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Abstract 

In this paper, we develop a multi-objective model to optimally control the lead time of a 
multistage assembly system, using genetic algorithms. The multistage assembly system is 
modelled as an open queueing network. It is assumed that the product order arrives according to 
a Poisson process. In each service station, there is either one or infinite number of servers 
(machines) with exponentially distributed processing time, in which the service rate (capacity) is 
controllable. The optimal service control is decided at the beginning of the time horizon. The 
transport times between the service stations are independent random variables with generalized 
Erlang distributions. The problem is formulated as a multi-objective optimal control problem that 
involves four conflicting objective functions. The objective functions are the total operating costs 
of the system per period (to be minimized), the average lead time (min), the variance of the lead 
time (min) and the probability that the manufacturing lead time does not exceed a certain 
threshold (max). Finally, we apply a genetic algorithm with double strings using continuous 
relaxation based on reference solution updating (GADSCRRSU) to solve this multi-objective 
problem, using goal attainment formulation. The results are also compared against the results of 
a discrete-time approximation technique to show the efficiency of the proposed genetic algorithm 
approach.  
Keywords: Queueing; Genetic algorithms; Multiple objective programming; Production 
 
1. Introduction 
 

Over the last decade, manufacturing strategies have focused on speed of response to 
customer as much as cost and quality for competitive advantage. This means reducing both the 
length and the variability of the manufacturing lead times. Short lead times are critical to win 
customer orders for engineer-to-order and make-to-order companies supplying capital goods. 
These products are often complex assemblies with many stages of manufacture and assembly. 
Providing competitive delivery lead times and managing to achieve a reliable delivery 
performance are typically as important as competitive prices.  

The multistage assembly system is modelled as an open queueing network, where each 
service station settled in a node of the network represents a manufacturing or assembly operation. 
It is assumed that only one type of product is produced by the system. Each product consists of a 
number of separate raw parts, which should be processed and assembled to each other. Each 
separate part of the product enters the production system according to a Poisson process and goes 
to the first service station in its routing sequence of manufacturing operations.  
* Corresponding author. E-mail address: E-mail address: a.azaron@4c.ucc.ie (A. Azaron).  
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After completing the manufacturing operations of the separate parts, they are assembled 
to each other and after passing some other manufacturing and assembly operations, the final 
product leaves the system in its finished form.  

In each service station, there is either one or infinite number of servers with exponential 
distribution of processing time. In application, if the product should wait for starting the service, 
in front of the station, it can be represented as an M/M/1 queueing system. Otherwise, if there are 
enough servers, in which the product does not need to wait in queue, we can represent it as an 
M/M/ queueing system. ∞

The role of transport times between the service stations, which may be much greater than 
the processing times, are also considered to compute and then optimize the manufacturing lead 
time in dynamic multistage assembly systems. An implicit hypothesis in the literature is that 
transit time in buffers is null, i.e., a part which leaves a machine is supposed to be 
instantaneously available for the next machine. The transport times between the service stations 
are assumed to be independent random variables with generalized Erlang distributions.  

The time spent in a service station would be equal to the processing time plus waiting in 
the queue in front of the service station. Therefore, the time spend by a finished product in the 
system, called manufacturing lead time, would be equal to the length of the longest path of the 
queueing network whose arc lengths are the transport times between the service stations. We can 
obtain the distribution function of the manufacturing lead time by computing the distribution 
function of the longest path length in the queueing network. 

Yano [25] considered stochastic lead time in a simple two level assembly system with 
different processing time distributions including Poisson and negative binomial. Cheng and 
Gupta [4] commented that most analytical studies are limited to small problems. Song et. al. [23] 
developed an approximate method to obtain the distribution of product completion time by 
decomposing the complex product structures of multistage assemblies into two-stage subsystem.  

The analytical methods above consider the manufacturing and assembly processing times 
as independent random variables and ignore their dependence on the arrival and service rates of 
jobs at various stages in the manufacturing process. The time spent in a queue will be longer for 
congested service stations than for little used stations. Therefore, the time spent waiting in 
queues in front of service stations should be considered in order to compute the manufacturing 
lead time. 

The open queueing networks are widely used for modelling manufacturing systems, see 
Papadopoulos and Heavey [16]. The lead time analysis in dynamic job shops by modelling those 
as open queueing networks was studied by Kapadia and Hsi [11], Shanthikumar and Sumita [19], 
Haskose et. al. [9] and Vandaele et. al. [24]. However, these works do not include assembly 
processes.     

Harrison [8], in a primarily theoretical study, introduced a queueing theoretical model of 
an assembly operation. He established stability conditions for an assembly queue with renewal 
and mutually independent arrival streams and a single server. An approximate analysis of the 
assembly-like queue with finite queues of equal length and under symmetric load has been 
presented by Lipper and Sengupta [14]. Hemachandra and Eedupuganti [10] considered a model 
of a system with two finite capacity assembly lines and a single join operation and presented an 
approach for computing the performance measures in the system. Gold [5] considered a model 
corresponds to an assembly-like queue with two input streams, in which the assembly is 
instantaneous, and focused on the state probabilities and expectation of minimum and maximum 
of the two input queues. Ramachandran and Delen [17] analyzed the kitting process (a kit is a set 
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of parts which are all needed to perform the assembly) as of a stochastic assembly system by 
treating it as an assembly-like queue. Specially, they investigated the dynamics involved in a 
simple kitting process where two independent input streams feed into an assembly process. 

All above papers discuss about single stage assembly systems. Moreover, most of them 
are either based on the finite buffer capacity assumption or consider that there are no external 
arrivals that corresponds to orders or assume that assembly is instantaneous. 

Azaron et al. [1] relaxed these restricted assumptions and developed a discrete-time 
approximation technique to optimally control the service rates (capacities) of the manufacturing 
and the assembly operations in dynamic multistage assembly systems, in which the average lead 
time, the variance of the lead time and the total operating costs of the system per period are 
minimized. 

In this paper, we extend the work of Azaron et al. [1] in the following directions. First, 
the probability that the manufacturing lead time does not exceed a certain threshold, which is one 
of the most important criteria in the stochastic programming concept and has not been considered 
in [1], is considered as one of the objectives of the final multi-objective problem. Second, the 
transport times are assumed to follow generalized Erlang distributions, instead of exponential 
distributions in [1]. Third, the number of servers can be either one or infinite, while in [1] there 
should be only one server in each service station. Forth, it is proved that solving the resulting 
multi-objective problem using the standard optimal control tools is impossible, and a genetic 
algorithm is applied to solve the problem, accordingly. Finally, we solve some illustrative 
examples and compare the results against the results of the discrete-time approximation 
technique, developed by Azaron et al. [1], to show the efficiency of the proposed genetic 
algorithm approach. In this paper, the optimal service control is decided at the beginning of the 
time horizon like [1]. 

For the problem concerned in this paper, as a general-purpose solution method for 
discrete nonlinear programming problems, in order to consider the nonlinearity of problems and 
to cope with large-scale problems, we propose the usage of GADSCRRSU, which is a direct 
extension of genetic algorithms with double strings based on a reference solution updating 
(GADSRSU) for linear 0-1 programming problems, see Sakawa and Kato [18].  

The remainder of this paper is organized in the following way. In Section 2, we explain 
the structure of dynamic multistage assembly systems. In Section 3, the lead time distribution in 
dynamic multistage assembly systems is obtained.  In Section 4, we present the multi-objective 
lead time control problem. In Section 5, we explain about GADSCRRSU. Section 6 presents the 
computational experiments, and finally we draw the conclusion of the paper, in Section 7. 
 
2. Dynamic multistage assembly systems  
 
 In our methodology, the following assumptions will be made. 
1. Each separate part of the product enters the production system according to a Poisson process 

with rate λ  (the demand rate for the final product). 
2. Only one type of product is produced. 
3. Each service station with only one incoming arc indicates a manufacturing station. 
4. Each service station with more than one incoming arcs indicates an assembly station.       
5. After a separate part arrives at the system, it goes directly to a manufacturing station for its 

first manufacturing operation. If there are parts for being processed, it queues up. 
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6. After completion of processing at a manufacturing station, it goes to another manufacturing 
station to be processed in its routing sequence of manufacturing operations. 

7. After completing the manufacturing operations of each separate part, it is assembled to other 
separate parts in an assembly station.  

8. The product leaves the system in its finished form from the sink node of the queueing 
network. 

9. Each part has characteristics, which are statistically independent of other parts. 
10. Each service station consists of either one or infinite number of servers. 
11. Processing times of manufacturing and assembly operations are exponentially distributed 

(including set up times on the service station). 
12. The processing time at each service station is independent of preceding processing times. 
13. There are no interruptions due to breakdowns, maintenance, or other such cases. 
14. Service discipline is based on FIFO. 
15. All inter-station buffers are infinite. 
16. The transport times between the service stations are independent random variables with 

generalized Erlang distributions. 
17. The queueing network is in the steady-state. 
18. Capacity is controlled through the service rate at each node. 
19. Service rates are stepwise variables. 
20. Operating cost of each service station per period is an increasing function of its service rate. 
21. Total number of service stations settled in the nodes of the queueing network is equal to n. 

Having completed one assembly, the server immediately begins another if at least one 
input item of each separate part is available. Otherwise, one or more parts have to wait for the 
last one to arrive (synchronization loss). The reader will recognize that each assembly station is a 
multi-input generalization of M/M/1 queue. Its salient feature is a very special type of batch 
servicing, each batch containing exactly one customer of each part. Harrison [8] proved that the 
arrival pattern at the assembly node would not be renewal. Therefore, developing an analytical 
method to match the synchronization loss and non-renewal arrival streams in order to find the 
lead time distribution in multistage assembly systems is impossible, and we restrict our attention 
to an approximation one.  

Clearly, the arrival process to the manufacturing stations prior to an assembly station is 
Poisson with the rate of λ . It is shown that the arrival of kits at each assembly node can be 
considered as Poisson with the rate of λ , as long as the parts arrive as a Poisson process of rate 
λ , see [1] for details.    

Every two nodes of the queueing network associated with a dynamic multistage assembly 
system are connected by at most one directed path, i.e., the network is a tree, and consequently 
the waiting times in the service stations are independent, see Lemoine [13].   
 
3. Lead time distribution in dynamic multistage assembly systems 
 

The main steps of our proposed method are as follows: 
Step 1. Compute the density function of time spent (processing time plus waiting time in queue) 
in each service station.  
Step 1.1. If there is one machine in the ith service station, then the density function of time spent 
in this M/M/1 queueing system is 

t
ii

ietw )()()( λμλμ −−−=    t>0                                                                                            (1) 
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where λ and iμ  are the arrival rate and the service rate of this queueing system, respectively. 
Therefore, the density function of time spent in the ith service station would be exponential with 
parameter ( iμ -λ ). 
Step 1.2. If there are infinite number of machines in the ith service station, then the time spent in 
this M/M/∞  queueing system will be exponentially distributed with parameter iμ , because there 
is no queue. 
Step 2. Transform the queueing network into an equivalent stochastic network by replacing each 
node including a service station with a stochastic arc whose length is equal to the time spent in 
the particular service station.  

Let’s explain how to replace node k in the queueing network, which includes a queueing 
system, with a stochastic arc. Assume that b1,b2,…,bn are the incoming arcs to this node and 
d1,d2,…,dm are the outgoing arcs from it. Then, we substitute this node by arc  (k', k"), whose 
length is equal to the time spent in the corresponding queueing system. Furthermore, all arcs bi 
for i=1,…,n end up with k'  while all arcs dj for j=1,…,m start from node k". The indicated 
process is opposite of the absorption an edge e in a graph G in graph theory (G.e), see Azaron 
and Modarres [2] for more details. After transforming all such nodes to the proper stochastic arcs, 
the queueing network is transformed into an equivalent stochastic network. 
Step 3. Transform the original stochastic network, obtained in step 2, into a new one with 
exponentially distributed arc lengths.  

For constructing this new network, we use the idea that if the length of each arc a  in the 
original stochastic network, corresponding with a transport time in the original queueing network, 
is distributed according to a generalized Erlang distribution of order  and the infinitesimal 
generator matrix  as: 
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it can be decomposed into  exponential serial arcs with the parameters an
anaaa λλλ ,...,, 21 . Then, 

this generalized Erlang arc is substituted with  series of exponential arcs with the parameters an

anaaa λλλ ,...,, 21 . After substituting all such generalized Erlang arcs with the proper exponential 
serial arcs, the original stochastic network is transformed into a new one with exponentially 
distributed arc lengths.  
Step 4. Compute the distribution function of longest path in the new stochastic network obtained 
in step 3.  

Any analytical method dealing with the computation of longest path length distribution 
in stochastic networks with exponentially distributed arc lengths can be used in step 4. We use 
the method of Kulkarni and Adlakha [12] in this step, because this method is an analytical one, 
simple, easy to implement on a computer and computationally stable.  

Let G=(V,A) be the new stochastic network, in which V represents the set of nodes and A 
represents the set of arcs or operations of the dynamic assembly system after the transformation. 
The source and sink nodes are denoted by s and y, respectively. Length of arc  is an Aa∈
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exponentially distributed random variable with parameter aγ . For Aa∈ , let )(aα  and )(aβ  be 
the starting and ending nodes of arc a, respectively. 
Definition 1: Let I(v) and O(v) be the sets of arcs ending and starting at node v, respectively, 
which are defined as follows: 

{ }vaAavI =∈= )(:)( β    (                                                    (2) )Vv∈
vaAavO =∈= )(:)( { }α                                                          (3) )( Vv∈

Definition 2: If X V such that s∈X and y⊂ ∈ X =V-X, then an (s,y) cut is defined as: 
     })(,)(:{),( XaXaAaXX ∈∈∈= βα                                                                              (4) 
An (s,y) cut XX ,( ) is called a uniformly directed cut (UDC), if ),( XX  is empty. 
Definition 3: Let FED ∪=  be a uniformly directed cut (UDC) of a network. Then, it is called 
an admissible 2-partition, if for any Fa∈ , we have FaI ⊄))((β . 
Definition 4: Each operation at time t can be in one of the active, dormant or idle states, which 
are defined as follows: 

i. Active: an operation is active at time t, if it is being executed at time t. 
ii. Dormant: an operation a is dormant at time t, if it is finished but there is at least one 

unfinished operation in ))(( aI β .  If an operation is dormant at time t, then its successor 
operations in ))(( aO β  cannot begin. 

iii. Idle: an operation is idle at time t, if it is neither active nor dormant at time t. 
The set of active and dormant states are denoted by Y(t), Z(t), respectively, and  

X(t)=(Y(t),Z(t)). Let S denote the set of all admissible 2-partition cuts of the network, and 
)}.,{( φφ∪= SS  Note that X(t)= ),( φφ  implies that Y(t)=φ  and Z(t)=φ , i.e. all operations are 

idle at time t and hence the final product is completed by time t.  
It is proven that {X(t),t 0} is a continuous-time Markov process with state space ≥ S . The 

elements of the infinitesimal generator matrix )}]','(),,{([ FEFEqQ = , (E,F) and )','( FE S∈ , 
where E and F include active and dormant operations of a UDC, respectively, are calculated as 
follows (refer to [12] for details): 
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 {X(t),t 0} is a finite-state absorbing continuous-time Markov process and since ≥
,0)},(),,{( =φφφφq  it is concluded that this state is an absorbing one and obviously the other 

states are transient. Furthermore, we number the states in S  such this Q matrix be an upper 
triangular one. We assume that the states are numbered 1,2,…,N= S . State 1 is the initial state, 

namely X(t)= )),(( φsO , and state N is the absorbing state, namely X(t)= ),( φφ . 

 6



Let T represent the length of the longest path in the network, or the manufacturing lead 
time. Clearly, T=min {t>0: X(t)=N/X(0)=1}. Thus, T is the time until {X(t),t≥0} gets absorbed in 
the final state starting from state 1. 

Chapman-Kolmogorov backward equations can be applied to compute F(t)=P{T≤ t}. If 
we define: 

Pi(t)=P{X(t)=N/X(0)=i}     i=1,2,…,N                                                                              (9) 
then, F(t)=P1(t). 

The system of linear differential equations for the vector P(t)=[P1(t),P2(t),…,PN(t)]T is 
given by 

•

P (t)=Q.P(t) 
            P(0)=[0,0,…,1]T                                                                                                                                                                     (10)                                     

   
4. Multi-objective lead time control problem 
 

In this section, we develop an analytical model to optimally control the service rates of 
the service stations. In fact, we may increase the service rates of the manufacturing and assembly 
stations by allocating more resources. In that case, the average manufacturing lead time will be 
decreased. However, clearly it causes the total operating costs of the system per period to be 
increased, accordingly. Consequently, an appropriate trade-off between the average lead time 
and cost is required. The variance of lead time should also be considered in the model, because 
when we only focus on such mean time, the service rates may be non optimal if the lead time 
substantially varies because of randomness. Interpretation of the variance of lead time is very 
difficult in application and consequently we need another proper deterministic objective 
associated with the minimization of lead time, which has a random nature. This new objective 
would be the probability that the manufacturing lead time does not exceed a certain threshold as 
the fourth objective of our multi-objective formulation.  

To achieve the above-mentioned goals, we develop a multi-objective problem, in which 
four objectives are sought simultaneously, minimizing the total operating costs of the system per 
period, minimizing the average lead time, minimizing the variance of lead time and also 
maximizing the probability that the manufacturing lead time does not exceed a given threshold. 

The operating cost of the ith service station per period is assumed to be an increasing 
function )( iiC μ  of its service rate iμ . Therefore, C or the total operating costs of the system per 
period is given by 

∑
=

=
n

i
iiCC

1
)(μ                                                                                                                  (11) 

We focus on the case where capacity is available in discrete options, such as when 
machines, workers, or shits are to be added. Capacity is controlled through the service rate at 
each node. Therefore, each service rate should be selected from a related discrete set of choices.                           

Considering Si as the set of choices for the ith service rate )ii S( ∈μ , the infinitesimal 
generator matrix Q is not constant, rather it would be a function of the control vectors 

. Therefore, the non-linear dynamic model is  [ T
nμμμμ ,...,, 21= ]

            
•

P (t)=Q(μ ).P(t) 
Pi(0)=0     i=1,2,…,N-1      

           PN(t)=1                                                                                                                             (12) 
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Representing B as the set of nodes including M/M/1 service stations and C as the set of 
nodes including M/M/∞  service stations in the original multistage assembly system, the relations 
(13) should be satisfied to exist the response in the steady-state. 

iμ >λ      i∈B 

iμ >0       i∈C                                                                                                                  (13) 
We do not have such constraints in the mathematical programming. Therefore, we use the 
constraints (14) instead of the above constraints in the final multi-objective problem, assuming ε  
as a small quantity which should approach zero. 

iμ ≥ λ +ε      i∈B 

iμ ≥ ε            i∈C                                                                                                           (14) 
Accordingly, the appropriate multi-objective optimal control problem is 

            Min      f1(μ )= )( iiC μ                                          

            Min     f2(μ )=                                                                              ∫
∞

−
0 1 ))(1( dttP

            Min     f3(μ )=                                                            ( )
2

0 10 1
2 )( ⎥⎦

⎤
⎢⎣
⎡− ∫∫

∞ •∞ •

dttPtdttPt

            Max    f4(μ )=            )(1 uP
s.t: 

•

P (t)=Q(μ ).P(t) 
 Pi(0)=0          i=1,2,…,N-1 
 PN(t)=1 

iμ ≥ λ +ε      i∈B                              

iμ ≥ ε             i∈C                              

ii S∈μ            i=1,2,…,n                                                                                                 (15) 
A possible approach to solving (15) to optimality is to use the Maximum Principle (see 

Sethi [22] for details). For simplicity, consider solving the problem with only one of the 

objective functions, f2(μ )= .  ∫
∞

−
0 1 ))(1( dttP

Consider  as the set of allowable controls consisting of all constraints except the 
constraints representing the dynamic model (

Λ
Λ∈μ ), and N-vector )(tλ  as the adjoint vector 

function. Thus, Hamiltonian function would be 
)(1)().()()),(),(( 1 tPtPQttPtH T −+= μλμλ                                                                  (16) 

Now, we write the adjoint equations and the terminal conditions, which are 

∞→=

−+=−
•

TT
Qtt

T

TT

,0)(
]0,...,0,1[)(.)()(

λ

μλλ                                                                                   (17) 

If we could compute )(tλ  from (17), then we would be able to minimize the Hamiltonian 
function subject to Λ∈μ  in order to get the optimal control  and to solve the problem, 
optimally. Unfortunately, the adjoint equations (17) are dependent on the unknown control 
vector 

*μ

μ  and therefore they cannot be solved directly.  
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If we could also minimize the Hamiltonian function (16), subject to Λ∈μ , for an 
optimal control function in closed form as , then we would be able to 

substitute this into the state equations, 

))(),(( *** ttPf λμ =
•

P (t)=Q(μ ).P(t), , and adjoint equations 
(17) to get a set of differential equations, which is a two-point boundary value problem. 
Unfortunately, we cannot obtain  by differentiating H with respect to 

TP ]1,...,0,0[)0( =

*μ μ , because μ  is a 
discrete vector and consequently  cannot be obtained in a closed form.  *μ

According to these points, it is impossible to solve the optimal control problem (15), 
optimally, even in the restricted case of a single objective problem. Relatively few optimal 
control problems can be solved optimally. Therefore, we try to solve this problem, using genetic 
algorithms, considering the goal attainment formulation. 

 
4.1. Goal attainment method 

Goal attainment method requires setting up a goal and weight, bj and cj ( 0 ) for 
j=1,2,3,4, for the four objective functions. The c

≥ic
j relate the relative under-attainment of the bj. 

For under-attainment of the goals, a smaller cj is associated with the more important objectives. cj, 

j=1,2,3,4, are generally normalized so that .  1
4

1
=∑

=i
ic

The appropriate goal attainment formulation of the discrete lead time control problem 
leads to: 

Min  z 
s.t: 

∑
=

≤−
n

i
ii bzcC

1
11)(μ  

( ) 220 1 bzcdttPt ≤−∫
∞ •

 

( ) 33

2

0 10 1
2 )( bzcdttPtdttPt ≤−⎥⎦

⎤
⎢⎣
⎡− ∫∫

∞ •∞ •

 

( )uP1 44 bzc ≥+  
•

P (t)=Q(μ ).P(t) 
 Pi(0)=0          i=1,2,…,N-1 
 PN(t)=1 

iμ ≥ λ +ε      i∈B                              

iμ ≥ ε             i∈C                              

ii S∈μ            i=1,2,…,n 
 z 0                                                                                                                                 (18) ≥

 

 

Lemma 1. If  is Pareto-optimal, then there exists a c, b pair such that  is an optimal 
solution to the optimization problem (18).  

*μ *μ

The optimal solution using this formulation is fairly sensitive to b and c. Depending upon the 
values for b, it is possible that c does not appreciably influence the optimal solution. Instead, the 
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optimal solution can be determined by the nearest Pareto-optimal solution from b. This might 
require that c be varied parametrically to generate a set of Pareto-optimal solutions. 
 
5. A genetic algorithm with double strings using continuous relaxation based on reference 
solution updating (GADSCRRSU) 
  

In this section, we mention GADSCRRSU proposed as a general solution method for 
discrete programming problems defined as (19). 

                              Min  )(μf  

                                         s.t: 
                             bA ≤μ                                                                                          

                       njjj  ..., 1,   } ..., 1, {0,                  =∈ νμ                                                                         (19) 

 where μ  is an n dimensional discrete decision variable vector. 

In order to have the same form given in (19), we reformulate the problem (18), by 
combining the objective functions and the state equations. Considering  as 
the decision vector, the appropriate min-max problem is obtained as, in which f

[ ]Tnμμμμ ,...,, 21=

i(μ ), i=1,2,3,4, 
are the same as (15):  

                    Min  )(μf = )}(),(),(),({ 4321 μμμμ zzzzMax                

s.t: 

jμ jS∈         j=1,2,…,n                                                                               (20) 
                                 where                                                                                                            
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            and 

 
•

P (t)=Q(μ ).P(t), .                                                         (21)                         TP ]1,...,0,0[)0( =

It should be noted that in our computer program, P1(t) is obtained by solving the system 
of differential equations (21), analytically, and then the average and the variance of lead time are 
computed, numerically. In the problem (20), the linear constraints ( bA ≤μ ) of problem (19) are 
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considered, implicitly. The only restriction that we have in this problem is that the elements of μ  
vector (decision variables) are selected from the given sets.  

Before going into details of the genetic algorithm that will be used in this paper, the 
definitions of the parameters of the genetic algorithm should be explained. N is the number of 
population of the genetic algorithm. At the beginning, N individuals are created as the population. 
G is the generation gap, which is used in the crossover operation. After the generation of 
offspring from the current population, the number of individuals that will be added into the 
population in the next iteration is selected according to G from the offspring population. The 
probability of crossover pc is also used in crossover operation to determine the probability of 
applying the crossover operator to each individual. The probability of mutation pm and the 
probability of inversion pi are used in the same way in order to determine the mutation operator 
and the inversion operator are going to be applied to an individual or not, respectively. As it is 
well known, genetic algorithms are iterative search methods, where the number of iterations 
should be specified in the algorithm. In this paper, we use Imin and Imax, which are the minimum 
and the maximum number of iterations that would be performed. For example, the process will 
not stop before Imin number of iterations and will stop after performing Imax number of iterations. 
The mutation operator is applied according to Gaussian distribution and the uniform distribution. 
A parameter R is used for choosing the type of mutation operator that will be applied to an 
individual. 

 

5.1. Individual representation 
The individual representation by double strings, shown in Figure 1, is adopted in 

GADSCRRSU. 
s(1) s(2) … s(j) … s(n)Indices 

Values gs(1) gs(2) … gs(j) … gs(n)
= s

Figure 1. Double strings representation 

In this figure s(j), j=1, ..., n, is the index of the jth element of the double strings and 
, j=1, ..., n, is the integer value of the corresponding element, respectively. For 

example an individual 
)()( jsjs Sg ∈

}2,9,9,5,8,4{},,,,,{ 654321 == μμμμμμμ  may be represented as in 
Figure 2 at an iteration during the solution process for n = 6. 

 
4 2 1 6 3 5Indices

Values 9 8 4 6 5 9
= μ

Figure 2. Double strings representation 

 

5.2. Decoding algorithm 

 In this paper, we use the framework of Sakawa [19] to construct a decoding algorithm of 
double strings to solve the discrete programming problem (20). In the algorithm, a feasible 
solution μ)  of the continuous relaxation problem, called a reference solution, is used as the origin 
of decoding. The reference solution updating procedure is also adopted, see Sakawa [19] for 
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details, since the solutions obtained by the decoding algorithm using a reference solution tend to 
concentrate around the reference solution. 

Decoding algorithm using continuous programming relaxation 

Step 1.  Let  and  r is the number of constraints in the problem. 1=j .,...1,0 risumi ==

Step 2.  If 0)( >jsμ
) , proceed to step 3. Otherwise, i.e., if ,0)( =jsμ

)  let  and go to step 
5. 

1+= jj

Step 3. Let  denote the  element of the coefficient matrix A. Then, )( jisa ))(,( jsi )( jsμ  is 
determined as:  

,,minmin )(
)(

,...,1)( ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −
=

= js
jis

ii

rijs g
a

sumb
μ  

where . 0)( ≠jisa

Step 4.  Let riasumsum jsjisii ,...1,)()( =+= μ  and 1+= jj . 

Step 5.  If nj > , proceed to step 6. Otherwise, return to step 2. 

Step 6.  Let . 1=j

Step 7.  If ,0)( =jsμ
)  proceed to step 8. Otherwise, i.e., if 0)( >jsμ

) , let  and go to step 
10. 

1+= jj

Step 8.  Let  denote the  element of the coefficient matrix A. Then, )( jisa ))(,( jsi )( jsμ  is 
determined as: 

,,minmin )(
)(

,...,1)( ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ −
=

= js
jis

ii

rijs g
a

sumb
μ  

where . 0)( ≠jisa

Step 9.  Let riasumsum jsjisii ,...1,)()( =+= μ  and 1+= jj . 

Step 10.  If nj > , proceed to step 6. Otherwise, return to step 7. 

 

5.3. Usage of continuous relaxation 
 In large scale problems, we need some schemes such as the generation of individuals near 
the optimal solution, the restriction of the search space to a promising region and so forth, in 
order to find an approximate optimal solution with high accuracy in reasonable time. From this 
point of view, the information about an optimal solution to the corresponding continuous 
relaxation problem 

                                         Min  z= )(μf  

s.t: 
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                                        njjj  ..., 1,   ,0 =≤≤ νμ                                                           (22) 

is used in the generation of the initial population and the mutation. 

 

5.4. Genetic Operators 

5.4.1. Reproduction 
For genetic algorithms, various reproduction methods, see for example Goldberg [6] and 

Michalewicz [15], have been proposed such as; ranking selection, elitist ranking selection, 
expected value selection, elitist expected value selection, roulette wheel selection, and elitist 
roulette wheel selection. In this paper, elitist expected value selection, which is a combination of 
elitist preserving selection and expected value selection, is adopted as a reproduction operator. 

Elitist preserving selection: One or more individuals with the largest fitness up to the current 
population is unconditionally preserved in the next generation. 

Expected value selection: Let N denote the number of individuals in the population. The 
expected value of the number of the ith individual si in the next population is calculated as:  

                                                             N
f

f
N N

i
i

i
i *

)(

)(

1
∑
=

=
s

s
.                                                        (23) 

In expected value selection, the integral part of (23) denotes the definite number of individuals si 
preserved in the next population. Using the fractional part of (23), the probability to preserve si 
in the next population is determined by 

                                                              ⎣ ⎦

⎣ ⎦∑
=

−

−
N

i
ii

ii

NN

NN

1
)(

.                                                             (24) 

5.4.2. Crossover 
If a single-point crossover or multipoint crossover is directly applied to individuals of 

double string type, the kth element of an offspring may take the same number of the thk ′  
element. In order to avoid this, a crossover method called partially matched crossover (PMX) 
was proposed by Goldberg and Lingle [7] and was modified to be suitable for double strings by 
Sakawa et al. [20]. The PMX for double strings can be described as follows: 

Partially Matched Crossover (PMX) for double strings 

Step 0. Set . 1=w

Step 1. Choose X and Y as parent individuals. Then, let XX =′  and YY =′ . 

Step 2. Generate a real random number rand() in [0,1]. For a given crossover rate , if 
rand()  , then go to step 3. Otherwise, go to step 8. 

cp

cp≤

Step 3. Choose two crossover points )(, khkh ≠  from {1,2,…,n} at random. Then, set hl = . 
First, perform operations in step 4 through 6 for X ′  and Y. 
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Step 4. Let  (  is defined as the remainder when an integer p is divided 
by an integer q). After finding 

1))%1(( +−= nlj qp%
j′  such that ),()( jsjs XY ′= ′  interchange 

 with . Furthermore, set T
jsX X

gjs )),(( )(′′
T

jsX X
gjs )),(( )( ′′ ′

′ 1+= ll , and go to step 5. 

Step 5. 1) If  and , then go to step 6. If kh < kl > kh <  and kl ≤  then return to step 4. 2) If 
 and , then go to step 6. If  and kh > )( nkl +> kh > )( nkl +≤ , then return to step 4. 

Step 6. 1) If  let  for all j such that kh < )()( jsjs YX
gg ′=

′
kjh ≤≤ , and go to step 7. 2) If , 

let  for all j such that 
kh >

)()( jsjs YX
gg ′=

′
kj ≤≤1  and njh ≤≤ , then go to step 7. 

Step 7. Carry out the same operations as in steps 4 through 6 for Y ′  and X. 

Step 8: Preserve X ′  and Y  as the offspring of X and Y. ′

Step 9. If , set and return to step 1. Otherwise, go to step 10. Nw < 1+= ww

Step 10. Choose  individuals from  preserved individuals randomly and replace 
 individuals of the current population consisting of N individuals with the  

chosen individuals. Here, G is a constant called generation gap. 

GN * N*2
GN * GN *

5.4.3. Mutation and Inversion 

The procedures of mutation and inversion for double strings are summarized as follows: 

Mutation for double strings 

Step 0. Let . 1=w

Step 1. Let . 1=j

Step 2. If a real random number rand () in [0,1] is less than or equal to the probability of 
mutation , go to step 3. Otherwise, go to step 4. mp

Step 3. If another real random number rand() in [0,1] is less than or equal to a constant R, 
determine )( jsμ  randomly according to the Gaussian distribution with mean )( jsμ

)  and 
variance , and go to step 4. Otherwise, determine 2τ )( jsμ  randomly according to the 
uniform distribution in [0, vj], and go to step 4. 

Step 4. If nj < , let  and return to step 2. Otherwise, go to step 5. 1+= jj

Step 4. If , let  and return to step 1. Otherwise, stop. Nw < 1+= ww

Inversion for double strings 

Step 0. Let .  1=w

Step 1. Generate a real random number rand() in [0,1]. For a given crossover rate , if 
rand()  , then go to step 2. Otherwise, go to step 4. 

ip

ip≤

Step 2. Choose two points  from {1,2,…,n} at random. Then, set . )(, khkh ≠ hl =
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Step 3. Let . Then, interchange with 

 . Furthermore, set  and go to 
step 4. 

1))%1(( +−= nlj T
jsgjs )),(( )(

),1)%1)(((( +−−−+ nhlkns T
nhlknsg ))1)%1)((( +−−−+ 1+= ll

Step 4. 1) If  and kh < ⎣ ⎦2/)1( +−+< hkhl , return to step 3. If kh <  and 
, go to step 5. 2) If  and ⎣ 2/)1( +−+≥ hkhl ⎦ kh > ⎣ ⎦2/)1( +−++< hnkhl , return to 

step 3. If  and kh > ⎣ ⎦2/)1( +−++≥ hnkhl , go to step 5. 

Step 5. If , let  and return to step 1. Otherwise, stop. Nw < 1+= ww

Observe that inversion is not only between h and k but also between k and h. 

 

5.5. GADSCRRSU algorithm 
Step 0. Set the values of parameters used in GADSCRRSU: the population size N, the generation 
gap G, the probability of crossover pc, the probability of mutation pm, the probability of inversion 
pi, the minimal search generation Imin, the maximal search generation Imax > Imin, the degree of 
using the information about solutions to continuous programming relaxation problems R. Set 
generation counter t=0. 

Step 1. Generate the initial population consisting of N individuals based on the information of a 
solution to the continuous relaxation problem (22).  

Step 2. Solve the system of differential equations in (21) and compute P1(t) for each individual 
and then decode each individual (genotype) in the current population and calculate its fitness 
based on the corresponding solution (phenotype).  

Step 3. If the termination condition is fulfilled, then go to step 8. Otherwise, set t= t+1 and then 
go to step 4.  

Step 4. Apply the reproduction operator based on the elitist expected value selection, after 
carrying out linear scaling. 

Step 5. Apply the crossover operator, called PMX (Partially Matched Crossover) for double 
strings. 

Step 6. Apply the mutation operator based on the information of an optimal solution to the 
continuous relaxation problem (22).  
Step 7. Apply the inversion operator. Go to step 2. 
Step 8. Stop. 
 
6. Computational experiments 

 
To demonstrate the efficiency of the proposed genetic algorithm method (GADSCRRSU), 

we solve two typical small and medium cases with different configurations. The objective is to 
obtain the optimal capacities using the GA. All experiments are replicated four times using 
different random number seeds.  
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6.1. Case I 
The first case, which is depicted in Figure 3, has been taken from Azaron et al. [1]. This 

system produces chairs. The final chair consists of two separate parts: wooden and leather. In 
each node, except node 4, there is a manufacturing station with one machine. Node 4 contains an 
assembly station with one machine. The set of allowable capacity choices is considered to be 
Si={11,11.5,12,12.5,…,19.5,20}, for all service rates.  
 
                        λ  
 
 
                        λ  
 

Figure 3. Dynamic assembly system of Case I 

1 4

3

5 

2 

 
Table 1 shows the characteristics of the service stations in this case (cost unit is in dollar 

and time unit is in day). The given threshold u is equal to 3 days. The other assumptions are as 
follows: 
1. The demand rate λ is equal to 10 per day. 
2. The transport times between the service stations settled in nodes 1 and 4, and also between 

those settled in nodes 3 and 4 are independent exponentially distributed random variables 
with the parameters 1)4,1( =λ  and 2)4,3( =λ . The transport times between the other service 
stations are zero. 

 
Table 1. Characteristics of the service stations in Case I 
Service 
station 

1 2 3 4 5 

)( iiC μ  410 1 +μ  34 2 +μ  75 3 +μ 22
4 +μ  52 5 +μ

The stochastic process {X(t),t 0} related to the longest path analysis of the 
corresponding transformed stochastic network has 14 states. We set the goals as b

≥
1=400, b2=1.5, 

b3=0.5 and b4=0.9. We solve the problem for the following sets of c to generate a set of Pareto-
optimal solutions, according to the goal attainment formulation (18). 
Set 1: (c1=0.5556, c2=0.0556, c3=0.1111, c4=0.2777),  
Set 2: (c1=0.7407, c2=0.037, c3=0.037, c4=0.1853),  
Set 3: (c1=0.8196, c2=0.0164, c3=0.082, c4=0.082), 
Set 4: (c1=0.9615, c2=0.0096, c3=0.0096, c4=0.0193). 
For example, according to the second set, one day deviation from the average lead time is 
considered to be as important as its variance and also 20 and 5 times as important as one dollar 
deviation from the total operating costs, and the probability that the manufacturing lead time 
does not exceed 3 days, respectively. ε  is considered to be equal 0.05 in both cases.  

Now, the proposed genetic algorithm (GADSCRRSU) is applied to solve the problem. 
We set the values of the parameters as: N=25, G=0.9, pc=0.9, pm=0.05, pi=0.03, Imin=100, 
Imax=500, R=0.8 and t=0, refer to Sakawa [19] for the details about setting these parameters. 
Finally, the obtained Pareto-optimal solutions of Case I, according to 4 indicated sets of c, 
including the computational times, on a PC Pentium IV 2.1 GHz Processor, and the optimal 
resources are all given in Table 2. 
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Table 2. Pareto-optimal solutions of Case I 
Set z f1(μ ) f2(μ ) f3(μ ) f4(μ ) Computational 

time (sec.) 
*
1μ

*
2μ  *

3μ  *
4μ

*
5μ

1 25.972 414 2.944 2.005 0.594 15.7 12 13.5 13 11 16.5
2 31.389 423.25 2.647 1.501 0.683 15.34 12 13.5 13 11.5 15.5
3 55.621 444.75 2.412 1.385 0.75 15.96 13 14.5 13.5 11.5 18 
4 69.423 466.75 2.161 1.103 0.826 15.37 13 14 13.5 12.5 18 

 
6.2. Case II 
 Case II, which is a medium scale case, is depicted in Figure 4. This system produces 
winter jackets. The final jacket consists of three parts: nylon, polyester and feather. There is one 
machine in the service stations settled in nodes 1, 2, 3 and 4, and infinite number of machines in 
the service stations settled in the other nodes. Table 3 shows the characteristics of the service 
stations in this case. The other assumptions are as follows: 
1.   6=λ . 
2. The transport time between the service stations settled in nodes 1 and 7 has generalized 

Erlang distribution of order 2 with the parameters )5,3(),(
2)7,1(1)7,1( =λλ . The transport times 

between the other service stations are equal zero. 
 

λ  
 
 

λ  
                                                                                                                           
 

λ  
                                                                             

2 6

3 5

4

1 

87

 
Figure 4. Dynamic assembly system of Case 2 
 

Table 3. Characteristics of the service stations in Case II 
Service 
station 

1 2 3 4 5 6 7 8 

)( iiC μ  32
1 +μ  2μ  2 3μ  5 4μ  5μ +1 3 6μ  7μ +2 2 8μ +4 

The corresponding stochastic process {X(t),t 0} has 42 states. The given threshold is 
equal to 2.5 days in this case. It is also assumed that S

≥
i={4,4.2,4.4,4.6,…,7.8,8} for i=1,2,…,8. 

We set the goals as b1=135, b2=1.5, b3=0.4 and b4=0.95. We also consider the same sets of c as 
the first case. The Pareto-optimal solutions and the optimal capacities of Case II are given in 
Tables 4 and 5, respectively. 
Table 4. Pareto-optimal solutions of Case II 
Set z f1(μ ) f2(μ ) f3(μ ) f4(μ ) Computational time (sec.) 
1 10.031 140.56 2.058 0.655 0.758 73.99 
2 12.443 144.16 1.96 0.612 0.797 74.37 
3 19.57 151.04 1.82 0.477 0.851 72.15 
4 23.006 156.84 1.721 0.434 0.884 73.43 
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Table 5. Optimal capacities of Case II 
Set *

1μ  *
2μ  *

3μ  *
4μ  *

5μ  *
6μ  *

7μ  *
8μ  

1 6.4 7.6 7.8 7 4 4.2 5.2 4.8 
2 6.4 7.8 7.6 7.4 4.4 4.2 6.6 4.8 
3 6.8 7.8 8 7.2 4.2 4.4 6.8 5.4 
4 6.8 8 7.6 7.8 5.2 4.2 7.4 6.6 

As we explained in Section 4, solving the goal attainment formulation (18), optimally, 
and consequently, comparing the genetic algorithm results against the optimal results is 
impossible. Therefore, we try to compare the genetic algorithm results against the results of a 
discrete-time approximation of the formulation (18), proposed by Azaron et al. [1]. 
 
6.3. Comparison the GA results against those of discrete-time approximation technique  

We use LINGO 6, in the same computer, to solve Cases I and II for 4 indicated sets of c, 
considering the discrete-time approximation technique. In this technique, we discretize the 
continuous-time system and convert the optimal control problem into an equivalent nonlinear 
programming problem. In other words, we transform the differential equations into equivalent 
difference equations as well as transform the integral terms into equivalent summation terms. To 
follow this approach, the time interval is divided into K equal portions with length , refer to 
[1] for details. In each comparison, two different levels of K and 

tΔ
tΔ  (K=20, =0.3) and 

(K=200, =0.03) are considered for both cases.  
tΔ

tΔ
Figure 5 shows the objective function values z for the two indicated methods. According 

to this figure, the objective function values in both cases, using the genetic algorithm, are much 
less than those, considering the discrete-time approximation with K=20.  

The objective function values, using the discrete-time approximation with K=200, are 
optimal or very near to optimal. Therefore, the percentage differences between the objective 
function values using the GA and the discrete-time approximation with K=200, or the absolute 
differences between z obtained from the GA and z obtained from the discrete-time approximation 
with K=200 divided by z obtained from the GA, can be considered as a measure for assessing 
how good the GA results actually are. The maximum percentage differences in Cases I and II are 
equal 7.75% and 3.12%, respectively. Clearly, the GA results are very near to optimal results. 
Therefore, the efficiency of the proposed genetic algorithm approach is concluded.  
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Figure 5. Objective function values (z) for Cases I and II, according to sets 1,2,3,4 of c 
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Figure 6 shows the computational times for the genetic algorithm and the discrete-time 
approximation, respectively. According to this figure, the computational times, using the genetic 
algorithm, are remarkably decreased, even comparing against the discrete-time approximation 
with K=20, especially for larger-scale cases. For example, the maximum computational time in 
the two indicated cases, using the GA, is equal to 74 seconds, but the required computational 
time to solve set 4 of Case II, using the discrete-time approximation with K=200, is about 14 
hours. Therefore, it is clearly concluded that the genetic algorithm approach is computationally 
superior in terms of finding optimal or near-optimal solutions to large-scale problems than the 
discrete-time approximation technique.  
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Figure 6. Computational times (sec.) for Cases I and II, according to sets 1,2,3,4 of c 

 
7. Conclusion 
 

In this paper, we introduced a genetic algorithm approach to control the service rates of 
the manufacturing and the assembly operations in a dynamic multistage assembly system, in 
which the average lead time, the variance of the lead time and the total operating costs of the 
system per period are minimized and the probability that the manufacturing lead time does not 
exceed a certain threshold is maximized. 

To solve the relevant multi-objective programming and generating the Pareto-optimal 
solutions, we used the goal attainment method, which is a variation of the goal programming 
technique. Goal attainment method is one of the multi-objective techniques with priori 
articulation of preference information given. The goal attainment method has fewer variables to 
work with, so it will be computationally faster, and therefore is a good method to solve our 
problem. 

The problem considered in this paper has discrete decision variables and involves 
nonlinearity. After the reformulation of the problem, we proposed a genetic algorithm with 
double strings using continuous relaxation based on reference solution updating (GADSCRRSU) 
to solve the problem.  

According to the numerical experiments of Section 6, it is seen that the genetic algorithm 
method is an efficient method for the multi-objective lead time control problem. 

We could also obtain the distribution function of the manufacturing lead time. Seidmann 
and Smith [21] have developed procedures to assign due-dates for jobs in a job shop 
environment assuming that the probability distribution of the lead time is known. Therefore, our 
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results complement theirs. Together one may now assign due dates for the final product in a 
multistage assembly system.  

Monte Carlo simulation can also be used to analyze the impact of non-exponential inter-
arrival, processing and transport times. 

We just obtain the lead time distribution in multistage assembly systems by transforming 
the related queueing network into an equivalent stochastic network and then computing the 
longest path distribution in the stochastic network by constructing a proper continuous-time 
Markov chain. Any other analytical longest path approach could also be used to obtain the lead 
time distribution.  

The contribution of this paper is to provide a framework to deal with the optimal service 
control in multistage assembly systems with infinite buffer capacities, considering the role of 
transport times between service stations, using genetic algorithms.  

In this paper, we only consider policies that are fixed at time zero. Such policies can be 
sub-optimal as they can be bettered by dynamic policies. May be in the future, this paper can be 
extended to obtain optimal service control, dynamically, in multistage assembly systems using 
MDPs, refer to Bertsekas [3]. 
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