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Abstract

We describe here a mathematical model of the adaptive dynamics of a
transport network of the true slime mold Physarum polycephalum, an amoe-
boid organism that exhibits path-finding behavior in a maze. This organism
possesses a network of tubular elements, by means of which nutrients and sig-
nals circulate through the plasmodium. When the organism is put in a maze,
the network changes its shape to connect two exits by the shortest path. This
process of path-finding is attributed to an underlying physiological mecha-
nism: a tube thickens as the flux through it increases. The experimental
evidence for this is, however, only qualitative. We constructed a mathemati-
cal model of the general form of the tube dynamics. Our model contains a key
parameter corresponding to the extent of the feedback regulation between the
thickness of a tube and the flux through it. We demonstrate the dependence
of the behavior of the model on this parameter.

Keywords: Physarum polycephalum, mathematical modeling, natural adaptive

networks
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1 Introduction

There are two fundamental questions regarding information processing in a

biological system: Firstly, how ”smart” is an organism? Secondly, how does the or-

ganism realize this smartness? Even unicellular organisms can demonstrate a greater

capacity than initially thought for processing information, for example by solving

a maze (Nakagaki et al., 2000a; Nakagaki, 2001; Nakagaki et al., 2004a; Nakagaki

et al., 2004b). Here we provide an answer to the question of how the amoeboid

true slime mold, Physarum polycephalum, realized this capacity. This organism is

useful for study of to biological information processing, since the simplicity and

homogeneity of its body structure assist in the preparation of mathematical models.

The body of the plasmodium of of Physarum polycephalum contains a network

of tubes, by means of which nutrients and chemical signals circulate throughout

the organism (Nakagaki et al., 2000a; Nakagaki, 2001). Circulation is based on

streaming through a complicated network of tubular channels. Thus, the geometry

of the tube network is related to the transport of materials and information within

the organism. Since the tubes disassemble and reassemble within a period of a few

hours in response to external conditions, this system is very useful for studying

the function and dynamics of natural adaptive networks (Nakagaki et al., 2004a;

Nakagaki et al., 2004b).

When food sources were presented to a starved plasmodium that was spread

over the entire agar surface, regions of the plasmodium concentrated at each food

source, as shown in Fig. 1. Almost the entire plasmodium was taken up in this

accumulation, covering each source in order to absorb nutrients, and only a few tubes

remained connecting the separated components of the plasmodium. It should be
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noted that the connecting path traced the shortest route to the food sources even in

the complex geometry of a maze (Nakagaki et al., 2000a; Nakagaki et al., 2001). This

phenomenon can be applied to both path-finding in a maze and path selection in a

transport network. It is difficult to develop a mathematical algorithm describing this

natural form of computation, because it is not known how the amoeboid organism

tackles this sort of combinatorial optimization problem.

Since the driving force for transportation is the variation in hydrostatic pressure

along the tube, the hydrodynamic theory implies that thick, short tubes are, in prin-

ciple, the most effective for transportation (Kamiya, 1959). By forming the thickest,

shortest tubes, the organism optimizes its task of survival for the following reasons:

1) the area of its body lying over the food source and working to absorb nutrients

is maximizedand 2) intracellular communication via the exchange of chemical sig-

nals between the positions of food sources is at itsmost effective. Hence, this rather

smart strategy implies that the plasmodium is capable of solving complex problems.

In order to investigate the mechanisms by which the path findind is achieved, we

have developed a mathematical model to simulate the adaptive dynamics of tube

networks.

2 Physiological background

Two empirical rules describe changes in the tubular structure of the plasmod-

ium: first, open-ended tubes, which are not connected to a food source, tend to

disappear; second, when two or more tubes connect the same two food sources, the

longer tubes tend to disappear (Nakagaki et al., 2001). These changes are closely

related to the spatio-temporal dynamics of cellular rhythms, as described below.

Tubular structures are formed in a specific direction when shuttle streaming

of the protoplasm, driven by hydrostatic pressure due to rhythmic contractions,
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persists in that direction for a certain period (Nakagaki et al., 2000b). This ex-

perimental result can be explained at the molecular level. Actomyosin fibers are

arranged along the length of the cortex of a tube, forming the basic framework of

the tube (Naib-Majani et al., 1982; Stockem and Brix, 1994). A similar kind of fiber

orientation is induced by artificial stretching of plasmodial tissue. This phenomenon

is known as the stretch activation effect (Kamiya, 1959; Nagai et al., 1978) and is

a natural property of fibrous molecules. For instance, when a sheet made of vinyl

chloride is stretched, randomly oriented molecules tend to reorient in the direction

of the stretching force. This implies that if there were a stretching force within the

organism, it could act to organize the tubular structures. A candidate force is the

shear stress exerted by fast flowing (1 mm/sec) protoplasm. The estimated magni-

tude of the shear stress is great enough to produce stretch activation. In summary,

then, it can be hypothesized that shear stress exerted by the flow of protoplasm

induces the stretching effect, which in turn leads to regular orientation of the ac-

tomyosin fibers as the basic framework of the tubes. What does this mean for the

regulation of tube formation? The answer lies in positive feedback control between

flux and thickness of the tube, as described below.

The plasmodium consists of two parts: a ”sponge” section including distributed

actin-myosin fibers and a ”tube” section made up of actin-myosin fibers. As illus-

trated in Fig. 1, the protoplasmic sol in the sponge section flows in and out of the

tube section.

The tube widens with sufficient flux. This leads to a further increase of flux

because the resistance to the flow of sol decreases in the wider channel. Hence, tubes

with a large flux grow, while those with a small flux disappear. Clearly this dynamic

behavior of the tube diameter is autocatalytic. In other words, the network has the

ability to adapt to variations of flux. We therefore included this adaptability in our
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Figure 1: Schematic illustration of the changes in cell structure in response to food.
At first the plasmodium (PL) has a quasi-elliptic shape and the food sources (FSs)
are placed on the PL at two locations (a). The plasmodium then gathers around the
FSs, connecting them via a thick tube. The shape resembles a dumbbell (b). The
panel (c) gives a cross-sectional view of the thick tube shown in (b). The sol flows
through the tubular channels (TU), which are made up of the actin-myosin fibers
(PE or sponge part). The actin-myosin fibers around the FSs exhibits rhythmic
contractions and push the sol into the tube (d).

model. However, since the experimental data are not quantitative but qualitative,

there remained a large degree of freedom in formulating the model.

In order to understand the tube dynamics, we have to consider another issue:

how is the motive force of protoplasmic flow determined? The actin-myosin fibers

in the sponge section exhibit rhythmic contractions with a period of two minutes.

These contractions exert pressure on the protoplasmic sol, which makes it flow into

the tube, through it, and out at the other end. The flow in the tube is not uni-

directional; the direction of flow can be observed to switch back and forth. These

periodic changes in direction are known as protoplasmic shuttle streaming.

When food sources (FSs) are presented to the organism, the oscillations are out

5



of phase between one FS and its neighboring tube . This means that the sol in the FS

flows in and out of the tube. When there are two FSs, the two of them push the sol,

sometimes in phase and sometimes out of phase. In any case, the sol is exchanged

between the two FSs over longer periods of time:even in in-phase oscillation, the sol

flows through the tube between the FSs because baseline and amplitude of pressure

oscillation are different from each other. Hence it is reasonable to assume that, at

any given moment, one FS is the source and the other the sink of sol flow. Moreover,

we assume that only the component of the organism at the food source can generate

pressure, and that the tube is a passive element, since most of the organism lies over

the FSs and produces mechanical force synchronously at each FS.

There have been many studies of patterns of rhythmic contractions in relation

to cell behavior (Matsumoto et al., 1988; Miyake et al., 1996; Takamatsu et al., 2001;

Oster and Odell, 1984; Teplov et al., 1991; Takahashi et al., 1997; Tero et al., 2005).

However we will not consider this matter further here: instead we propose to shed

light on the regulation of tube thickness by flux. Based on the above assumptions,

we will clarify the dynamical behavior of the adaptive tube network.
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3 Formulation of the mathematical model

Before deriving model equations, let us recall the way in which the plasmodium

of Physarum solves a maze. The maze is initially filled by the plasmodium as shown

in Fig. 2 (a); the tubular network then appears, and the tubes in the dead end

degenerate (b); finally, the shortest path remains (c). We will adopt this particular

maze as an example for our simulations. The conformation of the initial tubular

network of the organism is represented by the graph in Fig. 2 (d), where each edge

of the graph represents a tube segment. The two special nodes corresponding to the

food sources are named N1 and N2 and other nodes are designated N3, N4, N5, and

so forth. As proposed in the previous section, one of the food source nodes (N1)

always acts as a source and the other (N2) as a sink. The edge between Ni and

Nj is designated Mij. If there are several edges between the same nodes, they are

designated M1
ij, M2

ij, and so forth.

3.1 The flux of sol through the tubes

The variable Qij is used to express the flux through Mij from Ni to Nj. Let us

assume that the flow along the tube is approximately Poiseuille flow. The flux Qij

can then be expressed by the formula

Qij =
πa4

ij

8κ

pi − pj

Lij

,

where Lij and aij are the length and radius respectively of the tube corresponding

to the edge Mij, κ is the viscosity coefficient of the sol and pi is the pressure at the

node Ni. By setting Dij =
πa4

ij

8κ
what we call the conductivity of the edge Mij, the

above equation can be rewritten as:

Qij =
Dij

Lij

(pi − pj). (1)
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Figure 2: Panels (a)-(c) illustrate the plasmodial maze-solving process: (a) initial
state (b) intermediate state (c) final state. Panel (d) is a graphical representation
of the maze. The source node N1 and the sink node N2 are indicated by solid circles
and other nodes are shown by solid squares.

8



We assume zero capacity at each node; hence by considering the conservation law

of sol we have: ∑
i

Qij = 0 (j ̸= 1, 2). (2)

For the source node N1 and the sink node N2, the following two equations hold:

∑
i

Qi1 + I0 = 0,
∑

i

Qi2 − I0 = 0, (3)

where I0 is the flux flowing from the source node (or into the sink node). It should

be noted that I0 is a constant in our model, which means that the total flux is fixed

constant throughout the process.

3.2 Adaptation

Experimental observation shows that tubes with larger fluxes are reinforced,

while those with smaller fluxes degenerate. In order to describe such adaptation of

tubular thickness we assume that the conductivity Dij changes over time according

to the flux Qij. We propose the following equation for the evolution of Dij(t):

d

dt
Dij = f(|Qij|) − rDij. (4)

where r is a decay rate of the tube. This equation implies that the conductivity

tends to vanish if there is no flux along the edge, while it is enhanced by the flux.

It is natural to assume that f is a monotonically increasing continuous function

satisfying f(0) = 0. Note that the edge lengths, Lij’s are kept constant throughout

the adaptation process in contrast to Dij’s.

3.3 Dimensionless model equations

Let us take a characteristic magnitude of flux I0, and take a characteristic

conductivity D̄ so that the relation f(I0) − rD̄ = 0 holds. By setting t =
1

r
t̃ and
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Dij = D̄D̃ij and Qij = I0Q̃ij, we have
d

dt̃
D̃ij = f̃(|Q̃ij|) − D̃ij, where f̃(Q̃) =

f(I0Q̃)/f(I0).

In thispaper, we will consider two types of functions f(Q) which are given

by f(Q) = mQµ and f(Q) = δ
(Q/Qh)

µ

1 + (Q/Qh)µ
where the exponent µ is positive.

The former f(Q) is a simple choice which is a monotonically increasing continuous

function satisfying f(0) = 0. The latter f(Q) also satisfies these conditions and

saturates where Qh gives a half of the saturation level. The former f(Q) derives

a dimensionless function form f̃(Q̃) = Q̃µ, and the latter f(Q) derives f̃(Q̃) =

(1 + a)Q̃µ

1 + aQ̃µ
, where a = (I0/Qh)

µ. Hereafter, we call the former dimensionless function

form Type I, and the latter Type II. Note that Type I function has one parameter

µ, while Type II function has two parameters µ and a.

By omitting ˜ from the dimensionless variables and function, we obtain the

following dimensionless model equation:

d

dt
Dij = f(|Qij|) − Dij, (5)

which we call an adaptation equation. Also, the characteristic length L̄ is taken to

be the shortest edge length, and the characteristic pressure p̄ is given by the relation

p̄ = I0L̄/D̄, and we set Lij = L̄L̃ij and pi = p̄p̃i. Then the network Poisson equation

∗ for the pressure is derived from the equations (1), (2) and (3) as follows:

∑
i

Dij

Lij

(pi − pj) =


−1 for j = 1,
+1 for j = 2,
0 otherwise.

(6)

Note that ˜ is already omitted in the equation (6) from each dimensionless variable

and constant as performed when obtaining the equation (5). By setting p2 = 0 as

the basic pressure level, all pi’s can be determined by solving the equation system

(6), and each Qij =
Dij

Lij

(pi − pj) is also obtained.

∗Note that the left hand side of (6) is a non-uniform discrete Laplacian of the pressure p.
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What should be emphasized is how our model expresses the process of evolution.

The variable Dij’s evolve according to the adaptation equation (5), and variables

such as pi and Qij are determined by solving the network Poisson equation (6)

characterized by the value of the Dij’s (and Lij’s) at each moment.

Here we refer to the numerical schemes shortly. The network Poisson equation

(6) yields a linear equation system with sparse symmetric matrix which is numeri-

cally solved by standard ICCG (Incomplete Cholesky Conjugate Gradient) method.

We solved the adaptation equation (5) using a semi-implicit scheme as follows:

Dn+1
ij − Dn

ij

δt
= f(|Qn

ij|) − Dn+1
ij ,

where δt is a time mesh size and the upper index n indicates a time step.

The conductivity is closely related to the thickness of the tube. Therefore, the

disappearance of tubes is expressed by the extinction of the conductivity of edges.

During the evolution of the model system, some edges grow or remain while others

disappear. We consider that our system has solved the maze when the remaining

edges form a path (or paths) connecting the two special nodes N1 and N2.

Because the total flux is kept constant, there is, in a sense, competition between

edges - with each scrambling for more flux. It is clear that positive feedback is

included in our model equations, since f(Q) is an increasing function. However, it

is not easy to predict how the system evolves and what the asymptotic behavior will

be for a given function form f(Q) and given parameter values of the parameters, as

we will see in the next section.
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4 Simulations of maze solving

In this section, we show that the model can solve a maze in a manner similar

to that used by the plasmodium of Physarum. That is, our system automatically

eliminates some edges by reducing their conductivity, and reinforces other edges,

to arrive at a solution of the maze. Therefore, we are especially interested in the

asymptotic behavior of the system - i.e. which edges survive in the long run.

We will describe simulations using the model equations (5) and (6) adopting

Type I function f(Q) = Qµ and Type II function f(Q) =
(1 + a)Qµ

1 + aQµ
. In type II

function, the parameter µ is taken in the range µ > 1 to keep the sigmoidal profile

as indicated in Fig.3 (b).

Figure 3: (a) Illustration of the graph of Type I function f(Q) = Qµ (µ > 0). (b)

Illustration of the graph of Type II function f(Q) =
(1 + a)Qµ

1 + aQµ
(µ > 1 and a > 0).

Note that f(1) = 1 holds by definition of dimensionless functions.

The graph presented in Fig. 2 (d) is adopted here. The basic structure of the

graph is expressed by the list of edges, {Mij}i,j, and their lengths, {Lij}i,j, which are

fixed throughout the simulation. The path in the graph in Fig. 2 (a) corresponding

to the real path α2 has one edge, while the path corresponding to α1 has two edges.

Similarly, the paths corresponding to β1 and β2 have two and four edges, respectively.

Hereafter, we will designate the path in the graph by the name of the real path to
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which it corresponds, provided that the expression is not confusing. The length of

the path in the graph is the sum of the lengths of the edges that compose the path.

In our graph, the lengths of 4 paths α1, α2, β1 and β2 are set as indicated in the

table below. Note that the ratio between the lengths of α1 and α2 is greater than

the ratio between the lengths of β1 and β2.

Path α1 α2 β1 β2

Length 15.425 16.500 18.164 19.000
Ratio 1.070 1.046

The initial values of Dij are randomly set, which are distributed uniformly within

the interval [0.5, 1.0] unless especially noted.

In all the simulations, the dead end paths vanish first; we will refer to this

hereafter as dead end cutting. Thus the transition from the initial state indicated in

Fig. 4 (a) to the intermediate state in Fig. 4 (b) is always observed. Actually dead

end cutting is completed by the time t = 5 as will be shown in the left panels of Fig.5-

Fig.10. However, there are differences between the asymptotic behaviors for different

choice of the function type and parameter values, which will be demonstrated in the

following subsections.

Figure 4: The thickness of each edge indicates its conductivity, and this procedure
is adopted in all subsequent panels of a similar nature: (a) The initial state, and
(b) the intermediate state in which the dead end paths have already degenerated,
while the paths α1, α2, β1, and β2 remain. The paths that should be included in
the solution are designated γ1, γ2, and γ3.
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4.1 Type I : f(Q) = Qµ

Simulations are shown below for each case: µ > 1, 0 < µ < 1, and µ = 1.

Case I : µ > 1

Fig. 5 (a) and (c) illustrate the evolution of the system by plotting the con-

ductivities Dij(t) for all edges. Rapid dead end cutting is observed, while the key

paths such as γ1, γ2, and γ3 that must be included in the solution (see Fig. 4 (b))

are reinforced and their conductivities quickly converge to f(1) = 1. (Note that

dimensionless total flux is always set unity by our non-dimensionalization process).

Figure 5: The parameter is set at µ = 1.2. (a) Superimposed plots of Dij’s vs.
time, (b) Final state corresponding to panel (a), (c) Superimposed plots of Dij’s
vs. time, (d) Final state corresponding to panel (c). The difference between the
upper and lower panels derives from the difference in initial states. In the simulation
corresponding to the lower panels, initial Dij’s in the path β1 was set randomly in
the interval [0.25, 0.50].

After reaching the intermediate form shown in Fig. 4 (b), one of the paths α1

and α2 and one of the paths β1 and β2 are selected at the following stage in this
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Figure 6: The parameter is set at µ = 2.0. (a) Superimposed plots of time vs.
Dij’s, (b) Final state.

parameter range. If the initial value of Dij is taken as almost uniform, paths α1 and

β1 always survive, as shown in Fig. 5 (a) and (b). However, the path β2 can remain

instead of β1 as in Fig. 5 (c) and (d), if the initial conductivity of the path β1 is set

smaller than the one of β2. Note that the path α2 can also survive instead of α1 if

its initial conductivity is sufficiently larger than the one of α1.

By comparing Figs. 5 and 6, it can be observed that the choice between com-

peting paths is made more rapidly for larger values of µ. However, the basin of

attraction to the shortest path (combination of paths α1 and β1) becomes narrower

as µ goes larger, which were confirmed by a lot of simulations. Generally, the se-

lection of the final path is dependent on the initial state in the parameter region

µ > 1, and any pair of the four possible combinations of paths remain stable to

small perturbations.

Case II : 0 < µ < 1

In this parameter range, the final state is quite different from that of the pre-

vious case. All of the paths α1, α2, β1, and β2 survive at the end, as indicated in

Figs. 7 and 8. Also, a large number of simulations have confirmed that the final

state is the same, regardless of the initial state. Comparing the final conductivities
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of parallel paths such as α1 and α2, it is found that the shorter path finally achieves

higher conductivity. Thus the path β1 attains higher conductivity than β2 although

the difference is smaller than the difference in conductivities of α1 and α2, as shown

in Fig. 7 (a).

If the parameter µ is taken as smaller, the convergence to the final state is

more rapid, and the differences between the conductivities of the parallel paths are

smaller than in the case shown in Fig. 7.

Figure 7: The parameter is set at µ = 0.9. (a) Superimposed plots of Dij’s vs.
time, (b) Final state.

Figure 8: The parameter is set at µ = 0.5. (a) Superimposed plots of Dij’s vs.
time, (b) Final state.

Case III : µ = 1

This special value of µ makes f(Q) linear and leads to results that are somewhat

different from the previous cases, while the dead end cutting process is exactly the
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same. Fig. 9 (b) shows that the shortest path is selected as the final state. Although

it looks similar to the result of the case where µ > 1, there are essential differences.

In this case, the final state does not depend on the initial state, which means that

the shortest path always survives whether the distribution of conductivities in the

initial state is random or biased. Furthermore, Fig. 9 (a) shows that selection of

the paths α1, α2, β1 and β2 is slower than in the previous cases.

Figure 9: The parameter is set at µ = 1.0. (a) Superimposed plots of Dij’s vs.
time, (b) Final state. Note that the time scale in panel (a) is different from that
used in the previous figures.

4.2 Type II : f(Q) =
(1 + a)Qµ

1 + aQµ

Here we examine how the asymptotic behavior varies corresponding to the

change of the parameter a in Type II function. For smaller values of a the situation

is similar to the case of Type I, µ > 1, where only one of the competing paths

remains, as shown in Fig. 10 (a) and (b). On the other hand, Fig. 10 (e) and

(f) shows that all the competing paths can survive with larger values of a. For

intermediate values of a, the result is also intermediate: only one of the pair α1 and

α2 survives, while both of the pair β1 and β2 remain, as indicated in Fig. 10 (c) and

(d).

The Type II function with sigmoidal profile was motivated by the observation
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that the plasmodium makes many thinner tubes rather than a single very thick tube

when the total sol flux is strong (corresponds to larger I0, thus to larger a), while

only a small number of tubes are retained when the sol flux is weak.

Figure 10: The parameter is set at µ = 3.0. (a) Superimposed plots of Dij’s vs.
time for a = 15.0, (b) Final state corresponding to panel (a), (c) Superimposed
plots of Dij’s vs. time for a = 22.0, (d) Final state corresponding to panel (c),
(e) Superimposed plots of Dij’s vs. time for a = 27.0, (f) Final state corresponding
to panel (e).
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5 Simple graphs and analysis

In the previous section we observed a rich variety of network behavior that is

not easy to analyze in a general form. In this section, we concentrate on graphs that

are simple enough to permit of mathematical analysis but can still provide broadly

applicable insights.

5.1 T-shaped graph

In both experiments and simulations of maze solving, rapid dead end cutting

is always observed at the very outset. In order to demonstrate this property more

clearly, we performed an experiment in which T-shaped initial tubes were prepared

and food was supplied at the left and lower ends. The tubes in the upper branch

then disappeared quickly, as shown in Fig. 11 (a) and (b).

We used the graph in Fig. 11 (c) to reproduce this experimental outcome. In

this simple example, Q13 = Q32 = 1 and Q34 = 0, regardless of the form of the

function f(Q). Thus, D34 vanishes exponentially, while D13 and D32 converge to

f(1) = 1. The conductivity of the dead end path vanishes exponentially because

there is no flux in it at any time. In the general graph, the dead end path also

vanishes exponentially for the same reason.

5.2 Ring-shaped graph – Type I : f(Q) = Qµ

We studied cases in which two paths connecting the same nodes compete, as

indicated by the ring-shaped graph (Fig. 12). The corresponding graph consists of

two nodes, N1 and N2, and two edges connecting them. For simplicity, we hereafter

replace Li
12, Qi

12, and Di
12 (i = 1, 2) by Li, Qi, and Di, respectively. The fluxes along
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Figure 11: Panels (a) and (b) indicate the initial and final states respectively of the
T-shaped graph experiment. Panels (c) and (d) show respectively the initial and
the final state of the simulation, which consisted of four nodes and three edges. The
width of the black lines reflects the conductivity of each path.

Figure 12: Panels (a) and (b) indicate the initial and final state respectively of the
ring-shaped network experiment. The lengths of longer and shorter paths are 42
mm and 13 mm, respectively. The corresponding graph is shown in panel (c), which
has two nodes, N1 and N2, and two edges, M1

12 and M2
12.
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each path are calculated as:

Q1 =
D1/L1

D1/L1 + D2/L2

and Q2 =
D2/L2

D1/L1 + D2/L2

. (7)

Since Q1 and Q2 are non-negative, the adaptation equation (5) becomes
d

dt
D1 = f(Q1) − D1,

d

dt
D2 = f(Q2) − D2.

(8)

We analyze the equation for the function form f(Q) = Qµ (µ > 0) in this

subsection. It is clear that there are three equilibrium points for the equation system

(8). Two of them describe the situation in which only one of the two paths survives

and the other vanishes, and are given by (D1, D2) = (1, 0) and (0, 1). We name

these equilibrium points A1 and A2, respectively. The third is the equilibrium point

(D1, D2) =

 1

1 + (L1/L2)
1

1−µ

µ

,

 1

1 + (L2/L1)
1

1−µ

µ, which implies that both of

the paths remain, and is named B. Simulations are performed by controlling the

parameters µ, L1, L2 and the initial values, and we concentrate on the asymptotic

behavior of the solution.

• µ > 1

Fig. 13 (a) shows several orbits in the D1-D2 phase plane. Each orbit con-

verges to one of the two equilibria A1 and A2 and the initial values determine

which one is attained in the final state. Tubes of greater length and lower

conductivity, which characterize the initial state, tend to disappear. To be

precise, the tube which has a greater value of Dµ−1
i /Lµ

i in the initial state is

the one that ultimately survives.

• µ < 1.

In this case, both of the tubes invariably survive, whatever the initial condi-
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tions. The final state is given by the equilibrium point B, as shown in Fig. 13

(b).

Figure 13: Black curves with arrows indicate the orbit, and grey curves are null
clines. The solid circle defines a stable equilibrium point and the open circle indicates
an unstable equilibrium point. (a) The parameters are set at µ = 1.2, L1 = 1.0,

and L2 = 1.1. The dashed line given by D1/D2 = (L1/L2)
µ

µ−1 is a separatrix of
the equilibria A1 and A2 which passes through B. (b) The parameters are set at
µ = 0.8, L1 = 1.0, and L2 = 1.1.

• µ = 1.

The behavior of the solution for L1 = L2 differs from the solution for L1 ̸= L2,

as described below.

(i) L1 ̸= L2

There are two equilibria, A1 and A2, as indicated in Fig. 14 (a). If L1 < L2

holds, the final state is always A1, which means that the shorter tube survives

regardless of initial values. If L1 > L2, every orbit converges to A2 since the

equation (8) is symmetric for exchanging the indices 1 and 2. In any case,

only the shorter edge survives as long as µ = 1.

(ii) L1 = L2

Fig. 14 (b) presents the results of the simulation. In this special case, all
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points on the line segment A1A2 are equilibrium points. It is easily observed

that the ratio of D1 and D2 remains constant along each orbit. Therefore, the

final state is given by the intersection of the line connecting the initial point

and the origin with the line segment A1A2.

Figure 14: Black curves with arrows indicate orbits and grey curves represent null
clines. The solid circle indicates a stable equilibrium point, and the open circle
indicates an unstable equilibrium point. (a) The parameters are set at µ = 1.0 and
L1 = 1.0, L2 = 1.1. Every orbit converges to the equilibrium point A1. (b) The
parameters are set at µ = 1.0 and L1 = L2 = 1.0.

Let us summarize the simulation results in the following table.

Equilibrium Final state Dependence on
points the initial data

µ > 1 A1, A2, B A1 or A2 exists
µ < 1 A1, A2, B B none

L1 < L2 A1, A2 A1 none
µ = 1 L1 > L2 A1, A2 A2 none

L1 = L2 A1A2 Some point of A1A2 exists

We present a linear stability analysis at the equilibrium points in the various

cases listed in the above table. The Jacobi matrix J on the right hand side of the
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equation (8) is calculated as:

J =


µQµ−1

1

D2/L2

L1(D1/L1 + D2/L2)2
− 1 −µQµ−1

1

D1/L1

L2(D1/L1 + D2/L2)2

−µQµ−1
2

D2/L2

L1(D1/L1 + D2/L2)2
µQµ−1

2

D1/L1

L2(D1/L1 + D2/L2)2
− 1

 ,

and the Jacobi matrices at each equilibrium point are denoted J(A1), J(A2), and

J(B), respectively. We first examine the stability of the equilibrium point B. After

some calculation, the following formula is obtained:

J(B) =


µQ∗

2 − 1 −µ
L1

L2

Q∗
1

−µ
L2

L1

Q∗
2 µQ∗

1 − 1

 ,

where Q∗
1 and Q∗

2 are fluxes along the 1st and 2nd tubes at the equilibrium point B.

Using the relation Q∗
1 + Q∗

2 = 1, we have

det J(B) = 1 − µ and trJ(B) = µ − 2,

thus,

det J(B) < 0 for µ > 1,

det J(B) > 0, trJ(B) < 0 for 0 < µ < 1.

This means that the equilibrium point B is a saddle (and thus unstable) for µ > 1

and stable for 0 < µ < 1.

Next we analyze the stability of the equilibrium points A1 and A2. When µ > 1,

J(A1) =


−1 −µ

L1

L2

0 −1

 , J(A2) =


−1 0

−µ
L2

L1

−1

 ,

hence A1 and A2 are stable. When 0 < µ < 1, the right hand side of the equation

system (8) is not differentiable at the equilibrium points A1 and A2. However, it
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is clear that the flow on the phase plane is severely repulsive around A1 and A2,

and hence they are unstable. Together with the stability analysis of the equilibrium

point B, these results support the simulation results shown in Fig. 13. When µ = 1

and L1 ̸= L2,

J(A1) =


−1 −L1

L2

0
L1

L2

− 1

 , J(A2) =


L2

L1

− 1 0

−L2

L1

−1

 .

Therefore, A1 is stable and A2 is unstable when L1 < L2, and A1 is unstable and

A2 is stable when L1 > L2 which agrees with the simulation results in Fig. 14.

5.3 Ring-shaped graph – Type II : f(Q) =
(1 + a)Qµ

1 + aQµ

In the maze solving simulations, we have already observed a different type of

asymptotic behavior for the Type II function from the one of Type I. Let us analyze

here how the asymptotic behavior depends on the parameter a. As in the Type I case,

there are two equilibrium points, A1 and A2 which are given by (D1, D2) = (1, 0)

and (0, 1), respectively. There is also another equilibrium point, B, as shown in Fig.

15 (a), located closer to A2 than to A1 due to the asymmetry of L1 and L2. The

two equilibria A1 and A2 are stable, while B is unstable. When the parameter a is

increased, the saddle-node bifurcation occurs at some critical value of ac, producing

the stable equilibrium point C1 and the unstable equilibrium point C2. Thus, we

have three stable equilibrium points, A1, A2, and C1 for a > ac, as indicated in

Fig. 15 (b). The convergence to the equilibrium point C1 implies the coexistence

of both edges in the final state, which does not occur for smaller values of a. As

seen in panel (b), A1 and A2 can also be final states if the initial state is sufficiently

biased. In contrast to the Type I case, it is difficult to obtain the expression of the

coordinates of the points B, C1 and C2, and is also difficult to calculate the critical
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value ac.

Figure 15: The black curves with arrows indicate the orbits, and the gray curves
are null clines. The solid circle indicates a stable equilibrium point and the open
circle an unstable equilibrium point. The parameters were set at µ = 3.0, L1 = 1.0,
and L2 = 1.1 in both panels. (a) a = 20.0, (b) a = 27.0. The critical value of a is
numerically obtained as ac = 24.73.
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6 Discussion

In this paper, we have described a simple mathematical model of the adaptive

network of a plasmodium capable of solving a complex maze. The key underlying

mechanism in the model is positive feedback: greater conductivity results in greater

flux, and this in turn increases conductivity. As shown in the previous sections, the

system evolves through the following two steps:

1. Dead end cutting,

2. Selection of the solution path from the competitive paths.

The basis of selection depends on the function form and parameter values.

From the point of view of maze solving, it is helpful to adopt a Type I function

form with larger values of µ (> 1), if one wishes to reach a solution as quickly as

possible, ignoring all possibilities of achieving alternative solutions.The choice of

µ = 1 as the Type I function is, in a sense, a special case. As we have shown,

convergence is slower than with the other possible choices, but the shortest path

can be derived without any concern for initial values. Therefore, there is a trade-

off between speed and safety when the Type I function model is used to find the

shortest path to a goal. On the other hand, the aim is to derive all possible paths

connecting the starting point and the goal, it is useful to apply a Type I function

with a smaller value of µ (0 < µ < 1).

Our simulations strongly suggest that the convexity of the function f(Q) essen-

tially affects the asymptotic behavior of the system in the case of the Type I function.

Although the analysis described above was confined to very simple graphs, a math-

ematical analysis of general conformation graphs is now underway. For the Type II

function, we did not observe a clear relationship between the saddle-node bifurcation
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and the local convexity of the sigmoidal profile.

We used the sigmoidal function for a flux-conductance relationship as a more

realistic form than the power function. The observation that there is a maximum

tube diameter clearly motivates that the growth function should saturate, whatever

the mechanism causing the saturation. This observation makes the functional form

of the type II growth function a reasonable modification from the power-law growth

function. We assumed that the flux was proportional to the pressure difference,

but the thixotropy (a property of non-Newtonian fluid) of protoplasm meant that

it barely flowed when the pressure difference was small. Modeling the complex

rheology of the protoplasm is beyond the scope of this paper. To account for this

observation in our model, we take µ > 1 in the type II growth law so that the growth

is less sensitive to changes in the flux when the pressure differences are small.

The sigmoidal curve has physiological implications. The control of the organ-

ism’s body shape in response to volume of available food follows a previously estab-

lished rule: the number of remaining paths is larger when less food is provided to

a fixed amount of plasmodial inoculum (see Nakagaki et al., 2001 for details). This

behavior is considered trade-off between the physiological requirements of moving

towards the FSs in order to consume the food and connecting the two FSs to main-

tain intracellular communication. When the given amount of food is small, only a

small amount of plasmodium covers the food and more plasmodium is devoted to

make connections, which makes the total flux of sol larger. Our simulation with the

sigmoidal function could realize the situation in which multiple paths remain for

a larger total flux. We thereforeconclude that the sigmoidal relationship between

sol flux and tube thickness explains the intelligent control of amoeboid behavior in

Physarum.
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We discuss a physiological role of contraction oscillations in path finding in

Physarum. A portion of organism on a FS is regarded as one oscillator (referred to

hereafter as an FS-oscillator) because it oscillates with sufficient synchrony. The flux

flowing out from the source node depends on pressure difference between the two

FS-oscillators, which is given by amplitudes and phases of the oscillators. One FS-

oscillator is perturbed by the other as the sol flow mediates physical and chemical

interactions between the two FS-oscillators (Oster and Odel, 1984; Teplov et al.,

1991; Tero et al., 2005). This therefore represent a system of coupled oscillators with

variable interaction. What is then required is for the coupled oscillator dynamics to

be solved together with the adaptive network dynamics. However, it is acceptable

to ignore the coupled oscillator dynamics in cases of two FSs, because sol flows

back and forth between the two FSs, irrespective of the phase difference shown by

the oscillatiors. The time scale for the adaptive process of tube thickness is much

shorter than that of shuttle flow. It is reasonable to assume that the shuttle flow

rate is averaged over an oscillation period and that a model takes the form of direct

current. In fact, we confirmed that the simulation results were essentially the same

if we replaced the total flux by cos ωt, where ω gives the shorter time scale than

that of adaptation.

By contrast, when the number of FSs is larger than three, one must include the

coupled oscillator dynamics, because the network dynamics cannot be decoupled

from the dynamics of the pressure oscillations at the food sources. Therefore the

next stage is to write down the oscillator dynamics, with the aim of reproducing them

in mathematical models of networks containing multiple FSs, as demonstrated in our

previous studies (Nakagaki et al., 2004a; Nakagaki et al., 2004b). The tube network

of true slime mold is a nice experimental system for studying the self-organization

of adaptive transportation networks in nature.
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The model proposed in this paper suggests how the true slime mold solves a

problem to complete a task necessary for its survival. The dynamic behaviors of the

plasmodium, simulated in our model, can be regarded as a means of information

processing in the absence of a nervous system. A positive feedback mechanism be-

tween the conductance of sol flow (or tube thickness) and sol flow plays a key role.

It remains unclear how this feedback mechanism is realized at the material level of

the protoplasmic sol and gel. However, it is possible to conclude that such a system

does not require a central processing unit, but that parallel dynamics within each

part of the protoplasm are sufficient for its information processing requirements.

The algorithm of slime mold for problem solving is of particular interest when con-

sidering the evolutionary origin of information processing by the brain. Physarum

is a useful model system for studying the emergence of information processing in

physical terms and its tube network helps to explain how the self-organization of

adaptive transportation networks develops in nature.
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