
A multi-objective lead time control problem in multistage assembly systems

using genetic algorithms

Cahit Perkgoz a, Amir Azaron b,*, Hideki Katagiri a, Kosuke Kato a, Masatoshi Sakawa a

a Department of Artificial Complex Systems Engineering, Graduate School of Engineering,
Hiroshima University, Kagamiyama 1-4-1, Higashi-Hiroshima, Hiroshima, 739-8527 Japan

b Cork Constraint Computation Centre, Department of Computer Science, University College
Cork, Cork, Ireland

Abstract

In this paper, we develop a multi-objective model to optimally control the lead time of a
multistage assembly system, using genetic algorithms. The multistage assembly system is
modelled as an open queueing network. It is assumed that the product order arrives according to
a Poisson process. In each service station, there is either one or infinite number of servers
(machines) with exponentially distributed processing time, in which the service rate (capacity) is
controllable. The optimal service control is decided at the beginning of the time horizon. The
transport times between the service stations are independent random variables with generalized
Erlang distributions. The problem is formulated as a multi-objective optimal control problem that
involves four conflicting objective functions. The objective functions are the total operating costs
of the system per period (to be minimized), the average lead time (min), the variance of the lead
time (min) and the probability that the manufacturing lead time does not exceed a certain
threshold (max). Finally, we apply a genetic algorithm with double strings using continuous
relaxation based on reference solution updating (GADSCRRSU) to solve this multi-objective
problem, using goal attainment formulation. The results are also compared against the results of
a discrete-time approximation technique to show the efficiency of the proposed genetic algorithm
approach.
Keywords: Queueing; Genetic algorithms; Multiple objective programming; Production

1. Introduction

Over the last decade, manufacturing strategies have focused on speed of response to
customer as much as cost and quality for competitive advantage. This means reducing both the
length and the variability of the manufacturing lead times. Short lead times are critical to win
customer orders for engineer-to-order and make-to-order companies supplying capital goods.
These products are often complex assemblies with many stages of manufacture and assembly.
Providing competitive delivery lead times and managing to achieve a reliable delivery
performance are typically as important as competitive prices.

The multistage assembly system is modelled as an open queueing network, where each
service station settled in a node of the network represents a manufacturing or assembly operation.
It is assumed that only one type of product is produced by the system. Each product consists of a
number of separate raw parts, which should be processed and assembled to each other. Each
separate part of the product enters the production system according to a Poisson process and goes
to the first service station in its routing sequence of manufacturing operations.
* Corresponding author. E-mail address: E-mail address: a.azaron@4c.ucc.ie (A. Azaron).

 1

After completing the manufacturing operations of the separate parts, they are assembled
to each other and after passing some other manufacturing and assembly operations, the final
product leaves the system in its finished form.

In each service station, there is either one or infinite number of servers with exponential
distribution of processing time. In application, if the product should wait for starting the service,
in front of the station, it can be represented as an M/M/1 queueing system. Otherwise, if there are
enough servers, in which the product does not need to wait in queue, we can represent it as an
M/M/ queueing system. ∞

The role of transport times between the service stations, which may be much greater than
the processing times, are also considered to compute and then optimize the manufacturing lead
time in dynamic multistage assembly systems. An implicit hypothesis in the literature is that
transit time in buffers is null, i.e., a part which leaves a machine is supposed to be
instantaneously available for the next machine. The transport times between the service stations
are assumed to be independent random variables with generalized Erlang distributions.

The time spent in a service station would be equal to the processing time plus waiting in
the queue in front of the service station. Therefore, the time spend by a finished product in the
system, called manufacturing lead time, would be equal to the length of the longest path of the
queueing network whose arc lengths are the transport times between the service stations. We can
obtain the distribution function of the manufacturing lead time by computing the distribution
function of the longest path length in the queueing network.

Yano [25] considered stochastic lead time in a simple two level assembly system with
different processing time distributions including Poisson and negative binomial. Cheng and
Gupta [4] commented that most analytical studies are limited to small problems. Song et. al. [23]
developed an approximate method to obtain the distribution of product completion time by
decomposing the complex product structures of multistage assemblies into two-stage subsystem.

The analytical methods above consider the manufacturing and assembly processing times
as independent random variables and ignore their dependence on the arrival and service rates of
jobs at various stages in the manufacturing process. The time spent in a queue will be longer for
congested service stations than for little used stations. Therefore, the time spent waiting in
queues in front of service stations should be considered in order to compute the manufacturing
lead time.

The open queueing networks are widely used for modelling manufacturing systems, see
Papadopoulos and Heavey [16]. The lead time analysis in dynamic job shops by modelling those
as open queueing networks was studied by Kapadia and Hsi [11], Shanthikumar and Sumita [19],
Haskose et. al. [9] and Vandaele et. al. [24]. However, these works do not include assembly
processes.

Harrison [8], in a primarily theoretical study, introduced a queueing theoretical model of
an assembly operation. He established stability conditions for an assembly queue with renewal
and mutually independent arrival streams and a single server. An approximate analysis of the
assembly-like queue with finite queues of equal length and under symmetric load has been
presented by Lipper and Sengupta [14]. Hemachandra and Eedupuganti [10] considered a model
of a system with two finite capacity assembly lines and a single join operation and presented an
approach for computing the performance measures in the system. Gold [5] considered a model
corresponds to an assembly-like queue with two input streams, in which the assembly is
instantaneous, and focused on the state probabilities and expectation of minimum and maximum
of the two input queues. Ramachandran and Delen [17] analyzed the kitting process (a kit is a set

 2

of parts which are all needed to perform the assembly) as of a stochastic assembly system by
treating it as an assembly-like queue. Specially, they investigated the dynamics involved in a
simple kitting process where two independent input streams feed into an assembly process.

All above papers discuss about single stage assembly systems. Moreover, most of them
are either based on the finite buffer capacity assumption or consider that there are no external
arrivals that corresponds to orders or assume that assembly is instantaneous.

Azaron et al. [1] relaxed these restricted assumptions and developed a discrete-time
approximation technique to optimally control the service rates (capacities) of the manufacturing
and the assembly operations in dynamic multistage assembly systems, in which the average lead
time, the variance of the lead time and the total operating costs of the system per period are
minimized.

In this paper, we extend the work of Azaron et al. [1] in the following directions. First,
the probability that the manufacturing lead time does not exceed a certain threshold, which is one
of the most important criteria in the stochastic programming concept and has not been considered
in [1], is considered as one of the objectives of the final multi-objective problem. Second, the
transport times are assumed to follow generalized Erlang distributions, instead of exponential
distributions in [1]. Third, the number of servers can be either one or infinite, while in [1] there
should be only one server in each service station. Forth, it is proved that solving the resulting
multi-objective problem using the standard optimal control tools is impossible, and a genetic
algorithm is applied to solve the problem, accordingly. Finally, we solve some illustrative
examples and compare the results against the results of the discrete-time approximation
technique, developed by Azaron et al. [1], to show the efficiency of the proposed genetic
algorithm approach. In this paper, the optimal service control is decided at the beginning of the
time horizon like [1].

For the problem concerned in this paper, as a general-purpose solution method for
discrete nonlinear programming problems, in order to consider the nonlinearity of problems and
to cope with large-scale problems, we propose the usage of GADSCRRSU, which is a direct
extension of genetic algorithms with double strings based on a reference solution updating
(GADSRSU) for linear 0-1 programming problems, see Sakawa and Kato [18].

The remainder of this paper is organized in the following way. In Section 2, we explain
the structure of dynamic multistage assembly systems. In Section 3, the lead time distribution in
dynamic multistage assembly systems is obtained. In Section 4, we present the multi-objective
lead time control problem. In Section 5, we explain about GADSCRRSU. Section 6 presents the
computational experiments, and finally we draw the conclusion of the paper, in Section 7.

2. Dynamic multistage assembly systems

 In our methodology, the following assumptions will be made.
1. Each separate part of the product enters the production system according to a Poisson process

with rate λ (the demand rate for the final product).
2. Only one type of product is produced.
3. Each service station with only one incoming arc indicates a manufacturing station.
4. Each service station with more than one incoming arcs indicates an assembly station.
5. After a separate part arrives at the system, it goes directly to a manufacturing station for its

first manufacturing operation. If there are parts for being processed, it queues up.

 3

6. After completion of processing at a manufacturing station, it goes to another manufacturing
station to be processed in its routing sequence of manufacturing operations.

7. After completing the manufacturing operations of each separate part, it is assembled to other
separate parts in an assembly station.

8. The product leaves the system in its finished form from the sink node of the queueing
network.

9. Each part has characteristics, which are statistically independent of other parts.
10. Each service station consists of either one or infinite number of servers.
11. Processing times of manufacturing and assembly operations are exponentially distributed

(including set up times on the service station).
12. The processing time at each service station is independent of preceding processing times.
13. There are no interruptions due to breakdowns, maintenance, or other such cases.
14. Service discipline is based on FIFO.
15. All inter-station buffers are infinite.
16. The transport times between the service stations are independent random variables with

generalized Erlang distributions.
17. The queueing network is in the steady-state.
18. Capacity is controlled through the service rate at each node.
19. Service rates are stepwise variables.
20. Operating cost of each service station per period is an increasing function of its service rate.
21. Total number of service stations settled in the nodes of the queueing network is equal to n.

Having completed one assembly, the server immediately begins another if at least one
input item of each separate part is available. Otherwise, one or more parts have to wait for the
last one to arrive (synchronization loss). The reader will recognize that each assembly station is a
multi-input generalization of M/M/1 queue. Its salient feature is a very special type of batch
servicing, each batch containing exactly one customer of each part. Harrison [8] proved that the
arrival pattern at the assembly node would not be renewal. Therefore, developing an analytical
method to match the synchronization loss and non-renewal arrival streams in order to find the
lead time distribution in multistage assembly systems is impossible, and we restrict our attention
to an approximation one.

Clearly, the arrival process to the manufacturing stations prior to an assembly station is
Poisson with the rate of λ . It is shown that the arrival of kits at each assembly node can be
considered as Poisson with the rate of λ , as long as the parts arrive as a Poisson process of rate
λ , see [1] for details.

Every two nodes of the queueing network associated with a dynamic multistage assembly
system are connected by at most one directed path, i.e., the network is a tree, and consequently
the waiting times in the service stations are independent, see Lemoine [13].

3. Lead time distribution in dynamic multistage assembly systems

The main steps of our proposed method are as follows:
Step 1. Compute the density function of time spent (processing time plus waiting time in queue)
in each service station.
Step 1.1. If there is one machine in the ith service station, then the density function of time spent
in this M/M/1 queueing system is

t
ii

ietw)()()(λμλμ −−−= t>0 (1)

 4

where λ and iμ are the arrival rate and the service rate of this queueing system, respectively.
Therefore, the density function of time spent in the ith service station would be exponential with
parameter (iμ -λ).
Step 1.2. If there are infinite number of machines in the ith service station, then the time spent in
this M/M/∞ queueing system will be exponentially distributed with parameter iμ , because there
is no queue.
Step 2. Transform the queueing network into an equivalent stochastic network by replacing each
node including a service station with a stochastic arc whose length is equal to the time spent in
the particular service station.

Let’s explain how to replace node k in the queueing network, which includes a queueing
system, with a stochastic arc. Assume that b1,b2,…,bn are the incoming arcs to this node and
d1,d2,…,dm are the outgoing arcs from it. Then, we substitute this node by arc (k', k"), whose
length is equal to the time spent in the corresponding queueing system. Furthermore, all arcs bi
for i=1,…,n end up with k' while all arcs dj for j=1,…,m start from node k". The indicated
process is opposite of the absorption an edge e in a graph G in graph theory (G.e), see Azaron
and Modarres [2] for more details. After transforming all such nodes to the proper stochastic arcs,
the queueing network is transformed into an equivalent stochastic network.
Step 3. Transform the original stochastic network, obtained in step 2, into a new one with
exponentially distributed arc lengths.

For constructing this new network, we use the idea that if the length of each arc a in the
original stochastic network, corresponding with a transport time in the original queueing network,
is distributed according to a generalized Erlang distribution of order and the infinitesimal
generator matrix as:

an

aG

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

=

00

..
00
00

...

...

...

...

...

0
0
.

0

0
0
.

0
0
.
0 22

11

aa nana

aa

aa

aG
λλ

λλ
λλ

,

it can be decomposed into exponential serial arcs with the parameters an
anaaa λλλ ,...,, 21 . Then,

this generalized Erlang arc is substituted with series of exponential arcs with the parameters an

anaaa λλλ ,...,, 21 . After substituting all such generalized Erlang arcs with the proper exponential
serial arcs, the original stochastic network is transformed into a new one with exponentially
distributed arc lengths.
Step 4. Compute the distribution function of longest path in the new stochastic network obtained
in step 3.

Any analytical method dealing with the computation of longest path length distribution
in stochastic networks with exponentially distributed arc lengths can be used in step 4. We use
the method of Kulkarni and Adlakha [12] in this step, because this method is an analytical one,
simple, easy to implement on a computer and computationally stable.

Let G=(V,A) be the new stochastic network, in which V represents the set of nodes and A
represents the set of arcs or operations of the dynamic assembly system after the transformation.
The source and sink nodes are denoted by s and y, respectively. Length of arc is an Aa∈

 5

exponentially distributed random variable with parameter aγ . For Aa∈ , let)(aα and)(aβ be
the starting and ending nodes of arc a, respectively.
Definition 1: Let I(v) and O(v) be the sets of arcs ending and starting at node v, respectively,
which are defined as follows:

{ }vaAavI =∈=)(:)(β ((2))Vv∈
vaAavO =∈=)(:)({ }α (3))(Vv∈

Definition 2: If X V such that s∈X and y⊂ ∈ X =V-X, then an (s,y) cut is defined as:
 })(,)(:{),(XaXaAaXX ∈∈∈= βα (4)
An (s,y) cut XX ,() is called a uniformly directed cut (UDC), if),(XX is empty.
Definition 3: Let FED ∪= be a uniformly directed cut (UDC) of a network. Then, it is called
an admissible 2-partition, if for any Fa∈ , we have FaI ⊄))((β .
Definition 4: Each operation at time t can be in one of the active, dormant or idle states, which
are defined as follows:

i. Active: an operation is active at time t, if it is being executed at time t.
ii. Dormant: an operation a is dormant at time t, if it is finished but there is at least one

unfinished operation in))((aI β . If an operation is dormant at time t, then its successor
operations in))((aO β cannot begin.

iii. Idle: an operation is idle at time t, if it is neither active nor dormant at time t.
The set of active and dormant states are denoted by Y(t), Z(t), respectively, and

X(t)=(Y(t),Z(t)). Let S denote the set of all admissible 2-partition cuts of the network, and
)}.,{(φφ∪= SS Note that X(t)=),(φφ implies that Y(t)=φ and Z(t)=φ , i.e. all operations are

idle at time t and hence the final product is completed by time t.
It is proven that {X(t),t 0} is a continuous-time Markov process with state space ≥ S . The

elements of the infinitesimal generator matrix)}]','(),,{([FEFEqQ = , (E,F) and)','(FE S∈ ,
where E and F include active and dormant operations of a UDC, respectively, are calculated as
follows (refer to [12] for details):

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

==−

−=
∪−=∪⊂∈

∪=−=∪⊄∈

=

∑
∈

)8(.0

)7(;','

));(('
)6()),((}){('},{))((,

)5(};{'},{'},{))((,

)}','(),,{(

otherwise

FFEEif

aIFF
aOaEEaFaIEaif

aFFaEEaFaIEaif

FEFEq

Ea
a

a

a

γ

β
ββγ

βγ

 {X(t),t 0} is a finite-state absorbing continuous-time Markov process and since ≥
,0)},(),,{(=φφφφq it is concluded that this state is an absorbing one and obviously the other

states are transient. Furthermore, we number the states in S such this Q matrix be an upper
triangular one. We assume that the states are numbered 1,2,…,N= S . State 1 is the initial state,

namely X(t)=)),((φsO , and state N is the absorbing state, namely X(t)=),(φφ .

 6

Let T represent the length of the longest path in the network, or the manufacturing lead
time. Clearly, T=min {t>0: X(t)=N/X(0)=1}. Thus, T is the time until {X(t),t≥0} gets absorbed in
the final state starting from state 1.

Chapman-Kolmogorov backward equations can be applied to compute F(t)=P{T≤ t}. If
we define:

Pi(t)=P{X(t)=N/X(0)=i} i=1,2,…,N (9)
then, F(t)=P1(t).

The system of linear differential equations for the vector P(t)=[P1(t),P2(t),…,PN(t)]T is
given by

•

P (t)=Q.P(t)
 P(0)=[0,0,…,1]T (10)

4. Multi-objective lead time control problem

In this section, we develop an analytical model to optimally control the service rates of
the service stations. In fact, we may increase the service rates of the manufacturing and assembly
stations by allocating more resources. In that case, the average manufacturing lead time will be
decreased. However, clearly it causes the total operating costs of the system per period to be
increased, accordingly. Consequently, an appropriate trade-off between the average lead time
and cost is required. The variance of lead time should also be considered in the model, because
when we only focus on such mean time, the service rates may be non optimal if the lead time
substantially varies because of randomness. Interpretation of the variance of lead time is very
difficult in application and consequently we need another proper deterministic objective
associated with the minimization of lead time, which has a random nature. This new objective
would be the probability that the manufacturing lead time does not exceed a certain threshold as
the fourth objective of our multi-objective formulation.

To achieve the above-mentioned goals, we develop a multi-objective problem, in which
four objectives are sought simultaneously, minimizing the total operating costs of the system per
period, minimizing the average lead time, minimizing the variance of lead time and also
maximizing the probability that the manufacturing lead time does not exceed a given threshold.

The operating cost of the ith service station per period is assumed to be an increasing
function)(iiC μ of its service rate iμ . Therefore, C or the total operating costs of the system per
period is given by

∑
=

=
n

i
iiCC

1
)(μ (11)

We focus on the case where capacity is available in discrete options, such as when
machines, workers, or shits are to be added. Capacity is controlled through the service rate at
each node. Therefore, each service rate should be selected from a related discrete set of choices.

Considering Si as the set of choices for the ith service rate)ii S(∈μ , the infinitesimal
generator matrix Q is not constant, rather it would be a function of the control vectors

. Therefore, the non-linear dynamic model is [T
nμμμμ ,...,, 21=]

•

P (t)=Q(μ).P(t)
Pi(0)=0 i=1,2,…,N-1

 PN(t)=1 (12)

 7

Representing B as the set of nodes including M/M/1 service stations and C as the set of
nodes including M/M/∞ service stations in the original multistage assembly system, the relations
(13) should be satisfied to exist the response in the steady-state.

iμ >λ i∈B

iμ >0 i∈C (13)
We do not have such constraints in the mathematical programming. Therefore, we use the
constraints (14) instead of the above constraints in the final multi-objective problem, assuming ε
as a small quantity which should approach zero.

iμ ≥ λ +ε i∈B

iμ ≥ ε i∈C (14)
Accordingly, the appropriate multi-objective optimal control problem is

 Min f1(μ)=)(iiC μ

 Min f2(μ)= ∫
∞

−
0 1))(1(dttP

 Min f3(μ)= ()
2

0 10 1
2)(⎥⎦

⎤
⎢⎣
⎡− ∫∫

∞ •∞ •

dttPtdttPt

 Max f4(μ)=)(1 uP
s.t:

•

P (t)=Q(μ).P(t)
 Pi(0)=0 i=1,2,…,N-1
 PN(t)=1

iμ ≥ λ +ε i∈B

iμ ≥ ε i∈C

ii S∈μ i=1,2,…,n (15)
A possible approach to solving (15) to optimality is to use the Maximum Principle (see

Sethi [22] for details). For simplicity, consider solving the problem with only one of the

objective functions, f2(μ)= . ∫
∞

−
0 1))(1(dttP

Consider as the set of allowable controls consisting of all constraints except the
constraints representing the dynamic model (

Λ
Λ∈μ), and N-vector)(tλ as the adjoint vector

function. Thus, Hamiltonian function would be
)(1)().()()),(),((1 tPtPQttPtH T −+= μλμλ (16)

Now, we write the adjoint equations and the terminal conditions, which are

∞→=

−+=−
•

TT
Qtt

T

TT

,0)(
]0,...,0,1[)(.)()(

λ

μλλ (17)

If we could compute)(tλ from (17), then we would be able to minimize the Hamiltonian
function subject to Λ∈μ in order to get the optimal control and to solve the problem,
optimally. Unfortunately, the adjoint equations (17) are dependent on the unknown control
vector

*μ

μ and therefore they cannot be solved directly.

 8

If we could also minimize the Hamiltonian function (16), subject to Λ∈μ , for an
optimal control function in closed form as , then we would be able to

substitute this into the state equations,

))(),((*** ttPf λμ =
•

P (t)=Q(μ).P(t), , and adjoint equations
(17) to get a set of differential equations, which is a two-point boundary value problem.
Unfortunately, we cannot obtain by differentiating H with respect to

TP]1,...,0,0[)0(=

*μ μ , because μ is a
discrete vector and consequently cannot be obtained in a closed form. *μ

According to these points, it is impossible to solve the optimal control problem (15),
optimally, even in the restricted case of a single objective problem. Relatively few optimal
control problems can be solved optimally. Therefore, we try to solve this problem, using genetic
algorithms, considering the goal attainment formulation.

4.1. Goal attainment method

Goal attainment method requires setting up a goal and weight, bj and cj (0) for
j=1,2,3,4, for the four objective functions. The c

≥ic
j relate the relative under-attainment of the bj.

For under-attainment of the goals, a smaller cj is associated with the more important objectives. cj,

j=1,2,3,4, are generally normalized so that . 1
4

1
=∑

=i
ic

The appropriate goal attainment formulation of the discrete lead time control problem
leads to:

Min z
s.t:

∑
=

≤−
n

i
ii bzcC

1
11)(μ

() 220 1 bzcdttPt ≤−∫
∞ •

() 33

2

0 10 1
2)(bzcdttPtdttPt ≤−⎥⎦

⎤
⎢⎣
⎡− ∫∫

∞ •∞ •

()uP1 44 bzc ≥+
•

P (t)=Q(μ).P(t)
 Pi(0)=0 i=1,2,…,N-1
 PN(t)=1

iμ ≥ λ +ε i∈B

iμ ≥ ε i∈C

ii S∈μ i=1,2,…,n
 z 0 (18) ≥

Lemma 1. If is Pareto-optimal, then there exists a c, b pair such that is an optimal
solution to the optimization problem (18).

*μ *μ

The optimal solution using this formulation is fairly sensitive to b and c. Depending upon the
values for b, it is possible that c does not appreciably influence the optimal solution. Instead, the

 9

optimal solution can be determined by the nearest Pareto-optimal solution from b. This might
require that c be varied parametrically to generate a set of Pareto-optimal solutions.

5. A genetic algorithm with double strings using continuous relaxation based on reference
solution updating (GADSCRRSU)

In this section, we mention GADSCRRSU proposed as a general solution method for
discrete programming problems defined as (19).

 Min)(μf

 s.t:
 bA ≤μ

 njjj ..., 1, } ..., 1, {0, =∈ νμ (19)

 where μ is an n dimensional discrete decision variable vector.

In order to have the same form given in (19), we reformulate the problem (18), by
combining the objective functions and the state equations. Considering as
the decision vector, the appropriate min-max problem is obtained as, in which f

[]Tnμμμμ ,...,, 21=

i(μ), i=1,2,3,4,
are the same as (15):

 Min)(μf =)}(),(),(),({ 4321 μμμμ zzzzMax

s.t:

jμ jS∈ j=1,2,…,n (20)
 where

,
)(

)(

,
)(

)(

,)()(

,
)(

)(

4

44
4

3

33
3

2

22
2

1

11
1

c
fb

z

c
bf

z

c
bfz

c
bf

z

μ
λ

μ
λ

μ
λ

μ
λ

−
=

−
=

−
=

−
=

 and

•

P (t)=Q(μ).P(t), . (21) TP]1,...,0,0[)0(=

It should be noted that in our computer program, P1(t) is obtained by solving the system
of differential equations (21), analytically, and then the average and the variance of lead time are
computed, numerically. In the problem (20), the linear constraints (bA ≤μ) of problem (19) are

 10

considered, implicitly. The only restriction that we have in this problem is that the elements of μ
vector (decision variables) are selected from the given sets.

Before going into details of the genetic algorithm that will be used in this paper, the
definitions of the parameters of the genetic algorithm should be explained. N is the number of
population of the genetic algorithm. At the beginning, N individuals are created as the population.
G is the generation gap, which is used in the crossover operation. After the generation of
offspring from the current population, the number of individuals that will be added into the
population in the next iteration is selected according to G from the offspring population. The
probability of crossover pc is also used in crossover operation to determine the probability of
applying the crossover operator to each individual. The probability of mutation pm and the
probability of inversion pi are used in the same way in order to determine the mutation operator
and the inversion operator are going to be applied to an individual or not, respectively. As it is
well known, genetic algorithms are iterative search methods, where the number of iterations
should be specified in the algorithm. In this paper, we use Imin and Imax, which are the minimum
and the maximum number of iterations that would be performed. For example, the process will
not stop before Imin number of iterations and will stop after performing Imax number of iterations.
The mutation operator is applied according to Gaussian distribution and the uniform distribution.
A parameter R is used for choosing the type of mutation operator that will be applied to an
individual.

5.1. Individual representation
The individual representation by double strings, shown in Figure 1, is adopted in

GADSCRRSU.
s(1) s(2) … s(j) … s(n)Indices

Values gs(1) gs(2) … gs(j) … gs(n)
= s

Figure 1. Double strings representation

In this figure s(j), j=1, ..., n, is the index of the jth element of the double strings and
, j=1, ..., n, is the integer value of the corresponding element, respectively. For

example an individual
)()(jsjs Sg ∈

}2,9,9,5,8,4{},,,,,{ 654321 == μμμμμμμ may be represented as in
Figure 2 at an iteration during the solution process for n = 6.

4 2 1 6 3 5Indices

Values 9 8 4 6 5 9
= μ

Figure 2. Double strings representation

5.2. Decoding algorithm

 In this paper, we use the framework of Sakawa [19] to construct a decoding algorithm of
double strings to solve the discrete programming problem (20). In the algorithm, a feasible
solution μ) of the continuous relaxation problem, called a reference solution, is used as the origin
of decoding. The reference solution updating procedure is also adopted, see Sakawa [19] for

 11

details, since the solutions obtained by the decoding algorithm using a reference solution tend to
concentrate around the reference solution.

Decoding algorithm using continuous programming relaxation

Step 1. Let and r is the number of constraints in the problem. 1=j .,...1,0 risumi ==

Step 2. If 0)(>jsμ
) , proceed to step 3. Otherwise, i.e., if ,0)(=jsμ

) let and go to step
5.

1+= jj

Step 3. Let denote the element of the coefficient matrix A. Then,)(jisa))(,(jsi)(jsμ is
determined as:

,,minmin)(
)(

,...,1)(⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −
=

= js
jis

ii

rijs g
a

sumb
μ

where . 0)(≠jisa

Step 4. Let riasumsum jsjisii ,...1,)()(=+= μ and 1+= jj .

Step 5. If nj > , proceed to step 6. Otherwise, return to step 2.

Step 6. Let . 1=j

Step 7. If ,0)(=jsμ
) proceed to step 8. Otherwise, i.e., if 0)(>jsμ

) , let and go to step
10.

1+= jj

Step 8. Let denote the element of the coefficient matrix A. Then,)(jisa))(,(jsi)(jsμ is
determined as:

,,minmin)(
)(

,...,1)(⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −
=

= js
jis

ii

rijs g
a

sumb
μ

where . 0)(≠jisa

Step 9. Let riasumsum jsjisii ,...1,)()(=+= μ and 1+= jj .

Step 10. If nj > , proceed to step 6. Otherwise, return to step 7.

5.3. Usage of continuous relaxation
 In large scale problems, we need some schemes such as the generation of individuals near
the optimal solution, the restriction of the search space to a promising region and so forth, in
order to find an approximate optimal solution with high accuracy in reasonable time. From this
point of view, the information about an optimal solution to the corresponding continuous
relaxation problem

 Min z=)(μf

s.t:

 12

 njjj ..., 1, ,0 =≤≤ νμ (22)

is used in the generation of the initial population and the mutation.

5.4. Genetic Operators

5.4.1. Reproduction
For genetic algorithms, various reproduction methods, see for example Goldberg [6] and

Michalewicz [15], have been proposed such as; ranking selection, elitist ranking selection,
expected value selection, elitist expected value selection, roulette wheel selection, and elitist
roulette wheel selection. In this paper, elitist expected value selection, which is a combination of
elitist preserving selection and expected value selection, is adopted as a reproduction operator.

Elitist preserving selection: One or more individuals with the largest fitness up to the current
population is unconditionally preserved in the next generation.

Expected value selection: Let N denote the number of individuals in the population. The
expected value of the number of the ith individual si in the next population is calculated as:

 N
f

f
N N

i
i

i
i *

)(

)(

1
∑
=

=
s

s
. (23)

In expected value selection, the integral part of (23) denotes the definite number of individuals si
preserved in the next population. Using the fractional part of (23), the probability to preserve si
in the next population is determined by

 ⎣ ⎦

⎣ ⎦∑
=

−

−
N

i
ii

ii

NN

NN

1
)(

. (24)

5.4.2. Crossover
If a single-point crossover or multipoint crossover is directly applied to individuals of

double string type, the kth element of an offspring may take the same number of the thk ′
element. In order to avoid this, a crossover method called partially matched crossover (PMX)
was proposed by Goldberg and Lingle [7] and was modified to be suitable for double strings by
Sakawa et al. [20]. The PMX for double strings can be described as follows:

Partially Matched Crossover (PMX) for double strings

Step 0. Set . 1=w

Step 1. Choose X and Y as parent individuals. Then, let XX =′ and YY =′ .

Step 2. Generate a real random number rand() in [0,1]. For a given crossover rate , if
rand() , then go to step 3. Otherwise, go to step 8.

cp

cp≤

Step 3. Choose two crossover points)(, khkh ≠ from {1,2,…,n} at random. Then, set hl = .
First, perform operations in step 4 through 6 for X ′ and Y.

 13

Step 4. Let (is defined as the remainder when an integer p is divided
by an integer q). After finding

1))%1((+−= nlj qp%
j′ such that),()(jsjs XY ′= ′ interchange

 with . Furthermore, set T
jsX X

gjs)),(()(′′
T

jsX X
gjs)),(()(′′ ′

′ 1+= ll , and go to step 5.

Step 5. 1) If and , then go to step 6. If kh < kl > kh < and kl ≤ then return to step 4. 2) If
 and , then go to step 6. If and kh >)(nkl +> kh >)(nkl +≤ , then return to step 4.

Step 6. 1) If let for all j such that kh <)()(jsjs YX
gg ′=

′
kjh ≤≤ , and go to step 7. 2) If ,

let for all j such that
kh >

)()(jsjs YX
gg ′=

′
kj ≤≤1 and njh ≤≤ , then go to step 7.

Step 7. Carry out the same operations as in steps 4 through 6 for Y ′ and X.

Step 8: Preserve X ′ and Y as the offspring of X and Y. ′

Step 9. If , set and return to step 1. Otherwise, go to step 10. Nw < 1+= ww

Step 10. Choose individuals from preserved individuals randomly and replace
 individuals of the current population consisting of N individuals with the

chosen individuals. Here, G is a constant called generation gap.

GN * N*2
GN * GN *

5.4.3. Mutation and Inversion

The procedures of mutation and inversion for double strings are summarized as follows:

Mutation for double strings

Step 0. Let . 1=w

Step 1. Let . 1=j

Step 2. If a real random number rand () in [0,1] is less than or equal to the probability of
mutation , go to step 3. Otherwise, go to step 4. mp

Step 3. If another real random number rand() in [0,1] is less than or equal to a constant R,
determine)(jsμ randomly according to the Gaussian distribution with mean)(jsμ

) and
variance , and go to step 4. Otherwise, determine 2τ)(jsμ randomly according to the
uniform distribution in [0, vj], and go to step 4.

Step 4. If nj < , let and return to step 2. Otherwise, go to step 5. 1+= jj

Step 4. If , let and return to step 1. Otherwise, stop. Nw < 1+= ww

Inversion for double strings

Step 0. Let . 1=w

Step 1. Generate a real random number rand() in [0,1]. For a given crossover rate , if
rand() , then go to step 2. Otherwise, go to step 4.

ip

ip≤

Step 2. Choose two points from {1,2,…,n} at random. Then, set .)(, khkh ≠ hl =

 14

Step 3. Let . Then, interchange with

 . Furthermore, set and go to
step 4.

1))%1((+−= nlj T
jsgjs)),(()(

),1)%1)((((+−−−+ nhlkns T
nhlknsg))1)%1)(((+−−−+ 1+= ll

Step 4. 1) If and kh < ⎣ ⎦2/)1(+−+< hkhl , return to step 3. If kh < and
, go to step 5. 2) If and ⎣ 2/)1(+−+≥ hkhl ⎦ kh > ⎣ ⎦2/)1(+−++< hnkhl , return to

step 3. If and kh > ⎣ ⎦2/)1(+−++≥ hnkhl , go to step 5.

Step 5. If , let and return to step 1. Otherwise, stop. Nw < 1+= ww

Observe that inversion is not only between h and k but also between k and h.

5.5. GADSCRRSU algorithm
Step 0. Set the values of parameters used in GADSCRRSU: the population size N, the generation
gap G, the probability of crossover pc, the probability of mutation pm, the probability of inversion
pi, the minimal search generation Imin, the maximal search generation Imax > Imin, the degree of
using the information about solutions to continuous programming relaxation problems R. Set
generation counter t=0.

Step 1. Generate the initial population consisting of N individuals based on the information of a
solution to the continuous relaxation problem (22).

Step 2. Solve the system of differential equations in (21) and compute P1(t) for each individual
and then decode each individual (genotype) in the current population and calculate its fitness
based on the corresponding solution (phenotype).

Step 3. If the termination condition is fulfilled, then go to step 8. Otherwise, set t= t+1 and then
go to step 4.

Step 4. Apply the reproduction operator based on the elitist expected value selection, after
carrying out linear scaling.

Step 5. Apply the crossover operator, called PMX (Partially Matched Crossover) for double
strings.

Step 6. Apply the mutation operator based on the information of an optimal solution to the
continuous relaxation problem (22).
Step 7. Apply the inversion operator. Go to step 2.
Step 8. Stop.

6. Computational experiments

To demonstrate the efficiency of the proposed genetic algorithm method (GADSCRRSU),

we solve two typical small and medium cases with different configurations. The objective is to
obtain the optimal capacities using the GA. All experiments are replicated four times using
different random number seeds.

 15

6.1. Case I
The first case, which is depicted in Figure 3, has been taken from Azaron et al. [1]. This

system produces chairs. The final chair consists of two separate parts: wooden and leather. In
each node, except node 4, there is a manufacturing station with one machine. Node 4 contains an
assembly station with one machine. The set of allowable capacity choices is considered to be
Si={11,11.5,12,12.5,…,19.5,20}, for all service rates.

 λ

 λ

Figure 3. Dynamic assembly system of Case I

1 4

3

5

2

Table 1 shows the characteristics of the service stations in this case (cost unit is in dollar

and time unit is in day). The given threshold u is equal to 3 days. The other assumptions are as
follows:
1. The demand rate λ is equal to 10 per day.
2. The transport times between the service stations settled in nodes 1 and 4, and also between

those settled in nodes 3 and 4 are independent exponentially distributed random variables
with the parameters 1)4,1(=λ and 2)4,3(=λ . The transport times between the other service
stations are zero.

Table 1. Characteristics of the service stations in Case I
Service
station

1 2 3 4 5

)(iiC μ 410 1 +μ 34 2 +μ 75 3 +μ 22
4 +μ 52 5 +μ

The stochastic process {X(t),t 0} related to the longest path analysis of the
corresponding transformed stochastic network has 14 states. We set the goals as b

≥
1=400, b2=1.5,

b3=0.5 and b4=0.9. We solve the problem for the following sets of c to generate a set of Pareto-
optimal solutions, according to the goal attainment formulation (18).
Set 1: (c1=0.5556, c2=0.0556, c3=0.1111, c4=0.2777),
Set 2: (c1=0.7407, c2=0.037, c3=0.037, c4=0.1853),
Set 3: (c1=0.8196, c2=0.0164, c3=0.082, c4=0.082),
Set 4: (c1=0.9615, c2=0.0096, c3=0.0096, c4=0.0193).
For example, according to the second set, one day deviation from the average lead time is
considered to be as important as its variance and also 20 and 5 times as important as one dollar
deviation from the total operating costs, and the probability that the manufacturing lead time
does not exceed 3 days, respectively. ε is considered to be equal 0.05 in both cases.

Now, the proposed genetic algorithm (GADSCRRSU) is applied to solve the problem.
We set the values of the parameters as: N=25, G=0.9, pc=0.9, pm=0.05, pi=0.03, Imin=100,
Imax=500, R=0.8 and t=0, refer to Sakawa [19] for the details about setting these parameters.
Finally, the obtained Pareto-optimal solutions of Case I, according to 4 indicated sets of c,
including the computational times, on a PC Pentium IV 2.1 GHz Processor, and the optimal
resources are all given in Table 2.

 16

Table 2. Pareto-optimal solutions of Case I
Set z f1(μ) f2(μ) f3(μ) f4(μ) Computational

time (sec.)
*
1μ

*
2μ *

3μ *
4μ

*
5μ

1 25.972 414 2.944 2.005 0.594 15.7 12 13.5 13 11 16.5
2 31.389 423.25 2.647 1.501 0.683 15.34 12 13.5 13 11.5 15.5
3 55.621 444.75 2.412 1.385 0.75 15.96 13 14.5 13.5 11.5 18
4 69.423 466.75 2.161 1.103 0.826 15.37 13 14 13.5 12.5 18

6.2. Case II
 Case II, which is a medium scale case, is depicted in Figure 4. This system produces
winter jackets. The final jacket consists of three parts: nylon, polyester and feather. There is one
machine in the service stations settled in nodes 1, 2, 3 and 4, and infinite number of machines in
the service stations settled in the other nodes. Table 3 shows the characteristics of the service
stations in this case. The other assumptions are as follows:
1. 6=λ .
2. The transport time between the service stations settled in nodes 1 and 7 has generalized

Erlang distribution of order 2 with the parameters)5,3(),(
2)7,1(1)7,1(=λλ . The transport times

between the other service stations are equal zero.

λ

λ

λ

2 6

3 5

4

1

87

Figure 4. Dynamic assembly system of Case 2

Table 3. Characteristics of the service stations in Case II
Service
station

1 2 3 4 5 6 7 8

)(iiC μ 32
1 +μ 2μ 2 3μ 5 4μ 5μ +1 3 6μ 7μ +2 2 8μ +4

The corresponding stochastic process {X(t),t 0} has 42 states. The given threshold is
equal to 2.5 days in this case. It is also assumed that S

≥
i={4,4.2,4.4,4.6,…,7.8,8} for i=1,2,…,8.

We set the goals as b1=135, b2=1.5, b3=0.4 and b4=0.95. We also consider the same sets of c as
the first case. The Pareto-optimal solutions and the optimal capacities of Case II are given in
Tables 4 and 5, respectively.
Table 4. Pareto-optimal solutions of Case II
Set z f1(μ) f2(μ) f3(μ) f4(μ) Computational time (sec.)
1 10.031 140.56 2.058 0.655 0.758 73.99
2 12.443 144.16 1.96 0.612 0.797 74.37
3 19.57 151.04 1.82 0.477 0.851 72.15
4 23.006 156.84 1.721 0.434 0.884 73.43

 17

Table 5. Optimal capacities of Case II
Set *

1μ *
2μ *

3μ *
4μ *

5μ *
6μ *

7μ *
8μ

1 6.4 7.6 7.8 7 4 4.2 5.2 4.8
2 6.4 7.8 7.6 7.4 4.4 4.2 6.6 4.8
3 6.8 7.8 8 7.2 4.2 4.4 6.8 5.4
4 6.8 8 7.6 7.8 5.2 4.2 7.4 6.6

As we explained in Section 4, solving the goal attainment formulation (18), optimally,
and consequently, comparing the genetic algorithm results against the optimal results is
impossible. Therefore, we try to compare the genetic algorithm results against the results of a
discrete-time approximation of the formulation (18), proposed by Azaron et al. [1].

6.3. Comparison the GA results against those of discrete-time approximation technique

We use LINGO 6, in the same computer, to solve Cases I and II for 4 indicated sets of c,
considering the discrete-time approximation technique. In this technique, we discretize the
continuous-time system and convert the optimal control problem into an equivalent nonlinear
programming problem. In other words, we transform the differential equations into equivalent
difference equations as well as transform the integral terms into equivalent summation terms. To
follow this approach, the time interval is divided into K equal portions with length , refer to
[1] for details. In each comparison, two different levels of K and

tΔ
tΔ (K=20, =0.3) and

(K=200, =0.03) are considered for both cases.
tΔ

tΔ
Figure 5 shows the objective function values z for the two indicated methods. According

to this figure, the objective function values in both cases, using the genetic algorithm, are much
less than those, considering the discrete-time approximation with K=20.

The objective function values, using the discrete-time approximation with K=200, are
optimal or very near to optimal. Therefore, the percentage differences between the objective
function values using the GA and the discrete-time approximation with K=200, or the absolute
differences between z obtained from the GA and z obtained from the discrete-time approximation
with K=200 divided by z obtained from the GA, can be considered as a measure for assessing
how good the GA results actually are. The maximum percentage differences in Cases I and II are
equal 7.75% and 3.12%, respectively. Clearly, the GA results are very near to optimal results.
Therefore, the efficiency of the proposed genetic algorithm approach is concluded.

0

10

20

30

40

50

60

70

80

90

I1 I2 I3 I4 II1 II2 II3 II4

z

Genetic Algorithm

Discrete-Time Approx. (K=20)

Discrete-Time Approx. (K=200)

Figure 5. Objective function values (z) for Cases I and II, according to sets 1,2,3,4 of c

 18

Figure 6 shows the computational times for the genetic algorithm and the discrete-time
approximation, respectively. According to this figure, the computational times, using the genetic
algorithm, are remarkably decreased, even comparing against the discrete-time approximation
with K=20, especially for larger-scale cases. For example, the maximum computational time in
the two indicated cases, using the GA, is equal to 74 seconds, but the required computational
time to solve set 4 of Case II, using the discrete-time approximation with K=200, is about 14
hours. Therefore, it is clearly concluded that the genetic algorithm approach is computationally
superior in terms of finding optimal or near-optimal solutions to large-scale problems than the
discrete-time approximation technique.

0

10000

20000

30000

40000

50000

60000

I1 I2 I3 I4 II1 II2 II3 II4

C
o
m
pu
ta
ti
o
n
al
 T
im
e
 (
se
c
.)

Genetic Algorithm

Discrete-Time Approx. (K=20)

Discrete-Time Approx. (K=200)

Figure 6. Computational times (sec.) for Cases I and II, according to sets 1,2,3,4 of c

7. Conclusion

In this paper, we introduced a genetic algorithm approach to control the service rates of
the manufacturing and the assembly operations in a dynamic multistage assembly system, in
which the average lead time, the variance of the lead time and the total operating costs of the
system per period are minimized and the probability that the manufacturing lead time does not
exceed a certain threshold is maximized.

To solve the relevant multi-objective programming and generating the Pareto-optimal
solutions, we used the goal attainment method, which is a variation of the goal programming
technique. Goal attainment method is one of the multi-objective techniques with priori
articulation of preference information given. The goal attainment method has fewer variables to
work with, so it will be computationally faster, and therefore is a good method to solve our
problem.

The problem considered in this paper has discrete decision variables and involves
nonlinearity. After the reformulation of the problem, we proposed a genetic algorithm with
double strings using continuous relaxation based on reference solution updating (GADSCRRSU)
to solve the problem.

According to the numerical experiments of Section 6, it is seen that the genetic algorithm
method is an efficient method for the multi-objective lead time control problem.

We could also obtain the distribution function of the manufacturing lead time. Seidmann
and Smith [21] have developed procedures to assign due-dates for jobs in a job shop
environment assuming that the probability distribution of the lead time is known. Therefore, our

 19

results complement theirs. Together one may now assign due dates for the final product in a
multistage assembly system.

Monte Carlo simulation can also be used to analyze the impact of non-exponential inter-
arrival, processing and transport times.

We just obtain the lead time distribution in multistage assembly systems by transforming
the related queueing network into an equivalent stochastic network and then computing the
longest path distribution in the stochastic network by constructing a proper continuous-time
Markov chain. Any other analytical longest path approach could also be used to obtain the lead
time distribution.

The contribution of this paper is to provide a framework to deal with the optimal service
control in multistage assembly systems with infinite buffer capacities, considering the role of
transport times between service stations, using genetic algorithms.

In this paper, we only consider policies that are fixed at time zero. Such policies can be
sub-optimal as they can be bettered by dynamic policies. May be in the future, this paper can be
extended to obtain optimal service control, dynamically, in multistage assembly systems using
MDPs, refer to Bertsekas [3].

References

[1] Azaron, A., Katagiri, H., Kato, K., Sakawa, M., 2005. Modelling Complex Assemblies as a

eueing Network for Lead Time Control. To appear in European Journal of Operational
earch.

Qu
Res

MA

Det

Arr

Ad

[2] Azaron, A., Modarres, M., 2005. Distribution Function of the Shortest Path in Networks of

Queues. OR Spectrum 27, 123-144.

[3] Bertsekas, D.P., 2001. Dynamic Programming and Optimal Control, Vol. 2. Athena Scientific,

.

[4] Cheng, T.C.E., Gupta, M.C., 1989. Survey of Scheduling Research Involving Due Date

ermination decisions. European Journal of Operational Research 38, 156-166.

[5] Gold, H., 1998. A Markovian Single Server with Upstream Job and Downstream Demand

ival Stream. Queueing Systems 30, 435-455.

[6] Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine Learning.

dison-Wesley, MA.

[7] Goldberg, D.E., Lingle, R., 1985. Alleles, Loci, and the Traveling Salesman Problem.

Proceedings of the 1st International Conference on Genetic Algorithms and Their
Applications. Lawrence Erlbaum Associates, Hillsdale, NJ, 154-159.

[8] Harrison, J.M., 1973. Assembly-Like Queues. Journal of Applied Probability 10, 354-367.

 20

[9] Haskose, A., Kingsman, B.G., Worthington, D., 2002. Modelling Flow and Jobbing Shops as
ueueing Network for Workload Control. International Journal of Production Economics 78,
-285.

a Q
271

Pro

Aca

Mu
Jou

Mana

Bosto

[10] Hemachandra, N., Eedupuganti, S.K., 2003. Performance Analysis and Buffer Allocations

in Some Open Assembly Systems. Computers and Operations Research 30, 695-704.

[11] Kapadia, A.S., Hsi, B.P., 1978. Steady State Waiting Time in a Multicenter Job Shop. Naval

Research Logistics Quarterly 25, 149-154.

[12] Kulkarni, V., Adlakha, V., 1986. Markov and Markov-Regenerative PERT Networks.

Operations Research 34, 769-781.

[13] Lemoine, A.J., 1979. On Total Sojourn Time in Networks of Queues. Management Science

25, 1034-1035.

[14] Lipper, E.H., Sengupta, B., 1986. Assembly-Like Queues with Finite Capacity: Bounds,

Asympototics and Approximations. Queueing Systems 1, 67-83.

[15] Michalewicz, Z., 1996. Genetic algorithms + Data Structures = Evolution Programs. 3rd
revised and extended edition, Springer-Verlag, Berlin.

[16] Papadopoulos, H.T., Heavey, C., 1996. Queueing Theory in Manufacturing Systems

Analysis and Design: A Classification of Models for Production and Transfer Lines.
European Journal of Operational Research 92, 1-27.

[17] Ramachandran, S., Delen, D., 2005. Performance Analysis of a Kitting Process in Stochastic

Assembly Systems. Computers and Operations Research 32, 449-463.

[18] Sakawa, M., Kato, K., 2003. Genetic Algorithms with Double Strings for 0-1 Programming

blems. European Journal of Operational Research 144, 581-597.

[19] Sakawa, M., 2001. Genetic Algorithms and Fuzzy Multiobjective Optimization. Kluwer

demic Publishers, Boston.

[20] Sakawa, M., Kato, K., Sunada, H., Shibano, T., 1997. Fuzzy Programming for

ltiobjective 0-1 Programming Problems through Revised Genetic Algorithms. Eurpean
rnal of Operational Research 97, 149-158.

[21] Seidmann, A., Smith, M.L., 1981. Due Date Assignment for Production Systems.

gement Science 27, 571-581.

[22] Sethi, S., Thompson, G., 1981. Optimal Control Theory. Martinus Nijhoff Publishing,

n.

 21

[23] Song, D.P., Hicks, C., Earl, C.F., 2002. Product Due Date Assignment for Complex
emblies. International Journal of Production Economics 76, 243-256. Ass

An

[24] Vandaele, N., Boeck, L.D., Callewier, D., 2002. An Open Queueing Network for Lead Time

alysis. IIE Transactions 34, 1-9.

[25] Yano, C.A., 1987. Stochastic Lead-Time in Two-Level Assembly Systems. IIE Transactions

19, 371-378.

 22

	A multi-objective lead time control problem in multistage assembly systems using genetic algorithms
	Abstract
	In this paper, we develop a multi-objective model to optimally control the lead time of a multistage assembly system, using genetic algorithms. The multistage assembly system is modelled as an open queueing network. It is assumed that the product order arrives according to a Poisson process. In each service station, there is either one or infinite number of servers (machines) with exponentially distributed processing time, in which the service rate (capacity) is controllable. The optimal service control is decided at the beginning of the time horizon. The transport times between the service stations are independent random variables with generalized Erlang distributions. The problem is formulated as a multi-objective optimal control problem that involves four conflicting objective functions. The objective functions are the total operating costs of the system per period (to be minimized), the average lead time (min), the variance of the lead time (min) and the probability that the manufacturing lead time does not exceed a certain threshold (max). Finally, we apply a genetic algorithm with double strings using continuous relaxation based on reference solution updating (GADSCRRSU) to solve this multi-objective problem, using goal attainment formulation. The results are also compared against the results of a discrete-time approximation technique to show the efficiency of the proposed genetic algorithm approach.
	Partially Matched Crossover (PMX) for double strings

	References

