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Nonlinear Resonance Effects in a Linear Paul Trap
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The effects of nonlinear resonances in a linear Paul trap have been investigated through
systematic experiments and numerical simulations. The main causes of the nonlinearity that
affects the stability of the ion motion are the use of circular (rather than hyperbolic) electrodes,
their misalignments, and Coulomb interactions among the ions. A particle tracking code based
on a two-dimensional model is employed to study the efficiency of plasma storage and to confirm
the existence of nonlinear resonance stop bands. Experiments are performed with Ar™ plasmas
that are eventually detected by a Faraday cup after a short storage. The obtained data are
compared with numerical simulations in which the exact three-dimensional structure of the trap
system has been incorporated. Several nonlinear stop bands have been experimentally identified
inside the Mathieu stability region. It is demonstrated that the location of a resonance stop
band moves due to the space-charge potential depending on the number of confined ions.
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1. Introduction

Since the invention of a quadrupole mass filter by
Paul in 1953, compact radio-frequency (rf) devices that
guide and confine low-energy charged particles have be-
come increasingly common in physics, chemistry, biology,
vacuum technologies, space and environment sciences.
The three-dimensional (3D) confinement of ion clouds
can readily be achieved by an rf quadrupole system that
is often referred to as a Paul trap after the inventor. In
1989, Prestage and coworkers developed the first linear
Paul trap by axially closing the mass filter with elec-
trostatic potentials.?) Since the rf field in this type of
trap disappears along the axis, it is possible to confine
a large number of ions with relatively small disturbance
from the time-dependent potential. Linear Paul traps,
equipped with a laser cooler, have now been utilized
for diverse experimental purposes related to frequency
standards,>® high-resolution spectroscopy,®”) optical
mass spectrometry,®?) ion/molecule reactions,'® 2 and
Coulomb crystallization.!>1%) For the last decade, a
Coulomb crystallized string of ions has been studied as
one of promising candidates for quantum information
processors.16-23)

Recently, Okamoto and Tanaka proposed a unique
application of a Paul trap for the study of beam
physics.2426) The idea is based on the fact that the
collective motion of a charged particle beam is approx-
imately equivalent to that of a one-component plasma
confined in the trap. Following this idea, we have con-
structed a table-top system “S-POD (Simulator for Par-
ticle Orbit Dynamics)” to explore various collective ef-
fects in space-charge-dominated beams.2”28) In order to
experimentally simulate the collective dynamics of an in-
tense beam traveling in an accelerator, it is necessary to
store as many ions as possible for a sufficiently long pe-
riod. Among possible undesirable effects that may lead to
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a rapid loss of particles, nonlinear resonance is one of the
most influential. In the present case, resonant instability
is caused parametrically by various imperfection sources
contained in the actual trap structure. If the operating
point of the trap is not properly chosen, the storage time
of the plasma is considerably shortened. It is thus impor-
tant to set the operating point away from critical reso-
nances.

The effect of nonlinear resonances in a mass filter was
first discussed by von Busch and Paul in 1961.29) Their
work was extended by Dawson and Whetten who exper-
imentally demonstrated the occurrence of resonances in
a Paul trap.??) After these pioneering works, many theo-
retical and experimental studies on nonlinear resonances
in two-dimensional (2D) mass filters or conventional Paul
traps have been performed mainly in connection with the
splitting of mass peaks.?'49) However, regarding linear
Paul traps, little has been done so far except for a few ex-
perimental reports on small laser-cooled ion clouds.*!42)

In this paper, we present experimental results on non-
linear resonances in a linear Paul trap confining a rela-
tively large number of ions. After summarizing the the-
oretical backgrounds of this phenomenon in §2, exper-
imental observations are shown in §3 which verify the
existence of parametric resonances of various orders and
their dependence on the Coulomb potential. The multi-
section linear Paul trap for S-POD?®) was used for the
experiments. The results are compared with numerical
data obtained with a 3D particle tracking code that sim-
ulates the ion motion in the actual confinement fields.

2. Theoretical Considerations

2.1 Nonlinear resonance conditions

Transverse resonances in a linear Paul trap can be
described by the 2D theory originally developed for
quadrupole mass filters.333%) Since various imperfection
fields are inevitable in practice, the linear Mathieu equa-
tion is not relevant to the correct description of parti-
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cle orbits in the trap. The nonlinear fields come mainly
from non-hyperbolic electrode surfaces, fabrication er-
rors, field distortion in the edge regions, insulator charg-
ing, noises in applied voltages, and space-charge inter-
actions. In the 2D model, the general scalar potential
including these nonlinear perturbations can be written,
in the cylindrical coordinates (r, ), as

¢(r,0,t) = (U + V cos Qt) i Cn (%)n cosnfd, (1)
n=0

where U and V are the dc bias potential and rf ampli-
tude, 2 is the angular rf frequency, R is the minimum dis-
tance from the trap axis to the surface of the quadrupole
rods, and C,’s are the dimensionless weight factor de-
pending on the relative strengths of the linear and non-
linear terms. In what follows, the quadrupole coefficient,
which is much greater than any other coefficients, is nor-
malized to be unity by scaling U and V; namely, we put
Cs = 1 without loss of generality. When the higher-order
coefficients are finite, the horizontal and vertical motions
of particles are no longer independent but coupled to
each other.

Although the ideal surface of the quadrupole elec-
trodes should be hyperbolic, we often employ cylindri-
cal electrodes that considerably simplify the manufacture
and fabrication of the trap. This simplification inevitably
yields an additional imperfection in the plasma confine-
ment field. Provided that the electrodes are perfectly
aligned and thus the system holds four-fold symmetry,
only limited harmonics with n = 2,6,10,--- appear. In
order to minimize the first nonlinear component, i.e. the
dodecapole (g, the radius p of the electrodes is chosen
such that p/R = 1.14511.%3%%) Qur Paul trap actually
uses cylindrical electrodes whose radius is 1.15R.

The general resonance condition of order N is given
by 33:36)

nafBe +nyBy =2k (Ing| + |ny| = N) (2)

where n., n, and k are all integers, and (3., is the char-
acteristic exponent of the solution of the Mathieu equa-
tion depending on the so-called Mathieu parameters a
and q. B.(y) takes a value between 0 and 1 in the first
stable region of the Mathieu diagram, and can be related
to the angular frequency w,(,) of the secular motion as
Ba(y) = 2wa(y) /2. When a driving nonlinear term has or-
der n, the resultant resonances are particularly strong for
N =n,n—2,n—4,---,40r3.53% Asis well-known, the
energy of the z direction (horizontal) and that of the y
direction (vertical) are exchanged under a difference reso-
nance (n,n, <0) while preserving the total energy. In the
other cases where n,n, >0, the particles absorb energy
from the driving rf field and, accordingly, the amplitude
of the secular oscillation increases. The secular frequency,
however, eventually goes out of the resonance due to its
dependence on the oscillation amplitude. As a result, the
resonant particles execute a sort of beat motions. This
means that whether a particle is lost or not depends on
the maximum amplitude of the beat oscillation; namely,
particles that have the amplitudes greater than R will
be lost. In the following, we only consider the latter type
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Fig. 1. The first stability region of the Mathieu equation. Non-

linear resonance lines predicted by eq. (2) with £ = 1 have been
indicated by solid and broken curves.

of resonances because it should more seriously affect the
storage time of a confined plasma.

The resonance lines derived from eq. (2) are plotted in
Fig. 1 that suggests the possibility of various nonlinear
resonances even when the operating point is well inside
the Mathieu stability region. Each line is accompanied
by an instability domain (stop band) with a finite width
depending on the strength of the driving force, in other
words, on the magnitude of C,,. The weight factor C,
generally becomes smaller for a larger n. In the present
example, we have put £ = 1 and drawn resonance lines
for N = 3,4,5,6,8,10. Several lines of a specific order
have converged at a single point on the g-axis. It is also
evident from eq. (2) that a low-order resonance overlaps
with many higher-order resonances.

2.2 2D tracking simulations

Before proceeding to experimental observations, we
here make a brief numerical study of nonlinear reso-
nances in a linear Paul trap, employing a simple 2D
model. Assuming the general potential in eq. (1), the
transverse equation of motion of a confined particle with
rest mass m and charge state () is expressed in Cartesian
coordinates as

d*u . 4Q 99
d—fzj:(a+2qCO82E)u——mQZ%; (3)

where a = 8QU/(mR?*Q?) and q = 4QV/(mR*Q?) are
the Mathieu parameters, £ = t/2 is the dimension-
less independent variable, the scalar potential ¢’ includes
all multipole components except for quadrupole, i.e. the
n > 3 terms in eq. (1), and u denotes either the hori-
zontal coordinate x or vertical coordinate y. In order to
estimate the efficiency of plasma storage, we have numer-
ically integrated eq. (3) with possible combinations of a
and ¢ in the first Mathieu stability region. In our current
system, single-species plasmas are generated by ionizing
neutral gases with low-energy electrons from an electron
gun sitting outside the Paul trap. We expect that ions
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are produced not only near the axis but also almost ev-
erywhere in the plasma confinement region. Considering
this fact, test particles were randomly distributed within
the circle of radius Ry (< R) at the beginning of each
simulation. The momentum distributions were chosen to
be Gaussian in both transverse degrees of freedom. The
standard deviation of the Gaussian can be determined
from plasma temperature T'. If the oscillation amplitude
of a particle exceeds the radius R of the plasma confine-
ment space, that particle is considered to be lost. The
storage efficiency is evaluated from the number of sur-
vived particles after 1000 rf periods.

2.2.1 Pure quadrupole confinement

We start from the ideal case where the plasma con-
finement field is pure quadrupole, i.e. ¢’ = 0. Figure
2 shows the storage efficiencies of two typical cases; a
relatively low temperature plasma has been assumed in
the upper picture while, in the lower picture, we have
set the initial temperature of a plasma twice higher and
the transverse extent halved. The numbers of survived
particles obtained in a set of many simulations along a
particular mass scan line a = (2U/V)q have been nor-
malized by the peak value. Therefore, the normalized
efficiencies in Fig. 2 do not necessarily reflect the abso-
lute number of survived particles relative to the initial
particle number. The transverse extent of a stationary
plasma calculated from the envelope equation becomes
minimum along the broken curve.?®) If it is possible to
provide well-conditioned plasmas initially, this curve de-
termines the optimum operating parameters with which
the number of confinable ions can be maximized. In the
case of Fig. 2(a), the region of high storage efficiency has
been significantly shifted to the left because of the ini-
tial mismatch of the particle distribution. The hatched
area approaches and eventually covers the broken curve
at higher temperature when the plasma extent is fixed
at Rp = 0.8R. In contrast, the hatched area in Fig. 2(b)
moves leftward if we increase Ry while keeping T'. Since
the horizontal and vertical motions are linear and decou-
pled, these numerical results can readily be explained by
checking the amount of phase-space mismatch between
the initial particle distribution and the transverse accep-
tance of the trap.

2.2.2  Confinement with error fields

We now take into account the contribution from the
nonlinear perturbing terms in eq. (3). Since the major
source of nonlinearity expected in our Paul trap is the
non-hyperbolic shape of the electrodes, we turn on the
n = 6 and n = 10 terms, both of which have the same
strengths, i.e. C4 = C1p = —0.01. Results of systematic
simulations are summarized in Fig. 3 where shadow has
been deepened in proportion to the number of survived
particles. The initial extent and temperature of plasmas
have been set at Ry = 0.8R and T' = 5000 K in all sim-
ulations. We find several narrow bands in which the loss
rate of particles is particularly enhanced. Comparison of
Fig. 3 with Fig. 1 enables us to conclude that these losses
are caused by nonlinear resonances under the conditions

Bat+By/2=1(N=3),26. =18 +B,=1,28, =1
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Fig. 2. Contour plots of storage efficiencies (in percentage) esti-

mated from 2D tracking simulations. The pure quadrupole con-
finement field has been assumed. The initial conditions adopted
for the two examples are: (a) Ro/R = 0.8 and T = 5000 K,
(b) Ro/R = 0.4 and T = 10000 K. Storage efficiencies are eval-
uated from many simulations performed along many different
mass scan lines; they have been normalized by the maximum
number of survived particles in each set of simulations along
a specific mass scan line. The broken curve is the theoretically
obtained “optimum” operating line along which the transverse
extent of a stationary plasma can be minimized.

(N =4), 28, + 8y =1, 8. +28, =1 (N = 6). Figure
4 shows the Poincaré plots obtained from the simulation
data at the operating points A and B in Fig. 3. We recog-
nize the formation of six islands in the left panel and four
islands in the right panel, which proves that the nonlin-
ear resonances with N = 6 and N = 4 are responsible
for the particle losses at A and B.

2.3 Possible shift of stop bands

There are several factors that may give rise to notice-
able shifts of resonance stop bands from the locations
predicted by the single-particle theory for 2D mass fil-
ters (Fig. 1):

(i) Static potential for axial plasma confinement
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erating points A and B in Fig. 3.

Unlike axially uniform mass filters, a linear
Paul trap has an additional potential well to
confine particles longitudinally. The longitudi-
nal confinement is usually achieved by applying
static potentials to thin electrodes at both ends
of the quadrupole rods. The longitudinal con-
finement is accompanies by a radial defocusing
effect according to the Earnshaw’s theorem; in
other words, the radial focusing is more or less
weakened by the axial potential, which can be
a source of discrepancy between the 2D theory
and experimental observations.

Suppose that we have an rf quadrupole of
axial length L. When L is comparable to the
aperture size 2R, the static potential generated
by the end electrodes can be approximated as®)

4I<.‘,Uend

Gac(r,y,z) = T3 [32 — %(;UQ + y2):|

Fig. 5. Stability diagrams for a linear Paul trap. (a) The Mathieu
stability region (the hatched area) of a linear Paul trap with a
finite Aa. The original boundaries expected from the 2D mass-

Fig. 4. Poincaré surface-of-section plots corresponding to the op- filter theory have been drawn with dotted lines. (b) The accept-

able range of ¢ on the ¢ = 0 axis of the Mathieu diagram has
been plotted as a function of Aa.

— g |- @ et @

where Uenhq is the static voltage applied to the
end electrodes, w, = \/8KkQUend/(mL?) is the
angular frequency of the axial particle oscil-
lation, and k is a constant factor depending
on the trap geometry. & is often deduced from
the observed value of w,. In an axially long
trap, the potentials of the end electrodes are
shielded by the quadrupole rods, which makes
the longitudinal potential well almost flat in
the middle of the trap. It is, however, still pos-
sible to employ the approximate potential in
eq. (4) if the plasma is localized around the
trap center. Since eq. (4) contains transverse
quadratic terms, adding this dc potential to
the rf quadrupole potential leads to a shift of
the a-parameter in eq. (3).4>%) The modified
a-parameters are given by a, = a — Aa for -
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direction and ay, = a+ Aa for y-direction where
Aa = 166QUena/(mL*Q?). The characteristic
exponents (3, and [, that determine the sec-
ular frequencies of the particle oscillation are

thus changed to Bz(y) = 1/Bg%(y) — Aa under

the smooth approximation. As demonstrated in
Fig. 5(a), the Mathieu stability region shrinks
with a finite Aa. Figure 5(b) shows the stabil-
ity range on the g-axis (i.e. along the a = 0
line) plotted as a function of Aa. We recognize
that the acceptable range of ¢ for particle sta-
bility becomes narrower as Aa increases. Need-
less to say, the transverse resonance conditions
can also be influenced by the existence of the
axial potential. The original lines in Fig. 1 are
expected to shift to the high ¢ side.

(ii) Mechanical errors

So far, the bias potential U and the
quadrupole amplitude V are supposed to rep-
resent the exact voltages applied to the elec-
trodes. These parameters in eq. (3) can be af-
fected in practice by mechanical errors; field dis-
tortions due to misalignments of the electrodes
and manufacture errors modify the amplitudes
of all multipole-components. In particular, C; is
deviated from unity, depending on the amount
of errors.*>47) To figure out the importance of
this effect, we here take a simple example where
only one of the four quadrupole rods is dis-
placed from the ideal position.

Assume that four infinitely long cylindrical
rods of radius p = 5.75 mm are symmetrically
placed 5 mm away from the trap axis, so that
p/R = 1.15. Neighboring rods have potentials
with the same absolute value but opposite signs
in order to excite a strong quadrupole field. We
then radially displace one of the rods by the
amount of AR mm. Under this boundary con-
dition, we numerically integrate the Maxwell
equations with the MAFIA code*® to calcu-
late the multipole potential in the central re-
gion. Since output data from MAFIA have a
resolution limited by the mesh size, the least-
square fitting is carried out before taking the
multipole expansion. Figure 6 shows the mag-
nitude of the quadrupole coefficient Cs evalu-
ated at the radial position r = 4 mm from
the quadrupole field center. We find that the
quadrupole strength is actually affected by me-
chanical errors and, in the present example, Cs
almost linearly depends on the rod displace-
ment AR. The change of C5 results in the shift
of stop bands. The deviation of Cy from unity
is, however, not very serious as long as the trap
is carefully constructed.
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(iii) Coulomb interactions among confined particles

Provided that the density of the plasma is
high, the single-particle picture described in the
previous sections no longer applies but we have

to incorporate the effect of space-charge self-
fields. Since the Coulomb forces among confined
particles are repulsive, the secular frequencies
are always depressed. Smoothing out the time-
dependency of the Mathieu equation, we obtain
in the absence of space charge d*x/dt* + w2z =
0 where the secular frequency w, is given by
we = Q/a+ ¢?/2/2. Recalling that the con-
fined plasma is homogenized at high phase-
space density due to the Debye screening, we
assume, for the sake of simplicity, that the spa-
tial distribution of charges is roughly uniform
within a cylindrical region of radius ry. The av-
erage Coulomb potential is then given by ¢s. =
—AQr?/(4zweord) where A is the line density of
the plasma. The repulsive force reduces the sec-
ular frequency to @, = /w2 — AQ2/(2meomry),
causing a shift of the resonance line in eq. (2).
The amount of the shift certainly depends on
the plasma density. The frequency reduction
due to the collective Coulomb interactions is
referred to as the incoherent tune shift in the
beam-physics community. The ratio of the ef-
fective frequency to the original one, i.e. n =
W /we, is called the tune depression that tells
us how strongly the beam is dominated by space
charges. When the transverse temperature of a
plasma in the linear trap is 7, n can be esti-
mated from?>®)

1

2 T
14 2 keTy
Arp mc?

n= |1- (5)

where kp is the Boltzmann constant, ¢ is the
speed of light, and 7, denotes the classical par-
ticle radius. n ranges from 0 (low-temperature
limit) to 1 (high-temperature limit).

5

Dependence of the quadrupole coefficient C2 on the
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Schematic view of the trap system. The linear Paul trap has been separated into three sections that are called “Ion Source

(IS)”, “Gate”, and “Experiment Region (ER)”. Dc voltages are applied to the end electrodes, i.e. “Cap A” and “Cap B”, for axial

plasma confinement.

3. Experiment

3.1 Setup

Figure 7 illustrates the experimental setup employed
for our resonance study. All the components were ar-
ranged in a compact chamber where the vacuum pres-
sure 3 x 1078 Pa can be reached with a turbo-molecular
pump. We utilized the multi-section linear Paul trap de-
veloped for S-POD. Since the details of the system have
been described in ref. 28, we here only outline the basic
parameters. Our trap is composed mainly of two planar
electrodes and three sets of quadrupole rods (see Fig. 7).
It is possible to form two potential wells along the axis
by biasing the “Gate” quadrupole. Various ion plasmas
can be produced in the “Ion Source (IS)” region beside
which an electron gun and an atomic oven are placed. We
can bring ions in IS to the “Experiment Region (ER)”, if
necessary, by switching off the bias voltage on the Gate
electrodes. The lengths of IS, Gate, and ER are 50 mm, 9
mm, and 100 mm, respectively. For axial plasma confine-
ment, dc voltages are applied to the two end electrodes
called “Cap A” and “Cap B”. Both caps are 5 mm in
thickness and have a hole of 10 mme¢. The quadrupole
rods, all of which have a circular cross section of 5.75
mm in radius, i.e. p = 5.75 mm, are set 5 mm away from
the trap axis, i.e. R = 5.00 mm. The frequency of the rf
quadrupole field was fixed at 1 MHz, while its amplitude
was taken as a variable to change the ¢ parameter. The a
parameter can be controlled by putting the dc potential
U on the electrodes.

For the present purpose, *“Art plasmas generated by
ionizing Ar gas with a low-energy electron beam were
used. The Ar gas was introduced into the chamber until
the pressure reached 5 x 107% Pa. We confined *°Ar*
ions only in the IS region, keeping the Cap-B potential
at the ground level. By shutting down the bias on Gate,
the ions simply pass through ER toward the Faraday
cup (FQ) sitting 15 mm away from Cap B. The dc po-
tential of Cap A was kept on at 30 V throughout the ex-
periments. In order to improve the signal-to-noise (SN)
ratio, we biased the IS quadrupole so that the ions are
accelerated to FC. This procedure actually reduces the

ion loss that occurs in the free space between Cap B and
FC. When the accelerating bias is set at 10 V, the loss
rate becomes less than 10% according to 3D simulations.
We also covered FC with a grounded shield box to mini-
mize the rf and switching noises. Typically, the electron
gun was turned on for 5 s to make an *°Art plasma.
After a 10-millisecond storage in IS, we shut down the
bias potential on Gate to send the plasma toward the FC
detector.

3.2 Results
3.2.1 Observation of nonlinear resonances

We first measured the number of output *°Ar™ ions,
scanning a wide area of the Mathieu stability diagram.
Figure 8(a) shows a series of experimental observations
obtained with various combinations of @ and ¢q. We find
several local reductions of the output signals, which
cannot be explained by the linear theory. It has been
confirmed that these data are well reproducible. When
a = 0, two apparent “dips” can be seen at ¢ &~ 0.45 and
0.64. Each of them has gradually split into two dips as we
increase a. The positions of these dips found in the exper-
iments have been plotted on the (a, ¢)-space in Fig. 8(b).
The open circles indicate the boundaries at which FC sig-
nals greater than the noise level started to appear (left
end) or disappeared (right end). The solid and broken
curves represent the nonlinear resonance lines predicted
in Fig. 1. The results in Fig. 8 clearly demonstrate the
existence of nonlinear resonances of orders N = 4 and
6. Considering the symmetry of the system, it is reason-
able that the resonances of even orders are prominent.
The slight shifts of the observed resonance points are
most likely to originate from interparticle Coulomb in-
teractions as clarified later. Figure 8 also suggests that
coupling resonances are weak in our system.

In order to strengthen the above conclusion, numeri-
cal simulations were performed with a 3D particle track-
ing code that can take into account the exact trap
geometry.2®) The MAFIA code was employed to calculate
the 3D potential distribution in the trap for reliable sim-
ulations. We, however, ignored the Coulomb self-fields to
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Fig. 8. Experimental results indicating the existence of nonlinear

resonances in the linear Paul trap. (a) Number of “° Ar™ ions de-
tected by FC with various combinations of the Mathieu parame-
ters @ and q. The ion numbers were deduced from the strengths
of the FC output signals. (b) Locations of the operating points at
which the local reductions of FC signals were observed. The open
circles show the stability boundaries expected from the present
experiments.

save the computing time. Typical simulation results ob-
tained with a = 0 are plotted in Fig. 9 where we again
observe two clear dips due to nonlinear resonances. Since
no mechanical errors have been assumed in these simu-
lations, the major source of the nonlinearity should be
the non-hyperbolic surface of the quadrupole electrodes.
The six vertical lines show the locations of resonance stop
bands expected from the 2D theoretical model. It is now
evident that the local instability at ¢ &~ 0.45 can be at-
tributed to the N = 6 resonance while the instability at
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Fig. 9. Comparison of the experimental result for a = 0 with the

corresponding tracking simulations. The ordinate represents the
strength of FC signals normalized by the peak value. The vertical
lines show the positions of nonlinear resonances predicted by the
2D theory in §2; the four solid lines correspond to even-order
resonances while the two broken lines to odd-order resonances.

q ~ 0.64 to the N = 4 resonance.

For comparison, the experimental data for a = 0 has
been superimposed on the simulation result in Fig. 9.
The dip positions are almost consistent to the numerical
data except for a slight shift to the high ¢ side. The dis-
crepancy between the numerical and experimental power
distributions is caused, e.g., by lack of information of
the initial ion distribution. As already shown in Fig. 2,
the number of output particles can vary depending on
the initial plasma conditions. Since ions are continuously
produced through the interactions with electrons almost
everywhere in the confinement region, it is difficult to
know the accurate ion distribution in six-dimensional
phase space. In the present simulations, therefore, we
took the same particle-generation procedure as adopted
in ref. 28. The ion loss due to collisions with the other
ions and residual gas atoms, which has not been incorpo-
rated in the simulations, could also reduce the strength
of actual FC signals especially near the stability bound-
aries.

3.2.2  Space charge effect

We are now in a position to discuss the observed shift
of the resonance lines. As pointed out in §2.3, some
practical factors may modify the resonance condition (2)
based on the ideal 2D model. Remember first that our
tracking code uses the 3D potential distribution evalu-
ated by MAFTA. The details of the trap configuration
have been considered quite accurately; the effects of the
axial confinement and even mechanical errors have been
taken into account in the simulations here. Nevertheless,
the dip locations in Fig. 9 are in excellent agreement
with the 2D prediction. Although no mechanical errors
have been assumed in the simulations of Fig. 9, the re-
sult turns out to be almost unchanged unless the trap
contains unreasonably large imperfections. For instance,
the shift of ¢ due to error fields should be less than 1% in
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Fig. 10. Experimental results indicating the space charge effect

on a resonance stop band. (a) FC outputs obtained in eight dif-
ferent series of experiments. The number of 4°Ar™ ions initially
confined in the trap has been controlled in each series by chang-
ing the current of the ionizing electron beam. The vertical line
shows the location of the N = 8 resonance expected from the
2D mass filter theory. (b) Tune depression estimated from the
observed shift of the N = 8 resonance. The solid line is obtained
from eq. (5) by fitting the experimental results.

our Paul trap according to Fig. 6. After all, the discrep-
ancy between the experimental and numerical resonance
conditions cannot be explained by the first two factors
described in §2.3.

The most probable cause of the resonance shift is the
Coulomb potential. Considering that the interparticle
Coulomb force is repulsive, the resonance lines should
move to the high-g side, which is consistent to the obser-
vations in Figs. 8 and 9. If the Coulomb potential is really
responsible for the effect, the positions of the local insta-
bility must depend on the charge density of the plasma.
It is worthy to recognize that, in Fig. 8(b), the deviation
from a theoretical resonance line is greater for the N = 6
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resonance rather than for the N = 4 resonance; this is
probably because the number of ions initially confined
in the trap is peaked near ¢ ~ 0.4 and then, rapidly
decreases at a higher ¢ [see Figs. 8(a) and 9]. To look
into density-dependent effects systematically, we carried
out experiments controlling the total number of confined
ions. The ion number can be changed by adjusting the
current of the electron beam from the gun. Since the
space charge effect appears more clearly at higher den-
sity, we here pay attention to the N = 8 resonance that
occurs near the peak of FC output signals. Figure 10(a)
summarizes the results of experiments where eight differ-
ent electron currents have been employed. As expected,
the local resonant instability is encountered at a higher
g as the initial number of ions becomes larger. We also
notice that the width of the dip tends to be wider at
higher ion density. In order to make a rough estimate
of the tune depression 7 from these data, we state that
the N = 8 resonance line has moved in each series of
experiments from ¢ = 0.345 to the point at which the
FC output was minimized. n can then be evaluated by
taking the ratio of the secular frequencies corresponding
to g ~ 0.345 and the observed minimum. The result has
been shown in Fig. 10(b).

It is possible to evaluate the tune depression from eq.
(5) under some assumptions. According to preliminary
data, the longitudinal temperature T} grows steadily un-
til the number of ions reaches about 2 x 10%, and then
comes to a plateau where 7| ~ 0.28 eV. A MAFIA cal-
culation of the potential well along the trap axis suggests
that the longitudinal plasma extent Ly corresponding to
this temperature is approximately 31 mm. By assum-
ing that Lo is maintained once the ion number exceeds
2 x 10%, we can make a rough estimate of the line density
A. On the other hand, the transverse temperature 7'
is sensitive to the Mathieu parameter ¢ rather than the
number of confined ions because the energy gain from
the rf field is so large. We thus anticipate that, in such a
narrow range of g as considered in Fig. 10(a), 7'\ should
be almost constant. The solid curve in Fig. 10(b) was ob-
tained by assuming that Ly ~ 31 mm and 7'} ~ 0.28 eV.
It is quite reasonable that the best fit of the experimen-
tal points was achieved with this transverse temperature
equal to the observed longitudinal temperature.

4. Summary

We have explored the effects of nonlinear resonances in
a linear Paul trap through systematic experiments and
numerical simulations. 2D tracking simulations were per-
formed to study the efficiency of plasma storage with or
without multipole error fields. It has been shown that
the storage efficiency depends on the initial conditions of
the plasma even when no field imperfections are included
in the system. We have also confirmed that the conven-
tional mass-filter theory explains the local instability due
to nonlinear resonances caused by mechanical errors.

A linear Paul trap developed for S-POD was employed
to observe nonlinear resonances experimentally. A large
number of °Art ions were confined in the trap operated
with various combinations of the Mathieu parameters a
and ¢. Clear local instability was found in the vicinity
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of resonance lines predicted by the 2D theory. As ex-
pected, a couple of even-order nonlinear resonances were
particularly strong. The primary source of the nonlin-
earity in our system is believed to be the non-hyperbolic
surface of the quadrupole electrodes. Slight shifts of the
resonance lines from the theoretically predicted positions
were observed which suggests the reduction of the sec-
ular frequency due to the interparticle Coulomb inter-
actions. Controlling the number of confined ions in the
trap, we demonstrated the dependence of nonlinear res-
onance conditions on the plasma density. The maximum
tune depression achieved in the present experiments has
been estimated to be 7 =~ 0.84.
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