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The transverse stability of bunches in a bunch train is determined by solving the equations of
betatron motion for macroparticles circulating in a high energy storage ring. We ignore multibunch
modes that are more likely to be serious with equal bunch spacing, and find that a nonexponential
beam breakup instability may develop, which would not be found by the usual instability analysis
with an exponential ansatz. In the absence of radiation or other damping mechanisms, the am-
plitudes of the trailing bunches would grow with a power law and would soon be lost if the first
bunches performed a betatron oscillation about the closed orbit. Experimental observations on a

large electron-positron collider are also discussed.

PACS number(s): 29.27.Bd, 29.20.Dh

I. INTRODUCTION

In this paper, we explore the transverse stability of
bunch trains circulating in a storage ring of the circum-
ference 27 R [1]. The analysis is based on a macroparticle
model [2, 3], i.e., internal bunch motion is neglected. The
bunch train considered consists of N, bunches traveling
at the speed of light ¢. The nth bunch is assumed to be
located at a distance z,(z; = 0) behind the first bunch.
The distance between the mth and nth bunch is, accord-
ingly, indicated by dpm = |2n — zm|. Single bunch effects
due to short-range wake fields are not treated here since
they are the same as in a ring with equal spacing between
bunches [4]. We also disregard the effects of long-range
wake fields which may lead to the coupled-bunch insta-
bilities which have been analyzed in the past [5]. In any
case, they are known to be most critical when the spac-
ing between bunches is equal [6], hence they are of less
concern for operation with bunch trains. Here we concen-
trate our attention on specific effects of transverse wakes
of intermediate range, corresponding to the distances be-
tween bunches in a train.

For simplicity, we assume that all wake fields are
caused by localized impedances such as rf cavities. Wakes
originating from other sources, in particular distributed
ones, are not included. The cavity wakes are assumed to
be damped away before arrival of the next train, since
only effects of a single bunch train are of interest. This
assumption should be roughly valid in large machines
like the large electron-positron storage ring (LEP) where
the time interval between neighboring trains is gener-
ally long enough for the wakes to have major resistive
damping. The rf cavities are taken to be located at
$ = 81,82,...,58N., Where s is the distance along the de-
sign particle orbit, and IV, is the total number of cavities.
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In Sec. II, we derive the equation for betatron mo-
tion of macroparticle bunches in a single transverse plane,
while the closed orbit—in the same plane—is determined
in Sec. III for each bunch, taking into account the effects
of the localized wakes. In Sec. IV, we use the LEP pa-
rameters as an example to make an estimate for a typical
wake strength. We then solve the equation of motion in
Sec. V, concluding that a transverse displacement of a
leading bunch from the closed orbit can be a source of
nonexponential beam breakup in the trailing bunches.
In Sec. VI, we investigate several methods to control the
growth of the betatron amplitudes by introducing vari-
ous additional forces. The effect of radiation damping is
briefly explored in Sec. VII. After some discussion of the
present results in Sec. VIII, recent experimental obser-
vations on bunch trains in LEP are described in Sec. IX.
The results of the paper are then summarized in Sec. X.

II. EQUATION OF BETATRON MOTION

Since the leading bunch in a train does not receive a
wake field kick under the assumptions made, the equation
of its betatron motion about the design orbit is simply
given by

2

% + K(s)z, = F(s),
where K(s) corresponds to the focusing strength of the
quadrupoles, F'(s) is a periodic function, i.e., F(s) =
F(s + 2wR), characterizing the effect of field errors
and misalignments of the magnetic components installed
around the ring. However, for later bunches in the train,
we need to consider not only the effect of F(s) but
also that of the wake fields generated by the preceding
bunches.

(2.1)
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The second bunch is kicked by the wake of the first
bunch, and leaves an additional wake behind. Conse-
quently, the wake seen by the third bunch is the sum of
the two wakes left by the preceding bunches. If we define
the transverse displacement of the nth bunch from the
design orbit to be z,(s), this displacement is governed
by the following equation of motion:

d’z,
ds?

N,
+K(s)zn = F(s)+ Y FO(s)op(s — 52),  (2:2)
£=1

where 8,(s) denotes the periodic delta function with the
period 27 R, and F,(f)(s = s¢) is the kick force at the £th
cavity experienced by the nth bunch, given by
n—1
FO(s) = 3 Wiklem(s) + A,

m=1

(2.3)

Here, A® stands for the misalignment of the £th cavity,
and the coefficient W4, is the wake field generated in
the £th cavity by the mth bunch, acting on the nth one.
For a specific mode, W,(,f,), is given by
eQ W . dnm
W,(lf,)l = ELO sin (wlT> , (2.4)
where wy is the resonant frequency of the deflecting mode
in the £th cavity, W corresponds to the wake strength (in
units of V/C/m), Q. is the charge of the mth bunch, and
Ey the energy of the design particle. Damping within the
bunch is neglected.
We now introduce Courant-Snyder variables [7] to
write
2 () = v/B(3)yn(8) with df = — 2 (2.5)
n = n w1 = ’ .
vB(s)
where 6 goes from 0 to 27 in one turn, and 27v is the
phase advance of the betatron oscillation per turn. This
allows us to rewrite Eq. (2.2) as

d2 " N, n—1
VU= £(0) +v Y Be Y WD |um ()
£=1 =1

A®
+—
VBe

where f(8) = v23%/2F(s), and B¢ = B(s = s¢).

} 6p(0 — 0y), (2.6)

III. CLOSED-ORBIT DISTORTIONS

We now proceed to calculate the closed orbit for each
bunch. Even if all rf cavities are perfectly constructed
and precisely aligned, the first bunch may still leave a
transverse wake behind if it has an offset from the cavity
axis due to a closed-orbit distortion caused by field er-
rors or quadrupole misalignment. Then the closed-orbit
distortion of the nth bunch, denoted by Ay,, satisfies
an equation of exactly the same form as the equation for
betatron motion, Eq. (2.6). For the first bunch, the pe-
riodic solution to the equation of motion can be written
as

1027

2r

Ay1 (0) =

> in(6—6")
e

1 e
! / . -
a0 1@ [,M Do
where the Green function in brackets has been expressed

as an explicit function of |# — 6’'|. In a similar fashion,
Ay, can be obtained from Eq. (2.6) as

N, n—1
v
Dyn(6) = Ay (0) + - > _Be D Win, [Aym(ot)
£=1 m=1
(0] &, ik(0-00)
A S (3.2)
\/E k=—oc0 V2 - kz

Next we derive an interesting expression for Ay, which
is valid under some simplifying assumptions. We use
Eq. (2.4) for Wi, and assume that the deflecting-mode
frequency is the same in all rf cavities, i.e., wy = wo.
We further assume equally spaced and equally populated
bunches in the train, i.e., dpt1,n = Ad, and @, = Qo.
Neglecting possible cavity misalignments, we can find the
closed orbit for the second bunch from Eq. (3.2) as

v€sin(
T

N.
Z BeAy1(6e)

£=1

Ayz(0) = Ay1(0) +

o gin(6—6:)
X

where £ = eQoW/2Ey, and ¢ = woAd/c. Noting that

o in(6—6,)

Pl (3-3)

_ mwcosv(|6 — 6, — )

v2 —n? vsinvw

n=-—0oo

for =27 < 0 — 6, < 27, we get

N
Aya(0) = Ay1(6) +&sinC D Ayr(0e)pe(6 — 6e),  (3.4)
£=1

where we introduced the function

pe(0) = B (sinv|0| + cosu0) .

tan v

Equation (3.4) indicates that the closed orbit for the
second bunch differs from that for the first bunch by a
factor proportional to B¢£, which is quite small in most
cases. In fact, as shown later, this factor is less than
0.0003 in the case of LEP, even for rather high intensity
beams.

Similarly, the closed orbit for the third bunch can be
expressed as

N,
Ays(0) = Ay1(6) + €D _[Ay1(6e) sin2(

£=1
+Ay2(0¢) sin(]pe(6 — 6;). (3.5)
If ¢ is small, Ay;(0) can be approximated by Ay;(f) in
Eq. (3.5). In this way, we find from Eq. (3.5), together
with Eq. (3.4),

N
Ays(8) — Ayz(0) ~ £sin2¢ Y Ay1(0)pe(6 — 6e).  (3.6)
£=1
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An analog analysis for the (n 4+ 1)st bunch results in

N.
Ayn+1(8) — Ayn(6) = Esin(nC) D Ay (6e)pe(6 — 62).
£=1

(3.7)

We now see that successive bunches have closed orbits
differing from each other only by a relative factor £, but
have the same azimuthal dependence. Since the problem
is linear, it is straightforward to generalize this formula

to the case where W%, includes several deflecting modes.

IV. CAVITY WAKE STRENGTH

In this section, we will estimate the strength of the
cavity wakes for later reference. We first consider a sin-
gle deflecting mode, using the expression given in Eq.
(2.4). It is worthwhile to note that, at the intermediate
distances considered here, the strength of the wake po-
tential is not well determined since it oscillates rapidly.
This can be seen from Eq. (2.4), when the distance d,,,
is large compared to the wavelength c¢/wy. The wake
can be very small, or even accidentally equal to zero,
depending on the mode frequencies and the bunch spac-
ing. In reality, the wake potentials will not be identical
in all cavities because of dimensional differences due to
fabrication tolerances, as well as due to possibly differ-
ent operating temperatures, tuner settings (used to com-
pensate frequency deviations of the accelerating mode),
and so on. Therefore the frequencies wy of the deflecting
modes are no longer the same in all cavities. They will
be represented as wy = wg + Awp, where Aw, denotes
the frequency deviation at the f£th cavity from the aver-
age wq over all cavities. Because of the indeterminacy
of the cavity modes, it will be necessary to perform a
statistical estimate for the most probable strength of the
wake kicks, and no definite predictions for stability can
be made.

As an example, let us consider the following expres-
sions for the mth bunch acting on the nth one in the £th
cavity:

N
Snm =Y LW, (4.1)
=1

As will become clear later, these expressions are key fac-
tors for the growth rates and the maximum amplitudes
of the betatron oscillations. If a very large number of
cavities are present, we can approximately replace the
sum over the cavity number by an integral, introducing
the normalized weight function g(w) describing the dis-
tribution of the mode frequencies. Equation (4.1) may
then be written as

QWP
Som 22 S22 /_

where Aw is the maximum deviation of the deflecting-
mode frequencies, and we have assumed for simplicity
that the values of the betatron function at the cavity
positions have only small differences from their average

Aw
2

g(w) sin [(wo + w)d"T'"] dw, (4.2)

Aw
2

value . If the distribution in frequency is Gaussian, we
can put

N, w?
g(w): '—Zwaexp 302 )

where o is the rms width of the distribution in w.

To make a first estimate of this effect, we substitute Eq.
(4.3) into Eq. (4.2), expanding the range of integration
to infinity, to obtain

_ NceQmW,B sin denm
- Eo c

[ 1 (adnm)z}
X exp 3 - .

We thus find an extra factor which may considerably re-
duce the integrated effect of the wake kicks, depending
quite sensitively on the product od,m,.

The existence of many higher-order modes (HOM’s) re-
quires summation of the contributions over all modes for
the evaluation of the total kick received by each bunch.
The factor sin(wod,m/c) may as well be positive as neg-
ative, depending on the mode frequency wp, and accord-
ingly we get another reduction factor in the kick strength.
The effect of this factor may be more significant than
that of the mode frequency spread considered above. If
we write the wake strength of the kth mode as W}, Eq.
(4.4) should be modified to

_ NceeQrm Wﬂ—

Snm =
word 1 [od 2
. 0k%nm nm
X Ek Wksm<—c—)exp[ 2( . ) ],

(4.5)

(4.3)

Snm

(4.4)

where wor and oy, are, respectively, the central frequency
and a typical frequency spread of the kth mode.

We will take LEP parameters as an example to esti-
mate the order of magnitude of S,,,,,. Then R = 4.24 km,
B ~ 40 m, N.=120, v = 90.27 in the horizontal, and 76.24
in the vertical plane. The energy Ej is evaluated at injec-
tion (20 GeV) since the instability is more severe at the
lowest energy because of weaker radiation damping. As
to the reduction factor, the estimated frequency spread
of the HOM’s due to fabrication tolerances in the LEP
cavities is, unfortunately, rather small: it has been deter-
mined to be less than 0.1% [8]. However, possibly differ-
ent positions of both fixed and variable tuners in the cavi-
ties might increase the actual spread of the HOM frequen-
cies. Provided that the distances between bunches d,..,,
are sufficiently large, this could considerably reduce the
magnitude of S,,,,. However, as demonstrated later, the
maximum betatron amplitude is always associated with
the factor S,41,, i.e., the distance between neighboring
bunches Ad is of particular importance if the bunches
in a train are equally spaced. Therefore, noting the fact
that Ad adopted for bunch trains in LEP is presently
about 74 m, the reduction factor is very near unity and
can be ignored for a conservative estimate. Then we ob-
tain S,,, = 0.021371,V(d,m), where I, is the current
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in the mth bunch in units of mA, while V(d,,) has the
units of V/pC/m as the wake potential, defined by

= ; Wi sin (ka%) .

Figure 1 shows the function V(z), obtained from the
wake potential for a five-cell LEP copper cavity for a
bunch length s = 2 cm by a mesh-code analysis [9]. We
observe that the peak transverse wake strength oscillates
with an amplitude of about 5 V/pC/m between 70 and
80 m, which corresponds to the presently favored dis-
tance between two bunches in the trains for LEP. Later
bunches, at multiple distances from the first ones, might
feel somewhat smaller wakes because of resistive damp-
ing (which is not included in the mesh code), but this
reduction is certainly very small for a short train. To be
on the safe side, we shall assume V(z) to be 5 V/pC/m
over the whole range of a single bunch train in LEP.
The value of S,,,,, derived from the above formula is then
Spm = 0.10651,,.

(4.6)

V. BEAM BREAKUP IN BUNCH TRAINS

We are now in a position to look at the betatron motion
of each bunch. From Eq. (2.6) together with Eq. (3.2),
the bunch oscillation about the individual closed orbit is
described by

d?, iy

T VY, = uzﬁf > WY on (00)85(6 — 62),
=1 m=1
(5.1)
where Y, = y, — Ay,. Since the right-hand side of

Eq. (5.1) depends only on the motion of the preceding
bunches, we can easily get the general solution for Y., (6),

N, n—1
Y,(0) = an cos(v0) + bnsin(v0) + > Be > Wi,
£=1 m=1

‘]
x / d60'Y;m (6) sinu(0 — 0')]6,(6" — 8e),  (5.2)

where n > 2, and the initial conditions have been intro-
duced according to

0.4 T T T

&l &l &l
< < <
2 S radius reduced 3

ny L] by one mesh cell n
0R F  w ] o) w)
S 1, |
| . A 1/ A A
AL ATENL /\
X - - 1 _ - |
-0.2 |-

"exact dlmensmx}s

Wake in units of 52 V/pCm (¢ = 2.0 cm)
o
o

S _é 6

! Ll I
73 73.5 74 74.5 75
Distance from Bunch Head s (m)

-0.4

FIG. 1. Transverse wake potential of five-cell LEP cavity.

an =Y,(0 =0) and b, = (ddYo)
For the first bunch, the third term on the right side of
Eq. (5.2) disappears, and the solution simply becomes

Y1(0) = a; cos(v8) + by sin(v0). (5.3)

Equation (5.3) contains enough information to determine
the second-bunch motion from Eq. (5.2), leading to the
betatron amplitude after N turns,

N S3a,

Y2(2nN) = a cos(Np) + be sin(Np) + 5

sin(Np)
a1 sin(Np)
sin p

Zﬂ[ (l) sin(p — 2v6,),
= (5.4)

where p = 27v, Spm has been defined in Eq. (4.1), and
we have assumed b; = 0 for simplicity. The third term
in the right-hand side of Eq. (5.4) expresses a growing
oscillation proportional to the number of turns NV for the
oscillation amplitude of the second bunch.

The solution for the third bunch can be derived from Y;
and Y> in an analogous way. Obviously, the contribution
from the first bunch results in the terms of the same form
as in Eq. (5.4), yielding a linearly growing amplitude,
while the wake parameter Wé? must be replaced by Wé{)
The stable part in the second-bunch solution also gives
rise to terms growing linearly with the number of turns.
On the other hand, the unstable part, i.e., the third term
in Eq. (5.4), generates terms which grow with the square
of the turn number. This N2-dependent term reaches an
amplitude

N28S3253104
3 .

It is easy to see that this term leads to an N3-
dependent amplitude in the solution for the fourth bunch.
Thus we come to the conclusion that the oscillations of
the nth bunch have amplitudes involving all powers of N
up to the order of N™*~!, provided that the leading bunch
executes betatron motion about the closed orbit. More
correctly, the betatron motion of the mth bunch produces
divergent terms proportional to a,, N®*~™ and b,,N*~™
in the solution for the trailing nth bunch. Figure 2 shows
the severe growth of the betatron amplitudes originating
from this nonexponential instability. The ordinate of the
figures represents the ratio of betatron displacement to
the initial value, taken to be the same for all bunches.
This figure has been obtained by tracking a bunch train
with four bunches in LEP, with 16 rf cavities located at
positions corresponding to the centers of groups of eight
cavities. The wake strength at each cavity has, accord-
ingly, been taken about eight times larger than the value
estimated for a single cavity in the last section.

In order to evaluate the magnitude of the nth bunch
amplitude after N turns approximately, we distribute the
kicks over the whole circumference of the ring. Equation
(5.1) then leads to

a2y, v =2

(5.5)

. (5.6)
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Furthermore, we assume that the amplitude and phase of
each bunch are slowly varying quantities per turn. Writ-
ing Y,,(0) = u, (0) exp(ivh), where u, is a complex ampli-
tude, we obtain from Eq. (5.6) the approximate equation

du, 1=
W = i D Somm

If we consider u,, on successive turns, we can rewrite Eq.
(5.7) in terms of the turn number N as

(5.7)

du,(N) _1

dN P (5-8)

N-1
> Snmum(N).
m=1

We now proceed one bunch at a time, assuming
that the first bunch has a constant amplitude u; since
du;/dN = 0. For the second bunch, Eq. (5.8) yields for
N>1

_ NSxuy
Uy = % (59)
and for the third bunch
us(N) 1 (N\? N
u = 5 (22 532521 + % S31. (510)

Provided that NS,,, reaches a large value before
damping of the betatron motion becomes important, only
the highest power of N'S,,,,, need be retained, and we find
for the maximum amplitude

un+1(N) _ —1_ E "o
vy nl\2 Sny (5-11)
where
Sn=I] Smirm- (5.12)
m=1

5 10
Number of Turns

Equation (5.11) agrees with the numerical results in
Fig. 2 as well as with the solutions given in Egs.
(5.4) and (5.5). Thus—without radiation damping—
successive bunches may have ever increasing amplitudes
and will be shifted in phase from the preceding one by
—90°.

VI. SUPPRESSION OF BEAM BREAKUP

A. Octupole nonlinearity

The nonexponential instability of the betatron oscilla-
tions of the later bunches is caused by a resonance with
the driving force in Eq. (5.1) which has the same fre-
quency. Therefore the growth can be limited by modify-
ing this frequency. This occurs naturally if the betatron
tune is amplitude dependent. For this purpose, we take
into account the effect of an octupole nonlinearity. Start-
ing from the averaged version of the equation, i.e., Eq.
(5.6), and adding an octupole term to it, we get for the
second bunch

a2y, ev?
Y =
@ VT up

Y2+ L8 .
2 + o 21Y1, (6.1)

where the last term must be extended to all turns. The
parameter ¢ is related to the detuning of the betatron
frequency of the first bunch. (In fact, év/v = 3¢/8 for
the first bunch.) We now assume the solution to Eq.
(6.1) to be Y,, = A, sin(vf + a,,), where A, and a, are
slowly varying functions of #. In terms of turn number,

this can be rewritten as
Y,.(N) = A, sin(uN + ay,), (6.2)

and Eq. (6.1) becomes
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d2Y2(N) 2 €H2 3
Nz tH Y2(N) - A—%[Yz(N)]
= /.LSzlY]_(N) (6.3)
We choose
dA
—2sin(uN + az) + Aggigg cos(uN + az) = 0. (6.4)

dN dN

The use of Eq. (6.4) after substituting Eq. (6.2) into Eq.
(6.3) results in
dAz daz .
TN cos(ulN + ag) — AZW sin(uN + a3)
_ epA

Sz sina(uN + o) + S21 41 sin(puN + o).
1

(6.5)

Combining Egs. (6.4) and (6.5), and averaging over
the rapidly varying terms, we eventually obtain

dAz _ SZlAl
dN
daz . _36;I,Ag _ SglAl

Agn = 8A2 2

sin(ay — az2), (6.6)

cos(ay — az). (6.7)
Since A; and «; are independent of N, Egs. (6.6) and
(6.7) lead to the constant of motion C satisfying the re-
lation

_ 36# A2 8 A1
cos(a; — az) = 1651 (A_1) +C.A_2_ ,

which has been plotted in Fig. 3 in the form of cos(az —
a1) vs A/ A, for various values of C. If the initial ampli-
tude A2/ A; is of the order of unity and Sz, /e is large, we
can neglect C in Eq. (6.8) and obtain, for the maximum
value of A3/A4,

A2\ (165:\"?
Al max~ 36,”' '

Clearly, without the nonlinearity, A,/A; will grow with-
out limit (or until radiation damping takes over).

In order to extend this analysis to successive bunches,
we assume, as in the case without nonlinearity, that only
the preceding bunch is important. This is suggested, e.g.,
by Eq. (5.11) indicating that the fastest growing term in

(6.8)

(6.9)

14
5
gf: 0
g
1
A,/A,
FIG. 3. Trajectories in the cos(ay — a2) vs A2/A; space

for various values of the adiabatic invariant C.

the nth bunch solution originates only from the largest
term in the previous bunch solution. Then, the assump-
tion enables us to write for the third bunch

dA S3242 .

——d]\? = 322 2 sin(az — az), (6.10)
das 3epAl  S32As

A3_JN = _S—A"z’% - =5 cos(az — as). (6.11)

Unfortunately, A; and ay are now functions of IV, as
shown by Egs. (6.6) and (6.7), and it is no longer possible
to obtain an exact integral of motion. Instead we invoke
an approximate model which we will then test on Egs.
(6.6) and (6.7). Specifically, we assume a; — as starts at
/2, remaining there until a; grows rapidly near the end
of the growth of A,. In this way, we approximate A3 as
Ay ~ S31A1N/2. The growth of a; — a3 is governed by
Eq. (6.7), where we drop the second term since cos(a; —
a3) = 0 during most of the growth of A;. Thus Eq. (6.7)
can be approximately solved to give
_m  euSHN?
R R T

From Eq. (6.6), we see that the growth of A; stops when
ay — az = 7. This occurs when N =~ (167 /euS3,)'/3 by
which time the growth has reached its maximum value

().~ ()"
Al max eu ’
Since (27)'/3 ~ 1.845 and (16/3)/3 = 1.747, our model
yields excellent agreement with Eq. (6.9).

This approximate model can easily be extended to the
bunches which follow. Specifically, we find

(6.12)

(6.13)

Angr 1 (N\" ¢
~—= (=) &, 6.14
A]_ n! 2 ( )
3 i\
™ 2l n 2n+1
_ ~T 43 L I N 6.15
n =™ ot gon 1 (2%!) (6.15)

The maximum amplitude of the (n+1)st bunch is reached
near the turn number,

N~ [47r(Zn+ 1) (2’:71,!)2] =

3ep Sn

(6.16)

and the approximate magnitude of the corresponding am-
plitude can be evaluated from

Ani1 Lm0\ ST oy
A1 max - 36[1, F ’ ( ’ )

To obtain more reliable results, one must use the wake
field of several bunches, as well as distribute the kicks
over several cavities.

The amplitude-dependent tune shift treated in this sec-
tion could be a possibility to limit the growth in betatron
amplitude if a sufficiently large value of € can be provided.
However, for the LEP case, currently only eight octupole
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magnets are installed and their field strength is too weak
to provide sufficient suppression of the beam blowup. On
the other hand, a large number of sextupoles, which also
yield a tune shift, are installed in LEP. But, unfortu-
nately, the effect of sextupole nonlinearity on betatron
tune is much weaker than that of an octupole. Therefore,
the nonlinear components on LEP will not help much to
prevent the amplitude from reaching the critical size.

B. Current-dependent tune shift

Image charges and currents, induced by the beam in
the surrounding vacuum enclosure, are also a source of
tune shifts. Since these shifts are proportional to the
beam intensity, it is possible to provide bunch-dependent
tunes by intentionally storing different currents in each
bunch. Keeping only the linear part of the image forces
and making use of the transformation in Eq. (2.5), the
starting equation reads

d2Yn N, n—1 .
Zgn T En(0)Yn = vy Be Y W Ymdy(0 —60),
£=1 m=1

(6.18)

where the closed orbits in Eq. (3.2) have been redefined
J

N
Y>(27N) = az cos(2r Nvs) + L sin(2rNvy) + g—— 2[3 W(e) {sm( Hﬂ+) sin [(1 —

-},

_sinWVuo) o [(1 _

sinp_

where we have put by = 0 and py+ = 7(vy £ v2). It has
been confirmed that the growing term no longer exists
because v; # v,. Equation (6.20) is substantially a su-
perposition of two stable oscillations with the frequencies
vy and v,. In actual cases, these two frequencies are usu-
ally chosen close to each other, and the resulting effect is
beating.

To evaluate the third bunch solution, Eq. (6.20) as
well as the first-bunch solution are substituted into Eq.
(6.19). The driving terms now involve two modes having
the frequencies vy and v, but the free-oscillation tune
of the third bunch v; is different from both of them.
Therefore the third-bunch motion is also stable and beat-
ing. Because of the linearity of the problem, it is obvious
that the nth bunch solution Y,, () is generally composed
of the n stable modes oscillating at the frequencies v,
(m=1,2,...,n). If each frequency is different, the end-
less growth of the betatron amplitude can be totally sup-
pressed. Thus the use of current-dependent tune shift is a
simple and effective way to avoid beam breakup in bunch
trains.

However, it is important to notice that the oscillation
amplitude in Eq. (6.20) can still become very large owing
to the factor 1/sinpu_ when the difference of the bunch
currents is quite small. When v; = v5, the last term on
the right-hand side plays a dominant role, and the peak
beating amplitude is of the order of

to incorporate the image forces, and K, (6) is the periodic
function including the image effect on the nth bunch.
Smoothing the periodic force by writing the approximate
tune of the nth bunch as v,, Eq. (6.18) becomes

a2y,
do?

+ V%Y, —uZﬂ ZW(‘)Y 5,(0 — 0,).  (6.19)

The tune v,, can be decomposed into a zero-current tune
v and the bunch-dependent shift Ay, due to the image
fields; namely, v, = v + Av,. The shift Av,, can be rep-
resented as Av,, = (dv/dI)I,, where I, is current of the
nth bunch, and an explicit analytic form of the detuning
factor (dv/dI) is given, for example, by Laslett’s formula
[10]. In practice, the value of (dv/dI) should be deter-
mined through experimental observations. In LEP, past
experiments show that (dv/dI) ~ —0.129 (mA~1!) verti-
cally and (dv/dI) ~ —0.064 (mA~?') horizontally [11].
Needless to say, Eq. (6.19) yields a solution similar
to Eq. (5.2). However, the first two terms on the right-
hand side of Eq. (5.2) now have the frequency v,, and the
factor sin[v(6 — €')] in the third term must be modified
to sin[v, (6 — 0")]. The first-bunch solution is again a
harmonic oscillation with the frequency v;. The second-
bunch amplitude, after N turns, is then found to be

(7
f) By — NM—]

(6.20)

ayv
21/2

521

- (6.21)
sinp_

For the third and later bunches, it may not be straightfor-
ward to obtain such a compact formula as Eq. (6.21) for
quick evaluation of the maximum amplitudes. However,
it is possible to derive a rough criterion when the cur-
rent differences in adjacent bunches are sufficiently small
and approximately the same, ie., Av = v, —v,; €1
regardless of the bunch number n. In this case, the max-
imum beating amplitude of the (n + 1)st bunch can be
estimated from the expression

Yn+1 1 1 " &
—_ = — _— n = h'n. .
( a )max n! (27I’A1/) S +1

The tune shift Av should be chosen such that the am-
plitude increase h, takes an acceptable value depend-
ing on various conditions: the minimum aperture size,
the expected value of a;, etc. If h,, =~ 1 is adopted for
all bunches, beating could be completely eliminated, but
this choice might be too conservative. With strong wake
fields and/or a very small tune shift, h,, usually becomes
larger for a later bunch.

The effect of the current-dependent tune shift is shown
in Fig. 4 for the (smaller) horizontal LEP detuning pa-
rameter (dv/dI) ~ —0.064 (mA~—!). Although the total
current of the train is even higher than for the situation

(6.22)
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in Fig. 2, we observe well-bounded oscillations in all four
bunches. The value of h, in this example is about two
for each bunch, which roughly agrees with Fig. 4.

C. rf focusing

In order to make the tune bunch-dependent, we briefly
explore here the application of a time-dependent linear
kick on a bunch train, modifying Eq. (2.2) to

d*z,
ds?

+ K(8)zn, = F(s)

N,
+ 3 FW6,(5 = 50) + K(£)znbp(s).
£=1
(6.23)

The additional kick has been assumed to occur at posi-
tion s = 0; x(t) is a periodic function representing the
time-varying kick strength.

This effect could be provided, for example, by in-
stalling an rf focusing device in the storage ring. The
function k(t) then has the form x(t) = g cos(Qt), where q
is a constant related to the rf voltage, and Q denotes the
angular rf frequency which should be an integer multiple
of angular revolution frequency of the design particle.
The magnitude of the kick strength depends on the time
when a bunch traverses the focusing element. The result-
ing tune shift can be made bunch-dependent by making
a proper choice of the rf frequency and initial phase.

With the closed-orbit distortions redefined again by
including the additional terms, Eq. (6.23) turns out to
be of the same form as Eq. (6.18), but with the coefficient

of the linear force term changed to
K, (0) = v® — vBokndyp(6), (6.24)

where Gy = B(s = 0), and &, is the kick strength experi-

5 10
Number of Turns

enced by the nth bunch. The second term yields a tune
shift, and an approximate relation between the original
tune v and the shifted tune v, can be given by

vy = _fnbo
" 4

The smoothed version of Eq. (6.23) is identical to Eq.
(6.19) except that we now need to employ Eq. (6.25)
instead of the Laslett tune shift. The nth bunch solution
is made stable anyway if v,,, # v, for m # n. Although in
principle such an rf kicker is a simple means to eliminate
the resonant growth of betatron amplitude, it may be
rather difficult to obtain a sufficiently large tune shift
when the beam energy is high.

(6.25)

VII. RADIATION DAMPING

The effect of synchrotron radiation damping will now
be considered. Although the natural damping force is
quite weak at injection energy in LEP, its exponential
nature is always strong enough to eventually limit the
power-law beam blowup. By adding a frictional term to
Eq. (5.1), the starting equation can be written as

a2y, dy,

d02 -+ 2)‘—&70— + VZYn

N, n—1
=vY B Y WDYnb,(0 - 6y), (7.1)
£=1 m=1

where we have assumed the damping constant A to be
small, and the frictional force has been averaged over
one turn. The redefined closed orbit here is the periodic
solution of Eq. (2.2) together with the frictional term on
the left-hand side. For v > A, the general solution to
Eq. (7.1) can be obtained, to a good approximation, as
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Y,(0) = e *%[a, cos(v8) + b, sin(v)]
N, n—1
e B> Wi
=1 m=1

x / ’ d0'Y;, (") sin[v(0 — 6')]6,(6" — 6,).
(7.2)

The natural damping time is about 0.5 sec at injec-
tion energy in LEP, corresponding to about 6000 turns.
The parameter X is then about 2.7x107%. Although this
value seems very small, an initial betatron oscillation will
be damped to negligible amplitude in only a few sec-
onds, removing the driving term for the nonexponential
instability. It is, therefore, easy to make the instability
mechanism ineffective by injecting subsequent bunches at
larger time intervals, unless the injection of a later bunch
excites oscillations of the preceding ones. All one needs
to do is simply to wait for a few damping times before a
new bunch is added to the train. Then, at the nth bunch
injection, the functions Y,,() (m =1,2,...,n — 1) have
already been damped away, and we only need to consider
the first two terms in Eq. (7.2) which represent damped
oscillations.

In practice, when the distance between bunches in a
train is not very large, it will be difficult to inject a
new bunch without any influence on the already stored
bunches due to residual fields of the kicker magnet. All
bunches will suffer weak kicks by these fields during ac-
cumulation of additional bunches. The driving terms will
then reappear, and are clearly important if their oscilla-
tion frequency coincides with the resonant value, leading
to the nonexponential instability. Although these oscilla-
tory components are eventually again damped away and
all bunches will get back to the closed orbits, the betatron
amplitudes will first grow and may reach values which ex-
ceed the radius of the beam pipe. Later bunches will then
be limited in current, or even be lost, and reaching the
same levels as that of the preceding bunches might be
difficult.

In order to evaluate the peak amplitude of the sec-
ond bunch, we simply use the function a;e™*? cos(v8) as
the first-bunch solution. Then only the last term on the
right-hand side of Eq. (7.2) is of concern, which yields
the amplitude after N turns,

N521a16_2"’\N

Y2(2aN)= 5 sin(NV )
a1e= 2™ gin(Np) o WO g 200
+ 2 sin g Z,Bg 21 sin(pu—2v6,),

£=1
(7.3)

identical to the last two terms in Eq. (5.4), except for
the damping factor e~2"*¥_ In particular, the first term
on the right-hand side makes the dominant contribution
to the maximum amplitude. The time when Y3 reaches
its maximum is clearly # = 1/, and the corresponding
amplitude can be evaluated from

Sa1a
4me)

It is straightforward to show that the peak amplitude of
the (n+1)st bunch occurs around 6 = n/), and the value
is roughly of the order of

(7.4)

n n .

a1 (qerormney) o (75)
This expression is valid under the assumption that the
first bunch has initially a finite betatron amplitude a;.
Needless to say, bunch stability is much better if a; = 0.
Provided that the peak amplitude of the last bunch in
a train is well below the minimum aperture, no bunches
will be lost due to this nonexponential instability.

Figure 5 demonstrates the effect of radiation damp-
ing. The damping time is 3000 turns, corresponding to
LEP at injection energy with all wigglers excited. Other
parameters are identical to those used for Fig. 2. We
recognize that the peak amplitude for the nth bunch ac-
tually occurs near turn number (n — 1) x 3000, which
agrees with the values discussed above. Furthermore,
the values of the maximum amplitudes are also in good
agreement with Eq. (7.5).

VIII. DISCUSSION

From the present results, it follows that radiation
damping in LEP works rather effectively in limiting the
growth of bunch oscillations at modest intensity, even
at injection energy. However, the maximum amplitudes
of the third and fourth bunch shown in Fig. 5 are be-
yond the permissible range. This could be a possible
explanation of recent experimental observations in LEP,
where accumulation in the third and fourth bunch failed
to reach the first-bunch intensity, about 0.45 mA, while
reaching the same level in the second bunch was no prob-
lem [12].

To simulate the situation of the experiment, we in-
crease the second-bunch current in Fig. 4 to 0.45 mA,
keeping other parameters unchanged. Figure 6 illustrates
the result with a damping time of 3000 turns. While the
maximum amplitude in Fig. 4 was only twice the initial
value, even without damping, we now observe a large
growth of the amplitudes in all trailing bunches. This
drastic change strongly suggests that one should avoid
equal currents for the two leading bunches. In fact, it is
interesting to note that the peak amplitudes of all three
trailing bunches occur at 3000 turns, indicating excita-
tion of the linear-growth mechanism, though we observe
no such behavior in Fig. 4.

Next we test the case where the currents in all four
bunches of a train are almost equal, but any two adjacent
bunches have slightly different intensities. As expected,
the nonexponential growth is no longer dominant in this
case, but beating can still lead to large amplitudes as seen
in Fig. 7. With parameters for motion in the vertical
plane of LEP, Fig. 7 is altered to Fig. 8. Comparison of
these two figures leads to the conclusion that horizontal
beam blowup in LEP is more severe than vertical growth
because the detuning factor is only half of the vertical
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value. However, the LEP beam pipe cross section is an
ellipse whose horizontal semiaxis, a ~ 70 mm, is twice
its vertical size, b ~ 35 mm. Therefore, even a slower
vertical growth could be just as dangerous for beam loss
as the horizontal one.

We can use Eq. (6.22) to evaluate the required tune dif-
ference for keeping the betatron amplitudes small. With
the same total current of the trains in Figs. 7 and 8, and
adopting the condition hy =~ 15, we find that the desir-
able tune split is Av = 0.0013 corresponding to a bunch
current difference of 0.02 mA in the horizontal plane.
We therefore set the bunch currents at I; = 0.355 mA,

1'0—3‘ |First Bunchl

Transverse Displacement
Transverse Displacement
o
]

5 10
Number of Turns

T 1
20x10°

I, = 0.335 mA, I3 = 0.315 mA, and I; = 0.295 mA, re-
sulting in Fig. 9. While the first-bunch intensity is even
higher than in Fig. 7, the stability of the bunch train
has improved remarkably. Also the peak amplitudes are
in reasonable agreement with Eq. (6.22); i.e., hy = 4.6,
hs = 10.4, and hy = 14.5.

It should be noticed that, except for the nonlinear sit-
uation discussed in Sec. VI A, the maximum amplitude
always depends linearly on the initial offset a; of the
first bunch, measured from its closed orbit. Therefore,
if an error at injection doubles the value of a;, this will
immediately result in doubling the amplitudes of all fol-
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FIG. 6. Tune v = 90.27; detuning factor
dv/dI = —0.064 (mA~!); damping time 3000
(turns); bunch currents (mA): I; = 0.45,
12 = 045, Ia = 035, I4 = 0.3.
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dv/dI = —0.064 (mA~'); damping time 3000
(turns); bunch currents (mA): I, = 0.345,
I, = 0.335, I3 = 0.315, I, = 0.305.
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lowing bunches. Inversely, if the size of a; is minimized
by performing better injection of the trailing bunches,
it will considerably improve stability of all bunches. In
fact, the leading two bunches would be completely stable
if a; = 0 and, furthermore, the third-bunch amplitude
would only grow linearly, which is much less dangerous
than the quadratic increase. Thus, it is crucial to avoid
accidental kicks to preceding bunches.

As easily seen from the above formulas, e.g., Eq.
(5.11), the maximum amplitude is usually determined
by the factor S,,41,,. The strongest term in the motion
of the nth bunch originates from the strongest motion

10

First Bunch 343
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3
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of the (n — 1)st bunch. For a bunch train filled with
equally spaced bunches, this fact implies that the mag-
nitude of the wake function at the distance Ad = dn41,n
is of particular importance. Minimization of the sum of
Sn+1,n over all HOM’s by optimizing Ad is thus essential
to achieving better stability of a bunch train.

IX. EXPERIMENTAL OBSERVATIONS IN LEP

Recently, a number of MD (machine development)
shifts have been devoted to the study of bunch trains
in preparation for the possible operation of LEP with
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FIG. 8. Tune v = 76.24; detuning factor
dv/dI = —0.129 (mA~'); damping time 3000
(turns); bunch currents (mA): I, = 0.345,
I, = 0.335, Is = 0.315, I4 = 0.305.
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I, = 0.335, Is = 0.315, I, = 0.295.
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such trains in the near future. In the absence of addi-
tional vertical electrostatic separators, which will only
be installed during the end-of-year shutdown, only a sin-
gle beam could be stored for most of the year. Usually
it consisted of four equally spaced trains with up to four
bunches each, distanced by 87 A, (about 74 m). Near
the end of the year, existing horizontal separators in in-
tersection regions No. 4 and No. 8 were rotated into the
vertical plane, and two beams with two trains could be
tested.

In the earlier runs, the bunch currents in a train were
rather limited and quite unequal, as instrumentation to
measure the individual bunches was not yet fully avail-
able. However, in the course of the year, diagnostics were
developed and large improvements could be made: with
sixteen bunches per beam, record intensities for the total
current were achieved.

In particular, currents of the first two bunches often
reached the transverse mode-coupling threshold for sin-
gle bunches, typically about 0.6 mA for standard syn-
chrotron tunes and bunch lengths with all wigglers ex-
cited. However, it was not possible to reach the same
high values in the third and fourth bunch, although no
coherent transverse oscillations could be detected on the
streak camera. The ultraviolet beam emittance radia-
tion monitor (BEUV) showed consistently larger beam
sizes, which could be due either to emittance growth or
to oscillation, which cannot be distinguished as the de-
vice integrates over many turns.

The results of some experiments are summarized in
Fig. 10, where the increase of current in all four bunches,
of a train is shown during injection. A small overshoot at
injection, and some loss of current in the earlier bunches
during injection of the later bunches, can be seen, but
the individual bunch currents could be made more equal
by refilling the weakest bunch without loss of current in
the others. Since the injection kick is long enough to

4 8
Number of Turns

T T T
12x103

influence all four bunches, this indicates that the wakes
were not strong enough at these current levels to cause
excessive amplitude growth of the later bunches.

X. CONCLUSIONS

Beam breakup was never clearly observed with the
streak camera during single beam experiments with up
to four bunches in a train in LEP, but possible amplitude
or emittance growth was observed on the UV beam mon-
itors. We hope to be able to carry out more experiments
during the coming year with better instrumentation.

The transverse stability of the bunches in a train was
better than feared from predictions, which had to be
based on pessimistic worst-case values for the strength
of the kicks by transverse wake potentials. Due to the
large number of oscillations of these potentials over the
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FIG. 10. Bunch current (mA) vs time (h) in four bunches
of a train.
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rather large distance between the bunches in a train, and
also due to the large number of rf cavity cells with pos-
sibly slightly different HOM frequencies, no exact values
for these kicks can be given, and only an upper limit can
be estimated.

Unequal bunch currents were found to be most useful
to reduce possible beam breakup, but were actually not
required. On the other hand, they are dangerous for
synchrobetatron resonances, as they are much harder to
avoid due to their different working points in both planes
for each bunch caused by different detuning with current.

Another problem, which has not been studied yet, is
the effect of bunches crossing very close to the rf cavi-
ties. This will occur when the additional separators are
installed around interaction regions No. 2 and No. 6,
i.e., when LEP gets back into operation. Depending on
the phase of the oscillating field left behind by the first
bunch, the next bunch from the opposing beam could be
much more strongly kicked than for operation with equal
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bunch spacing, where the bunches cross at the interac-
tion region which is at a much larger distances from the
rf cavities. Current limitations might result, and com-
pensation by adjustment of the phases of all dangerous
HOM'’s may be difficult. The effect is expected to be
much weaker in the superconducting cavities since they
have a smaller transverse impedance.
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