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Abstract

An enoumously developed giant cheliped with the other small one characterizes
the adult male fiddler crab. Some experiments with artificial severances of cheliped
indicate that such a handedness in the cheliped size is maintained even after the
regeneration of severed cheliped. On the other hand, some experimental researches
give some results about an unknown physiological system which controls the emer-
gence and the regeneration of the handedness in the cheliped size. In this paper,
with two hypothesized factors relevant to the regeneration of a severed cheliped, we
propose a simple mathematical model to describe the experimental result about the
cheliped regeneration with a handedness after the cheliped severance for the fiddler
crab. Our model gives a suggestion about an underlying system for the cheliped
regeneration in the fiddler crab or some other crustacean species.

Key words: handedness, fiddler crab, regeneration, mathematical model,
differential equations

1 Introduction

The most characteristic feature of male fiddler crab is an enormously devel-
oped giant cheliped and the other small one, while the female has two small
equal-sized chelipeds (Crane, 1977; Mariappan et al., 2000). It depends on the
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Fig. 1. Experimental result about the cheliped regeneration after the artificial sev-
erance by Yamaguchi (1977, 1978). White arrow indicates the growth, the black
arrow does the operation of a cheliped severance, and the light dark arrow does the
cheliped regeneration. For detail, see the main text.

individual which side of chelipeds is giant (Yerkes, 1901; Yamaguchi, 1977).
Few male individuals have nearly equal-sized (both giant or small) chelipeds
(Morgan, 1923; Yamaguchi, 1973).

Crustacean can regenerate its lost limb. Mechanism of such a limb regeneration
has been attracting various biological researchers. von Hagen (1962) found that
the male of Uca tangeri regenerates its larger cheliped, keeping the handedness,
that is, the larger side being unchanged. Yamaguchi (1977, 1978, 2001) and
Yamaguchi & Henmi (2001) examined the cheliped regeneration with some
experiments for the fiddler crab Uca lactea, in which a cheliped is artificially
severed and then the regenerated size is compared to the size of the original
and the other unsevered cheliped (see Fig. 1). In the experimental results,
after a cheliped of young male is severed, the regenerated cheliped appears
smaller than the unsevered cheliped. Both chelipeds become giant for the
male which has not experienced any severance of its cheliped. The cheliped
severance of adult male with a handedness in the cheliped size does not affect
its handedness even after the cheliped regeneration. That is, the originally
larger side is still larger than the other even after the cheliped regeneration,
independently of which side is severed. For the adult male with two giant
chelipeds, if both chelipeds are severed, regenerated chelipeds become small.

Before the emergence of such a handedness in the cheliped size, the young male
loses one of chelipeds which are originally of equal size (Morgan, 1923, 1924;
Ahmed, 1976; Otani, 1993; Yamaguchi & Henmi, 2001). Then, the unsevered
cheliped grows larger than the regenerated one (Weis, 1976, 1977; Ahmed,
1978; Yamaguchi & Henmi, 2001). Such a differentiated handedness is physi-
ologically maintained in the more matured period even when another lost of
a cheliped occurs (Vernberg & Costlow, 1966; Yamaguchi, 1973, 1977, 1978,
2001; Weis, 1976, 1977; Ahmed, 1978; Yamaguchi & Henmi, 2001).
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In contrast, in case of snapping shrimps, the severance of a chela can cause
the reversal of the handedness in the chela size (Wilson, 1903; Przibram, 1931;
Mellon, 1981; Govind & Pearce, 1988; Govind et al., 1988; Govind, 1989;
Young et al., 1994; Mariappan et al., 2000). If the larger chela is severed,
then the smaller chela grows larger in turn, while the regenerated one does
smaller than it. It is reported that some species of heterochelous crab and
lobster show such reversal of the handedness, too (Cheung, 1976; Hamilton et
al., 1976; Yamaguchi, 1977, 1995; Simonson & Steele, 1981; Simonson, 1985;
Haefner, 1990; Mariappan et al., 2000).

Physiological system which controls the limb regeneration has something still
unknown. Some molecular based researches have been revealing some factors,
hormones/steroids and their receptors, which function in the regeneration pro-
cess (Needham, 1965; Hopkins, 1989, 1993, 2001; Hopkins et al., 1999). Hop-
kins (2001) gives a suggestion about the hormonal mechanism in the early
period of a limb regeneration in the crab Uca as illustratively shown in Fig. 2.
He proposed that the epidermis in the regenerating blastema of Uca pugila-
tor is analogous to the wound epidermis of vertebrates, and suggested that
the release of growth factor(s) from the severed nerve and the production of
compounds like a fibroblast growth factor (FGF) by the wound epidermis are
very early events in crustacean limb regeneration, and that the effects of these
growth factors may be modulated by endogenous retinoids. He also gave some
suggestions about the role of ecdysteroids during blastema formation.

In this paper, with two hypothesized factors relevant to the regeneration of
a severed cheliped, we present a simple mathematical model, to describe the
experimental result about the handedness regeneration for the fiddler crab.

2 Model

2.1 Assumptions

To construct our mathematical model, we use the following assumptions about
the physiological dynamics for the cheliped regeneration (see Fig. 3):

(1) A physiological factor A is always secreted by a certain source tissue. A
inhibits its own production with a negative feedback;

(2) A signal of the cheliped severance stimulates the growth of a tissue Z.
The tissue Z grows only after the first experience of a cheliped severance,
so that it does not grow unless any cheliped is severed;

(3) The growth speed of Z is proportional to the concentration of A, while
the growth becomes slower as the size of Z increases;
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Fig. 2. Schematic explanation of the mechanism of a limb regeneration in the crab
Uca, suggested by Hopkins (2001). FGF-2 denotes the fibroblast growth factor 2,
FGF-4 the fibroblast growth factor 4, and RA the endogenous retinoic acid. The
source (X) of RA has been unknown yet. Relationships indicated by ‘action’ are
added by us.

(4) The tissue Z produces another physiological factor B, and its secretion
rate increases as the size of Z gets larger;

(5) The physiological factor B inhibits its own production by the tissue Z,
and does the production of the physiological factor A as well;

(6) Physiological factors A and B interact with each other, and then B loses
its activity. Inactivated factor B never reactivates;

(7) The growth of regenerating cheliped is in a logistic manner with a satu-
ration size;

(8) The saturation size of regenerating cheliped is independent of the size of
the unsevered cheliped;

(9) The saturation size of regenerating cheliped is reduced by a cooperative
action of A and B;

(10) Before the first severance of any cheliped, the cheliped size is the same
between left and right.

Compared to the physiological mechanism suggested by Hopkins (2001) about
a limb regeneration, the factor A could be regarded as corresponding to the
ecdysteroids secreted by Y-organs. The signal of a cheliped severance could be
to the secretion of the fibroblast growth factor 4 (FGF-4) by epidermal cells
stimulated by the severance, and the factor B could be to the endogenous
retinoic acid (RA). The tissue Z could be to the source tissue (‘X’ in Fig. 2)
of RA. It may be possible that Z could be regarded as representing a gene
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Fig. 3. Illustrative explanation of our mathematical modelling for the physiological
system of the cheliped regeneration. For detail, see the main text.

product which is reflected to the concentration of a physiological factor B. In
a sense, our modelling could be regarded as an aggregation of the unknown
physiological system into a simple one.

2.2 Physiological dynamics

With the above assumptions, we consider the following mathematical model
for the physiological dynamics about the cheliped regeneration:

da(t)

dt
= α

{
1 − a(t)

ca

− (θL + θR)µb(t)

}
a(t); (1)

dz(t)

dt
= (θL + θR)γ

{
1 − z(t)

cz

}
a(t); (2)

db(t)

dt
= β

{
1 − b(t)

cb

}
z(t) − (θL + θR)δa(t)b(t), (3)

where a(t) is the concentration of physiological factor A, b(t) that of phys-
iological factor B, z(t) the size of Z at time t. Every parameter is positive.
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Parameter α is the intrinsic secretion rate of A from an unknown source, β
that of B from the tissue Z. Saturation concentrations for A and B are re-
spectively given by ca and cb. γ is the intrinsic growth rate of Z, and cz the
carrying capacity for its size. µ is the inhibition rate for the secretion of A
due to B. δ is the inactivation rate of B due to an interaction between A and
B. θR (resp. θL) is the regeneration initiation parameter which is zero before
the first severance of the right (resp. left) cheliped, and changes to 1 after
the first severance. In our modelling, the strength of a signal caused by the
cheliped severance to promote the growth of Z doubles when both chelipeds
are severed.

As for the initial condition, we assume that the physiological factor A is at its
saturation: a(0) = ca, and that the tissue Z does not exist: z(0) = b(0) = 0.
Before the first severance, parameters θR and θL are both kept zero, while the
physiological condition is kept the same as the initial. The state (a, z, b) =
(ca, 0, 0) is an equilibrium state for the system of (1–3) with θR = θL = 0.

2.3 Growth of the cheliped size

In addition to the above physiological dynamics, we consider the following
system that governs the temporal variation of the right cheliped size r(t), the
left cheliped size l(t), the saturation size for the right cheliped growth kR(t),
and that for the left cheliped growth kL(t):

dr(t)

dt
= σ {kR(t) − r(t)} r(t); (4)

dl(t)

dt
= σ {kL(t) − l(t)} l(t); (5)

dkR(t)

dt
=−θRηa(t)b(t) {kR(t) − r(t)} ; (6)

dkL(t)

dt
=−θLηa(t)b(t) {kL(t) − l(t)} . (7)

Parameter σ is the intrinsic growth rate of the cheliped size, and η the strength
coefficient for the cooperative action of A and B to suppress the saturation
size of regenerating cheliped.

We assume that the cheliped size is sufficiently small at the initial condition:
r(0) = l(0) = x0 < kL(0) = kR(0) = ck. Besides, just after the severance of a
cheliped, the regeneration starts with the initial size x0 again, independently
of the original size before the severance.
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Since θR = θL = 0 before the first severance, from (6) and (7), kR = kL = ck.
Meantime, from (4) and (5), the size of each cheliped is growing toward the
saturation size ck in a logistic manner. If no severance occurs, both chelipeds
grow up to the same size ck, which could be regarded as two giant chelipeds
observed for few samples of fiddler crab.

We remark that, in our model composed of (1–7), the dynamics of (1–3) is
independent of that of (4–7), whereas the latter is affected by the former.

2.4 Non-dimensionalized system

From (1–7), we can get the following non-dimensionalized system:

dA(τ)

dτ
= {1 − A(τ) − (θL + θR)MB(τ)}A(τ); (8)

dZ(τ)

dτ
= (θL + θR)Γ {1 − Z(τ)}A(τ); (9)

dB(τ)

dτ
= P {1 − B(τ)}Z(τ) − (θL + θR)DA(τ)B(τ); (10)

dR(τ)

dτ
= S {KR(τ) − R(τ)}R(τ); (11)

dL(τ)

dτ
= S {KL(τ) − L(τ)}L(τ); (12)

dKR(τ)

dτ
=−θREA(τ)B(τ) {KR(τ) − R(τ)} ; (13)

dKL(τ)

dτ
=−θLEA(τ)B(τ) {KL(τ) − L(τ)} , (14)

with the following variable and parameter transformations:

τ = αt; A(τ) =
a(t)

ca

; Z(τ) =
z(t)

cz

; B(τ) =
b(t)

cb

;

KR(τ) =
kR(τ)

ck

; KL(τ) =
kL(t)

ck

; R(τ) =
r(t)

ck

; L(τ) =
l(t)

ck

;

M = cbµ; Γ =
caγ

czα
; P =

czβ

cbα
; D =

caδ

α
; S =

ckσ

α
; E =

cacbη

α
.

For a mathematical convenience, we hereafter analyze this non-dimensionalized
system instead of the original one.
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3 Analysis

3.1 Equilibrium state reached from the severance of a single cheliped

After the first severance of a single cheliped, only one of parameters θR and θL

becomes 1, and the other remains 0. The dynamics given by (8–10) has three
types of the equilibrium point (A∗, Z∗, B∗) = (0, 0, +), (0, +, 1), and (+, 1, +),
where the symbol ‘+’ means an undetermined positive value. With the local
stability analysis, we can easily find that the equilibrium point (0, 0, +) is
always unstable.

At most two different equilibrium points of type (+, 1, +) exist if one of the
following conditions is satisfied:

1 < M <
(P/D + 1)2

4P/D
;

P

D
< 1,

(15)

or

M < 1. (16)

When the equilibrium point exists unique, the standard local stability analysis
shows that it is asymptotically stable. When different two exist, the smaller
one is asymptotically stable while the larger is unstable.

In contrast, as for the equilibrium point (0, +, 1), the local stability analysis
shows that it is unstable if M < 1. In contrast, for M > 1, making use of the
isoclines projected on the (A,B)-phase plane, we can suggest that it is globally
stable, or exists locally stable with the other locally stable equilibrium point
of type (+, 1, +), that is, in a bistable situation (see Appendix).

3.2 Equilibrium state reached from the severance of both chelipeds

We have θR = θL = 1 after the severance of both chelipeds. As in case of the
severance of a single cheliped, there are three types of the equilibrium point
(A∗, Z∗, B∗) = (0, 0, +), (0, +, 1), and (+, 1, +). Again the equilibrium point
(0, 0, +) is always unstable.

Local stability for each type of the equilibrium point is analogous to that in
case of the severance of a single cheliped. As for the equilibrium point of type
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Table 1
Classification of the parameter region according to the local stability of the equilib-
rium (A∗, Z∗, B∗). The “stable” means the asymptotical stability. See also Fig. 4.

Severance (A∗, Z∗, B∗) Region I Region II Region III

Single
(+, 1, +) stable stable non-existent

(0, +, 1) unstable/stable unstable/stable stable

Both
(+, 1, +) stable non-existent non-existent

(0, +, 1) unstable/stable stable stable

(+, 1, +), at most two different equilibrium points exist if one of the following
conditions is satisfied:

1

2
< M <

(P/D + 2)2

16P/D
;

P

D
< 2,

(17)

or

M <
1

2
. (18)

When the equilibrium point exists unique, it is asymptotically stable. When
different two exist, the smaller one is asymptotically stable while the larger is
unstable.

As for the equilibrium point (0, +, 1), we can apply the arguments similar to
those in the previous section, and find that it is unstable if M < 1/2. For
M > 1/2, we can suggest that the equilibrium point becomes globally stable,
or exists locally stable with the other locally stable equilibrium point of type
(+, 1, +): a bistable situation.

3.3 Classification of the parameter region

From the above results about the existence and the local stability of the equi-
librium point of type (+, 1, +), we can classify the parameter region into the
following three (see Table 1 and Fig. 4):

Region I: For the severance of a single cheliped and of both chelipeds, the
equilibrium point of type (+, 1, +) exists locally stable.

Region II: The equilibrium point of type (+, 1, +) exists unique and locally
stable only in case of the severance of a single cheliped. In case of the
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Fig. 4. Classification of the parameter region according to the local stability of the
equilibrium (A∗, Z∗, B∗). Boundaries are given by (15–18). For detail, see Table 1
and the main text.

severance of both chelipeds, it does not exist. The equilibrium point of type
(0, +, 1) is globally stable only in case of the severance of both chelipeds.

Region III: The equilibrium point of type (+, 1, +) does not exist, while that
of type (0, +, 1) is globally stable.

3.4 Emergence of the handedness

Before the first severance, both chelipeds grow with the same size. After the
first severance for a single cheliped, the handedness in the cheliped size emerges
as indicated in Fig. 5 by numerical calculations. At the equilibrium state, the
regenerated cheliped is much smaller than the unsevered cheliped. Numerical
calculations indicate that the equilibrium state is independent of when the first
severance occurs. Only for the parameter region III, the concentration of A
asymptotically diminishes after the cheliped regeneration process is initiated.

In the case when the first severance is for both chelipeds, the regenerating
chelipeds grow toward a saturation size smaller than the original saturation
size (Fig. 6). In this case, except for the parameter region I, the concentration
of A asympototically diminishes.

3.5 Effect of repeated severances

We numerically investigate the variation of cheliped size due to some repeated
severances and regenerations.
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Fig. 5. Temporal variation of variables A, Z, B, R, and L after the first severance
of the right cheliped. The severance occurs at time τ = 10. Γ = D = S = Q = 1.0,
P = 2.0, and x0 = 0.001. M = 0.1 for the parameter region I, M = 0.7 for II, and
M = 1.5 for III.

Fig. 6. Temporal variation of variables A, Z, B, R, and L after the first severance
of both chelipeds. Parameter values for numerical calculations are the same as for
those in Fig. 5.

Subsequent two severances of a single cheliped affect the regenerated size ex-
cept for the case of the parameter region III (see Figs. 7 and 8). As for the
parameter region III, if the second severance occurs sufficiently later than the
first one does, the handedness emerged by the first severance can be exactly
reproduced by the cheliped regeneration after the second severance, indepen-
dently of which cheliped is severed at the second severance. In the case when
the second severance occurs for the cheliped regenerated after the first sev-
erance, the regenerated cheliped size is the same as before, independently of
the moment of the second severance. However, as indicated in Fig. 8, if the
second severance occurs for the unsevered cheliped at the moment sufficiently
near the first severance, the second severance affects which cheliped becomes
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Fig. 7. Numerical calculations for the temporal variation of variables A, Z, B, R,
and L with subsequent two severances of a single cheliped. Severances occur at time
τ = 40 and 80. The second row in the figure is about two severances of the same side
of cheliped, and the third is about those for different sides. Γ = D = S = Q = 1.0,
P = 2.0, and x0 = 0.001. M = 0.1 for the parameter region I, M = 0.7 for II, and
M = 1.5 for III. Values of R and L are plotted in logarithmic scale.

Fig. 8. Numerical calculations for the temporal variation of the cheliped size R and
L for the parameter region III with two severances of a single cheliped. The second
severance occurs relatively near the first one. Vertical axis is in logarithmic scale.
The second row is about two severances of the same side of cheliped, and the third
is about those of different sides. Temporal variation of A, Z, and B is independent
of the moment of the second severance. Γ = D = S = Q = 1.0, P = 2.0, x0 = 0.001,
M = 1.5.
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larger than the other at the saturation size.

In contrast, as shown in Fig. 7, for the parameter region I or II, when the
cheliped regenerated after the first severance is severed again, the regenerated
cheliped becomes smaller than before. If the second severance occurs for the
larger cheliped which was not severed at the first severance, the regenerated
cheliped cannot recover its original size. It becomes smaller than the other
cheliped for the parameter region I and does almost the same with the other
for the parameter region II. Therefore, for the parameter region I or II, the
second severance significantly changes the handedness emerged by the first
severance.

If we remove both chelipeds twice, then, for the parameter region II or III, the
size of regenerated chelipeds is the same as before. For the parameter region I,
such two severances make the cheliped size significantly smaller than before.

By numerical calculations, we find that these characteristics of the cheliped
regeneration are qualitatively the same also in case of more frequent ran-
dom/periodic severances. Especially, for the parameter region III, the handed-
ness emerged after the first severance tends to be robustly maintained even af-
ter such repeated severances. In contrast, for the parameter region I or II, such
repeated severances make the regenerated cheliped size smaller and smaller.

3.6 Result

With numerical calculations for each parameter region classified in the previ-
ous section, we lastly obtain the following result about the size of the cheliped
regenerated after the severance:

Region I: Differently from the experimental result, after the severance of a
cheliped, the handedness in the cheliped size is not necessarily recovered as
before.

Region II: If the larger cheliped is severed at the second severance, the size
of the regenerated cheliped is not recovered as it was. This is different from
the experimental result shown in Fig. 1, although the qualitative result for
the other cases of the severance appears corresponding to the experimental
result.

Region III: The size of the regenerated cheliped qualitatively corresponds
to the experimental result shown in Fig. 1.

For any parameter region, the cheliped regenerated after the severance of the
smaller one never becomes larger than the other.
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4 Concluding Remarks

With some hypotheses about the physiological system for the cheliped regen-
eration, we constructed a mathematical model in order to compare to the
experimental result by Yamaguchi (1977, 1978) for the cheliped handedness
in a fiddler crab. We analyzed the model in terms of the size of the cheliped
regenerated after its severance, focusing the handedness in the cheliped size.
Consequently, we found the parameter region that can qualitatively describe
the experimental result, although, for the other parameter region, our model
shows some features different from the experimental result.

Hypotheses for our modelling would be rather simple and general, because
our aim is to present a mathematical model as simple as possible in order
to emphasize a main structure of the unknown physiological system for the
cheliped regeneration. We have not specified any substances in vivo for the
physiological factors A and B in our model. The corresponding substances may
depend on species. Our results different from the experimental result, that is,
those for the parameter region I or II, may be applicable for another species.
Our results imply that such a species cannot keep the handedness, and shows
a reduction of the cheliped size by repeated severances and regenerations. For
such a species, the handedness in the cheliped size would not be excessive in
comparison with the fiddler crab.

From our results, we suggest that there would be a physiological factor (A in
our model) which works in the juvenile period, like a juvenile hormone, before
the first severance of a cheliped. The first severance of a cheliped would serve
as an initiation of the secondary sexual characteristics, diminishing a juve-
nile hormone with growing a specific tissue or activating some gene product
(Z in our model) for the secondary sexual characteristics. Disappearance of
the juvenile hormone would be necessary for the handedness robust against
additional severances. If the experiment of aritificial severances of the che-
liped in the fiddle crab could be designed with accompanying investigation of
the variation of hormon composition in vivo, our results would be useful as a
comparison to the experimental result.

In the actual regeneration process, the growth of regenerating cheliped de-
pends on the period of molting. Although our model does not include such
an effect of the period of molting, we expect that our model would be able to
grasp the main structure of the unknown physiological system for the cheliped
regeneration in the fiddler crab.

In case of snapping shrimps, the severance of a chela can cause the reversal
of the handedness in the chela size. Our present model cannot explain such
a handedness reversal. Such a handedness reversal may require an interaction
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of the growth between right and left chelae. With some additional hypotheses
or modifications in our model, we would be able to extend our model to
explain such a handedness reversal, since the physiological system for the
limb/cheliped/chela regeneration would be expected to have a common main
structure in Crustacea. Such an extension would be one of the next steps of
this theoretical study with a mathematical model.

Appendix

A Stability of (A∗, Z∗, B∗) = (0, +, 1)

In this appendix, for the system after the first severance of a single cheliped,
we show a stability analysis for the equilibrium point (A∗, Z∗, B∗) of type
(0, +, 1).

By the standard linearization method, the eigenvalues for (A∗, Z∗, B∗) =
(0, +, 1) can be easily obtained as 1 − M , 0, and −PZ∗. If M < 1, one
eigenvalue is positive, so that the equilibrium point is unstable. If M > 1, two
eigenvalues are negative, and one is zero. So hereafter we focus the case of
M > 1.

Now, let us consider the trajectory of (A,B) projected on a plane Z = const.
On the plane, as shown in Fig. A.1, we consider the projected null clines for
A and B, which are given by (8) and (10) with a constant Z. Although the
null clines for A are independent of Z, the null cline for B depends on the
value of Z. We find that only two cases indicated in Fig. A.1 can occur. One is
that those null clines have the unique intersection (0, 1), and the other is that
they have three intersections, (0, 1) and the other two with positive values.
As illustrated in Fig. A.1, in the latter case, one of positive intersections is
repulsive while the other two are attractive. In contrast, when those null clines
have the unique intersection (0, 1), it is attractive.

Actually, the value of Z is variable in time, governed by (9), so that the shape
of the above-mentioned null cline for B is temporally variable. This means
that, if Z converges to a positive value Z∗ as τ → ∞, then the configuration
of null clines for A and B on the plane Z = Z∗ should be alternatively one of
those shown in Fig. A.1.

This argument suggests that, if M > 1, the equilibrium point (A∗, Z∗, B∗)
of type (0, +, 1) exists globally stable, or locally stable with the other locally
stable equilibrium point of type (+, 1, +).
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Fig. A.1. Phase plane for (A,B) projected on a plane Z = const. Thick lines
indicate the null clines for A, and the dotted curve does the null cline for B. The
shape of the dotted curve depends on the value of Z. Black point indicates the
locally stable equilibrium point, and white one does the unstable equilibrium point.
(a) the equilibrium point is only (A,B) = (0, 1); (b) three equilibrium points appear.
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