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Abstract. A new methodology for the reliability optimization of a k dissimilar-unit non-
repairable cold-standby redundant system is introduced in this paper. Each unit is composed of a 
number of independent components with generalized Erlang distributions of lifetimes arranged 
in a series-parallel configuration. We also propose an approximate technique to extend the model 
to the general types of non-constant hazard functions. To evaluate the system reliability, we 
apply shortest path technique in stochastic networks. The purchase cost of each component is 
assumed to be an increasing function of its expected lifetime. There are multiple component 
choices with different distribution parameters available for being replaced with each component 
of the system. The objective of the reliability optimization problem is to select the best 
components, from the set of available components, to be placed in the standby system in order to 
minimize the initial purchase cost of the system, maximize the system MTTF (mean time to 
failure), minimize the system VTTF (variance of time to failure) and also maximize the system 
reliability at the mission time. The goal attainment method is used to solve a discrete-time 
approximation of the original problem. 
Keywords: Reliability optimization-Stochastic networks-Shortest path-Optimal control 
 
1 Introduction 
 

Many fielded systems use cold-standby redundancy as an effective system design 
strategy. Cold-standby means that the redundant units cannot fail while they are waiting. Space 
exploration and satellite systems achieve high reliability by using cold-standby redundancy for 
non-repairable systems, see Sinaki [27]. Space inertial reference units are required to accurately 
monitor critical information for extended mission times without opportunities for repair. Many 
other systems use cold-standby redundancy as an effective strategy to achieve high reliability 
including textile manufacturing systems, see Pandey et al. [20], and carbon recovery systems 
used in fertilizer plants, see Kumar et al. [17]. 

Extensive research has been carried out on the reliability of redundant systems with 
similar/dissimilar units. Several methods and methodologies have been discussed by Birolini [4] 
and Srinivasan and Subramanian [28].  

Multi-component systems have been analyzed by several authors including Goel et al. 
[11] and Yamashiro [29]. Most of such studies deal with the analysis of a single unit system. 
Gupta et al. [13] investigated a single server two-unit multi-component cold-standby system 
under the assumption that the cold-standby unit becomes operative instantaneously upon the 
failure of operative unit. Gupta et al. [14] analyzed a two dissimilar-unit multi-component cold-
standby system with correlated failures and repairs. 
* Correspondence to: A. Azaron (e-mail: a.azaron@4c.ucc.ie) 
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There has been little research toward the study of k dissimilar-unit multi-component 
systems because of the complexity in the equations and not getting the results in closed form. 
Azaron et al. [2] developed a new approach to evaluate the reliability function of a class of 
dissimilar-unit redundant systems with exponentially distributed lifetimes.  

In this paper, we present a new methodology for the reliability optimization of a k 
dissimilar-unit multi-component non-repairable cold-standby redundant system. Each unit is 
composed of a number of independent components arranged in a series-parallel configuration. 
The components’ lifetimes are assumed to be independent random variables with generalized 
Erlang distributions. Therefore, this methodology allows non-constant hazard functions. We also 
propose an approximate technique to extend the model to the case of general lifetime 
distributions. 

The purchase cost of each component is assumed to be an increasing function of its 
expected lifetime. In other words, it is possible to increase the expected lifetime of each 
component by placing a more expensive unit in the system. There is a set of component choices 
with different distribution parameters eligible to be replaced with each component of the system. 
The problem is to select the best components from these sets. This problem is formulated as a 
multi-objective discrete optimal control problem that involves four conflicting objective 
functions. The objective functions are the total costs of the standby system (to be minimized), the 
mean time to failure of the system (max), the variance of the system lifetime (min), and the 
system reliability at the given mission time (max).  This approach involves the use of graph 
theory, Markov processes, reliability analysis and multiple objective programming.    
 There has been little research toward the reliability optimization of non-repairable 
systems with cold-standby redundancy scheme. The problem has often been solved for non-
repairable active redundant systems using dynamic programming (Fyffe et al. [8] and Nakagawa 
and Miyazaki [18]) and integer programming (Bulfin and Liu [5] and Gen et al. [9]). Gnedenko 
and Ushakov [10] presented algorithms to maximize the median time to failure. Nakashima and 
Yamato [19] solved an analogous problem to maximize the time period where system reliability 
remains above a preselected value. Their algorithm assumes that components have exponential 
lifetime, but that the distribution parameters are the decision variables to be determined in 
addition to the redundancy levels. 

The problem of reliability optimization of non-repairable cold-standby redundant systems 
has received less attention. Albright and Soni [1] have solved a reliability optimization problem 
for non-repairable systems with standby redundancy. They assumed exponential lifetime and one 
component choice per subsystem. Robinson and Neuts [22] studied system design for non-
repairable systems with cold-standby redundancy. They considered systems with components 
that have phase-type lifetime distributions. Coit [6] has determined optimal design configurations 
for non-repairable series-parallel systems with cold-standby redundancy. His problem 
formulation considers non-constant component hazard functions and imperfect switching. Prasad 
et al. [21] considered the problem of allocating multi-functional redundant components for 
deterministic and stochastic mission times. In their formulation, there is a limit on the total 
number of redundant components, which can be used.  

There are also a few papers, which consider the multi-objective reliability optimization 
for either time-independent case, see Sakawa [23], or active redundant systems (Sakawa [24] and 
Dhingra [7]), and optimize system reliability, cost, weight and volume, for a given mission time. 
Azaron et al. [3] used the surrogate worth trade-off method to find the optimal distribution 
parameters (continuous decision variables like [18]) in a cold-standby system.  
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The major limitations in the reliability evaluation and optimization approaches for 
dissimilar-unit cold-standby systems thus far are: 
1. Most available algorithms assume that each unit is composed of a single component, but they 
also cannot get the results in closed form, see Goel et al. [12]. 
2. Available algorithms that do address dissimilar units multi-component cold-standby systems 
assume that each unit is composed of a number of components arranged in a series configuration. 
Although this is a start, there are many more complicated system configurations that should be 
examined. The problem lies in the difficulty of presenting more complicated structures. 
3. Existing system reliability optimization algorithms are most often available for active 
redundancy. The logarithm of system reliability for an active standby redundant system is a 
separable function and dynamic programming or integer programming can be used to determine 
optimal solutions to the problem. 
4. Available algorithms that do address cold-standby optimization generally assume similar 
redundant units and exponential lifetimes. 
5. Most available optimization algorithms consider continuous decision variables. In this case, it 
is difficult in practice to select a component to match a specific distribution parameter.  
6. Only one criterion for time-dependent reliability, like maximizing MTTF or maximizing the 
system reliability at a given mission time is considered in the model. In the reliability 
optimization problem, one often wishes to lower the risk that systems with short system lifetime 
are produced, but only maximizing MTTF is not always fit for the requirement, especially when 
the optimally designed system has a large VTTF. The system reliability at the mission time is 
another important criterion, which should be considered in the model.  

This paper, not only considers the reliability optimization for a complex structure 
(dissimilar-unit cold-standby system, in which each unit is composed of a number of independent 
components with non-constant hazard functions arranged in a series-parallel configuration), but 
also the system is optimized with respect to the four important conflicting objectives.  

We formulate the appropriate multi-objective discrete optimal control problem, in which 
the decision variables are the distribution parameters so that they are to be determined from some 
discrete sets. The problem formulation is continuous-time, combinatorial and stochastic. We 
prove that solving the resulting problem by standard optimal control techniques is impossible. 
Therefore, we do the discretization of time and convert the discrete optimal control problem into 
an equivalent mixed integer nonlinear optimization problem. Finally, we use the goal attainment 
technique to solve this new multi-objective problem.  

The remainder of this paper is organized in the following way. In section 2, we extend the 
work of Azaron et al. [2] to evaluate the reliability function of a k dissimilar-unit multi-
component cold-standby redundant system. In section 3, we present the multi-objective discrete 
reliability optimization problem. Section 4 presents the computational experiments, and finally 
we draw the conclusion of the paper, in section 5. 
 
2 Reliability evaluation of dissimilar-unit non-repairable cold-standby systems 
 

A very efficient method to compute the reliability of a system is to express it as a 
reliability graph, see Shooman [26] for the details. Reliability graphs consist of a set of arcs. 
Each arc represents a component of the system, while the nodes of the graph tie the arcs together 
and form the structure. Corresponding with the ith arc of the reliability graph, i=1,2,…,n, there is 
a random variable Ti as the lifetime of the ith component with generalized Erlang distribution of 
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order  with parameters in
iniii λλλ ,...,, 21 . An Erlang distribution of order  is a generalized 

Erlang distribution with 
in

iniii λλλ === ...21 . When 1=in , the underlying distribution becomes 

exponential with parameter 1iλ . Ti, i=1,2,…,n, are independent random variables, due to the fact 
that the components work independently. 
 By definition, a cut of the graph is a set of arcs, which interrupts all connections between 
input and output when removed from the graph. A minimal cut is the one that contains no other 
cuts within it. Each system failure can be represented by the removal of at least one minimal cut 
from the graph. 

As mentioned before, we consider a dissimilar-unit cold-standby system, where each unit 
is composed of a number of components with series-parallel configuration and not all of its 
components are set to function at time zero. Initially, only the components of the first path of the 
reliability graph work. Upon failing one component of this path, the system is switched to the 
next path and the connection between the input and the output is established through this second 
path. This process continues until no more connection between the input and the output of the 
graph exists. In that case, the system fails. In the systems, which we discuss in this paper, the 
minimal cuts are not coincided with the paths of the reliability graph. 
Notations: 
Ti: lifetime of the ith component of the system, i=1,2,…,n, 
T: system lifetime, 
Cj: jth minimal cut of the reliability graph, j=1,2,…,m, 
Pj: jth paths in the directed network, 
Xj: failure time of the jth minimal cut of the reliability graph, j=1,2,…,m, 
R(t): reliability function of the system, 
F(t): distribution function of shortest path, from the source to the sink node, in directed network. 
 
Lemma 1. For j=1,2,…,m, the following relation holds: 

Xj= ∑
∈ jCi

iT .                   (1) 

Proof. Taking into account the cold-standby nature of the structure, upon failure of each 
component of the jth minimal cut, the system is switched to the next path. Since this minimal cut 
is not coincided with any path of the reliability graph, then at any moment only one component 
of the jth minimal cut is activated. Therefore, the failure time of this cut is the sum of all its 
components. 

To evaluate the reliability function, we construct a directed stochastic network with 
exponentially distributed arc lengths. There are m paths in this network, in which the jth path of 
this directed network corresponds with the jth minimal cut of the reliability graph, j=1,2,…,m. 
Clearly, by Lemma 1, the length of each path in this directed network is equal to the failure time 
of the corresponding cut. For constructing this network, we use the idea that if the lifetime of the 
ith component of the system is distributed according to a generalized Erlang distribution of order 

 with parameters in
iniii λλλ ,...,, 21 , it can be decomposed to  exponential serial arcs with 

parameters 
in

.,...,, 21 iniii λλλ  The following rule describes how to construct the proper directed 
network. 
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Rule 1. Arc i belongs to the jth path of the directed network, if and only if . If =1, then 
the length of this arc would be exponentially distributed with parameter 

jCi ∈ in

1iλ . Otherwise, if >1, 
then this arc is substituted with  exponential serial arcs with parameters 

in

in .
ini,...,, 21 ii λλλ  

Example 1. To operate the accounting activities of a firm, either one computer or one calculator 
is needed. The calculator needs one battery to do the required operations. However, there are two 
batteries available in the system to function as standby. At the beginning, the system may start 
with the computer. If it fails, then, the calculator with one battery is doing the necessary 
operations. In that case, if the calculator fails so does the system. However, if the battery fails, 
the calculator works with the standby one. In fact, if either calculator or the second battery fails, 
then the operation comes to the end.  

The system can be represented by a reliability graph, as depicted in Figure 1, in which arc 
1 represents the computer, arc 2 represents the calculator, arc 3 and arc 4 represent the first and 
the second battery, respectively.  
                                                              1                                  

                          
 
                                                                              
 
                                                              2                                 
                                        
                                                                                                        2 
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Fig. 1. Reliability graph of example 1. 

This is an example of a two dissimilar-unit multi-component cold-standby system. The 
first unit is the computer, but the second unit is composed of a calculator and two batteries. It is 
assumed that the elements lifetimes in this example are all exponentially distributed. 

This reliability graph has three paths. P1=(1) is corresponding with the first active unit 
(computer), and P2=(2,3) and P3=(2,4) are two paths corresponding with the second unit. Even if 
we change the order of paths corresponding with the second unit, the final result will not change, 
because of the memoryless property of the elements lifetimes. Two minimal cut sets of the 
reliability graph are C1=(1,2) and C2=(1,3,4). From Lemma 1, the failure times of the minimal 
cuts are 

X1=T1+T2, 
X2=T1+T3+T4. 

Therefore, we construct the directed network following Rule 1, as depicted in Figure 2. 
This network has two paths, P1=(1,2) and P2=(1,3,4). 
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                              3           4 
 
      
                 Fig. 2. Directed network of example 1. 
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Theorem 1.  The system lifetime is given by 

mj
T

,...,2,1
min

=
=    { Xj    }.                      (2) 

Proof. Upon the failure of the first minimal cut of the reliability graph of system, all connections 
between the input and the output are interrupted, and consequently the system fails. Therefore, 
the lifetime of the system would be equal to the failure time of the first minimal cut, which 
results in (2).  
 
Corollary 1. The reliability function of the system is given by 

   R(t)=1-F(t).                             (3) 
Proof. Relation (3) follows from the definitions of R(t) and F(t). 

 
2.1 Shortest path analysis in directed networks 
 

Kulkarni’s method [16] is applied to obtain the distribution function of shortest path, 
from the source to the sink node, in the directed network, and accordingly the reliability function 
of the cold-standby system. 

Let G=(V,A) be a directed network, in which V and A represent the sets of nodes and arcs 
of the network, respectively. Let s and t represent the source and the sink nodes of this network, 
respectively. The length of arc ( ) Avu ∈,  is indicated by , which is an exponential random 
variable with parameter 

),( vuT

),( vuλ . 
      For constructing the proper stochastic process, it is convenient to visualize the stochastic 
network as a communication network with the nodes as stations capable of receiving and 
transmitting messages and arcs as one-way communication links connecting pairs of nodes. The 
messages are assumed to travel at a unit speed so that T  denotes the travel time from node u 
to v. As soon as a node receives a message over one of the incoming arcs, it transmits it along all 
the outgoing arcs and then disables itself, i.e., loses the ability to receive and transmit the future 
messages. This process continues until the message reaches the sink node t. Now, at any time 
there may be some nodes and arcs in the stochastic network that are “useless” for the progress of 
the message towards the sink node, i.e., even if the messages are received and transmitted by 
these nodes and carried by these arcs, the message can only reach disabled nodes. It is assumed 
that all such “useless” nodes are also disabled and the messages traveling on such arcs are 
aborted. Now, let X(t) be the set of all disabled nodes at time t. X(t) is called the state of the 
network at time t. 

),( vu

Definition 1: To describe the evolution of the stochastic process { , for each , 
where  and 

}0),( ≥ttX VX ⊂

Xs ∈ XVXt , we define the following sets:  −=∈
1. XX ⊂1 , set of nodes not included in X with the property that each path which connects any 
node of this set to the sink node t, contains at least one member of X. 
2. S(X)=X 1X∪ .        
Definition 2: 

     ={X V/sΩ ⊂ ∈X, t∈ X , X=S(X)}, 
     Ω *= V∪Ω .                                                                (4)               

Example 2. In the directed network depicted in Figure 3, if we consider X=(1,2), then φ=1X , 
and S(X)=(1,2). However, if we consider X=(1,3,4), then the only path that connects node 
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(2) X∈  to node (5) passes through node (4), which belongs to X. Therefore, 1X =(2), and 
S(X)=(1,2,4). In this example, Ω *={(1),(1,2),(1,3),(1,2,3),(1,2,4),(1,2,3,4),(1,2,3,4,5)}. 
 
 

 2 

 3 

 4  5 1  

 
 
    
 
 
 
                           Fig. 3. Directed network of example 2. 
Definition 3: If X V such that s∈X and t⊂ ∈ X , then a cut is defined as: 

             ( ) { },/),(, XvXuAvuXXC ∈∈∈= .                                      (5) 
There is a unique minimal cut contained in ( )X ΩXC , , denoted by C(X). If X∈ , then, 

( )XXC , = C(X). 
It is shown that {X(t),t ≥ 0} is a continuous-time Markov process with state space Ω * and 

the infinitesimal generator matrix Q=[q(X,Y)] (X,Y∈ Ω *), see [16] for the details, where 

             q                                                 (6) 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=−

∪=

= ∑
∑

∈

∈

.0

,

}),{(

),(
)(),(

),(

)(),(
),(

otherwise

XifY

vXSifY

YX
XCvu

vu

XCvu
vu

λ

λ

We assume that the states in Ω * are numbered 1,2,…,N= *Ω  so that Q matrix is upper 
triangular. State 1 is the initial state, and state N is the final (absorbing) state. In example 2, state 
1 is (1), and state 7 is (1,2,3,4,5).  

Let T represent the length of the shortest path in the directed network. Clearly, 
                                                      T=min {t>0: X(t)=N / X(0)=1}.                                              (7) 
Therefore, the length of the shortest path in the directed network would be equal to the time until 
{X(t),t 0} gets absorbed in the final state N, starting from state 1.  ≥

Chapman-Kolmogorov backward equations can be applied to compute F(t)=P{ ≤T t}. If 
we define: 

     Pi(t)=P{X(t)=N / X(0)=i}     i=1,2,…,N,          (8) 
then, F(t)=P1(t). 

The system of differential equations for the vector P(t)=[P1(t), P2(t),…, PN(t)]T is given 
by     

 
•

P (t)=QP(t), 
 P(0)=[0,0,…,1]T,                                                              (9)                                     

where P(t) represents the state vector of the system and Q is the infinitesimal generator matrix. 
By taking advantage of the upper triangular nature of Q, the differential equations (9) can be 
easily solved. After computing F(t), the system reliability can be computed from equation (3). 
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3 Multi-objective discrete reliability optimization problem 
 

In this section, we develop a multi-objective discrete model to select the best components 
from the set of available components to be placed in the cold-standby system. In fact, we may 
increase the expected lifetime of each component by placing a more expensive component in the 
system. In that case, the mean time to failure of the system will be increased. However, clearly it 
causes the initial purchase cost of the system to be increased, accordingly. Consequently, an 
appropriate trade-off between cost and reliability is required. 

To achieve the above-mentioned goals, we develop a multi-objective problem, in which 
four objectives are sought simultaneously, minimizing initial purchase cost, maximizing MTTF, 
minimizing VTTF and also maximizing system reliability R(u) at the given mission time, u.  

The purchase cost of each component is assumed to be an increasing function of its 
expected lifetime. The expected lifetime of a component with generalized Erlang distribution of 

order  and the parameters in ),...,,( 21 iniii λλλ  is equal to ∑
=

in

j ji1

1
λ

. Therefore, C or the initial 

purchase cost of the standby system is given by 

                                               ∑ ∑
= =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

n

i

n

j ji
i

i

gC
1 1

1
λ

.                                                          (10) 

where ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑

=

in

j ji
ig

1

1
λ

 is an increasing function respect to ∑
=

in

j ji1

1
λ

.                                        

MTTF and VTTF are given by 

                                                   MTTF= ,                                                           (11) ∫
∞

−
0 1 ))(1( dttP

                                                   VTTF= .                                       (12) ( )
2

0 10 1
2 )( ⎥⎦

⎤
⎢⎣
⎡− ∫∫

∞ •∞ •

dttPtdttPt

Considering  as the set of different values of jiS jiλ  ( jiλ )jiS∈ , corresponding with the 
jth distribution parameter of available functionally equivalent components eligible to be replaced 
with the ith component, the infinitesimal generator matrix Q would be a function of the control 
vector [ ]Tiji njni ,...,2,1,,...,2,1, === λλ . Therefore, the dynamic model would be 

                                                          
•

P (t)=Q( λ )P(t), 
                                                    Pi(0)=0     i=1,2,…,N-1,      

                                                          PN(t)=1.                                                                             (13) 
Considering R as the system reliability at the mission time u, the appropriate multi-

objective discrete optimal control problem is 

Min  ∑ ∑
= =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

n

i

n

j ji
i

i

gC
1 1

1
λ

 

Max  MTTF=  ∫
∞

−
0 1 ))(1( dttP

Min  VTTF= ( )
2

0 10 1
2 )( ⎥⎦

⎤
⎢⎣
⎡− ∫∫

∞ •∞ •

dttPtdttPt  
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Max  R= )(1 1 uP−  

                  s.t: 
•

P (t)=Q( λ )P(t) 
 Pi(0)=0     i=1,2,…,N-1 

                                                         PN(t)=1 
                                                         jiλ jiS∈    i=1,2,…,n, j=1,2,…,                                      (14) in

We try to solve problem (14), optimally, using the Maximum Principle, see Sethi and 
Thompson [25] for the details. For simplicity, we consider only one objective function, for 

example  MTTF= , in the model.  ∫
∞

−
0 1 ))(1( dttP

Considering S as the set of allowable controls, which consists of the last set of constraints 
of problem (14) ( S∈λ ), and N-vector )(tμ  as the adjoint vector function, the Hamiltonian 
function would be 

                            .                                     (15) )(1)()()()),(),(( 1 tPtPQttPtH T −+= λμλμ
In (15), )(tμ  plays the role of Lagrange multipliers in nonlinear optimization, but in 

optimal control theory. Then, we write the adjoint equations and terminal conditions, which are 

                                                                                 (16) 
.,0)(

],0,...,0,1[)()()(
∞→=

−+=−
•

TT
Qtt

T

TT

μ

λμμ

If we could compute )(tμ  from (16), we could maximize the Hamiltonian function 
subject to S∈λ  in order to get the optimal control , and solve the problem optimally. 
Unfortunately, the adjoint equations (16) are dependent on the unknown control vector, 

*λ
λ , and 

therefore they cannot be solved directly.  
If we could also maximize the Hamiltonian function (15), subject to S∈λ , for an 

optimal control function in closed form as , then we could substitute this 

into the state equations, 

))(),(( *** ttPf μλ =
•

P (t)=Q( λ )P(t), , and adjoint equations (16) to get a 
set of differential equations, which is a two-point boundary value problem. Unfortunately, we 
cannot obtain  by differentiating H respect to 

TP ]1,...,0,0[)0( =

*λ λ , because λ  is a discrete vector, and 
consequently  cannot be obtained in closed form.  *λ

According to the two mentioned points, it is impossible to solve the optimal control 
problem (14), optimally, even in the case of single objective problem. Relatively few optimal 
control problems can be solved optimally. Therefore, we try to solve this problem, approximately. 
To do that, we do the discretization of time and convert the multi-objective discrete optimal 
control problem into an equivalent multi-objective mixed integer nonlinear programming one. In 
other words, we transform the differential equations to the equivalent difference equations as 
well as transform the integral terms into equivalent summation terms. To follow this approach, 
the time interval is divided into K equal portions with the length of tΔ . If  is sufficiently 
small, it can be assumed that P(t) varies only in times 0, t

tΔ
Δ ,…,(K-1) tΔ . Consider P(k tΔ ) as P(k), 

the continuous-time system 
•

P (t) Q(= λ )P(t) is approximated as the following discrete-time 
system: 

     P(k+1)=P(k)+Q( λ )P(k) tΔ      k=0,1,…,K-1.                    (17) 
Similarly, MTTF and VTTF are approximated as:  

 9



(∑
=

Δ−=
K

k
a tkPMTTF

0
1 )(1 ) ,                                                          (18) 

( ) ( )∑ ∑
−

=

−

=
⎥
⎦

⎤
⎢
⎣

⎡
−+Δ−−+Δ=

1

0

21

0
1111

2 )()1()()1()(
K

k

K

k
a kPkPtkkPkPtkVTTF .         (19) 

Since each Pi(k), for i=1,2,…,N-1, k=1,2,…,K is a distribution function, then we should consider 
the following constraints in the discrete-time approximation problem. 

          i=1,2,…,N-1, k=1,2,…,K.                                         (20) 1)( ≤kPi

 
3.1 Goal attainment method 
  

This method requires setting up a goal and weight, bj and cj ( ) for j=1,2,3,4, for the 
four indicated objective functions. c

0≥jc

j relates the relative under-attainment of the bj. For under-
attainment of the goals, a smaller cj is associated with the more important objectives. cj, j=1,2,3,4, 

are generally normalized so that . Considering 1
4

1
=∑

=i
jc ⎥⎦

⎤
⎢⎣
⎡
Δt
u  as the integer part of 

t
u
Δ

, the 

appropriate goal attainment formulation would be 
Min  z  

                  s.t: 

11
1 1

1 bzcg
n

i

n

j ji
i

i

≤−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑ ∑

= = λ
                      

( )∑
=

≥+Δ−
K

k
bzctkP

0
221 )(1      

                                          ( ) ( ) 33

1

0

21

0
1111

2 )()1()()1()( bzckPkPtkkPkPtk
K

k

K

k

≤−⎥
⎦

⎤
⎢
⎣

⎡
−+Δ−−+Δ∑ ∑

−

=

−

=

                                         ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡
Δ

−
t

uP11 44 bzc ≥+  

                                          P(k+1)=P(k)+Q( λ )P(k) tΔ       k=0,1,…,K-1 
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 The optimal solution using this formulation is fairly sensitive to b and c. Depending upon 
the values for b, it is possible that c does not appreciably influence the optimal solution. Instead, 
the optimal solution can be determined by the nearest Pareto-optimal solution from b. This might 
require that c be varied parametrically to generate a set of Pareto-optimal solutions. 
 For solving the goal attainment formulation (21), we define the new 0-1 decision 
variables yijk. Let ijkα  represent the kth member of , jiS jiSk ,...,2,1= . Then, jiλ jiS∈ , 

i=1,2,…,n, j=1,2,…,  in (21) should be replaced with the constraints (22) and (23). in
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                                                              1
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jiS

k
ijky               i=1,2,…,n, j=1,2,…, .                   (23) in

Finally, the following mixed integer nonlinear programming problem would be approximately 
equivalent to the original model and from which [ ]Tiji njni ,...,2,1,,...,2,1,** === λλ  or the 
optimal control vector is obtained. 
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αλ      i=1,2,…,n, j=1,2,…,     in

                                           1
1

∑
=

=
jiS

k
ijky               i=1,2,…,n, j=1,2,…,      in

                                                        i=1,2,…,n, j=1,2,…, , { }1,0∈ijky in jiSk ,...,2,1=      

z 0                                                                                                  (24) ≥
If we consider the initial and terminal state conditions for P(k) implicitly, and substitute 

each Pi(0) and PN(k) with zero and one, respectively, the mixed integer nonlinear programming 

problem (24) would have K(N-1)+1  continuous decision variables and ∑∑
= =

n

i

n

j
ji

i

S
1 1

 0-1 decision 

variables.   
For estimating the length of the time interval, we consider each jiλ  as the median of 

 for i=1,2,…,n, j=1,2,…, . Then, we solve the system of differential equations (9), 

analytically, to obtain P
jiS in

1(t), according to the values of jiλ  taken from the previous step.  A good 
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estimation for the length of the time interval is given by T , in which Pˆ 1(T ) should be greater 
than or equal 

ˆ

ε−1 . We consider ε  equal to 0.01, in this paper, and consequently, T  can be 
computed by solving the nonlinear equation P

ˆ

1(T )=0.99, numerically. ˆ
A computer program was written in order to evaluate our algorithm on some problems 

with different sizes and investigate the trade-off between the accuracy (correctness) and the 
computational time in each problem. At the beginning of the algorithm, we consider K=10 and 

=tΔ 10
T̂ . In an accurate solution P1(k) should approach 1. Otherwise, the value of tΔ  is 

increased in order to obtain a more accurate solution. 
After solving the problem (24) and obtaining , we compute P*λ 1(t) by solving the 

system of differential equations with constant coefficients (9), analytically. Then, we compute 
the exact MTTF and VTTF from (11) and (12), respectively. The Percentage Difference between 
the approximated MTTF taken from (18) and the exact MTTF taken from (11) (PD.M) and also 
the Percentage Difference between the approximated VTTF taken from (19) and the exact VTTF 
taken from (12) (PD.V), or the absolute differences between the approximated values and the 
exact values divided by the exact ones, can be considered as two important criteria for the 
accuracy of the discrete-time approximated solution. As K is increased and  is decreased, 
PD.M and PD.V approach zero. Therefore, the approximated discrete lifetime distribution 
approaches to the exact distribution, because of matching the first two moments, and 
consequently, the optimal solution of the discrete-time problem (24) approaches to the goal 
attainment formulation of the original optimal control problem (14).  

tΔ

In the next steps of the algorithm, we replace K with K+10 and each new value for tΔ  
should be considered, such that the length of the time interval ( ) remains unchanged, in 
order to investigate the trade-off between optimality and computational time.  

tKT Δ=ˆ

The proposed methodology is easily generalized, in which not only the scale parameters 
( jiλ ) but also the shape parameters ( ) are also considered as the design variables. In real-world 
problems, the designers sometimes use fundamentally different designs or technologies with 
different shape parameters, because the failure mechanisms would be different. In this case, we 
first solve the optimization problem (24), for all combinations of  for i=1,2,…,n. Then, the 
optimal , i=1,2,…,n, would be related to that combination, which results the minimum z of the 
problem (24). It should also be noted that the infinitesimal generator matrix for each combination 
of  would be different from the other combinations, and this matter clearly increases the 
complexity of the problem. 

in

in
*
in

in

 
4. Computational experiments 
 

For showing the numerical stability of the theoretical developments of the paper, we 
solve two numerical examples, and investigate the trade-off between the accuracy and the 
computational time in each of them. In both examples, Saaty’ method of pair wise comparisons, 
see Hwang and Yoon [16], is used to compute the weights.    
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4.1. Case I 
 

For space exploring, there are two space shuttles, which are depicted as in Figure 1. In 
this system, there are two non-repairable dissimilar units in a cold-standby redundancy scheme. 
At the beginning, the operating unit is unit 1, which is composed of shuttle A (component 1). 
When this shuttle fails, the redundant unit 2, which is composed of shuttle B (component 2), 
central controller I (component 3) and central controller II (component 4), as the cold-standby 
redundant components, arranged in a series-parallel configuration, is put into operation. Table 1 
shows the characteristics of the components. 
Table 1. Characteristics of the components of Case I. 
i Distribution Parameters Purchase cost 
1 Generalized Erlang ( 2111 ,λλ ) 

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

11

12
λ

413
21

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ

 

2 Generalized Erlang ( 322212 ,, λλλ ) 
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

12

1
λ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

22

15
λ

312
32

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ

3 Exponential 
13λ  

6 51
2

13

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ

 

4 Exponential 14λ  
3 71

2

14

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ

 

The cost unit is in million dollars and the time unit is in year. The mission time, u, is 
assumed to be equal 2 years. It is also assumed that ={1,1.1,1.2,…,2} for i=1,2,3,4, 

j=1,2,…, . We set the goals for the initial purchase cost, MTTF, VTTF and the system 
reliability at the mission time as b

jiS

in
1=30, b2=2.7, b3=0.5 and b4=0.7, respectively. Since one year 

deviation from the system MTTF is known to be 20, 0.5 and 5 times as important as one million 
dollars deviation from the initial purchase cost, one year deviation from the system VTTF, and 
also one unit deviation from the system reliability, respectively, then c1=0.7547, c2=0.0377, 
c3=0.0189, c4=0.1887. The objective is to select the best components, from the set of available 
components, to be placed in this 2 dissimilar-unit multi-component non-repairable cold-standby 
redundant system. 

First, we construct the proper directed network following Rule 1, as depicted in Figure 4.  
The stochastic process {X(t),t 0} related to the shortest path analysis of this  directed network 
has 9 states in the order of 

≥

Ω *={(1),(1,2),(1,2,3),(1,2,3,4),(1,2,3,5),(1,2,3,4,5),(1,2,3,4,6),(1,2,3,4,5,6),(1,2,3,4,5,6,7)}. 
Table 2 shows matrix Q( λ ). 
        11λ                 21λ                12λ                22λ                32λ  
                                                                     
                                                                                           

                                                13λ                      14λ                                                                              
                                                                                   
     
        Fig. 4. Directed network of Case I. 

2 64

5

73 1 
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Table 2. Matrix Q( λ ) corresponding with Case I. 
State 1 2 3 4 5 6 7 8 9 
1 -

11λ  
11λ  0 0 0 0 0 0 0 

2 0 -
21λ  

21λ  0 0 0 0 0 0 

3 0 0 -
( 12λ + 13λ ) 

12λ  13λ  0 0 0 0 

4 0 0 0 -
( 22λ + 13λ )

0 
13λ  22λ  0 0 

5 0 0 0 0 -
( 12λ + 14λ )

12λ  0 0 14λ  

6 0 0 0 0 0 -
( 22λ + 14λ )

0 22λ  14λ  

7 0 0 0 0 0 0 -
( 32λ + 13λ ) 

13λ  32λ  

8 0 0 0 0 0 0 0 -
( 32λ + 14λ )

32λ + 14λ

9 0 0 0 0 0 0 0 0 0 
 
The length of the time interval is approximated as . Therefore, we consider K=10 

and =0.5, at the beginning. Then, we formulate the proper multi-objective reliability 
optimization problem according to (24). For this problem, there are 77 0-1 decision variables. 
The number of prospective solutions to the problem is larger than . For investigating the 
trade-off between the accuracy and the Computational Time (C.T.) (mm:ss) on a PC Pentium IV 
2.1 GHz Processor, we also solve the problem for K=20,30,40,50,500, and compute the values of 
PD.M and PD.V in each case. Table 3 shows the results. In this table, all solutions are Pareto-
optimal and satisfy the necessary condition ( ).  

5ˆ =T
tΔ

2351.1

99.0)(1 ≥KP
 

Table 3. Trade-off results in Case I. 
C MTTFaNo. VTTFa Ra PD.M % PD.V % K tΔ  C.T. 

1 37.368 2.499 0.164 0.766 0 87.98 10 0.5 52 
2 36.101 2.394 0.653 0.677 2.44 48.3 20 0.25 5:42 
3 35.839 2.296 0.702 0.561 1.54 37.88 30 0.167 16:11 
4 35.5 2.227 0.733 0.537 1.68 30.91 40 0.125 18:38 
5 35.206 2.184 0.749 0.522 1.75 26.49 50 0.1 22:49 
6 31.134 1.977 0.78 0.443 1.73 9.19 500 0.01 48:34 

 
Table 4 shows  for i=1,2,3,4, j=1,2,…, , considering K=500 and =0.01. In this 

case, PD.M and PD.V are almost equal to 1.7% and 9%, respectively. Therefore, the accuracy of 
this solution is acceptable, but access to this level of accuracy still needs a relatively long 
computational time (about 48 minutes).  

ji
*λ in tΔ
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Table 4.   for i=1,2,3,4, j=1,2,…, ,  in Case I. ji
*λ in

1
*
1λ  2

*
1λ  1

*
2λ  2

*
2λ  3

*
2λ  1

*
3λ  1

*
4λ  

2 2 2 2 2 1.3 1.2 
 
4.2. Case II 

 
Case II, which is depicted in Figure 5, shows the controller system of a spacecraft. In this 

system, there are three non-repairable dissimilar units in a cold-standby redundancy scheme. 
 
                                                                             1 
 
 
 
                                                                        2                                 
 
 
 
 
                                                                           
 
                                                                                 3 
 
 
  

Fig. 5. Spacecraft controller of Case II. 

1 2 

3 
4 

5 
6 

7 

8 

9 

10

At the beginning, the operating unit is unit 1, which is composed of a laptop computer 
(component 1) and a power supply (component 2) arranged in a series configuration. When this 
unit fails, the redundant unit 2, which is composed of PC I (component 3), CD drive I  
(component 4) and CD drive II (component 5), as the cold-standby redundant components, and 
also a monitor (component 6), arranged in a series-parallel configuration, is put into operation.   
If unit 2 fails, then the redundant unit 3, which is composed of PC II (component 7) and hard 
drive I (component 8), hard drive II (component 9) and hard drive III (component 10), as the 
cold standby redundant components, arranged in a series-parallel configuration, goes into 
operation.  

In all components, except component 2, the shape parameters ( ) are considered equal 
to 1, because we suppose that the replacements have the same failure mechanisms. For 
component 2, it is supposed that there is also another replacement with Generalized Erlang 
distribution lifetime of order =2 and the parameters (

in

2n 2212 ,λλ ), except the first replacement 
with exponential lifetime. Table 5 shows the characteristics of the components. 

The cost unit is in hundred dollars and the time unit is in year. The mission time, u, is 
assumed to be equal 1.8. It is also assumed that ={0.5,0.6,…,1} for i=1,2,…,10, , j=1,2,…, . 
We set the goals as b

jiS in

1=100, b2=3.5, b3=0.5 and b4=0.8. Under-attainment of the goals are 
assumed to be c1=0.7547, c2=0.0377, c3=0.0189, c4=0.1887, like the previous case.  
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The length of the time interval is approximated as . Therefore, we consider K=10 
and =0.6, at the beginning. Then, we formulate and solve the proper multi-objective 
reliability optimization problem for both combinations of  (1 and 2), according to (24).  

6ˆ =T
tΔ

2n
Table 5. Characteristics of the components of Case II. 
i Distribution Parameters Purchase cost 
1 Exponential 11λ  

7 51
2

11

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ

 

21 Exponential 
12λ           ( =1)2n

212
12

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ

 

22 Generalized 
Erlang 

( 2212 ,λλ ) ( =2)2n
211

2212

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
λλ

 

3 Exponential 
13λ  

618
13

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ

 

4 Exponential 14λ  
314

14

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ

 

5 Exponential 
15λ  

314
15

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

λ
 

6 Exponential 
16λ  

4110
16

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

λ
 

7 Exponential 
17λ  

713
2

17

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ

 

8 Exponential 
18λ  

215
18

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

λ
 

9 Exponential 
19λ  

215
19

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

λ
 

10 Exponential 
110λ  

215
110

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

λ
 

 
Table 6 shows the trade-off between the accuracy and the computational time for the 

different pairs of K and . Considering K=500 and tΔ tΔ =0.012, we obtain =1 for all 
i=1,2,…,10 and j=1,2. Moreover, the optimal replacement for component 2 (power supply) 
would be a hardware with Generalized Erlang distribution lifetime of order =2 and the 
parameters ( ), and we should pay 400 dollars for purchasing this kind of hardware.  

ji
*λ

*
2n

1,1 2
*
21

*
2 == λλ
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Table 6. Trade-off results in Case II. 
C MTTFaNo. VTTFa Ra PD.M % PD.V % K tΔ  C.T.  

1 111.714 2.937 0.71 0.849 0.71 71.62 10 0.6 7:39 
2 112.656 2.59 0.943 0.724 0.77 46.36 20 0.3 9:23 
3 110.937 2.46 1.053 0.677 1.16 34.31 30 0.2 10:56 
4 107 2.347 1.072 0.637 1.18 27.76 40 0.15 20:34 
5 107 2.341 1.13 0.636 1.43 23.85 50 0.12 22:41 
6 89 2.043 1.125 0.532 1.25 7.02 500 0.012 56:38 

 
Figures 6, 7 and 8 show the computational time, PD.M and PD.V, respectively, according 

to the different pairs of K and  in two indicated cases. According to Figure 6, computational 
time grows with K. Computational time is also strongly dependent on , the network size and 
the number of different shape parameters ( ) for each component. According to Figure 8, when 
K is increased, the percentage difference between the approximated and the exact variance of the 
system lifetime, which is one of the most important criteria for the accuracy of the solution, will 
be decreased.  

tΔ
in

in
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      Fig. 6. Computational time (sec.) versus K. 
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      Fig. 7. PD.M versus K.  
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      Fig. 8. PD.V versus K. 
 
5. Conclusion 

 
In this paper, we introduced a new methodology for the reliability optimization of 

dissimilar-unit non-repairable cold-standby redundant systems, in which each unit is composed 
of a number of independent components arranged in a series-parallel configuration. The system 
components work independently and the lifetime of each component is a random variable with 
generalized Erlang distribution, in which the decision variables are both scale and shape 
parameters. We assumed for each component, the distribution parameters are to be determined 
from among some discrete sets. The purchase cost of each component was also assumed to be an 
increasing function of its expected lifetime.  

To select the desired components, we developed a goal attainment model with four 
conflicting objectives, minimization of the total purchase costs, maximization of the mean time 
to failure of the system, minimization of the variance of time to failure of the system and also 
maximization of the system reliability at the given mission time. Then, in order to solve the 
resulting optimal control problem, it was transformed into a mixed integer nonlinear 
programming problem.  

Although, at the first glance, it seems that the proposed mixed integer nonlinear 
programming problem has many continuous and 0-1 decision variables, but using the shortest 
path technique for reliability optimization has many other advantages over the classical 
approaches. Computing the reliability function of these standby systems using classical 
approaches, which is essential for reliability optimization, if is not impossible, is at least so 
complicated for most real case problems, because either the convolution integrals are intractable 
or the size of the state space would be enormous. For example, this problem could be solved by 
using clever complete enumeration of network states, see [26]. According to our methodology, 
for a complete directed network with l nodes and l(l-1) arcs representing the components of the 
system (the worst case example), the size of the state space would be , but the size of the 
state space in Shooman’s method would be equal to , because each component can be in 
one of these three states: work, fail and standby. In the numerical example of section 4.2, the size 
of the state space for =1 is equal to 7 and for =2 is equal to 8 (totally 15), but according to 
the Shooman’s method, the size of the state space would be 2*3

12 2 +−l

)1(3 −ll

2n 2n
10, which is much larger than our 

proposed methodology. 
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According to the computational experiments, when K grows and  goes to zero, the 
percentage difference between the approximated and the exact mean would be about zero, and 
the percentage difference between the approximated and the exact variance approaches zero. 
Therefore, the approximated discrete lifetime distribution approaches to the continuous 
distribution, because the first two moments of the approximated distribution and the exact 
distribution are matched with each other. In this case, the optimal solution of the discrete-time 
problem also approaches to the optimal solution of the original continuous-time problem, 
accordingly. In more realistic sized problems, the values of K and 

tΔ

tΔ  should be selected, such 
that we can solve the problem in an acceptable level of accuracy with reasonable computational 
time. According to these experiments, there is no significant relation between PD.M and the 
network size and also between PD.V and the network size, but the computational time grows 
with the size of the network, the value of  and also the number of different shape parameters 
for each component.  

in

The proposed model can be easily extended to the general types of non-constant hazard 
functions. In the case of general distribution of lifetime, the lifetime distribution can be 
approximated by a generalized Erlang distribution, by matching the first three moments, because 
the generalized Erlang distributions are a special class of Coxian distributions and each general 
distribution can be easily approximated by a Coxian distribution.   
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