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The use of iris loaded cavities to accelerate high current bunched beams makes it important to
understand the impedance and wake fields caused by an iris in a beam pipe. In this paper we present
a method to calculate both the longitudinal and transverse impedance of a circular iris of radius
b and thickness g in a circular beam pipe of radius a for ultrarelativistic particles. An integral
equation is derived for the transverse electric field at the junction between the iris and the beam
pipe and a variational expression is obtained for the impedance, using the transverse field as a trial
function. Accurate numerical results are obtained for the longitudinal and transverse impedances
using a trial function with only a few adjustable parameters. By invoking causality we confirm the
analytic behavior of the impedances in the complex frequency plane and obtain the corresponding
wake functions. We particularly explore the limit b — co to compare with previous studies of the
impedance of a circular hole in a transverse metallic plane.

PACS number(s): 29.27.Bd, 41.75.—i, 41.85.—p

I. INTRODUCTION

An intense beam bunch traveling along or near the axis
of an iris loaded accelerator structure can be expected
to generate large wake fields. These wake fields, which
can be either longitudinal or transverse, can cause unde-
sirable forces either within the bunch or from bunch to
bunch, which are capable of spreading the bunch or even
of causing disruptive instabilities.

As a first step in understanding these wake fields, we
consider a beam pipe of arbitrary (constant) cross section
in which a single iris of thickness g is located. A point
charge Q then travels along the axis, or near the axis, at
ultrarelativistic speed (8 = 1,y > 1). We then calculate
the coupling impedance as a function of frequency, which
turns out to be closely related to the Fourier transform of
the wake function (which is the wake field a fixed distance
s behind Q, averaged over the transit through the iris).

Short distances correspond to high frequency and vice
versa. The increasing use of short bunches and the in-
terest in single bunch instabilities makes it important to
understand and calculate the coupling impedance at fre-
quencies above the cutoff of the beam pipe.

Let us outline our method of calculating the longitudi-
nal and transverse coupling impedances. For the longi-
tudinal impedance, we consider the charge density of the
moving charge to be
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p(z,y, z;t) = Qé(x)d(y)d(z — ct)
= QS(z)&(y)E% /_ dw efwt=ikz (11)

where k = w/c. The current density can then be written
in the frequency domain as

Jo(z,y,z;k) = Ioé(:c)é(y)e—jkz, (1.2)

where Iy = Q/27 and where we eventually return to the
time domain by multiplying by exp(jwt) and integrating
over all real w.

We now use the source current in Eq. (1.2) and
solve for the fields it generates by matching solutions to
Maxwell’s equations in the beam pipe (|z| > g/2) with
outgoing boundary conditions to solutions in the iris re-
gion (|z| < g/2). (The center of the iris is located at z = 0
and all surfaces are ideal conductors.) This procedure
will be described in detail in Sec. II. The longitudinal
impedance is then defined as [1]

1 [ ;
Z(k) = -_/ dz E,(0,0,z; k)ei*=. (1.3)
Iy J_o
This can be written as a volume integral by using Eq.
(1.2). Specifically

1
|To)?

Z(k) = /dsx E(z; k) - J*(=; k). (1.4)

We then consider the combination

L2 (k) + 23 (k)] = — / &z B(z;k) - J* (2: k)

— /daz E;(=;k) - J(=;k), (1.5)
where the subscript p denotes the geometry with the
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beam pipe alone (without the iris). Since Z,(k) is imag-
inary (in fact it vanishes for v — 00), Eq. (1.5) gives the
increment to the impedance due to the iris. We express
J* and J in Eq. (1.5) in terms of E and E, by means of
Maxwell’s equations. Integration by parts then permits
us to express the longitudinal impedance as an integral
over the surface {2, 3] of the iris:

\Io[2 2, (k) =/_ dS n- Ey(z;k) x H(=z;k), (1.6)

where the fields without the iris have only the transverse
components

E,=—e%V x,, ZoH, = z x E,,. (1.7)

Here z is the axial unit vector, ie., z = (0,0,1), and
Xp(,y) is constant on the surface of the beam pipe and
is consistent with the line charge singularity of Egs. (1.1)
and (1.2). For example, apart from a constant,

Xp(r,0) = —In r (1.8)

for a circular beam pipe. The azimuthal magnetic field
Hy is obtained by field matching, as will be described in
Sec. II.

In a similar manner we can obtain the transverse cou-
pling impedance. Starting with the axial dipole drive
current

J. = Iod(y)[6(z — A) — 6(z + A)] exp(—jkz) (1.9)

we can write the transverse impedance as [3]

1

Z.(k) = T 4kAZ[I,|2

/dam E(x;k)-J*(=;k), (1.10)
evaluated in the limit of small A. As with the longi-
tudinal impedance this can be converted to the surface
integral

4EA2| P Z. (k) =/ dS n- Ej(z;k) x H(z: k),

(1.11)

but in this case x,(z,y) vanishes at the surface of the
beam pipe and is consistent with the dipole singularity
of Eq. (1.9). For example, apart from a constant,

T

Xp(r,8) = — cos 6 (% - —)

= (1.12)

for a circular beam pipe of radius a. Needless to say H
in Eq. (1.11) must be obtained for the drive current in
Eq. (1.9).

In Sec. II we present general field matching techniques
by which we can obtain E and H for both the longitudi-
nal and transverse impedance calculations. In particular
we obtain integral equations for the transverse electric
field F, in the transverse planes where the beam pipe
and iris meet (z = £g/2). In Sec. III we obtain expres-
sions for the longitudinal and transverse impedances in
terms of E| at z = +g/2. In Sec. IV we show that
these impedances can be written in variational form, en-
suring good convergence in subsequent numerical calcu-

lations. To obtain the variational form it is necessary
to use the integral equation to modify the expressions
for the impedance. We also expand E; in terms of a
complete set in the iris opening and obtain the general
form of the impedances via matrix inversion when the
complete set is truncated. In Sec. V we show how the
result is simplified when the iris thickness vanishes. The
calculations are then particularized to a circular beam
pipe and iris opening in Sec. VI for the longitudinal
impedance and in Sec. VII for the transverse impedance,
and numerical results are presented in Sec. VIII, where
we show that the results converge rapidly with the matrix
order. In Sec. IX we proceed to the limit of large beam
pipe radius, so that we can obtain the longitudinal and
transverse impedances of a hole in a plate of finite thick-
ness. In Sec. X we examine the implications of causality,
obtaining the general behavior of the impedance at low
and high frequency as well as the wake function. Finally,
in Sec. XI we summarize the results and compare with
previous calculations in the literature.

II. GENERAL ANALYSIS FOR THE FIELDS

In our general derivation we consider a beam pipe of
arbitrary cross section as well as an iris hole of arbitrary
cross section, both homogeneous in the axial direction.
The planes involving the iris sidewalls are perpendicular
to the beam pipe axis and the origin of our coordinate
system is set at the center of the iris hole region. The
cross-sectional area of the iris hole is denoted by S; while
S represents the sidewalls of the iris. We use latin letters
as the subscripts of the quantities defined in the pipe
region, i.e., |z| > g/2, and greek letters for those defined
in the iris region, i.e., |z| < g/2.

A. Fields in the pipe region |z| > g/2

Let us introduce a general expression for the electro-
magnetic fields in the pipe region. We first write the nth
normal mode for the electric fields in this region as e, (7),
which is normalized as

/ dS €p Cpr = ‘Snn’-
S51+S2

The corresponding normalized magnetic field is repre-
sented as

(2.1)

h,=2zXxe,. (2.2)

The source fields are written as outlined in Eq. (1.7),
EY) = ZoH'\Y x z = Age 7%V | x(). (2.3)

Here Zj is the free-space impedance, Ag is constant, 7
denotes transverse coordinate, e.g., » = (z,y), and the
source-field potential x(r) satisfies the proper boundary
condition on the pipe surface. Note that we now drop the
subscript p. The forms of Ay and ¥, of course, depend on
which impedance we consider, i.e., longitudinal monopole
impedance or transverse dipole impedance. The total
field is the superposition of the source fields in Eq. (2.3)
and pipe fields which can be expanded as a sum over
the normal modes. In the following analysis, we use the
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simplified notation V as the transverse gradient operator
V.. Therefore, the transverse total fields £, and H
in the region z > g/2 can be expressed as

E i _; _

——JO' =e Tk Vy 4 Eﬂ anene IPn(z-9/2) (2.4)
ZoH | x 2 i B (z—
Loz J; =e %2V x + En Ananen,e Bn(2=9/2)

(2.5)

where a,, is the constant expansion coefficient and A,, =
Zo/Z,, where Z, is the impedance of the nth mode. Sim-
ilarly, the total fields in the region z < —g/2 are given
by

% = eIk Yy 4 ; bye,eifn(z+9/2) (2.6)
Z_Of{:_oxi e ; Anbnenei®(:49/2) (3.7)

where b,, is the constant expansion coefficient. In Egs.
(2.4)—(2.7) the sign of the wave number (3, has been cho-
sen so that only outgoing waves are taken into considera-
tion. We should also note that e,, includes both TM and
TE modes.

B. Fields in the iris hole region |z| < g/2

In the iris region we introduce the orthonormal mode
e, (r) normalized as

ds €y €y = 5,,,,1.
S

(2.8)

In this region, there exist waves propagating in the pos-
itive and negative axial directions simultaneously. Writ-
ing the source field potential as o(r) and expanding the
fields as a sum over normal modes, the transverse total
fields in the region |z| < g/2 can be expressed as

E. _ ke ~iBuz By z

N =e Vo + E,, (aye™Pv* + b,e?P?)e,, (2.9)
ZoH_L Xz _ _—jkz —3jBuz 1Bz
A - e Vo + Eu Av(a,e™7Pv? — b P ?e,,

(2.10)

where a, and b, are constant and A\, = Zy/Z,. Here Z,
is the impedance of vth mode in the guide within the
iris. The source field potential o(r), which is different
for the longitudinal and transverse impedances, satisfies
the proper boundary condition on the iris surface.

C. Field matching

‘We now match transverse fields in the transverse plane
at the position z = g/2. We first write the electric field
at this position as

—‘4—0 = 0 on Sz, (211)

E, {e“j"g/zVa +u on S;
where u(7) is an unknown vector function. Noting that
F | must vanish on the iris wall S, because of the bound-
ary condition, the field in Eq. (2.4) and E, are totally
continuous at z = g/2 and then

E,=FE,(z=g/2)on S1 + S.. (2.12)
After substituting Eqs. (2.4) and (2.11) into Eq. (2.12)
and multiplying both sides by e,,, we perform the surface
integration over S; + Sz to obtain

An = Uy + EpeTR9/2, (2.13)
where we have used the orthogonality (2.1) and
{nE/ ds V(a—x)-e,,—/ dS Vx - ey,
S1 Sa
(2.14)
Uy = [ dS u-e,. (2.15)
S
For the field in Eq. (2.9) and E,, we have
E,=E, (z2=g/2)on S;. (2.16)

After substitution of Egs. (2.9) and (2.11) into Eq.
(2.16), multiplication by e,, and integration over S, we
have

u, = a,e IPv9/2 | p, eiPra/2 (2.17)
where
u, = dS u-e,. (2.18)
S1
We now repeat the analysis at z = —g/2. Introducing

the unknown vector function v(r), we write the electric
field at z = —g/2 as

E, |e*/?Vo4+v on S
Ao {0 on S,. (2.19)

Matching of the fields in Egs. (2.6) and (2.9) to that in
Eq. (2.19) leads to

b = v + e, (220)
vy = a,eiP9/2 4 b e—iPual2 (2.21)
where
Up = / dS v-e,, (2.22)
S
v, = / dSv-e,. (2.23)
S1

Equations (2.13), (2.17), (2.20), and (2.21) permit us to
write an,b,,a,, and b, in terms of u(r) and v(r).
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D. Integral equation for v and v

We now match the magnetic fields at z = g/2 and
z = —g/2 on S;. Specifically, at z = g/2 we have, from
Egs. (2.5) and (2.10),

Z AnGnen, = e 7%9/2¥ (o — x)
+ Z /\,,(a,,e_jﬁ"g/z — b,,ejﬁ"g/z)eu
(2.24)

Similarly, at z = —g/2, we have
z Anbre, = e—jkg/2v(o. - X)

+ Z A (a,e™3P9/2 _p eiPr9/2)e,
(2.25)

If we now use Egs. (2.13), (2.17), (2.20), and (2.21) to
express all coefficients in terms of u and v, we obtain the
two integral equations

/ s’ wt(r')- KH+ (»',7) = P (r), (2.26)
S1
s’ w(r')- I?_ (»',7) = P~ (r), (2.27)
S1
where
I?+ (r',r) = Zz\nen(r')en(r)
+3 Y Aeu(r')e,(r)tan(B,9/2), (2.28)
()= Z)\ en(r)en(r)
-JZ,\VeV (r')e,(r) cot(B,g/2),  (2.29)
Pt(r) = Z/\nf,,en () cos(kg/2)
+5 3 Goeu (r)sin(kg/2), (2.30)
=Y Anénen(r)sin(kg/2)
+3 Z (e, (r) cos(kg/2). (2.31)
Here
G = /s dS V(x—o)-e (2.32)

and

v=w +jw, v=w" - jw, (2.33)

where the equations naturally separate into one involving
w, the even (in z) part of # and v, and w™, the odd
part of w and v. It is straightforward to show that {, = 0
for TM modes. [See Appendix, Eq. (A16).] For future
reference we also define

dS Vx-e,.

Xn = — (2.34)

Sz

III. IMPEDANCE INTEGRALS

As outlined in Egs. (1.6) and (1.11), both the longitu-
dinal (monopole) and transverse (dipole) impedance can
be defined in terms of the surface integral

Z(k) = é dS n - (B®* x H),

on iris

(3.1)

where n denotes the unit (inward) normal on the beam
pipe and iris and the constant parameter C is

(3.2)

C = [Io|? for the longitudinal impedance
) 4kA?|Iy)? for the transverse impedance.

The integral in Eq. (3.1) is performed on the iris surface
and can be separated into two parts:

Z(k) = Zy(k) + Za(k), (3.3)
with
1 8 )%
Zik)= 5 [ dSz- (B x Hy)oe g2
—(BY" x H\).—g/2), (3.4)
Zo(k) = é s - (E®* x H), (3.5)

where we have written the surface of the iris hole as S3
and ny, is the unit normal on S3. Substituting Egs. (2.3),
(2.5), and (2.7) into Eq. (3.4), we obtain

Z1(k k
lZ( ) - nOZAan{gn /;‘1 as €n - ‘:w+ COS(—ZQ)

< ufs)])

(2.13), (2.20), and (2.33) to
. The constant

(3.6)

where we have used Egs.
express the result in terms of w* and w™
parameter 7)o is

o = 2|A0|2/ch (3.7
and X, has been defined in Eq. (2.34).

Let us next transform Z,(k) into an integral form. De-
noting the z component of H, as H,, Eq. (3.5) together

with Eq. (2.3) can be rewritten as
Za(k) _ moZo / jkz
= — dS ny, - [Vx x (H,2z)]e’™*. (3.8
Zo 24, Js, he [V x( )] (3-8)
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Note that Z;(k) is independent of the transverse field
components and is clearly related only to TE modes. We
find H, by integrating the Maxwell equation
8H,

0z

over z. Using Eq. (2.10) for H |, this leads to

ZoH . A —j j
2077 E Y (a,e79P% £ b,eP )z (V x e,).
- J 2 ﬁ.,( )z - ( )

V-H, =-

(3.9)

(3.10)

Substituting this equation into Eq. (3.8) and performing
the z integration, we have

Zz k) o Z { sin [(k B,)2 :l
+ k 'I:'Vﬁu sin l:(k + ﬂu)%] } ’ (3.11)
where
F, = ddnp- (Vxx2)z-(Vxe,), (3.12)

Cn
which is a line integral along the iris hole boundary de-

noted by Cj. As shown in the Appendix, F, can be
rewritten as
F, = (B} - k"), (3.13)

Substituting this equation into (3.11) and using Egs.
(2.17), (2.21) and (2.33), we obtain

Za(k) _ kg kg . Bug)| +
~Zo ZC,, [sm A, cos 2 tan — 5 | W

wy, ,

—JZC" [cosﬁ— - smﬂcot

Bug| _
2 2

(3.14)

where we have used the fact that {, = 0 for TM modes
and that A\, = B,/k for TE modes. Because e, is a
complete set in S;, we can write

S u = [ 45 V(x-0)-wt,
v 51

PN

where

w, =/ dSV(x—o) w, (3.15)
S1

+ =
y =

dsS w*t.e,, wy =

v

S1 S1

w dS w™ -e,. (3.16)

The other terms in Eq. (3.14) can be written as
/ dS V(x — o) / ds’ (cos(kg/2)j Z Ave,(r)e,(r')
S1 S1 v

x tan(B,g/2) - w*(r’) + sin(kg/2);j E e, (r)e,(r)

x cot(B,9/2) - w_('r')) . (3.17)

1505

Note that these terms are essentially the second terms on
the left-hand side of Eqgs. (2.26) and (2.27) using the two
term separation of the kernels in Eqs. (2.28) and (2.29).
Replacing them by the first term on the left-hand side of
Egs. (2.26) and (2.27) as well as P*(r) and P~ (r), we
finally obtain

Z(k Z1(k Z~(k
2 ey - 2] @iy
where
™
Glk) = 3" Ang? (3.19)
and
Z*(k) _ pt
7o = S, dS wt .- Pt
ZZ®) _ [ 45w P (3.20)
ZO Sl

Finally, we note that G(k) is a sum only over TM
modes, since it is straightforward to show that &, = 0
for TE modes. [See Appendix, Eq. (A19).]

IV. VARIATIONAL RESULT
FOR THE IMPEDANCE

We are now in a position to write Z* (k) and Z~ (k) in
variational form. Specifically

2
/ dS wt. Pt
S

g
/ dS [ dS' wt(r')- Kt (v',7) - w*(r)
51 s

Z+ k) _
Zy

(4.1)

is an extremum when w™ satisfies Eq. (2.26). Thus it is
possible to get an accurate value for Z* (k) by expand-
ing w™ into a truncated complete set in S; and solving
the resulting matrix equation. Of course an analogous
expression is obtained for Z~ (k).

We now use the variational form in Eq. (4.1) and a
trial function for w* of the form

= Z Cv.fu("')a

v

wt(r) (4.2)

where the f, form a complete set (not necessarily or-
thogonal) in the region S;. If we truncate the sum in
Eq. (4.2) and minimize Eq. (4.1) by varying c,, it is
straightforward to show that the result is equivalent to
substituting Eq. (4.2) into Eq. (2.26), multiplying by
f.(r), and integrating over S; to obtain

ZMVF‘CP =PJ, (4.3)
I
where
pt= / s P* - f,, (4.4)
S
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) Fur)
(4.5)

“—
M,, = / ds / ds' f,(r') - K+ (e’
Sh S
— M,,.

Equation (4.3) is a matrix equation whose solution is
c, = Z(M -1
m
from which one obtains directly
=> > PH(M™).,P;.
m v

The calculation of Z~ /Z, proceeds in an analogous man-
«>

>
ner with K* being replaced by K~ and P in Eq. (4.4)
being replaced by

(4.6)

(4.7)

P, E/ ds P~ - f,. (4.8)
S,

The significance of the variational form is that the re-
sult for the impedance will be quite accurate since the
error will be proportional to the square of the error in
w?t. The error in wt comes only from the truncation
in Eq. (4.2), so the accuracy of Eq. (4.7) can be easily
tested by comparing the results of different size trunca-
tions. In this way we will be able to obtain numerical
results good to three or four significant figures with only
modest size matrices. This will be described in detail in
Sec. VIII in the numerical calculations.

Finally we note that the accuracy which is obtained
from a given number of terms in Eq. (4.2) will depend
on the particular complete set f, which is used. Past
experience [4] suggests that a form which has the correct
singular dependence at the iris corner has some advan-
tage. But in the present work it proves to be more than
sufficient to use e, , the complete set of TM, TE modes
in the iris pipe.

V. ZERO-THICKNESS LIMIT

In the zero-thickness limit, i.e., ¢ — 0, we can set
w~ = 0 because u = v. In addition, the contribution of
the iris hole to the impedance vanishes as do the second
terms in the right-hand side of Egs. (2.28) and (2.30).
In this case, defining the new integral kernel as

Z/\ en(r

the variational part of the impedance can be given by

St [ ds 2

Z+(k) _ (él‘ ng‘n/Sl en(")'w(r))

%0 ’wr’—Hr'r-'wr
/.slds/;*,ds (') K (v',7) - w(r)

(5.1)

Nen(r),

b

(5.2)

where we have set w' = w. The explicit term defined in
Eq. (3.19) remains unchanged. Note that the numerator
in Eq. (5.2) depends only on TM modes because of Eq.
(A19) while the denominator contains both TM and TE
modes. The final result for Z1(k)/Z, dlffers from that

in Eq. (4.7) only in the replacement of K+ by K in Eq.
(4.5).

VI. CIRCULAR IRIS IN A CYLINDRICAL BEAM
PIPE—LONGITUDINAL IMPEDANCE

We now particularize the previous analysis to a circular
iris of radius b in a cylindrical beam pipe of radius a and
obtain explicit expressions for the quantities which enter
the calculation of the longitudinal coupling impedance.
We start with Eq. (2.3) and set

x(r)=o(r)=—=lnr, Ag = Zolo/27.

The constant 7o in Eq. (3.7) has the value 1/272.
TE modes do not contribute to the longitudinal
impedance. The solutions of Eqs. (Al)-(A4) for the
normalized TM modes are
_ Jo(snr/a) _ Jo(syr/b)
¢n - ﬁanl(sn) ) ¢u = \/7_1'3;;-]1(3;/),

where J,(z) denotes the Bessel function of nth order,
Sn(v) is the nth (vth) zero of Jy(s) = 0, and the mode
€n(v) is obtained from Egs. (A5) and (A6). The propa-
gation constants are given by

P = (K* = s3/a®)V/? = —j(s} /a®
B, = (K —sL/6%)/% = —j(s2 /6" — k*)V/2. (6.4)
Using Egs. (6.1) and (A5), we have from Eq. (2.14)

2y/mJo(snb/a) .
anI (sn)

Noting that A, = k/B, for TM modes, substitution of
Eq. (6.5) into Eq. (3.19) leads to

Gy (k) = 4m Z o [Jsi(;: bs/na))]

(2.30) and (2.31), we

(6.1)

(6.2)

—EHY2 (8.3)

(6.6)

Dropping the TE terms in Egs.
have

(6.7)

We now use the complete set e, as the expansion basis
in Eq. (4.2). This leads to

kg k
+ __ L
P = —cos > En ,B_n énK,,
kg k
P = -J b L
, =sin— En 2. &K, (6.8)
where
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KL = / dS e, - e, (longitudinal impedance).  (6.9)
S1

For TM modes
2b2s,,Jo(snb/a)
a?Jy(sn)[s2 — (snb/a)?]’
The matrix elements M, can similarly be obtained.
Specifically, using Eqgs. (2.28) and (4.5), with f, = e,,
we find

M,, = Zﬂ,,KL KL +g—’jta (ﬂ"“I) 8, (6.11)

with tan(3,g/2) being replaced by —cot(8,9/2) in the
calculation of Z~ (k). Finally, we fold Egs. (6.8), (6.10),

and (6.11) into Eq. (4.7) to obtain an explicit expression
for Z* /Zy and the corresponding expression for Z~/Z,.

L _
Knv_

(6.10)

VII. CIRCULAR IRIS IN A CYLINDRICAL
BEAM PIPE—TRANSVERSE IMPEDANCE

For the transverse impedance we again start with Eq.
(2.3) and set

x(r,0) = (% — %) cos ¥,
1
o(r,8)= (bz - ;) cos#,

A() = Z()I(]A/ﬂ’.

(7.1)

(7.2)

In this case, using Eq. (3.7), the constant 7o has the
value
2| Aol? 1

= %A Z L2 T 2nk

Denoting the nth (vth) zeros of J1(s) and dJ,/ds as p,(,)
and g¢,(,), respectively, we can write the scalar mode
functions in the pipe region as

2 1
bn = \/;m-fl (P

(7.3)

,,I) cos@ for TM modes,
a

(7.4)

2 1 r
=)o 7 (.7 sin®
v \/;\/g_—ul(qn) 1(‘1 a)sm

for TE modes, (7.5)

and in the iris region as
2 1

=42

¢ \/;puJO (pu) !

2 1
- \/;\/qﬁ - 1J1(qv)

( ,,%) cos 8 for TM modes, (7.6)

r .
J1 (qu) sin@ for TE modes.

(7.7)

Substituting Eqs. (A5) and (A6) together with Egs.
(7.4)—(7.7) into Egs. (2.14) and (2.32), we have

\/8_1rJ1 (pnb/a)/bpnJo(pr) for TM modes
én =

for TE modes, (7.8)

for TM modes

0
= {\/211'(a2 —b?)(g2 —1)"'/2/ba? for TE modes.

(7.9)
From Eqgs. (3.19) and (7.8) we obtain for the explicit
term
Jl(pnb/a)r
Gy (k —_— 7.10
1B =% 25, e (710)

‘We now have

Pl = —cos( )Z———fn +JSID( )Cw

(7.11)

P, =sin (@) TXI% —k—EnKT + jcos (ESZ) ¢ (7.12)
v 2 ) 2B, nv 2 )

where

KT = /s dS e, - e, (transverse impedance).  (7.13)

In addition, for f, = e, we have

M,, =Z,\ KT KL, +j), tan (ﬁ;g) 8 (7.14)

in the result for Z*, where n,u,v now include both
TM and TE modes. For Z~, the matrix elements
are obtained as before by replacing tan(8,g/2) by
—cot(B3,9/2). Finally we fold Egs. (7.11)—(7.14) into
Eq. (4.7) to obtain an explicit expression for Z*/Z, and
the corresponding expression for Z~ /Z,.

To complete this section, we give explicit expressions
for KT, for TM and TE modes. Specifically

1. n: TM, v: TM

b2pnJ1(pnb/a)
KT = — nie , 7.15
@ To(o)[F% — (pnb/a)] (719
2. n: TM, v: TE
KT = 2J1(pnb/a) , (7.16)
a2 — 1pnJo(pn)
3. n: TE, v: TM
KT =0 (7.17)
4. n: TE, v: TE
KT~ 2563407} (40/) |
av/q2 — 11/ — 1J1(¢n)[aZ — (9nb/a)?]
(7.18)
where J](s) = dJ(s)/ds.
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VIII. NUMERICAL RESULTS

The results in Sec. VI are the same as those obtained
earlier [5] for the longitudinal impedance. In that work
our emphasis was on large values of a/b (10,25,100,1000)
and a range of values of g/b from 0 to 5 in order to
understand the impedance of a hole in a thick plate. As
will be discussed in Sec. IX, we found that the sum in
Eq. (6.6) diverged if we proceeded to the limit b/a =
0,8, = k and eventually extracted (1/x)In(a/b) from
Eq. (3.18) to obtain finite results for large a/b. The
results are reproduced in Figs. 1-4 for

Z(k

Z(o) =R+ jX, (8.1)
where

RE%In%+R"=‘%lnka+R". (8.2)

The results in Sec. VII for the transverse impedance
are also related to earlier work [6], but in that work we
did not use a variational form for the impedance. As a
result the calculations converged quite slowly, requiring

0.5
—— a/b=1000
0.4+ — a/b=100
\ --- a/b=25
- alb=10

..... a/b=100(explicit term)

0.05

0.00

-0.05-

-0.10-

-0.15

-0.20 i

kb

FIG. 1. Real and imaginary parts of the longitudinal
impedance as a function of kb for g/b = 0 and a/b = 10,
25, 100, and 1000. Also included is the explicit term defined
in Eq. (11.1) for a/b = 100.

0.5
—— a/b=1000
- alb=100
0.4+
0.3
>
0.2
014
T T T 1
0.0 05 1.0 1.5 20
b

FIG. 2. Real and imaginary parts of the longitudinal
impedance as a function of kb for g/b = 0 and a/b = 100
and 1000.

the use of very large matrices which were often quite
singular. Nevertheless in that case we obtained results
which were finite in the limit of large a/b.

We have now used the variational calculation outlined
in Sec. VII and obtain well convergent results which are
consistent with the earlier work [6]. But the calculations

0.02
0.00
% 0.02-
-0.04
e g/b=5
-0.06 T T T T 1
0 2 4 6 8 10
kb
FIG. 3. Real and imaginary parts of the longitudinal

impedance as a function of kb for a/b = 100 and g/b = 0,
0.2, 1, and 5.
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0.12 1
0.10 — g/=0
------ g/b=0.2
--- g/b=1
e /D=5
0.08
> 0.06
0.04
0.02
0.00 T 1 I I 1
0 2 4 6 8 10
kb
FIG. 4. Imaginary parts of the longitudinal impedance as

a function of kb for a/b = 100 and g/b =0, 0.2, 1, and 5.

are much simpler and more accurate. Figure 5 shows the
result for a/b = 100, and g/b = 1 as a function of kb for
different size matrices and it is clear the result does not
change significantly for matrix sizes greater than 2 x 2
(one TM mode and one TE mode in the iris region).
Figure 6 shows the result as a function of the number

0.35

Nnax=5000
0.30 -
e 1X1(TE)
------ 2x2
__0.25—' —  20X20
— 200X200
Q? —— 400X400
8 c204 ¢ X Explicit term only
N
£0.15
o
-1
0.10
0054 /£ S~ T e
0.00 T T 1
0 6 8 10

Im[bZ,(k)/Z,)

FIG. 5. Real and imaginary parts of the transverse
impedance as a function of kb for a/b = 100 and g/b = 1
using Nmax = 500 with matrix sizes 1(TE), 2, 20, 200, and
400. Also included is the explicit term defined in Eq. (11.2)
for a/b = 100.

0.35

0.30 20X20

0.25

—— Np=20000

Re[bZ,(k)/Z,]
5 o8
1 1

0.10—1

0.05 ~

0.00

0.3 =

0.2+

Im[bZ,(k)/Z,]

0.0

kb

FIG. 6. Real and imaginary parts of the transverse
impedance as a function of kb for a/b = 100 and g/b = 1
using matrix size 20 with nn,ax = 1000, 5000, and 20 000.

0.5
— a/b=1000
s 3fD=100
0.4 - a/b=10
a/b=5
B e R 17 a/b=2
Qc'o.a—
=
N
= 0.2
o
0.1
:
0.0 T T 1
[ 6 8 10
kb
N
=
=3
F
2
E
T T 1
6 8 10
kb

FIG. 7. Real and imaginary parts of the transverse
impedance as a function of kb for g/b = 1 and a/b = 2, 5,
10, 100, and 1000.
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0.35
0.304 — g/b=0
o /0=0.1
T 5 g/b=0.2
0.25 --- g/lb=05
= - g/b=1
N
=0.204
=
2 0154
L
o
0.104
0.05
0.00 , !
0 8 10
o
)
N
2
£
0.1 T T T T 1
0 2 4 6 8 10
kb
FIG. 8. Real and imaginary parts of the transverse

impedance as a function of kb for a/b = 100 and g/b = 0,
0.1,0.2, 0.5, and 1.

0.35 -
0.30
0.25
o
IS
= 0.20
-~
NG
2 0.15
L
&
0.10
0.05
0.00 T T T T 1
0 2 4 6 8 10

kb

FIG. 9. Real and imaginary parts of the transverse
impedance as a function of kb for a/b = 100 and g/b = 0,
1, 2, 5, and 10.

of terms in the sums over n in Egs. (7.10)—(7.14). No
noticeable change occurs for nmax > 1000. To be on the
safe side, we use 20 x 20 matrices with ny. = 5000. Fig-
ure 7 shows the impedance for g/b = 1 and a/b = 2, 5,
10, 100, and 1000. In this figure we have performed an
average over rapid oscillations for a/b > 100. Except for
high frequency details, the results are remarkably insen-
sitive to a/b. The impedance is shown in Figs. 8 and 9
for a/b = 100 for values of g/b ranging from 0 to 10.

The results indicate a general pattern which is re-
markably independent of the values of both a/b and g/b.
Specifically, the real part of the impedance (in units of
Zy/b) starts with 0 at kb = 0, reaches a peak of order
0.3 near kb = 2, and thereafter falls off roughly as 1/kb.
Similarly, the imaginary part starts with a finite value
of 0.2-0.3 at kb = 0 decreases through zero to a nega-
tive value at about kb = 2 and then rapidly approaches
0 roughly as (kb)~3/2. In Sec. X we shall examine these
limits in greater detail.

IX. IMPEDANCE OF A HOLE:
LIMIT FOR INFINITE BEAM PIPE RADIUS

In Sec. III we derived a general form for the impedance
in Eq. (3.18). For the longitudinal impedance of a circu-
lar iris this takes the specific form

Z)(k)

Zji(k)  Zy (k)
Zo  Zo |’

= o7 |G - (0.1)

where G||(k) is given in Eq. (6.6). The impedance er(k)
[and by implication Z" (k)] is obtained from Eq. (4.7):

Zi

A ;gPﬂM—‘)wPf, (9.2)

where P is given in Egs. (6.8) and (6.10) and the matrix
elements M, are given in Eq. (6.11).

As b/a — 0, it is clear that the contributions to the
sums over n in Egs. (6.6), (6.8), and (6.11) come pri-
marily from terms with large n. Moreover the sum over
n can now be converted to an integral over a by the re-
placements

(9.3)

where the spacing of the roots s, is taken to be 7 for
large n. We also replace b3, by

bBn = /k2b% — (3,b/a)? — Vk2b2 — a2 (9.4)
and use the large s,, approximation
2 2b
2 ~ - 9.5
Ti(sn) TSy - Tac (9:5)

In this way we obtain
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5(snb/a
Gll(k = 4m E ‘1222(3/"))

por [Tz [ K 4], (e

0 a 0 Vv k2b2 — o2 ’ )
where we have separated G| (k) into one term containing
a logarithmic divergence as a/b — co and another which
is convergent in that limit [5]. The first term can be
evaluated by expanding the function

In(a/b), 0<7<b
fr) = {ln(a/r) b<r<a (9.7)
into the complete set Jo(s,7/a), leading to
_ a *da , kb
(9.8)
We also find
P}l =—-2y/mcos(kg/2) S,,
P, =2./nsin(kg/2) S,, (9.9)
where
bt ada kbJE(c)
S, = 2 9.10
o Vk2b? — a?(s2 — a?) ( )
and
+ _ 2 pt
+ ]k ﬂug S}ZLPM - stu 11
My,u - IBV 2 6;“/ + 2 (—_—_—_—33 — S‘ZL . (9. )

These forms permit one to obtain results directly for
a/b — oo rather than performing the calculations for sev-
eral large values of a/b, also avoiding the averaging pro-
cess needed for large a/b. But consistent results have al-
ready been obtained for large a/b and we have not found
it necessary to implement the process outlined in this
section.

The large a/b limit for the transverse impedance can
be obtained in an analogous manner. We now have

bZ (k) b Zr (k) Z7(k)
20 ~27r2k[ +(k) - ‘LZo B —LZO ’

(9.12)

where we have included a factor b to make Eq. (9.12)
dimensionless. Replacing p,b/a by a as before, we find
the convergent result

bt da kbJZ(a)
a VE202 — a2’

The limiting forms for P and MZ, for the transverse
impedance are similar to those in Egs. (9.9)—(9.11), but
they are not given here because they are somewhat more
complicated since n and v refer to both TM and TE
modes for which the expressions differ.

Finally, we give simple expressions for the real parts of
G| (k) and G | (k) obtained from Eqs (9.8) and (9.13) by
using integral representations for JZ(A) and JZ()). They
are

b’G, (k) = 4m (9.13)
0

ReG) (k) = 2ntn? — 2 A b ?JO(Z/\) (9.14)
ReG (k) = 2n (1 _7 l(lfbkb)) : (9.15)

Efforts to obtain similarly simple expressions for the
imaginary parts have not been successful.

X. WAKE FUNCTION, CAUSALITY,
AND SUM RULES

In Eq. (1.3) of Sec. I we defined the longitudinal
impedance Z (k) in terms of the electric field in the fre-
quency domain. Another quantity which is of frequent
interest is the longitudinal wake function which we de-

fine as
1 [ z+(
0 /:oodz E, (0,0,z, - ),

representing some sort of average a distance ¢ behind the
test charge. As it turns out [1], this implies the transform
pair

wy(¢) =

(10.1)

Wil0) = 5 /_m dk &2 (k) (10.2)

and

Z) (k) = /0 ¢ Wy (¢) e, (10.3)
where the integral in Eq. (10.3) extends only over posi-
tive values of ¢ since the wake function ahead of source
charge must vanish in the limit y — oo because of causal-
ity.

Since we expect W) ({) to be finite and to vanish as
¢ — oo, Eq. (10.3) tells us that Z(k) must be analytic
in the lower half k plane. In addition, W ({) as defined

in Eq. (10.1) is real, so that we must have
Zy(—k) = Zj (k) (10.4)

or

R (=k) = Rj(k) , X;(—k) = —X(k), (10.5)

where Z(k)/Zo = R| (k) +jX) (k) and we have removed

the constant term (1/7)In(a/b) from R (k), as defined
in Eq. (8.2). These equations yield a real wake function
in Eq. (10.2). Therefore

W) (§)/ 20 = %/:0 dk[R| (k) cos k¢ — X (k) sin k],

(10.6)

where the constant term in R)(k) makes no contribution.
And the requirement that W) ({) = 0 for ¢ < 0 allows us
to write

Wi(0)/Z0= 2 / dk R (k) cos k(

-2 /0 dk X (k) sin k¢, (10.7)
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enabling us to obtain the wake function from either the
real or the imaginary part of the impedance.

The analytic behavior of Z) (k) in the lower half k plane
allows us to invoke the Kramers-Kronig relations

2 oo k' X (k")
2k Rf|(k’)
X, (k) = P/ dk’ w2 k2 (10.9)

where P stands for the principal value of the integral
which follows.

Similar results are available for the transverse wake
function and impedance. In this case, however, there is
an extra factor k™! in the definition of the transverse
impedance and we therefore have [7]

(10.10)

Wi = 5 /_x dk k Z, (K)e'*

and

kZ, (k) = /Om d¢ W, (¢)e k¢, (10.11)

The transverse impedance is again analytic in the lower
half k£ plane, but this time we must have

Z,(—k) = -2 (k) (10.12)

Ry(-k) =—-Ryi(k), X1(-k)=X.(k),
where Z, (k)/Zo = R, (k) + 7X 1 (k). This leads to

(10.13)

WL (¢)/Z0 = % /Ooo k dk R (k) cos k(

- —3/ kdk X, (k)sink¢  (10.14)
™ Jo
and
2% XL (k)
RL(k)—_——?P/O ak' S, (10.15)
'
X1 (k) = —P/ dk’le(zz). (10.16)

From Egs. (10.15) and (10.16) we can readily determine
the behavior of R (k) and X (k) as k — 0. Specifically

RL(0)=0, X.(0 / R(K )"Zf', (10.17)
lim R, (k)/k] = /0 = dk’w(—o—)—]. (10.18)
For large k, Eq. (10.15) reduces to
2 [ i
Ry (k) — E/ dk' X (K'). (10.19)

Since the integral on the right-hand side converges, we

see that R, (k) is proportional to k=1 as k — oco. At the
same time, the large k behavior of Eq. (10.16) requires
more careful consideration. In particular, we try

bR (k) — A(kb)~! + B(kb)~3/2, (10.20)

where A and B are dimensionless numbers. Since

< dk 1 |k' — k| e
P = — = .
/(; R 2k In Rrk |, 0, (10.21)
we have
Bp—3/2 < dk' 1 1
X\ (k ———P _— - —— ).
2 ) — ok A e (k’—k k’+k)

(10.22)

Setting k' = u?, we find

2Bb3/2_ [ 1 1
X, (k - S
+(k) = nk P/O du[u"’—k u2+k}
= —-——B— 10.23
= b7z (10.23)
Thus we have
bZi(k) A (1—j)B
Zo =% + (kb)3/ (10.24)

Close examination of the behavior of R, (k) and X (k)
confirms the validity of Eq. (10.24) for large k.
In a similar way we can examine the behavior of R} (k)

-0.10
-0.11 4k
i
01241
1

-0.134

bW, (U/b)/Z,

-0.14 -

-0.15

016
0.0

-0.04

-0.06—
o
~-0.08
o
2
27-0.10
o
SREE B
-ovm-;j
T T T 1
2 4 6 8 10
b
FIG. 10. Longitudinal wake function in units of Zo/b for

a/b =100 and g/b= 0 and 1.
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and X (k) as k — oco. Specifically we find

s = [ ,
0 3 [ | ) x|
(10.25)
2 [s <]
Xy(k) > = /0 dk' R (K'), (10.26)

where the additional term in Eq. (10.25) makes the result
for R) (k) finite.

Finally we examine the behavior of the wake functions
for small {, a region important for short bunches. Using
the second form in Eq. (10.7) and recognizing that the
behavior at small { depends on the behavior at large k,
we obtain from Eq. (10.7)

Wi(0)/20 = = /O dk R (k), (10.27)
a result which is consistent with the first form in Eq.
(10.7) with ¢ = 0.

For the transverse impedance the asymptotic behavior
for large k is contained in Eq. (10.24). In this case the
behavior for small ¢ is most easily obtained from the
second form in Eq. (10.14) and is

BW.(() 26Y2B [* dk | 2
ZO — - A m sin kC =B ﬂ'_C (1028)
o.s-—\
7 \\ e
0.3

bW, U b)/Z,
e o
- IS
1 1

0.0 -
T~
-0.1+

0.104

0.054

oF 0-00
3
2-0.05
fﬁ;‘
©.0.10
-0.15
0.20 T . . T
2 4 6 8 10
b
FIG. 11. Transverse wake function in units of Zo/ b® for

a/b= 100 and g/b = 0 and 1.

We have used our numerical results for Z;(k) and

Z, (k) to obtain the longitudinal and transverse wake
functions using Egs. (10.7) and (10.14). These are shown
in Figs. 10 and 11 for a/b = 100 and g/b = 0,1. Similar
results can be obtained for other values of g/b if needed.

XI. SUMMARY

We consider the fields generated by a point charge trav-
eling at v 2 ¢ near the axis of a beam pipe of constant
cross section which contains an iris or collimator of con-
stant cross section and length g. Using standard field
matching techniques with appropriate boundary condi-
tions we derive an integral equation [Egs. (2.26) and
(2.27)] for the tranverse electric field at the two junc-
tions of the iris and the beam pipe. Both the longitudinal
and transverse coupling impedances are then written in
terms of this electric field [Egs. (3.18) and (3.20)]. By
judicious manipulation of the integral equation we are
able to write a variational form for both the longitudinal
and transverse impedance, with the trial function being
the transverse electric field at the interface between the
iris and the beam pipe.

We then specialize our analysis to a circular iris of ra-
dius b in a beam pipe of circular cross section of radius
a and expand the trial function into a complete set of
functions of r and 6 satisfying the appropriate boundary
conditions in the iris region. The variational format leads
to extremely rapid convergence of the numerical calcula-
tions — in fact, we get results acurate to 1% with only
a few terms in the expansion. Numerical results are pre-
sented for g/b =1 and a/b = 2, 5, 10, 100, and 1000.

Our interest in high values of a/b is directed toward
expanding on earlier results for a hole in a plate of
zero thickness [8]. In this work an expression is ob-
tained for the longitudinal impedance as a function of
vy=(1- ﬂz)‘l/ 2, the relativistic factor, for values of
kb < 1. Of particular concern is that this expression di-
verges as y — 00, a result we confirm for 5 = 1 when we
let a — co. But we have subtracted the term (1/7)(b/a)
from Z)(k)/Zo in Eqgs. (8.1) and (8.2) and present well
convergent result for the difference. Moreover we give
complete results for both the real and imaginary parts of
the longitudinal impedance for finite g/b and a/b. In ad-
dition we give the corresponding results for the transverse
impedance where the divergence is no longer present. Of
particular interest is G(k), the “explicit” term in the
impedance in Egs. (3.18) and (3.19) which is readily
evaluated for the longitudinal impedance in Eq. (6.6)
and for the transverse impedance in Eq. (7.10).

The explicit term for the longitudinal impedance

a

; (11.1)

1 1

explicit
is plotted separately in Fig. 1 and the explicit term for
the transverse impedance

b
272k

is plotted separately in Fig. 5. As can be seen in these

bRexplicit (k ) =

G (k) (11.2)
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figures, the explicit term, which is independent of g/b,
captures the main features of the correct result and is
accurate to approximately +50%.

Finally we examine the causality relations which apply
for y — oo and obtain sum rules and asymptotic behavior
of both the real and imaginary parts of the impedance
for £k — 0, k — oo. These are then used to calculate the
wake functions which are exhibited in Figs. 10 and 11.
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APPENDIX

The orthonormal modes e,, and e, can be derived from
the scalar functions satisfying the Helmholtz equation. In
the pipe region we have

v {fh-w-m{} (a1)
while in the iris hole region
vt {&h-@-m{}. (A2)

Here we use the symbol ¢ to denote TM modes and the
symbol ¢ for TE modes. The boundary conditions for
these potentials are given as follows:

¢n=0 OYn = 0 on the beam pipe surface Cp, (A3)
on,
Y, .

¢, =0 = 0 on the iris hole surface Cp, (A4)
Bnh

where 8/9n, and 8/9ny, denote the differentiations in the
normal directions, respectively, on the beam pipe surface
and on the iris hole surface. The electric field in these
modes is written as

. —V¢, for TM modes

€n = {z x Vi, for TE modes, (A5)
. —V¢, for TM modes

€v = {z x V1, for TE modes. (A6)

Let us first try to simplify the integral in Eq. (3.12):
F, = dn,-(Vxx2)z-(V xe,).
Ch

Since V x V¢, = 0, this integral vanishes for TM modes.
Substitution of Eq. (A6) into Eq. (A7) leads to

(A7)

F, = (B — kK*)ry, (A8)
where we have used Eq. (A2), defining
Ky = dlny - (Vx x 2)¢,. (A9)

Ch

Introducing the integral

a, = / dS V- {y,[z x V(6 — x)]} (A10)
S1

and noting that we consider here TE modes only, Egs.

(2.32) and (A6) give

(A11)

oy, = (.

On the other hand, applying the divergence theorem to
Eq. (A10), we find

a, :f ddnp [z x V(o —x)]Y
Ch

—k + f A ny - (2 X Vo). (A12)
Ch

Since the term z x Vo is proportional to the source mag-
netic field within the iris hole, the second term on the
right-hand side Eq. (A12) clearly vanishes. Thus, from
Eq. (A11),

Ky = a, = (. (A13)
Therefore, we obtain, from Eq. (A8),
F, = (8] — k*)¢.. (A14)

We now show that {, = 0 for TM modes. Substituting
Eq. (A6) into Eq. (2.32), the TM mode contribution to
¢, is given by

0
= Ay x—)

+ dS ¢,V3(x — o),

S

(A15)

where we have used Green’s first identity. The first term
on the right-hand side of Eq. (A15) vanishes because
of the boundary condition (A4). In addition, since the
source field potentials satisfy the Laplace equation, the
second term is obviously zero. Thus

¢, =0 for TM modes.

In a similar manner we can show that &, = 0 for TE
modes. Substituting Eq. (A5) into Eq. (2.14) we have

gn:/ ds[%a(a—x) _%%w)}
S1

(A16)

oz oy Ay Oz
OYn Ox O Ox
— 22 2, A17
/52 ds [ oz Oy Oy Oz ( )
Integration by parts leads to
OYn O¢n
snz—f dt (o - x ——f 2, (a18)
c. =% ~ £, ot

where the subscript h corresponds to the iris hole surface.
Here /£ is the coordinate along the perimeter of the iris
hole, and we have used the fact that x = 0 at the beam
pipe surface. Since ¢ = 0 on the iris hole surface, we find
that

&, =0 for TE modes. (A19)
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