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Simultaneous longitudinal and transverse focusing can be obtained in a drift tube linac by alter-
nating the sign of the synchronous phase. It is found both theoretically and numerically that, in the
alternating-phase-focused (APF) linac with a symmetric synchronous phase sequence, the lowest-
order resonance due to the synchrobetatron coupling naturally occurs, causing significant emittance
transfer between the longitudinal and transverse motions. Equations for the averaged APF motion
are derived to investigate the coupling effect. Two approximate invariants are obtained. Results
from computer simulations based on a modified PARMILA code yield good agreement with the for-
mulas for the invariant and tune shift derived from the theory. We then suggest a way to move the
parameters away from the lowest-order resonance. Simulation results for the effect of space charge
on the emittance exchange along with the synchrobetatron coupling are briefly discussed.

PACS number(s): 41.85.—p, 41.75.Ak

I. INTRODUCTION

It is well known that longitudinal stability can be ob-
tained in a drift tube linac (DTL) by traversing each gap
as the rf accelerating field rises. However, the rising accel-
erating field leads to a transverse defocusing force which
is usually overcome by the use of magnetic focusing el-
ements inside the drift tubes. The development of the
radio-frequency quadrupole (RFQ) linac, which is now
widely used in the energy region below around 3 MeV,
is one way to provide for simultaneous longitudinal and
transverse focusing without the use of focusing magnets.

With the advent of strong focusing, it was recognized
that one could avoid the use of magnets by traversing
alternately the region between adjacent drift tubes as the
field is rising and falling, thus providing an alternation of
focusing and defocusing forces in both the longitudinal
and transverse directions [1, 2]. Explorations of this idea
[3-5] show that the stable longitudinal phase space area
is smaller than for the Alvarez type DTL. However, it
is not clear that the parameter space has been explored
fully, and recent efforts suggest that alternating phase
focusing (APF) may permit low-velocity acceleration of
currents in the 100-300 mA range [6]. Compared to an
RFQ or a usual DTL with magnets, an APF structure is
clearly simpler and therefore much cheaper. The absence
of the focusing elements inside the drift tubes enables us
to use an APF linac in the energy region below a few
MeV at sufficiently high operating frequency.

While superconducting RFQ has recently been of in-
terest [7, 8], it is much easier to design a supercon-
ducting version of the APF linac because of its simple
structure. Making an APF linac superconducting is also
beam-dynamically beneficial because it permits very high
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gradient operation which is always required for an APF
design to make the acceptances sufficiently large. Addi-
tionally, in the usual DTL case, high field gradient pro-
duces the strong rf-defocusing force at each gap, which
may deteriorate the beam quality. But in the APF case,
we do not have to worry about this kind of effect be-
cause the gap defocusing fields are essential to achieve
the strong focusing. Moreover, the application of modi-
fied APF structures to ion implantation technology has
also been considered lately [9]. In Russia, there actually
exist several APF machines intended mainly for heavy-
ion acceleration [10, 11], and APF beam dynamics has
been extensively studied [12-14].

In an earlier paper [15], we tested the predictions ob-
tained in an analytical study of the current carrying ca-
pacity of an APF linac [16] by adapting the simulation
code PARMILA [17] to the APF structure. We found,
however, that significant emittance growth arose even
in a low intensity beam for which phase-space match-
ing was approximately achieved. In the present paper,
we show that the emittance growth for a matched beam
without space charge is a response to the lowest-order
resonance which naturally occurs in symmetric APF [18].
In Sec. II, coupled equations of motion for APF without
space charge are derived using a Fourier series method.
A smoothed version of the coupled equations is given in
Sec. III, leading to the condition for the lowest-order
resonance. In Sec. IV, the coupled system is simplified
by the Krylov-Bogoliubov-Mitropolsky (KBM) averaging
method [19, 20]. We also consider the effect of the non-
linear longitudinal oscillation which causes an amplitude
dependent tune shift, and results of analysis and sim-
ulation are presented. Two invariants are derived and
discussed in Sec. V, and solutions of the reduced cou-
pled equations of motion are briefly discussed, for both
the constant 3 case and with acceleration. In Sec. VI, we
show how to move the parameters away from the reso-
nance and provide confirming evidence from particle sim-
ulations. Finally, space-charge effects are also included
in the simulations, and a brief description of the results
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is given in Sec. VII.
In the following study, we assume the synchronous
phase alternation pattern

d)s(i) =—¢o—¢1, 1=12,...,

bs(iy = —do + ¢1, i=N/2+1,...,N

where N is an even integer corresponding to the num-
ber of gaps in a single focusing period of length NG\
(= Ln). Here, both ¢9 and ¢; are positive, with ¢o
representing a small asymmetric offset to accompany the
large alternating ¢;. The desired synchronous phase con-
figuration can be obtained by choosing drift tube lengths
that alternate appropriately. It is, of course, possible to
choose a negative value for ¢o. However, we will only use
positive values of ¢ in order to meet the large acceptance
requirement [5].

N/2

II. COUPLED EQUATIONS OF MOTION

For an APF structure, one can obtain the correspond-
ing equations of motion by a Fourier expansion of the step
functions [5]. If we assume that the fractional change of
Bsvs is small over a focusing period and introduce 7;, the
dimensionless coordinate of the ith gap center position
divided by Ly in a focusing period, as

Z 2m + ¢s(n+1) ¢s('n)

(1 # 1)

with 7, = 0,

the transverse and longitudinal equations of motion for
a 2m-mode APF structure are found to be

da:

2t I1(k m)ZA T)sin(P + do5y) =0,  (2.1)
d?y
oz NKZA (7)o (kwx) cos(h+¢4(;)) —cos ¢y(;)] = 0,
i=1
(2.2)

where Iy and I; are the modified Bessel functions, 1 is the
particle phase relative to the synchronous phase ¢,,7 =

/LN, ky = 27/Bsvs A, and

Ai(r)y =142 Z Spi cos[2nm(T — 7;)].

n=1

Here S,; = sin(nmg;/Ln)/(nng;/Ln), where g; is the
ith gap length in a focusing period. Since g; < Ly, we
simply put S,; = 1 in the analysis. In Egs. (2.1) and
(2.2), K is a dimensionless parameter defined by

_ 2meqE T A
— mocfByyd’

where g is the charge state of an accelerated ion and
EoT is the effective average accelerating field. While K
is, in general, a function of 7, we keep it constant along
the structure by ramping the accelerating field as §,73,
fixing also the values of ¢g, 1, and N. This procedure
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is required, as concluded in the previous work [15], to
achieve simultaneous beam matching in both directions
while keeping the phase acceptance and transverse beam
size constant across any transition [21,22].

To study the coupled motion governed by Egs. (2.1)
and (2.2), the higher-order powers in  and ¥, as well as
the linear term, must be taken into account. In the fol-
lowing analysis, we consider the terms containing O(z2)
and O(z%), which cause the synchrobetatron coupling,
and the terms O(%?) and O(%3), which yield the lon-

gitudinal amplitude dependent tune shift. Then, Egs.
(2.1) and (2.2) yield
" + Ks(1)z = — K (1)z9, (2.3)

11[)![ _ 2Ks(7-)¢ — KC(T) (1/)2 _ %zz) _ K33(T)¢3’

(2.4)
where the prime indicates d/dt and
Ks(‘l‘) = Bs + Z Cs(n) sin(2mr7' -+ 93(,1)), (2.5)
n=1
K (1) = B.+ Z Ce(n) Sin(2n7T + O.(n) ). (2.6)

n=1

The Fourier coefficients in Egs.
are all real, are given by

(2.5) and (2.6), which

N
KN .
; — JPs(n
Be+jB, = = i}___;e ), (2.7)
) N
Cs(n)eJea(n) = KNZer'””"' sin @, (;), (2.8)
=1
. N
Cc(n)e:’o‘:(") = KNZ eI2nT T cos ¢s(i)' (29)
i=1
Note that since the coupling terms in Egs. (2.3) and

(2.4) involve ¢ and k,,, and the longitudinal oscillation
amplitude 9 is adiabatically damped as 3, increases, the
synchrobetatron coupling motion decreases as beam en-
ergy increases.

III. RESONANCE

Before proceeding further to describe the synchrobe-
tatron resonance, let us derive the smoothed version of
the coupled equations of motion. We first decompose the
solutions for £ and v into a slowly varying part and a
high frequency part as

2(r) = X(7) + 3 an(7) sin (2077 + 0y(a)),

n=1

Y(r) = o(7) + Z ba(

n=1

) sin(2n7T + O4(n)),
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where x(7), ¢(7), an(7), and b,(7) are slowly varying
functions. Substituting them into Eqs. (2.3) and (2.4),
the coefficients of the high-frequency terms give the ap-
proximate solutions

CS n 2CS n
mx(™), ba(r) = =

an(r) = (2nm)?

p(r).  (3.1)

By averaging out the rapidly varying part and using Eq.
(3.1), we then obtain the smoothed equations of motion
as follows:

X" +oix = —oixp, (3.2)
" 2 2 2 2 3 k12u 2.2
¢ +opp =0y +oge” — Jroex’ (3.3)
where writing
02 oo oo P
— s(n) n
P, = , P= pP,, §= ’
(2nm)? ; 7; (2nm)?
— P2 _ Csm)Cefn S
T= 7; (2n7r)2 ) Qn = (27L7T)2 ) Q - '; Qn ’

the coefficients in Egs. (3.2) and (3.3) can be represented
as

ol =B,+ P/2, o} =—-2B, +2P, (3.4)

02 =B.,(1-S5)-Q/2, o =B.(1+2S)-2Q, (3.5)

a

02=B.(1+5/2)+Q, 03=-B,/3+P—25—-T.
(3.6)
To illustrate the occurrence of the synchrobetatron
coupling resonance, we ignore the nonlinear longitudi-

nal oscillation terms and concentrate, at this stage, only

on the coupling terms o2x¢ and k2,02x?/2. The second-

order solutions of Egs. (3.2) and (3.3) without the O(¢?)
and O(33) terms are
X(2)(T) = x1 cos(osT + 8¢)

o ! ! cos(o4T + 64)
40tX1901 AL or + +

+ <_Al__ + 31;) cos(o_7 + 5_)}, (3.7)

©(2)(T) = @1 cos(oeT + b¢)

kala'c 2 Ug
— ——2—0“8-—— 1-— A+A_ cos 2(0’{7’ + (St) 5

(3.8)

where
Ay = 204 & oy,
oL = 0y * 0y,

b4 = 6y + &y,

and x1, @1, 0¢, and &y are determined by the initial values
of x(2) and ¢(3). From Eq. (3.4), we can see that A_ =0
when B, = 0, which corresponds to the case of ¢9 = 0
because of Eq. (2.7). That is, the lowest-order resonance
occurs whenever a symmetric phase sequence is chosen
for the APF linac. Other higher-order resonances can
also exist when taking the higher-order coupling terms
into account. However, the (2,1) difference resonance
described above is the lowest order and the most severe
one, as long as there is no troublesome sum resonance.
Thus, to avoid the rapid growth of oscillation amplitudes
or a large emittance exchange between the transverse and
longitudinal motions, a nonzero phase offset ¢¢ should
be employed. More correctly speaking, phase alternation
patterns with nonzero values of B, should be chosen for a
practical APF design. As described later, we can restrict
the emittance growth due to the coupling, even if the
system is exactly on resonance. A detailed discussion to
avoid the coupling resonance is given in Sec. V1.

IV. KRYLOV-BOGOLIUBOV-MITROPOLSKY
AVERAGING

Upon treating the coupling and nonlinear oscillation
terms on the right-hand sides of Eqgs. (3.2) and (3.3) as
the forcing terms that drive the linear oscillations close to
resonance, we may try to find solutions of these equations
similar to the solutions of the linear system, but with
slowly varying amplitudes and phases. Specifically, we
write

x(7) = X () cos[oyT + a(T)], (4.1)

p(1) = ®(7) cos[oer + B(T)], (4.2)
with the conditions

X' (1) = —o X (1) sinfo7 + a(7)], (4.3)

@' (1) = —0,®(7) sinfoer + B(7)]. (4.4)

The first-order derivatives of X (1), ®(7), a(7), and 5(7)
can be obtained by substituting Egs. (4.1) and (4.2) into
Egs. (3.2) and (3.3), using Eqgs. (4.3) and (4.4). Then,
the rates of change of the phase and amplitude func-
tions in both directions can be approximated by taking
their averages over one cycle of rapid variation, accord-
ing to the well-known KBM method. The high-frequency
modes are averaged out and only the low-frequency A_
parts near or on resonance are kept. Straightforward al-
gebra yields the averaged version of the equations as

X'(1) = 4i’t-;—tx(f)<1>(7) sin ¥(7), (4.5)
12 k;‘:af 2 :

(1) = —T”X (7) sin (1), (4.6)

o (1) = %:té(f) cos U(7), (4.7)
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_ ki o2 X?(7)

A1) =3 gy M) —n®(n), (48
where
U(r) = A_7 + 2a(r) — B(T) (4.9)
and
302
by = 87? (4.10)

It is also an easy matter to estimate the amplitude de-
pendence of the tune shift in the longitudinal motion.
For this purpose, we again apply Egs. (4.1) and (4.2)
together with Egs. (4.3) and (4.4) to Eq. (3.3), neglect-
ing the coupling term x2. Expanding the amplitude and
phase in a perturbation series, we can easily show, in the
second-order approximation, that

(B'(7)) = —(v1 + v2)®3(7),

where ®¢(7) is the zeroth-order term in the perturbation
expansion of ®(7),(6(7)) denotes the averaged value of

B'(1), and

(4.11)

_ 50{}
1203

2 (4.12)

The longitudinal oscillation frequency is hence detuned
by the following expression:

d
we = o=0(7) = 00 + (B(7)) m or - Awe®], (4.13)
where
3 2 5 4
Awl = + Vo = —J‘i ab (4.14)

80y 1202 )

In Fig. 1, we compare the results of the analytical ap-
proximation in Eq. (4.14) with the single particle simu-
lations by PARMILA modified for APF structure, and the
agreement is good in spite of using only the lowest-order
approximation.

o
—
~J
(&)

o
[y
w

0.125

o
—

0.075 y

0.025

Longitudinal Tune Shift

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Initial Phase Amplitude (radian)

FIG. 1. Longitudinal tune shift Aw; with respect to the
initial phase amplitude ®o. The dots are the results of a single
particle simulation and the solid line shows the analytical re-
sult from Eq. (4.14). The parameters are K = 0.556, N = 4,
¢1 = 700, and ¢0 =0.

V. INVARIANTS OF THE COUPLED MOTION
A. Amplitudes and first invariant

From Egs. (4.5) and (4.6), we see that there exists the
invariant

O¢
k%ol

Z—éxz(r) +2 $2(r) = E; = const. (5.1)
This first invariant can be easily related to x(7) and ¢(7)
in Egs. (4.1) and (4.2), which indicate that XmaxXiax =
0t X2(7) and Pmax@Phax = 7¢®%(7). Assuming the uni-
form particle distributions both longitudinally and trans-
versely, the averaged maximum amplitudes X(7) and
®(7) can be written as

X3y = = (N_’\) , ()= (@N’\Z) , (5.2

oy ¥ op \ 2w v

where €, and €, are the normalized effective emittances,
respectively, in the transverse z — p, and longitudinal
¥ — AW phase space. Here, the effective emittance has
been defined as four times the rms emittance. The first
invariant F; is now rewritten as

N [ e, € [ A
=5 (2w>]'

From the expressions in Egs. (3.5) and (3.6) it can be
seen that o2 and o2 are close to each other due to the
fact that their difference consists of terms of order K2
and K3. In addition, we also observe that the form of E;
is not very sensitive to acceleration. If we rewrite e, A/27m
as €, and neglect the higher-order corrections, the first
invariant is then simply

(5.3)

E, =~ N—A(em + 2¢;). (5.4)
B.

The accuracy of the first invariant in Eq. (5.3) has
been checked by using PARMILA. The simulation results
in Fig. 2 show the transfer of normalized rms emittance
between the longitudinal and transverse motions, con-
firming the validity of Eq. (5.3). Many simulations with
different parameters have also been obtained, all confirm-
ing the validity of the formula for E; as an approximate
invariant.

Note that the existence of the first invariant enables
us to reduce the two differential equations for the ampli-
tudes, Egs. (4.5) and (4.6), into one differential equation
with the help of a new function

_ 204®%(1) _ 2N)e,

J(r) = o2k E; T (5.5)
which implies that
0:X%(1)  Nle,
1-— = ~ . .
J(T) UEEI 0'(21E1 (5 6)
The differential equation for J(7) is therefore
J'(1) = —m[l — J(7)]/J(7) sin T (1), (5.7)

where
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FIG. 2. Simulation results for the emittance transfer be-

tween the longitudinal and transverse motion and the first in-
variant from Eq. (5.3). The initial emittances are e, = 0.5242
cmmrad and €, = 0.0758 cmmrad. The parameters are the
same as those used in Fig. 1.

02k, [02E;
m = .
20 20

B. Coupling phase and second invariant

(5.8)

While the equations for the amplitudes give the first
invariant, the equations for the phases, Eqs. (4.7) and
(4.8), can also be integrated in a similar way to give the
coupling phase in terms of the varying amplitude [22].
Differentiating Eq. (4.9) and using Egs. (4.7) and (4.8)
with the definition given by Egs. (5.5) and (5.6), we have

3J -1
V()= A +nanJ(7) +m —L cos ¥(7),

24/J(T)
(5.9)

where
k20'2E1 20’t 2 2

=W - — . 5.10
m=tereB (2 (5.10)

Dividing Eq. (5.9) by Eq. (5.7), we get a formula for an
exact differential as follows:

dVT(1 — J)cos ¥] = nl(A_ t ). (5.11)
1

Let us now temporarily ignore the damping of k,, due
to the increase of (3,, which causes the decreases of the
parameters 7; and 7,. With the ansatz of constant G,
we can then integrate Eq. (5.11) treating the parameters
11 and 72 as constant. The coupling phase is then given
by

cos U(r) = —Ez + [A_ + 2 J(1)] J(7)
m1 —J(7)]v/J(7) ’

where the second invariant F» is the constant of integra-

(5.12)
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tion and can be determined from the initial conditions of
the variables J and ¥ at the injection point of a linac.

A plot of cos ¥ as a function of J, in the manner of
Sturrock’s phase-amplitude diagram [23], gives a quali-
tative description of the behavior of the system. Figure
3 shows an example of the phase-amplitude diagram for
Eq. (5.12) with the same parameters as in Fig. 2. The
stable zone of the diagram shown is within the region
—1 <cos¥P <1land 0 < J < 1. As we can see from
Fig. 3, a coherent emittance oscillation takes place for
any initial points J(0) and ¥(0) on the phase-amplitude
diagram. The rise or fall of an emittance at the beginning
depends upon the initial amplitude J(0), i.e., the ratio of
the longitudinal emittance to the sum of the emittances.
If the initial J starts near the left margin of the phase-
amplitude diagram, the longitudinal emittance will tend
to grow while the transverse emittance decreases. If one
starts the initial J close to the right margin of the phase-
amplitude diagram, the situation is then just reversed. In
either case, the first invariant is always conserved along
the channel.

C. Analytic solution for constant 8

Analytical solutions for J and ¥ can, in fact, be ob-
tained by solving Eqgs. (5.7) and (5.9) under the ansatz
of constant 3. From Egs. (5.7) and (5.12), we get

J'=-G(J), (5.13)
where
G(J) = (5.14)
and
co=—E3, ¢ =n]+2E,,
— _ 9.2 E. _ AZ
cg = —2n1 + Eanevn ‘,
3 = 77% —A_nary, €= —(ngu1/2)2.
1
T Y(0)=n/2
0.75
¥(0) =4
0.5 ©
5 0.25 w(0)=0
& 0
o
-0.25
0.5 W(0) = 34
-0.75 ¥(0)=7
1 0.2 0.4 0.6 0.8 1
J
FIG. 3. Phase-amplitude diagram. The parameters are

the same as those used as Fig. 2.
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We can then solve 7 in terms of J as
J
dJ
-7 = = = gF({|lm) — gF(§|m),
where F'(£|m) is the elliptic integral of the first kind,
£0 = 5(‘] = 0)7

£(J) =sin™" /(a — )(J = b)/(a = b)(J — o),

(5.15)

m = (a—b)(c—d)/(a ) (b~ d),

9 =2/v(a—=c)(b—d),

and we have defined the roots of G(J) as a,b,c,d and
a>J >b>c>d. The solution for J(7) is

m) —-b
m) -1
where sn(z|m) is the Jacobian elliptic function, 7o =
gF (¢o|m), and o = (a — b)/(a — c).

The 7-dependent trajectories of J(7) and ¥(7) must
lie on the curves in Fig. 3, which oscillate rapidly in J
between 0 and 1. An example of the behavior of J/J(0)
with the same parameters as in Fig. 3 is shown in Fig.

4. It is seen that the emittance exchange due to coupling
causes a prompt emittance oscillation.

ca®sn? ( ("’09—7')

J(r) = (5.16)

a?sn? ( T°g_T

D. Results for constant acceleration

When we include the acceleration effect associated
with synchrobetatron coupling, it is clear that Eq. (5.3)
still holds even if the parameter changes due to acceler-
ation are taken into account. However, the solution of
constant G in Eq. (5.16) is no longer valid because the
parameters 7; and 7, now depend on 7. As an example,
let us assume the particle’s velocity 8, changes as

1.8 —

1.6
1.4
2]
S~
o)

1.2

1
20 40 60 80
Cell Number

FIG. 4. The emittance oscillation under the assumption

of constant velocity. The parameters are the same as those
used in Fig. 2.
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20 40 60 80
Cell Number

FIG. 5. The behavior of emittance growth under the as-
sumption of constant acceleration. The parameters are the
same as those used in Fig. 2.

(5.17)

Bu(r) _ KN
3,0 >t ( o

approximating the parameters 7n:(7) and 72(7) corre-
spondingly. In this case, the forms of Egs. (5.7) and (5.9)
remain the same except that n;(7) and n3(7) are now 7
dependent, and we can find the approximate solutions for
J(7) and ¥(7) which involve both the sine and cosine in-
tegrals. Figure 5 shows the behavior of J(7)/J(0) found
by numerical integration for the case of constant accelera-
tion. The parameters and initial emittances are the same
as those used in Fig. 2. Comparing the numerical inte-
gration result of Fig. 5 and the PARMILA simulation in
Fig. 2, we observe that their behaviors are quite similar
qualitatively, except for different growth rates and sat-
uration ranges. Furthermore, we can also conclude that
the saturation of emittance exchange, i.e., decoupling of
the coupled oscillation, is due to the effect of acceleration
which reduces the coupling strengths.

cos ¢1) T,

VI. AWAY FROM RESONANCE

It is worthwhile to note that the result of Egs. (5.7)
and (5.9) can also be derived from the Hamiltonian,
treating J(7) and ¥(7) as the action-angle variables. The
Hamiltonian in this case is just identical to the second in-
variant:

H(U,J)=Ey=A_J + %ulﬂ —m(1 - J)VT cos 0.
(6.1)

The phase space of the Hamiltonian flow for the system
(6.1) on resonance is plotted in Fig. 6. The two fixed
points on the resonance manifold can be found via the
conditions: J' = 0 and ¥’ = 0, where ¢ = 0 (in phase)
and 7 (out of phase). Noting that the values of 1; and
72 are usually smaller than 1, and 7oy € M1 (e.g., m =
0.368 and 73v2 = 0.0129 in the example of Fig. 2), we
can neglect the 7;v, term in Eq. (5.9). The fixed points
of the system on resonance are then approximately equal
to
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-1 0 1 2 3 4

FIG. 6. Phase space of the resonance manifold.

¥ =0,n, (6.2)

3 K
where the amplitude dependent tune-shift term modifies
the value of J at the fixed points only slightly. According
to Egs. (5.3) and (5.5), we can see that when

J=1/3,

the ratio of longitudinal and transverse emittances has
the following relationship:

. 1(o.\> 1

P (aa) g
If we inject a beam having the emittance ratio €, /¢, near
1/4 into an APF linac with the zero phase offset, then the
particles in the beam that are nearly in phase (¥ = 0)
and the particles that are nearly out of phase (¥ = )
will oscillate within only a small range of J around the
fixed points. If the emittance ratio is exactly equal to
1/4, the in-phase and out-of-phase particles will remain
in an approximately stationary state. The particles with
other phases will follow the Hamiltonian flow on the res-
onance manifold. Their amplitudes will either decrease
or increase, depending on their initial locations in phase
space.

Note that in Fig. 6, the phase space is plotted for
constant 3. Although acceleration could cause the pa-
rameters in the Hamiltonian to decrease adiabatically,
the trajectories with acceleration in fact still follow a
pattern in phase space similar to the case without ac-
celeration. And the fixed points for the resonance mani-
fold are almost unchanged even if 7; and 7, are damping
along the structure. Therefore, if the beam has an ini-
tial emittance J smaller than 1/3, particles following the
Hamiltonian flow will distribute through the whole phase
space. Meanwhile, the quasiperiodic motions around the
fixed points are also slowing down due to acceleration.
Consequently, the overall average of J will grow and sat-
urate. For an initial J larger than 1/3, the average be-
havior of J decreases and then saturates. On the other
hand, for a beam with initial J near 1/3, the variation

(6.3)

J(0)=0.198

J(0)=0.260

08 - ) et
lJ(0)=0.495
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Cell Number
FIG. 7. Simulation results for the longitudinal emittance

growth of different initial scaled emittance J, where the sys-
tem is on resonance. The parameters are the same as those
used in Fig. 2.

of J on average will almost remain the same as the ini-
tial J. Simulations of the bunched beam for different
scaled emittance ratios, shown in Fig. 7, confirm this
prediction. Note that the results shown in Figs. 4 and
5 are obtained by numerical integration of Egs. (5.7)
and (5.9) with the initial condition Jo = 0.198. In Fig.
4, J oscillates around the fixed point which is near 1/3
as expected, with the difference involving the amplitude
dependent tune shift.

As mentioned in Sec. III, to avoid the coupling res-
onance, we should use a nonzero phase offset ¢ in the
phase pattern as defined in Sec. I. The nonzero detun-
ing A_ will cause the Hamiltonian flow to change in the
phase space. The fixed points of the off-resonance man-
ifold can be found from the stationary solution of Eq.
(5.9) when ¥’ = 0,% = 0 or m, and the nyvy term is
ignored. Here we define a quantity

A_ 3J -1
r= |22, (6.4
T 2\/7
4
E‘ 3
<
2
1
2 0.4 0.6 0.8 1
0 J
FIG. 8. The scaled resonance band vs the scaled longitu-

dinal emittance. The curve is where R = 0.
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which measures the value of the scaled detuning |A_ /7]
away from the fixed points. When R is near zero, the
coupled system operates near the fixed points and thus a
smaller emittance exchange is expected. The plot of the
fixed-point line is shown in Fig. 8. The fixed point of the
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FIG. 9. Simulation results for the emittance growth with

different phase offsets. The parameters are K = 0.556, N =
4, and ¢; = 70°. (a) Inmitial J(0) = 0.13, which corresponds
to a short bunch; (b) J(0) = 0.35, near the on-resonance
fixed point; (c) J(0) = 0.62, corresponding to a longer bunch,
compared with the previous cases.

on-resonance manifold, J ~ 1/3, clearly corresponds to
the intersection of the curve with the J axis.

Results of PARMILA simulations for €,(7)/€,(0) [i.e.,
J(7)/J(0)] are shown in Fig. 9. Since the first invariant
holds for any parameters along the channel, here we ex-
amine only one of the emittances. We show three cases
of different values of J. In Figs. 9(a) and 9(c), the initial
J’s are located at the left-hand side and the right-hand
side of the zero detuning fixed point J ~ 1/3, which cor-
respond to a short bunch and a long bunch, respectively.
Figure 9(b) illustrates the behaviors of the longitudinal
emittance of the coupled system when J is near 1/3. It is
observed that smaller values |R| give smaller emittance
exchange.

Let us now recapitulate the main results of Secs. V
and VI. We here conclude that, by the KBM averaging
method, two invariants are obtained and the analytical
and numerical solutions of the averaged coupled system
show that the saturation of emittance exchange is due
to the decoupling caused by acceleration. While the first
invariant enables us to reduce the system of two degrees
of freedom to one degree of freedom, the second invari-
ant, which is equivalent to the transformed Hamiltonian
of the coupled system, gives us the fixed point. When
the synchrobetatron coupling is on resonance, using a
matched beam with emittance ratio €,/e, ~ 1/4 such
that J ~ 1/3 will give an almost-stationary beam, where
the emittance growth is much smaller than the beam with
other initial values of J. If the coupling is off resonance,
the system still needs to be adjusted, for a specific value
of J, such that the quantity R defined in Eq. (6.4) is
close to zero, i.e., the beam must be introduced close to
the fixed point of the Hamiltonian system. To sum up,
the best operating points of an APF system, as far as the
synchrobetatron coupling effect is concerned, are located
along the curve of Fig. 8.

VII. SPACE-CHARGE EFFECT

In this section, we present simulation results includ-
ing space charge. By using the same parameter set we
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FIG. 10. Simulation results for the emittance growth with

different currents. The parameters are K = 0.556, N =
4) ¢1 = 7007 and ¢0 =0.
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FIG. 11. Simulation results for E; with different currents.

The parameters are K = 0.556, N = 4, ¢1 = 70°, and
¢0 = 0.

used in the previous examples, we find that space charge
enhances the rate and range of the emittance exchange.
As expected, the emittance growth rate increases with
increasing beam intensity (see Fig. 10). Space charge
also induces a substantial growth in F; as shown in Fig.
11, and E; is no longer an invariant. This growth of E;
is reasonable, because the higher-order nonlinear terms
due to space charge neglected in Eqs. (2.3) and (2.4) are
expected to make greater contributions to the beam be-
havior as the intensity increases. On the other hand, as
shown in Fig. 12, a nonzero phase offset can still move
the operating point away from resonance even if there is
space charge.

VIII. SUMMARY

The equations of coupled motion for an APF linac
have been truncated, smoothed, and averaged. Numeri-
cal simulations confirm the theoretical predictions fairly
well with regard to the longitudinal tune shift and the
first invariant. We have shown, in both the simulations
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FIG. 12. Simulation results for the emittance growth with

different phase offsets. The parameters are K = 0.556, N =
4, and ¢; = 70°.

and the analysis, that the emittance exchange due to syn-
chrobetatron coupling can be decreased, as shown in Sec.
VI, by either choosing the optimum emittance ratio or by
introducing a nonzero phase offset in the phase pattern
of the APF linac. Specifically, the best operating point
of APF system is where

|A-/m| = |(3J —1)/2V]].

We also included space charge in the simulations and
found that the transfer of emittance due to both effects,
i.e., synchrobetatron coupling and space charge effect,
can still be reduced significantly by introducing a positive

oo.
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