is assumed to be
small. This assumption is used only for simplicity. In
general, the parameter n can be arbitrarily large, thus
representing the periodic focusing. Equation (5) is of the
Mathieu type, which allows parametric resonances at

2�0
p

� n; (6)

where p is the resonance order. Here, higher-order (sec-
ondary, etc.) parametric resonances can be obtained by
considering a perturbative solution in powers of p. The
strongest parametric resonance corresponds to p � 1 or
�0 � n=2. In this paper we consider only this p � 1
(primary) parametric resonance which is typically the
dominant. Note that such an equation does not allow a
resonance near 4�0 � n. The envelope equation, corre-
sponding to Eq. (5), is

a00 � �20a�

2

a3
� a�20

X
n

n cos�n��; (7)

which is a closed form of the single-particle equation of
motion. To find the frequency of beam envelope oscilla-
tion one needs to linearize the envelope equation with
respect to small envelope oscillations: a! a0�1� u�.
One then obtains

u00 ��2
0u � n1�

2
0�1� u� cos�n1��; (8)

where the zero-current envelope frequency is �0 � 2�0,
and a single harmonic n1 was kept for simplicity.
094201-2
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Mathematically, Eq. (8) allows a parametric resonance
near �0 � n1=2 (or for the single-particle frequencies
near 4�0 � n1) which, on the other hand, is prohibited by
the single-particle equation of motion in Eq. (5).
However, such a resonance condition appeared because
first, we assumed that the matched envelope is a constant
(a0 � const), and second, we used the nonlinear 
2=a3

term to obtain the frequency of small envelope oscilla-
tions around such a state (�0 � 2�0). Actually, both
assumptions are not self-consistent. However, the first
assumption can still be used, keeping in mind that the
first of the terms on the r.h.s. of Eq. (8) describes behavior
of the true oscillating matched state rather than a0 �
const. The second assumption is, in fact, the source of
the confusion. Such a nonlinear emittance term arises
from conservation of beam emittance. It has the same
form as the centrifugal force term that results from the
conservation of angular momentum. It is important to
remember that this term prevents a beam with finite
emittance from becoming arbitrarily small (the beam
envelope cannot become zero) but it does not limit the
large-amplitude growth as a typical nonlinearity does.
This can be seen by recognizing that Eq. (7) is equivalent
to the two ‘‘Cartesian’’ equations [5]:

X00 � �20X � X
X
n

n cos�n��;

Y00 � �20Y � Y
X
n

n cos�n��;
(9)
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where a2 � X2 � Y2, E � YX0 � XY0, and E0 � 0 (see
Appendix A). As a result, if the frequency of the oscil-
lator falls within the stop band of a resonance, both X and
Y, as well as a, grow arbitrarily large but E remains
constant. This removes the contradiction between the
single-particle and envelope equations which one would
get by trying to expand the envelope equation in powers
of u. The envelope equation without space charge is the
closed form of the single-particle equation of motion, so
that when the resonance term is not present in the equa-
tion of motion it cannot lead to a resonance in the enve-
lope as well.

B. Effect of space charge

Space charge introduces an actual nonlinearity into the
envelope equation. The envelopes are now mismatched
with respect to their zero-current matched solutions. The
envelope equation has the form:
a00 � �20a�
E2

a3
�
�
a
� a�20

X
n

n cos�n��; (10)
where we again approximate the time-dependent focusing
by a time-dependent perturbation. The linearized enve-
lope equation is then
u00 � �20u�
�
�20 �

�

a20

�
��3u� 6u2 � 10u3 � � � �� �

�

a20
��u� u2 � u3 � � � �� � �20

X
n

n cos�n�� � u�20
X
n

n cos�n��:

(11)
The first term on the right-hand side of Eq. (11) corre-
sponds to an integer resonance of the beam envelope with
the imperfection harmonic n1. This type of a resonance,
sometimes known as the coherent resonance condition,
was treated by Smith [4] for second-order beam modes
and generalized to any order by Sacherer [5], using the
Vlasov equation. For the envelope modes (second-order
moments) this coherent resonance condition, near the
half-integer single-particle tunes, becomes �2 � n1
which follows from

u00 ��2
2u� nonlinear terms � �20n1 cos�n1��; (12)

where �2 is the frequency of the envelope mode de-
pressed by the space charge. Mathematically, it is not a
self-consistent way to describe the matched beam enve-
lope in the presence of a time-dependent perturbation (the
more rigorous way would be to use Eq. (3) directly to
describe the periodic oscillation of a0 thus relying on a
numerical solution). However, such an approach provides
a convenient representation of the fact that the matched
solution can grow resonantly near the single-particle
half-integer tunes.
The second term on the right-hand side of Eq. (11)
corresponds to a parametric resonance excitation of the
beam envelope by the external perturbation. This type of
resonance was studied for transport systems with the
external perturbation being the periodic focusing struc-
ture. Because of the exponential growth of the perturba-
tion at the parametric resonance, this type of resonance
was also referred to as the envelope instability [7]. The
equation for small envelope oscillations is then

u00 ��2
2u� nonlinear terms � u�20n2 cos�n2��; (13)

which corresponds to a coherent resonance of the half-
integer (parametric) type: �2 � n2=2. The limitation due
to this linear parametric resonance of the envelope modes
with the periodic focusing structure resulted in the guide-
lines for high-current beam transport requiring the zero-
current single-particle phase advance �0 per focusing
period to be below 90	. Such an approach avoids
the full-current phase advance crossing 90	. In rings,
such a condition corresponds to the structure resonance
which occurs near the tunes � � N=4, with N being the
094201-3
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structure harmonic. However, the requirement that �0 <
90	 does not necessarily become practical for conven-
tional high-intensity rings, which are the focus of this
paper, since a strong limitation is already imposed by the
imperfection resonances. The much stronger structure
resonances are typically avoided by choosing the operat-
ing tune-box free of such resonances. We note that in a
special class of high-intensity rings (such as cooler rings)
where additional measures are undertaken to compensate
emittance growth due to the crossing of the imperfection
resonances (and due to other effects), one recovers a
situation similar to the linear transport systems. If only
the structure resonances become a concern, then one
should choose the zero-current phase advance corre-
spondingly in order to avoid the major structure stop
bands, with the linear half-integer stop band being the
dominant.

The envelope response in Eq. (13) to the parametric
resonance can be now analyzed using the standard phase-
amplitude technique (see Appendix B). Defining the
width of the linear parametric resonance for the envelope
mode as �
 �j 2�� n j , we obtain

�
 �
�20
2�

n; (14)

where � is the frequency of second-order beam mode. For
the case of the symmetric (in-phase) mode [Eq. (10)] we
have �2 � 2�20 � 2�2 with the stop band width given by

�
 �
�20

2
���
2

p ���������������
1� �2

p n; (15)

where � is the tune depression defined as � � �=�0. For
high-intensity circular machines, which we are consider-
ing in this paper, the tune depression typically lies in the
range � � 0:9–0:98. As a result, the width of the reso-
nance has a weak dependence on space charge. For com-
parison, the tune depression in high-intensity linear
accelerators is much stronger with � typically below
0.8. In a special class of high-intensity rings, such as
cooler rings, one attempts to depress the tunes even
further towards the limit of zero tune depression (fully
depressed tunes).

C. Resonance strength

The width of the parametric resonance depends line-
arly on the strength of the imperfection error (to first
order), as shown in Eq. (14), which results in linear
dependence of the instability stop band on the strength
of an error. Such a strength is very small for typical
imperfection errors (much less than 1% level). As a result,
the corresponding resonance is expected to be very nar-
row and the envelope growth (instability) is thus detuned
at a very low level by the nonlinear terms in Eq. (13),
which was confirmed by numerical simulation [8]. In fact,
this is the reason why the envelope instability does not
094201-4
produce any threat in typical high-intensity rings, pro-
vided that the tune box is chosen free of the structure
resonances with only imperfection harmonics being im-
portant. Even for the case of an unrealistically large
strength of imperfection errors at a level of a few percent
(about 100 times stronger than the typical strength of
imperfection errors), the effect of this parametric reso-
nance in the presence of strong space-charge nonlinearity
was found to be negligible [8].

On the contrary, when the source of the parametric
driving term in Eq. (13) is the periodicity of the lattice,
the width of the resonance may become significant.
Strictly speaking, a perturbation approach is not appli-
cable for very large n, and one needs to solve the exact
equation with periodic focusing numerically. This defines
the stop bands of the structure resonances which should
be avoided [9].

D. Combined resonance response

As was discussed in previous sections, if the zero-
current tune is chosen in the tune box free from structure
resonances, then the effect of the parametric envelope
resonance due to the imperfection harmonics at 1=4
single-particle tune values is negligible. Also, there are
no integer-type envelope growths at such tune values,
with the stationary solution for periodic oscillations of
beam envelopes being well defined.

When one approaches the integer or half-integer tunes,
this results in the growth of the periodic beam envelope
which is described by the integer-type coherent response.
At such tunes there is also the possibility of parametric
growth of the envelopes due to higher harmonics. How-
ever, for such parametric response to take place, the
frequency of oscillation of the periodic matched envelope
should still be well defined. Otherwise, the envelope
growth due to the integer-type response leads to an ef-
fective decrease of space-charge tune shift, and, as a
result, the parametric resonance condition is not estab-
lished. For the parametric resonance to occur at such
tunes, its stop band (due to the n2) should be much larger
than the integer-resonance stop band due to the n1 . For
example, in the PSR LANL lattice, if the zero-current
betatron tune is above � � 2:5, parametric resonance of
the beam envelope would take place at high intensity.
This is because the strength of the n � 10 (10) harmonic
is much larger than that of the n � 5 (5) harmonic, since
n � 5 is a weak imperfection harmonic while n � 10 is
the strongest harmonic due to the lattice super periodicity
P � 10 [10].

E. Extension to nonlinear modes

For the case of the nonlinear imperfection errors one
has to consider tune values near the corresponding non-
linear imperfection resonances. Similar to the m � 2
modes, the higher-order modes can have resonant growth
094201-4
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near

n � �m; (16)

which is the coherent resonance condition for any order
beam mode �m, derived by Sacherer [5]. To derive such a
resonance condition for modes m > 2, one needs to use
either high-order beam moment equations or the Vlasov
equation. In addition, the effect of periodic focusing adds
the possibility of �m resonating at the half-integers,
which corresponds to parametric resonance of the beam
modes [9]:

n=2 � �m: (17)

Practical considerations for typical strength of an imper-
fection error are now similar to those for the m � 2
modes, covered in previous sections.

For completeness, we note that in the absence of non-
linear imperfections, the periodic oscillation of higher-
order beam modes is now well defined, so that the
condition n � �m no longer applies, and stability is
now determined solely by the parametric condition
n=2 � �m. This, in fact, becomes the dominant effect
in high-current transport channels or cooler rings. With
harmonic n now being the structure harmonic, the beam
encounters a whole set of instabilities during the space-
charge tune depression. Such instabilities were first nu-
merically explored in connection with transport channels
[6] and recently were analytically described using the
terminology of resonances with an application to cooler
rings [9].

F. Extension to nonlinear resonances

When the beam has a large mismatch, the nonlinear
terms ignored in the linearized approach can play an
important role. In such a general case, the condition for
the nonlinear parametric resonance is

n=k � �m; (18)

where k stands for the exponent of the nonlinear term in
the driving potential. This is similar to the nonlinear
envelope resonance n=k � �2, when the beam envelopes
are mismatched [11]. Also note that in such a form, the
resonance condition applies also for the coupling reso-
nances, since the subscript m only indicates the order of
the mode.We should note that rigorous analytic derivation
of Eq. (18) would be very involved, since it requires
inclusion of the nonlinear terms in the expansion of the
Vlasov equation (see Appendix C).

III. NUMERICAL ANALYSIS

The important question to understand is whether the
envelope instability, driven by an imperfection term as
opposed to the strong ‘‘structure resonance,’’ causes any
concern. This type of instability is of the half-integer
type and is associated with the parametric resonance of
the beam envelope with the imperfection errors near the
094201-5
quarter-integer single-particle tunes. This question is of
crucial importance since such imperfection driven para-
metric resonances can be hardly avoided, compared with
the structure ones (driven by the lattice superperiodicity).
Numerical investigation of this question was reported in
Ref. [8]. Here, we summarize the numerical findings, for
completeness.

In our numerical studies, we used the KVXYG [7] code,
which determines the growth factors of the envelope
perturbations. A growth factor per lattice period (for
structure resonances) and per error period (for imperfec-
tion resonances) equal to unity corresponds to stable
oscillation of the envelope mode, while a growth factor
greater or smaller than unity corresponds to oscillations
with exponential growth or damping, respectively [7].
Simulations were done for both the structure and imper-
fection driven resonances.

For the imperfection resonances, driven by gradient
errors, the zero-current working point was chosen above
the quarter-integer tune. The intensity was then gradually
increased until the 1=4 tune was crossed as a result of the
space-charge tune depression. The strength of the driving
harmonic for this imperfection resonance was taken to be
4%, which is rather big compared to a typical strength of
imperfection errors of 10�3–10�4 level. The correspond-
ing growth factors of the envelope instability were found
to be very small with 1.0004 (this corresponds to only
ln�1:0004� e folds of amplitude of the mode per period,
which is negligible) and 1.0001 for the in-phase and out-
of-phase envelope modes, respectively. We also confirmed
that for errors of 2% and 1%, the width of these stop bands
decreases linearly with the error strength, in agreement
with the stop band of the parametric resonance given in
Eq. (14). As a result, the instability gets detuned at a
very low level. In addition, we performed particle-
in-cell simulations in the presence of gradient errors
(no octupolelike errors), which did not show any
resonant behavior near a quarter-integer fractional tune
(or n=2 � �2) [8].

This allowed us to reach the conclusion that the enve-
lope instability near the quarter (or three-quarter) inte-
ger fractional tunes for the imperfection case of gradient
errors should not be considered as a possible space-charge
limitation.

IV. SUMMARY

We examined the coherent response of the beam to
low-order machine resonances, including the parametric
resonance of collective beam modes with the periodic
lattice, also known as the envelope instability, when
second-order beam modes are considered. The relation
of this parametric resonance to the integer-type coherent
resonance condition is explained. The imperfection
driven parametric resonance of the beam envelopes was
found to be negligible. As a result, it is not expected to
impose any additional restriction in the tune space.
094201-5
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APPENDIX A: RESONANT RESPONSE AND
INSTABILITY GROWTH RATES

1. Integer-resonance response

The equation of the nonlinear oscillator with a periodic
force has the form:

u00 ��2u � f cos�n�� � u2 � �u3; (A1)

where f is the amplitude of the external force. Here, both
the u2 and u3 nonlinearities are kept since they give the
same order contribution to the frequency dependence on
amplitude in the second and first orders of the perturba-
tion theory, respectively. If the frequency of the external
periodic force is such that n � �� 
, where 
 is a small
parameter, the oscillation of the system corresponds to an
ordinary integer resonance.

Figure 1 demonstrates the nonlinear response to such
an integer-type resonance. The resonance takes place
when the frequency of the external force coincides with
the frequency of an oscillator. A special feature of the
resonance response curve is the existence of the three
solutions (for the amplitude of oscillations) for the same
frequency when the value of the amplitude of the excita-
tion force exceeds the critical one. Figure 1 schematically
shows such a resonant response case for f > fc. In Fig. 1,
the large-amplitude stable oscillations are indicated by
S� , while the small-amplitude oscillations correspond
to S� . Both stable solutions are shown with the solid
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FIG. 1. (Color) Nonlinear response to a resonance of an integer ty
amplitude excursions (normalized to initial value) are shown on th
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lines. The unstable solution is indicated with U� and is
shown with a dashed line. Here, we follow the notation in
Ref. [5] where � stands for the solution for the frequen-
cies above the resonance condition and � corresponds to
the frequencies below the resonance condition. Figure 1
corresponds to the nonlinearity which gives frequency
increase with amplitude.

The standard mathematical representation of such
resonance curve is a plot of the growth of an amplitude
of oscillation on the vertical axis and the frequency
deviation 
 (� � n� 
) from the resonance condition
on the horizontal axis. In Fig. 1, instead of the frequency
deviation 
, we use the intensity parameter I defined [5,8]
as a normalized frequency shift I � ��sc=��inc which
directly indicates the achievable space-charge limit in the
machine, corresponding to the coherent resonance con-
dition Ir � �2 � n. The value of Ir depends on the sym-
metry of the beam mode being excited. It also depends on
the transverse tunes and transverse beam dimensions [8].

As a result of such a resonance response, one gets the
growth of the eigenvalues of the system perturbation
(stop band of an instability) for the frequencies corre-
sponding to the unstable solutions. Once again, for a
resonance response of an integer type, the unstable solu-
tion (stop band of an instability) exists only when the
amplitude of the external force is above the critical value.
If the amplitude is below the critical value, then only
a stable solution exists, and thus there is no instability
stop band.

2. Parametric resonance response

This type of a resonance is fundamentally different
from an ordinary resonance of the integer type. The
corresponding equation for the oscillator has the form
1.4 1.6 1.8 2
I

S−

U+

S+

Ir

pe. Normalized frequency shift I � ��sc=��inc and maximum
e horizontal and vertical axes, respectively.
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u00 ��2u � uf cos�n�� � u2 � �u3; (A2)

where parameters of the system are now changing with
time (the word ‘‘parametric’’). Such a system resonates at
n � 2�� 
, which corresponds to the frequency of the
external force being twice that of the oscillator. Note that
such an equation can be also obtained from Eq. (A1) by
considering a solution with frequency n=2 and by writing
a second-order perturbation solution for u. Here, only the
dominant parametric resonance of the half-integer type
is considered. In general, the parametric resonance con-
dition is n � 2�=p, with p � 1; 2; 3; . . . . Higher-order
parametric resonances can be obtained by considering the
perturbative solution in powers of fp. However, the effect
of higher-order parametric resonances is typically negli-
gible compared to the dominant p � 1 half-integer
resonance.

A special feature of the parametric resonance is that
the zero-amplitude solution is now unstable inside the
resonance stop band width. As a result, one gets the stop
band of an instability in the region of frequencies corre-
sponding to the unstable solutions. Contrary to the inte-
ger-resonance response, the stop band of an instability is
now located on both sides of the resonance condition.
Figure 2 schematically shows such a parametric reso-
nance response with the unstable solution shown with a
dashed line. The small-amplitude condition for the para-
metric resonance is marked as Ip, which corresponds to
n � 2�.

APPENDIX B: NONLINEAR EMITTANCE TERM
IN THE ENVELOPE EQUATION

Without space charge, the envelope equation has a
nonlinear emittance term. However, this nonlinearity
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FIG. 2. (Color) Nonlinear response to a parametric resonance of the
and maximum amplitude excursions (normalized to initial value)
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does not limit envelope growth due to the resonance.
The envelope equation has the form

a00 � �20a�
E2

a3
� a�20

X
n

n cos�n��: (B1)

The nonlinear emittance term arises from the conserva-
tion of beam emittance. It has the same form as the
centrifugal force term that results from the conservation
of angular momentum. Such a term prevents a beam with
finite emittance from becoming arbitrarily small (the
beam envelope cannot become zero) but it does not limit
the large-amplitude growth as a typical nonlinearity
does. This can be seen by recognizing that Eq. (B1) is
equivalent to the two Cartesian equations [5].

Assume a2 � X2 � Y2, E � YX0 � XY0. We then have

aa0 � XX0 � YY0; (B2)

aa00 � a02 � XX00 � YY00 � X02 � Y02; (B3)

which gives

a3a00 � �X2 � Y2��XX00 � YY00 � X02 � Y02 � a2a02

� E2 � �X2 � Y2��XX00 � YY00�:

(B4)

On the other hand,

a3a00 � �20a
4 � E2 � a4�20

X
n

n cos�n��: (B5)

As a result, we have

XX00 � YY00 � �20�X
2 � Y2� � a2�20

X
n

n cos�n��; (B6)

which separates into two equations:
1.4 1.6 1.8 2
I

Ip

half-integer type. Normalized frequency shift I � ��sc=��inc
are shown on the horizontal and vertical axes, respectively.
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X00 � �20X � X
X
n

n cos�n��;

Y00 � �20Y � Y
X
n

n cos�n��:
(B7)

Also

E0 � YX00 � XY00

� YX
�
�20 �

X
n

n cos�n�� � �20 �
X
n

n cos�n��
�
� 0:

(B8)

APPENDIX C: PHASE-AMPLITUDE ANALYSIS

Here, the phase-amplitude analysis is used to derive the
stop band width of a parametric resonance.

We start with Eq. (13) without the nonlinear terms:

u00 ��2u � u�20n cos�n�� (C1)

and look for a solution in the form

u � A cos���� ��: (C2)

We then have

A0 sin � A�0 cos � �n
�20
�
A cos cos�n��; (C3)

A0 cos � A�0 sin � 0: (C4)

First, Eq. (C3) is multiplied by sin and Eq. (C4) by cos .
The two equations are then summed to give

A0 � �n
�20
�
A cos sin cos�n��: (C5)

Then Eq. (C3) is multiplied by cos and Eq. (C4) by sin .
By subtracting the equations from one another, one gets

A�0 � �n
�20
�
Acos2 cos�n��: (C6)

We now average over all terms except �2 � n�� and
obtain

A0 � �n
�20
�

A
4
sin�; (C7)

A�0 � �n
�20
�

A
4
cos�; (C8)

where � � �2�� n��� 2�. The integral of the motion
becomes

n cos� �
�2�� n�2�

�20
�
C
W
; (C9)

where C is the constant of integration and W � A2. The
motion is unbounded inside the resonance stop band
094201-8
�2�� n� � n
�20
2�

: (C10)

The nonlinear terms in Eq. (13) introduce frequency
dependence on amplitude with a bounded motion inside
the stop band. For a very small stop band width, the
beam is quickly detuned from the resonance due to the
nonlinearity.

The frequency of the envelope mode depends on the
space-charge tune shift � � 2�0 � ��sc. However, for
typical high-intensity rings, the space-charge tune shift
is very weak compared to the zero-current envelope tune.
As a result, the stop band of the resonance is mainly
determined by the strength of the error harmonic n.

APPENDIX D: ENVELOPE AND LINEARIZED
VLASOV EQUATIONS

The full envelope equation provides a nice tool for
studying envelope dynamics not just for small-amplitude
oscillations but also for arbitrarily large oscillation. As
a result, it is not limited to a prediction of the resonance
onset (which can be obtained from its linearized ver-
sion) but it also allows one to study the large-amplitude
behavior resulting from a resonant response. One
then readily finds a very important feature of large-
amplitude stabilization due to the nonlinear space charge.
In fact, a simple inclusion of nonlinear terms in the
linearized equation can already provide an accurate
description of large-amplitude space-charge stabiliza-
tion. Of course, a direct numeric solution is preferable.
The limitation of this equation is that it can describe
only second-order beam moments. To study the behavior
of nonlinear beam modes one needs to use the Vlasov
equation.

The typical analysis of higher-order beam modes pro-
ceeds via the linearized Vlasov equation, which allows
one to find the normal modes and eigenfrequencies of
beam oscillations. The fact that this equation is linearized
limits the analysis to the resonance condition or the
resonance onset. In most applications, however, the
large-amplitude oscillation of beam modes near the reso-
nance contributes due to the nonlinear stabilization. In
principle, it is possible to proceed by including the non-
linear terms in the expansion in the Vlasov equation but
the analysis become very involved. Such increasing com-
plexity is probably unnecessary since one can study both
the resonance condition and behavior of various beam
modes at large amplitude by means of self-consistent
simulations [12].
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