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Abstract. Various topological objects; 2-dimensional braids, braided
surfaces, Lefschetz fibrations of 4-manifolds, algebraic curves, etc.,
can be treated by their monodromy representations. We intro-
duce a graphical method, called the chart description method,
to describe and calculate such monodromy representations. This
method is, in a sense, a generalization of the picture method.

1. Introduction

Various topological objects; 2-dimensional braids, braided surfaces,
Lefschetz fibrations of 4-manifolds, algebraic curves, etc., can be treated
by their monodromy representations. We introduce a graphical method,
called the chart description method, to describe and calculate mon-
odromy representations. This method is, in a sense, a generalization of
the picture method due to Igusa [7, 8] and Rourke [25] (cf. [2, 24]).

In § 2 we recall the picture method, and in § 3 the notion of a chart is
introduced. It is proved in § 4 that any G-monodromy representation
can be described by a chart (Theorem 5 and Corollary 6). In § 5 chart
moves are introduced and uniqueness of chart description modulo chart
moves is proved when C is full (Theorem 12 and Corollary 13). In
§ 6 we modify chart moves so that the uniqueness theorem is valid
even if C is not full (Theorem 16 and Corollary 17). These are main
results of this paper. In § 7 and § 8 we show how chart descriptions
change under conjugacy, isotopic, or homeomorphic equivalence. Our
results are applicable to monodromy representations of any topological
objects. Especially we demonstrate how the chart description method
works for studies in braided surfaces (and 2-dimensional braids) in § 9
and studies in genus-1 Lefschetz fibrations in § 10.
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2. Pictures— traditional graphics—

Let 〈X ;R〉 be a finite group presentation of a finitely presentable
group G, where X is a finite set and R is a finite set of words in
X ∪ X−1. The complex associated with 〈X ;R〉 is a 2-complex with a
single 0-cell, oriented 1-cells corresponding to the generators in X , and
oriented 2-cells corresponding to the relators in R. We denote this
complex by K2(X ;R) or simply by K2. ( 0-cells, 1-cells and 2-cells are
usually called vertices, edges and faces, respectively. When cells are
based, we assume that the base point of an edge of K2 is the initial
point and the base point of a face is a boundary point where the relator
starts.)

For example, when X = {a, b, c} and R = {r1, r2, r3} with r1 =
abab−1a−1b−1, r2 = bcbc−1b−1c−1, r3 = aca−1c−1, then K2(X ;R) con-
sists of 7 cells in Figure 1, where faces are oriented anticlockwise and
base points of faces are the corners indicated by asterisks.
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Figure 1

By the Seifert-van Kampen theorem, we have a well-known fact that
the fundamental group π1(|K2|, v) has the presentation 〈X ;R〉, i.e.,
isomorphic to G. A word w in X ∪X−1 induces a path ηw : I → |K1| in
the usual way, where K1 is the 1-skeleton. The fundamental theorem
in combinatorial group theory states that two words w1 and w2 are
congruent mod R (i.e., they represent the same element in the group
G) if and only if two paths ηw1 and ηw2 are homotopic in |K2|. Then
there exists a map ϕ : D2 → |K2| between ηw1 and ηw2 . For a generic ϕ,
the preimages of the cells of K2 tessellates the 2-disk D2, for example,
as in the left of Figure 2.
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Figure 2

Considering the dual graph of the tessellation, we have a graph in
D2 such that each edge is co-oriented and labeled by an element of
X and each vertex corresponds to a relator in R or its inverse. We
asterisk a region around each vertex which indicates the starting point
of the relator. (See the middle of Figure 2.) Such a graph is called
a picture or a co-oriented picture. Instead of co-orientation, we may
give an orientation to each edge by a rule such that the orientation
vector followed by the co-orientation vector matches the orientation of
the 2-disk D2. See the right of Figure 2. Then such a graph is called
an oriented picture.

In a (co-oriented or oriented) picture, each vertex corresponds to a
relator in R or its inverse. In the former case, we call the vertex a
positive vertex ; in the latter case a negative vertex. Thus a picture
has vertices with signs, unless R has both a relator and its inverse.
(When R has both a relator and its inverse, we shall specify one of
them as a positive relator so that we can consider pictures to have
signed vertices.)

For a path η : I → D2 intersecting a picture Γ transversely, we have
a word in X ∪X−1 by reading off the labels of intersecting edges along
η with exponents. The exponent is +1 (or −1, resp.) if the orientation
of η matches the co-orientation of the edge (or does not, resp.) at the
intersection. We call the word the intersection word of η with respect to
Γ and denote it by wΓ(η). According to our orientation/co-orientation
convention, when Γ is an oriented picture, the exponent is +1 (or −1,
resp.) if η crosses the oriented edge from the right (or from the left,
resp.). For example, wΓ(η) = ba−1c−1 for Figure 3.

A merit of this graphical description is to enable us to transform a
word in X ∪X−1 to another word representing the same element of the
group by using relators in R and their inverses, modulo trivial relators
xx−1 and x−1x (x ∈ X ). For example, Figure 4 or Figure 5 shows
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a process transforming bc−1abcb 7→ bc−1(cac−1 a−1)abcb ≡ bac−1bcb 7→
bac−1(cbcb−1c−1b−1)bcb ≡ babc 7→ (abab−1a−1b−1)babc ≡ abac with re-
spect to the presentation used in Figure 1.
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We shall generalize the notion of picture to chart.

3. Charts— enhanced graphics—

Let C = (X ,R,S) be a triple consisting of a finite set X , and two
(possibly infinite) sets R and S of words in X ∪ X−1.

Let Σ be an oriented surface, and let Γ be a graph in Σ such that each
edge is oriented (or co-oriented) and labeled by an element of X . For a
vertex v of Γ lying in IntΣ (where “Int” means interior), a small simple
closed curve surrounding v in the positive direction of the surface Σ is
called a meridian loop of v and denoted by mv. When v is marked , i.e.,
one of the regions around v is specified by an asterisk, the intersection
word wΓ(mv) of the meridian loop with respect to Γ is well-defined.
When v is not marked, it is determined up to cyclic permutation. We
denote wΓ(mv) also by wΓ(∂v). Actually we usually denote a vertex
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in IntΣ by a fat vertex in figures and ∂v is the boundary of this fat
vertex.

Definition 1. A C-chart, or simply a chart, is a finite graph Γ in Σ each
edge of which is oriented (or co-oriented) and labeled by an element of
X satisfying the following.

• Γ∩∂Σ is empty or consists of some deg-1 vertices (called bound-
ary vertices of Γ),

• Vertices in IntΣ are classified into two families, white vertices
and black vertices,

• When v is a white vertex (or black vertex, resp.) the word
wΓ(∂v) is a cyclic permutation of an element of R∪R−1 (or of
S, resp.).

A C-chart with marked vertices is a C-chart such that each white
vertex (or black vertex, resp.) is marked and the word wΓ(∂v) is exactly
an element of R∪R−1 (or of S, resp.).

A white vertex is said to be of type r (or of type r−1, resp.) if wΓ(∂v)
is a cyclic permutation of r ∈ R (or r−1 ∈ R−1, resp.).

When a base point y0 of Σ is specified, we always assume that a
C-chart Γ is disjoint from y0.

Example 2. Let X = {σ1, . . . , σm−1}, R = {σiσi+1σiσ
−1
i+1σ

−1
i σ−1

i+1 (for i =
1, . . . ,m−2), σiσjσ

−1
i σ−1

j (for i, j with i+1 < j)}, and S = {σi, σ
−1
i (for i =

1, . . . ,m − 1)}. Then 〈X ,R〉 is a presentation of the m-braid group
Bm, called Artin’s presentation. This C = (X ,R,S) is used for chart
descriptions of simple 2-dimensional braids and braided surfaces (§ 9).
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Vertices are as in Figure 6, where labels σi are abbreviated to their
subscripts. Vertices in the top row are boundary vertices, where verti-
cal segments are portions of ∂Σ. White vertices in the second row are
of types the relator σiσi+1σiσ

−1
i+1σ

−1
i σ−1

i+1 and its inverse, respectively.
White vertices in the third row correspond to the relator σiσjσ

−1
i σ−1

j

with i+1 < j and its inverse, respectively. Black vertices in the bottom
row correspond to σi and σ−1
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Example 3. Let X = {1, 2}, R = {1212−11−12−1, (12)6}, and S =
{1, 2, 1−1, 2−1}. Then 〈X ,R〉 is a presentation of SL(2, Z), which is
isomorphic to the mapping class group of a torus. This C = (X ,R,S)
is used for chart descriptions of genus-1 Lefschetz fibrations (§ 10).
Vertices are as in Figure 7.

Let C = (X ,R,S), and let Γ be a C-chart in an oriented surface Σ
with base point y0. We denote by ∆Γ the set of black vertices of Γ.
The homomorphism determined by Γ means a homomorphism

ρΓ : π1(Σ \ ∆Γ, y0) → 〈X ;R〉
sending [η] to [wΓ(η)] for a representative η which intersects Γ trans-
versely. It is well-defined, since white vertices correspond to elements
of R∪R−1.

Example 4. Let C = (X ,R,S) be as in Example 3, and let Γ be a
chart in a 2-disk depicted in Figure 8. When we take loops C1, . . . , C4
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as in the figure, the homomorphism ρΓ : π1(Σ\∆Γ, y0) → 〈X ;R〉 sends
them as follows.

ρΓ([C1]) = 1, ρΓ([C2]) = 21−12−11−1212−1 = 2−1,
ρΓ([C3]) = 21−12−1, ρΓ([C4]) = 2.
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4. G-monodromy representations

Let Σ be a connected oriented surface, ∆ a finite subset of IntΣ, and
y0 a base point of Σ\∆. When ∂Σ 6= ∅, we assume that the base point
y0 is in ∂Σ. Moreover, when ∂Σ ∼= S1, ∂Σ also means a simple loop
along ∂Σ with base point y0 whose orientation is induced from Σ. We
shall denote by Σg a closed connected and oriented surface of genus g
for g ≥ 0, and by Σg,1 a compact surface Σg removed an open disk.

Let G be a group. By a G-monodromy representation, we mean a
homomorphism ρ : π1(Σ \ ∆, y0) → G.

Let C = (X ,R,S) be a triple as before with G = 〈X ;R〉.
By M(Σ, ∆, y0; C), we denote the set of G-monodromy representa-

tions ρ : π1(Σ \ ∆, y0) → G such that for each meridional loop `, the
element ρ([`]) is a conjugate in G of an element of S, where a “merid-
ional loop” is a loop obtained from a meridian loop mv of a point v of
∆ by connecting with the base point y0 along a path in Σ \ ∆.

Let Σ = Σg,1 and let Λ be a finite set of points in ∂Σ missing y0

such that each point is co-oriented in ∂Σ and labeled by an element of
X . We define the intersection word wΛ(∂Σ) by reading off the labels of
Λ with exponents determined by co-orientations of the points and the
orientation of ∂Σ.

Theorem 5. Let Σ = Σg,1, and Λ be as above. For any G-monodromy
representation belonging to M(Σ, ∆, y0; C) such that ρ([∂Σ]) = [wΛ(∂Σ)],
there exists a C-chart Γ such that ρΓ = ρ and Γ ∩ ∂Σ = Λ.

Proof. Let D be a 2-disk in Σ such that D ∩ ∂Σ = {y0} and
∆ ⊂ Int(D). Let α1, . . . , αn be mutually disjoint simple paths in D
except at the common starting point y0 ∈ ∂D such that they appear in
this order around y0 and that their terminal points are the points of ∆.
We denote by ai (1 ≤ i ≤ n) the element of π1(D \ ∆, y0) represented
by a meridional loop starting from y0, going along αi toward the end-
point (say yi) of αi, turning around yi in the positive direction (i.e., a
meridian loop of yi) and going back to y0 along αi. Then π1(D \∆, y0)
is freely generated by the elements a1, . . . , an.

Let β1, β2, . . . , β2g be simple closed paths in Σ which are mutually
disjoint except at the common base point y0 such that (1) we obtain a
2-disk D′ by cutting Σ along these paths, (2) the 2-disk D is contained
in this 2-disk D′, and (3) we have

a1 · · · an[b1, b2] · · · [b2g−1, b2g] = [∂Σ]

in π1(Σ \ ∆, y0), where bi (1 ≤ i ≤ 2g) is the homotopy class of βi and
[a, b] stands for the commutator aba−1b−1 of a and b. For example, see
Figure 9, where n = 4 and g = 2.
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A G-monodromy representation ρ : π1(Σ \ ∆, y0) → G is completely
determined by the values ρ(a1), . . . , ρ(an) and ρ(b1), . . . , ρ(b2g). Since
ρ ∈ M(Σ, ∆, y0; C), ρ(ai) is a conjugate of an element of S.

We decompose a regular neighborhood of (∪n
i=1αi) ∪ (∪2g

j=1βj) ∪ ∂Σ
in Σ into n + 1 disks and n + 2g + 1 bands as follows: For each i
(1 ≤ i ≤ n), let yi ∈ ∆ be the terminal point of αi. Let N(yi)
be a regular neighborhood of yi in Σ for i (0 ≤ i ≤ n), and put
W = Cl(Σ \ ∪n

k=0N(yk)), where “Cl” means closure. Let N ′(αi) (1 ≤
i ≤ n) be a regular neighborhood of αi ∩ W in W , let N ′(βj) (1 ≤
j ≤ 2g) be a regular neighborhood of βj ∩ W in W , and let N ′(∂Σ)
be a regular neighborhood of ∂Σ ∩ W in W . Then the union of n +
1 disks N(y0), . . . , N(yn) and n + 2g + 1 bands N ′(α1), . . . , N ′(αn),
N ′(β1), . . . , N ′(β2g), N ′(∂Σ) is a regular neighborhood of (∪n

i=1αi) ∪
(∪2g

j=1βj) ∪ ∂Σ in Σ.
We construct a desired chart Γ piece by piece. Define Γ∩N(y0) to be

empty. For each i (1 ≤ i ≤ n), the monodromy ρ(ai) is a conjugate of
an element represented by a word, say si, of S. So ρ(ai) is represented
by a word wisiw

−1
i for some word wi in X ∪ X−1. Define Γ ∩ N(yi) to

be a union of radial arcs in N(yi) connecting the center yi and some
points of ∂N(yi) missing N ′(αi) whose labels and co-orientations are
determined by the word si, where we take the point αi ∩ ∂N(yi) as
starting point of ∂N(yi).

Define Γ∩N ′(αi) to be a union of some parallel arcs in N ′(αi) missing
N(y0) and N(yi) such that they are labeled and co-oriented so that the
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intersection word of αi (restricted to N ′(αi)) is equal to the word wi.
See Figure 10, where wi = ba−1c−1 and si = d−1bd.

α

’

0y yi

b

a c d

d

b

i

N

N N( )0y ( )yi

( )iα

∂Σ

Figure 10

For each j (1 ≤ j ≤ 2g), we define Γ∩N ′(βj) to be the union of some
parallel arcs in N ′(βj) which are labeled and co-oriented such that the
intersection word of βj is a word representing the monodromy ρ(bj).

For N ′(∂Σ), we construct Γ ∩ N ′(∂Σ) by using parallel arcs which
are labeled and co-oriented such that Γ ∩ ∂Σ = Λ.

We have constructed Γ on the neighborhood N((∪n
i=1αi)∪(∪2g

j=1βj)∪
∂Σ) of (∪n

i=1αi)∪(∪2g
j=1βj)∪∂Σ. Let E be Cl(Σ\N((∪n

i=1αi)∪(∪2g
j=1βj)∪

∂Σ)), which is a 2-disk in Σ. By the construction, the intersection word
wΓ(∂E)−1 is a word representing

ρ(a1) · · · ρ(an)[ρ(b1), ρ(b2)] · · · [ρ(b2g−1), ρ(b2g)]ρ([∂Σ])−1

in G. Since ∂E is null-homotopic in Σ \ ∆, this word wΓ(∂E)−1 rep-
resents the identity element of G = 〈X |R〉. Thus there exists a finite
sequence of words in X ∪X−1 starting from the word wΓ(∂E)−1 to the
empty word such that each word is related to the previous one by one
of the following transformations;

• insertion/deletion of a trivial relator xεx−ε for x ∈ X and ε ∈
{+1,−1},

• insertion of rε or r−ε for r ∈ R and ε ∈ {+1,−1}.
(Deletion of rε is obtained from insertion of r−ε and deletion of trivial
relators.) Therefore, by the same argument as in p. 147 of [10] or in
Chapter 18 of [13], we can extend the chart Γ defined on N((∪n

i=1αi)∪
(∪2g

j=1βj)∪ ∂Σ) to a chart in Σ. This is a desired chart Γ in Σ, since by
construction, we have ρΓ(ai) = ρ(ai) for i (1 ≤ i ≤ n), ρΓ(bj) = ρ(bj)
for j (1 ≤ j ≤ 2g) and Γ ∩ ∂Σ = Λ. ¤
Corollary 6. Let Σ = Σg. For any G-monodromy representation be-
longing to M(Σ, ∆, y0; C), there exists a C-chart Γ such that ρΓ = ρ.
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Proof. This follows from Theorem 5 with Λ = ∅. ¤

5. Moves for charts

Let C = (X ,R,S), and let Γ and Γ′ be C-charts on a surface Σ.
Let E be a disk region in IntΣ which misses the base point y0 of

Σ. Suppose that ∂E intersects Γ and Γ′ transversely (or ∂E is disjoint
from them).

Definition 7. Suppose that Γ ∩ Cl(Σ \ E) = Γ′ ∩ Cl(Σ \ E) and that
Γ∩E and Γ′∩E have no black vertices. Then we say that Γ′ is obtained
from Γ by a chart move of type W.

We call moves in Figure 11 basic chart moves of type W. A move in
the top row is called a channel change. In the second row, the simple
loop may be oriented (or co-oriented) in any direction. We call the
move a birth/death of a hoop. In the third or fourth row, two white
vertices are of type r and of type r−1. We call this move a birth/death
of a pair of white vertices . The fourth move is equivalent to the third
one modulo the first and the second ones.

a a a

a

a
empty

(1)

(2)

(3)
r r-1

(4)
r r-1 empty

Figure 11. Basic chart moves of type W
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Lemma 8. Any chart move of type W does not change the homomor-
phism ρΓ determined by a chart Γ.

Proof. Since E is a 2-disk in IntΣ missing ∆Γ ∪ {y0}, any element
of π1(Σ \ ∆Γ, y0) has a representative loop ` which is disjoint from E
and intersects Γ transversely. Then the intersection word wΓ(`) does
not change by any chart move on E. Thus ρΓ([`]) is preserved. ¤

Let C = (X ,R,S), Γ, Γ′ and E be as above.

Definition 9. Suppose that Γ∩Cl(Σ\E) = Γ′∩Cl(Σ\E) and that Γ′

differs from Γ in E as one of Figure 12. Then we say that Γ′ is obtained
from Γ by a chart move of type B.

Now let E be a 2-disk in Σ missing y0 such that E ∩ ∂Σ is an arc.

Definition 10. Suppose that Γ∩Cl(Σ \E) = Γ′ ∩Cl(Σ \E) and that
Γ′ differs from Γ in E as one of Figure 13, where the vertical arcs are
E ∩ ∂Σ. Then we say that Γ′ is obtained from Γ by a chart move of
type ∂.

*(1)

a a

a (1) a

(2)

a

a (2)
a

r

r
-1

r
-1

r

(3) (3)

(4) (4)

*

*

*

a

Figure 12. Chart moves of type B

For i = 1, . . . , 4, the move (i) in Figure 12 (or in Figure 13) is
equivalent to the move (i)∗ modulo basic chart moves of type W.

Definition 11. A triple C = (X ,R,S) (or S) is full when it has the
following property:
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*
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a ∂Σ ∂Σ∂Σ∂Σ

a ∂Σ ∂Σ∂Σ∂Σ

∂Σ ∂Σ∂Σ∂Σ

∂Σ ∂Σ∂Σ∂Σ

Figure 13. Chart moves of type ∂

• For any two words w and w′ in X ∪ X−1 such that [w] is a
conjugate of [w′] in the group G = 〈X |R〉, if w ∈ S then
w′ ∈ S.

Note that, when we apply a move illustrated in Figure 12 to a C-
chart Γ, the result, say Γ′, may not be a C-chart. However if C is full,
then Γ′ is a C-chart.

Theorem 12. Let C be full, and let Σ = Σg,1. If two C-charts Γ and
Γ′ determine the same homomorphism ρΓ = ρΓ′ : π1(Σ \ ∆, y0) → G,
then Γ is transformed to Γ′ by a finite sequence of chart moves of type
W, chart moves of type B, chart moves of type ∂ and isotopies of Σ
rel ∆ ∪ {y0}. Moreover, when Γ ∩ ∂Σ = Γ′ ∩ ∂Σ, we do not need chart
moves of type ∂ in the sequence.

Proof. Let αi, βj, ai, bj, yi, N(yi), N
′(αi), N

′(βj), N
′(∂Σ), W = Cl(Σ\

∪n
k=0N(yk)), E = Cl(Σ\N((∪n

i=1αi)∪(∪2g
j=1βj)∪∂Σ)) be as in the proof

of Theorem 5. Let N(αi) be N(y0) ∪ N ′(αi) ∪ N(yi) (1 ≤ i ≤ n).
By an isotopy of Σ rel ∆ ∪ ∂Σ, we deform Γ so that, for each i =

1, . . . , n, Γ∩N(αi) is as in Figure 10, i.e., Γ∩N(y0) = ∅, Γ∩N ′(αi) is a
union of some parallel arcs, and Γ∩N(yi) is a union of radial arcs. Using
chart moves (1) and (2) in Figure 12, we move all arcs in Γ ∩ N ′(αi)
toward the black vertex yi and hence we may assume that Γ∩N ′(αi) =
∅. Then ρΓ(ai) is represented by wΓ(∂yi) = wΓ(∂N(yi)), where we



14 SEIICHI KAMADA

assume the starting point of ∂N(yi) is the intersection αi∩∂N(yi). Do
the same for Γ′. Since ρΓ(ai) = ρΓ′(ai), the word wΓ(∂yi) is transformed
to wΓ′(∂yi) by a finite number of insertion/deletion of trivial relators
and relators in R. According to it, we transform Γ by chart moves of
type B so that Γ ∩ N(αi) = Γ′ ∩ N(αi).

By an isotopy of Σ whose support is a neighborhood of N ′(βj) (j =
1, . . . , 2g), we deform Γ so that Γ ∩ N ′(βj) is a union of parallel arcs.
Identify the neighborhood N ′(βj) of βj∩W in W with (βj∩W )×[−1, 1]
such that (βj∩W )×{0} = βj∩W . Consider a chart in (βj∩W )× [0, 1]
whose restriction to (βj ∩ W ) × {1} is equal to that of Γ and the
restriction to (βj ∩ W ) × {0} = βj ∩ W is equal to that of Γ′ such
that there are no black vertices. Since [wΓ(βj)] = ρΓ(bj) = ρΓ′(bj) =
[wΓ′(βj)], such a chart in (βj∩W )×[0, 1] exists. The union of this chart
and its mirror image in (βj ∩ W ) × [−1, 0] forms a chart in N ′(βj) =
(βj ∩W )× [−1, 1] without black vertices. Replacement of Γ∩N ′(βj) by
this chart is a chart move of type W. Then the new chart, say Γ again,
satisfies that Γ∩βj = Γ′∩βj. By an isotopy of Σ, we may assume that
Γ ∩ N ′(βj) = Γ′ ∩ N ′(βj) for each j = 1, . . . , 2g.

Since [wΓ(∂Σ)] = ρΓ([∂Σ]) = ρΓ′([∂Σ]) = [wΓ′(∂Σ)], we can trans-
form Γ in N ′(∂Σ), by chart moves of type ∂ and an isotopy of Σ rel
∆∪{y0}, so that Γ∩N ′(∂Σ) = Γ′∩N ′(∂Σ). (When Γ∩∂Σ = Γ′∩∂Σ,
this is done by an isotopy of Σ rel ∆ ∪ ∂Σ.)

Now Γ and Γ′ are identical except E. Apply a chart move of type
W in E, and we change Γ to Γ′. ¤

Corollary 13. Let C be full, and let Σ = Σg. If two C-charts Γ and Γ′

determine the same homomorphism ρΓ = ρΓ′ : π1(Σ \∆, y0) → G, then
Γ is transformed to Γ′ by a finite sequence of chart moves of type W,
chart moves of type B, and isotopies of Σ rel ∆ ∪ {y0}.

For C = (X ,R,S), we denote by S the set of all words in X ∪ X−1

each of which represents a conjugate of an element of S in G = 〈X |R〉,
and we denote by C the triple (X ,R,S). Then the triple C is full.

A C-chart is a C-chart. If two C-charts Γ and Γ′ in Σ = Σg,1 or
in Σ = Σg determine the same homomorphism, by Theorem 12 or
Corollary 13, there exists a sequence of C-charts from Γ to Γ′ related
by chart moves (as C-charts) and isotopies of Σ. However these C-charts
are not C-charts in general. In the next section, we shall study about
existence of a sequence of C-charts by modifying the definition of chart
moves.
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6. Modified version of chart moves

In this section, we study chart moves for C = (X ,R,S) that is
possibly not full.

Let s and s′ be words in S and suppose that [s′] = [wsw−1] in
G = 〈X |R〉 for some word w in X ∪X−1. Then there exists a chart in
a rectangle R without black vertices such that the intersection words of
the four edges are w, s, w−1 and (s′)−1, respectively. Let T (s → s′, w)
be such a chart. A local replacement of a chart depicted in Figure 14
changes a black vertex v of a chart Γ to a vertex v′ of a new chart Γ′

such that wΓ(∂v) = s and wΓ′(∂v′) = s′. (In the figure, T stands for
T (s → s′, w) and the symbols s, s′, w nearby dashed arrows mean that
the intersection words of the arrows are these words.)

Definition 14. A chart move of transition, or a transition of a black
vertex, is a local replacement depicted in Figure 14.

T
s

w

s s’

w

Figure 14. Chart move of transition

Remark 15. A chart move of type B is a consequence of a chart move
of transition (using T = T (s → s′, w) with w = ∅) modulo basic
chart moves of type W. For example, see Figure 15 for the move (3) in
Figure 12.

Conversely, a chart move of transition is a consequence of chart moves
of type B. This is seen as follows. Let Γ′ be obtained from Γ by a
transition using T = T (s → s′, w) in a rectangle R. Modify Γ′ by an
isotopy of R rel ∂R and split R into strips such that strips containing
white vertices of Γ′ are as in the left of Figure 16. (For a strip containing
a white vertex, all arcs attached to the white vertex are connected to
the top side of the strip, and the other arcs are vertical.) Apply chart
moves of type B and transform the chart as in the right of Figure 16.
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Then there exist no white vertices in R. If necessary applying chart
moves (1) and (2) in Figure 12, we may assume that the chart is a
union of Γ and a bouquet. The bouquet can be removed by moves (1)∗

and (2)∗ and we get Γ.

r

T

r-1
r

Figure 15

Figure 16

Theorem 16. Let Σ = Σg,1. If two C-charts Γ and Γ′ determine
the same homomorphism ρΓ = ρΓ′ : π1(Σ \ ∆, y0) → G, then Γ is
transformed to Γ′ by a finite sequence of chart moves of type W, chart
moves of transition, chart moves of type ∂ and isotopies of Σ rel ∆ ∪
{y0}. Moreover, when Γ ∩ ∂Σ = Γ′ ∩ ∂Σ, we do not need chart moves
of type ∂ in the sequence.

Proof. In the proof of Theorem 12, when we transform Γ so that
Γ ∩ N(αi) = Γ′ ∩ N(αi), we used chart moves of type B. Thus it is
sufficient to show that we can transform Γ so that Γ∩N(αi) = Γ′∩N(αi)
by chart moves of transition and chart moves of type W. We may
suppose that Γ∩N(αi) is as in Figure 10, i.e., Γ∩N(y0) = ∅, Γ∩N ′(αi)
is a union of some parallel arcs, and Γ ∩ N(yi) is a union of radial
arcs. Suppose that Γ′ is so. Put wi = wΓ(αi ∩ W ), si = wΓ(∂N(yi)),
w′

i = wΓ′(αi ∩ W ), s′i = wΓ′(∂N(yi)). Since [wisiw
−1
i ] = [w′

is
′
i(w

′
i)
−1],

we can apply a chart move of transition with T = T (si → s′i, (w
′
i)
−1wi)

to the black vertex of Γ, and let Γ̃ be the result. Here we assume that
αi is disjoint from the rectangle containing T . Then w̃i = wΓ̃(αi ∩ W )

and s̃i = wΓ̃(∂N(yi)) for this chart Γ̃ are wiw
−1
i w′

i and s′i, respectively.

Since s̃i = s′i, by an isotopy of Σ rel ∆ ∪ {y0}, we can deform Γ̃ so
that Γ̃ and Γ′ are identical on N(yi).



GRAPHIC DESCRIPTIONS OF MONODROMY REPRESENTATIONS 17

Since w̃i = wiw
−1
i w′

i and w′
i represent the same element of G, we can

transform Γ̃ by chart moves of type W so that Γ̃ and Γ′ are identical on
N ′(αi ∩ W ). (Recall the argument in the proof of Theorem 12 which
is used in order to change the chart on N ′(βj).)

Therefore Γ̃ and Γ′ are identical on N(αi). Continue the remainder
of the proof of Theorem 12, and we see that Γ and Γ′ are related by
moves stated in the theorem. ¤
Corollary 17. Let Σ = Σg. If two C-charts Γ and Γ′ determine the
same homomorphism ρΓ = ρΓ′ : π1(Σ \ ∆, y0) → G, then Γ is trans-
formed to Γ′ by a finite sequence of chart moves of type W, chart moves
of transition, and isotopies of Σ rel ∆ ∪ {y0}.

7. Conjugacy equivalence on G-monodromy

Two G-monodromy representations ρ : π1(Σ \ ∆, y0) → G and
ρ′ : π1(Σ \ ∆, y0) → G are conjugacy equivalent if there is an inner-
automorphism ι of G such that ρ′ = ι ◦ ρ.

Definition 18. Chart moves of conjugacy type are local moves depicted
in Figure 17.

(1)

aa

a

(2)

a

(3)

(4)

y y0 0

y
0

y
0

∂Σ ∂Σ

∂Σ ∂Σ

y
0

y
0

y
0

y
0

Figure 17. Chart moves of conjugacy

Chart moves of conjugacy type change ρΓ to ιa ◦ ρΓ or ι−1
a ◦ ρΓ,

where ιa is the inner-automorphism of G by a. For a generic inner-
automorphism of G, iterate such moves suitably.

When we replace a condition that ρΓ = ρΓ′ by a condition that ρΓ

and ρΓ′ are conjugacy equivalent, Theorems 12, 16 and Corollaries 13,
17 are valid by adding chart moves of conjugacy type.

8. Isotopic and homeomorphic equivalence on
G-monodromy

Two G-monodromy representations ρ : π1(Σ \ ∆, y0) → G and ρ′ :
π1(Σ \ ∆′, y0) → G are isotopically equivalent if there is an isotopy of
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Σ rel ∂Σ∪ {y0} such that the initial map is the identity map of Σ and
the terminal map, say h, sends ∆ to ∆′ and induces an isomorphism
h∗ : π1(Σ \ ∆, y0) → π1(Σ \ ∆′, y0) with ρ′ = ρ ◦ h−1

∗ .
In the above situation, if ρ : π1(Σ \ ∆, y0) → G is described by a

chart Γ (i.e., ρ = ρΓ), then h(Γ) is a chart description of ρ′.
When we replace a condition that ρΓ = ρΓ′ by a condition that

ρ : π1(Σ \ ∆, y0) → G and ρ′ : π1(Σ \ ∆′, y0) → G are isotopically
equivalent, Theorems 12, 16 and Corollaries 13, 17 are valid by adding
isotopies of Σ rel ∂Σ ∪ {y0}.

Two G-monodromy representations ρ : π1(Σ \ ∆, y0) → G and ρ′ :
π1(Σ

′ \ ∆′, y′
0) → G are homeomorphically equivalent if there is an

orientation-preserving homeomorphism h : Σ → Σ′ with h(∆) = ∆′

and h(y0) = y′
0 such that h induces an isomorphism h∗ : π1(Σ\∆, y0) →

π1(Σ
′ \ ∆′, y′

0) with ρ′ = ρ ◦ h−1
∗ .

In the above situation, if ρ : π1(Σ \ ∆, y0) → G is described by a
chart Γ, then h(Γ) is a chart description of ρ′.

When we replace a condition that ρΓ = ρΓ′ by a condition that
ρ : π1(Σ\∆, y0) → G and ρ′ : π1(Σ\∆′, y0) → G are homeomorphically
equivalent, Theorems 12, 16 and Corollaries 13, 17 are valid by adding
to send a chart by an orientation-preserving homeomorphism h : Σ →
Σ′ with h(∆) = ∆′ and h(y0) = y′

0.

9. Chart descriptions of braided surfaces

Throughout this section, let C = (X ,R,S) be as in Example 2, and
let Σ be Σg,1 or Σ0 with base point y0. (When Σ = Σg,1, we assume
that y0 ∈ ∂Σ.)

Let D2 be a 2-disk, let pr1 : D2 × Σ → D2 and pr2 : D2 × Σ → Σ
be the projections, and let Qm be a fixed m interior points of D2. We
identify the m-braid group Bm with the fundamental group π1(Cm, Qm)
of the configuration space Cm of m points of IntD2 (cf. [1]).

A braided surface over Σ of degree m (cf. [13, 26, 27]) is a compact
oriented surface F embedded in D2 × Σ such that pr2|F : F → Σ is a
branched covering map of degree m and ∂F is a closed m-braid in the
solid torus D2 × ∂Σ. We assume that pr1((pr2|F )−1(y0)) = Qm.

A 2-dimensional m-braid is a braided surface over a 2-disk Σ = Σ0,1

such that ∂F is a trivial closed m-braid Qm × ∂Σ in D2 × ∂Σ.
A braided surface is said to be simple if pr2|F : F → Σ is a simple

branched covering map of degree m (i.e., #((pr2|F )−1(y)) ≥ m − 1 for
every y ∈ Σ).

Let ∆F be the set of branch values of pr2|F . For a path c : [0, 1] →
Σ \∆F , we denote by `F (c) a path in the configuration space Cm with
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`F (c)(t) = pr1((pr2|F )−1(c(t))). Then the Bm-monodromy representa-
tion

ρF : π1(Σ \ ∆F , y0) → π1(Cm, Qm) = Bm

of F is defined by
ρF ([c]) = [`F (c)].

It is known that braided surfaces and 2-dimensional m-braids are
determined by their Bm-monodromy representations (cf. [10, 11, 13,
27]). Applying Theorem 5 and Corollary 6, we have the following
theorem.

Theorem 19 (Chart description of a simple braided surface, cf. [10]).
A C-chart Γ in Σ determines a monodromy representation ρF of a sim-
ple braided surface F . Conversely the Bm-monodromy representation
ρF of a simple braided surface F can be described as ρΓ for some C-chart
Γ.

This theorem is valid for simple 2-dimensional braids ([10]), when
we restrict charts to charts Γ with Γ ∩ ∂Σ = ∅.

Example 20. A C-chart in a 2-disk Σ = Σ0,1 is depicted in Figure 18,
where m = 4 and Σ = [0, 1] × [0, 1]. By this bi-parameterization of Σ,
we have a motion picture of the corresponding 2-dimensional 4-braid
F . The vertical dashed lines in Figure 19 yield the intersection words,
σ1σ

−1
1 , σ−1

3 σ1, σ2σ1σ
−1
1 σ−1

2 σ−1
3 σ1, σ2σ1σ

−1
1 σ−1

2 σ1σ
−1
3 , σ2σ1σ2σ

−1
1 σ−1

2 σ−1
3 ,

σ2σ1σ
−1
1 σ−1

2 σ−1
3 , σ−1

3 . The motion picture is illustrated in Figure 20.
Refer to [4, 13] for details and further topics.

3

1
1

1
2

2
1

2

3

Figure 18

Some chart moves of type W are depicted in Figure 21. Moves (1),
. . . , (4) are basic chart moves of type W. Moves (5), (6), (7) are typical
for our C. It is known that any chart move of type W is a consequence
of the moves listed in Figure 21, [3].
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3

1

1

1
2

2
1

2

3

Figure 19

t 1t=0t=

tt= 1t=t3t=2

t=

Figure 20

Since C is not full, we cannot apply the moves in Figure 12 in general.
In order to connect two C-charts determining the same Bm-monodromy
representation, we need chart moves of transition. Moves in Figure 22
are chart moves of transition. Note that moves in Figure 22 are equiv-
alent to the moves in Figure 23 modulo basic chart moves of type W.
It is proved in [12] that any chart moves of transition is a consequence
of the moves in Figure 23 (or equivalently, the moves in Figure 22) and
chart moves of type W (cf. [13]).

We have the following theorem from Theorem 16 and Corollary 17,
since chart moves of type W and chart moves of transition are conse-
quence of particular ones in Figures 21 and 22. (This is proved in [12]
for charts of 2-dimensional braids.)

Theorem 21. Let Σ = Σg,1. If two C-charts Γ and Γ′ determine
the same homomorphism ρΓ = ρΓ′ : π1(Σ \ ∆, y0) → Bm, then Γ is
transformed to Γ′ by a finite sequence of chart moves of type W in
Figure 21, chart moves of transition in Figure 22, chart moves of type
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Figure 22
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(2)

i i i
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i

j

j
i −| | =>j 1 i −| |j 1

j

ijj

Figure 23

∂ and isotopies of Σ rel ∆ ∪ {y0}. Moreover, when Γ ∩ ∂Σ = Γ′ ∩ ∂Σ,
we do not need chart moves of type ∂ in the sequence.

For example, a chart depicted in Figure 18 is transformed to a simpler
chart as illustrated in Figure 24.
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Figure 24

10. Genus-1 Lefschetz fibrations

Let M and Σ be closed connected and oriented 4- and 2-manifolds.
Let f : M → Σ be a genus-1 Lefschetz fibration (in the sense of [14])
and let ∆f be the set of singular values. It induces a G-monodromy
representation

ρf : π1(Σ \ ∆f , y0) → G,

where G is the mapping class group of T 2 = f−1(y0).
It is known that genus-1 Lefschetz fibrations are determined by their

monodromies if n+ 6= n−, where n+ and n− stand for the numbers of
positive singular fibers and negative singular fibers, respectively (cf.
[22]). (The condition n+ 6= n− is equivalent to σ(M) 6= 0, where σ(M)
is the signature of M .) Refer to [9, 14, 15, 16, 17, 18, 19, 20, 21, 28],
etc. for details and related topics on genus-1 Lefschetz fibrations.

Let C be as in Example 3. Then G = 〈X |R〉 is isomorphic to the
mapping class group of a torus. Then we have the following.

Theorem 22 ([14]). The set of (isomorphism classes of) genus-1 Lef-
schetz fibrations over Σ with n+ 6= n−, the set of (equivalence classes
of) G-monodromy representations of genus-1 Lefschetz fibration with
n+ 6= n−, and the set of chart move equivalences classes of C-charts
n+ 6= n− are in one-to-one correspondence.

Since we are assuming Σ to be closed, we do not need chart moves of
type ∂. Since C is not full, we need chart moves of transition. However
we do not need all chart moves of type W and chart moves of transition
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for chart moves in the above theorem. Actually, all moves used in [14]
are basic chart moves of type W and chart moves of transition depicted
in (2) of Figure 23 for {i, j} = {1, 2}. (The former moves are called
CI-moves and the latter CII-moves in [14].)

Using the chart description method, an elementary proof to the fol-
lowing theorem is given in [14].

Theorem 23 (Classification theorem ([14, 20])). Let f : M → Σ and
f ′ : M ′ → Σ′ be genus-1 Lefschetz fibrations with n+ 6= n−. The
following conditions are mutually equivalent.

(1) f and f ′ are isomorphic as Lefschetz fibrations.
(2) σ(M) = σ(M ′), e(M) = e(M ′), and g(Σ) = g(Σ′).
(3) M ∼= M ′ and B ∼= B′.

Here σ(M) and e(M) are the signature and the Euler number of M .
It is known ([6, 18]) that σ(M) = −2

3
(n+ − n−) and e(M) = n+ + n−.

Remark 24. A Lefschetz fibration with n− = 0 is called a chiral
Lefschetz fibration ([21]) or a symplectic Lefschetz fibration ([28]). For
chart descriptions of genus-1 chiral Lefschetz fibrations, we use another
C such that X and R are the same as in Example 3 and S = {1, 2}.

Chart descriptions of monodromy representations of higher genus
Lefschetz fibrations (cf. [5, 21, 28]) and chart descriptions of mon-
odromy representations of algebraic curves (in the sense of [22, 23])
can be defined by Theorem 5 (Corollary 6) when we fix a suitable C.
Then we can use Theorem 12 (Corollary 13) and Theorem 16 (Corol-
lary 17) to calculate the monodromy representations.

References

[1] J. S. Birman, Braids, links, and mapping class groups, Ann. Math. Studies 82,
Princeton U.P., Princeton, N.J., 1974.

[2] W. A. Bogley and S. J. Pride, Calculating generators of π2, in “Two-
dimensional Homotopy and Combinatorial Group Theory”, C. Hog-Angeloni
et al., eds., pp. 157–188, London Math. Soc. Lect. Note Series 197, Cambridge
University Press, 1993.

[3] J. S. Carter and M. Saito, Knotted surfaces and their diagrams, Math. Surveys
Monogr. 55, Amer. Math. Soc., Providence, RI, 1998.

[4] J. S. Carter, S. Kamada and M. Saito, Surfaces in 4-Space, Springer-Verlag
Berlin Heidelberg, 2004.

[5] R. E. Gompf and A. I. Stipsicz, 4-manifolds and Kirby calculus, Graduate
Studies in Math. 20, Amer. Math. Soc., Providence, RI, 1999.

[6] J. Harer, Pencils of curves in 4-manifolds, Thesis, UCB, 1979.
[7] K. Igusa, The generalized Grassmann invariant, preprint (1979), Brandeis Uni-

versity.
[8] K. Igusa, The Borel regulator on pictures, preprint (1979), Brandeis University.



24 SEIICHI KAMADA

[9] Z. Iwase, Good torus fibrations with twin singular fibers, Japan. J. Math. 10
(1984), 321–352.

[10] S. Kamada, Surfaces in R4 of braid index three are ribbon, J. Knot Theory
Ramifications 1 (1992) 137–160.

[11] S. Kamada, On the braid monodromies of non-simple braided surfaces, Math.
Proc. Camb. Phil. Soc. 120(1996) 237-245.

[12] S. Kamada, An observation of surface braids via chart description J. Knot
Theory Ramifications 4 (1996) 517–529.

[13] S. Kamada, Braid and knot theory in dimension four, Math. Surveys Monogr.
95, Amer. Math. Soc., Providence, RI, 2002.

[14] S. Kamada, Y. Matsumoto, T. Matumoto and K. Waki, Chart description and
a new proof of the classification theorem of genus one Lefschetz fibrations, J.
Math. Soc. Japan, 57 (2005), 537–555.

[15] A. Kas, On the deformation types of regular elliptic surfaces, in “Complex
analysis and algebraic geometry”, pp. 107–111, Iwanami Shoten, Tokyo, 1977.

[16] A. Kas, On the handlebody decomposition associated to a Lefschetz fibration,
Pacific J. Math. 89 (1980), 89–104.

[17] R. Mandelbaum and J. R. Harper, Global monodromy of elliptic Lefschetz
fibrations, in “Current trends in algebraic topology”, pp. 35–41, CMS Conf.
Proc. 2, Amer. Math. Soc., Providence, RI, 1982.

[18] Y. Matsumoto, On 4-manifolds fibered by tori, II, Proc. Japan Acad. 59 (1983),
100–103.

[19] Y. Matsumoto, Torus fibrations over the 2-sphere with the simplest singular
fibers, J. Math. Soc. Japan 37 (1985), 605–636.

[20] Y. Matsumoto, Diffeomorphism types of elliptic surfaces, Topology 25 (1986),
549–563.

[21] Y. Matsumoto, Lefschetz fibrations of genus two - A topological approach, in
“Topology and Teichmüller spaces” S. Kojima et al, eds., Proc. the 37-th
Taniguchi Sympo., pp. 123–148, World Scientific Publishing, River Edge, NJ,
1996.

[22] B. G. Moishezon, Complex surfaces and connected sums of complex projective
planes, Lecture Notes in Math. 603, Springer Verlag, 1977.

[23] B. G. Moishezon, Stable branch curves and braid monodromies, in “Algebraic
Geometry”, pp. 107–192, Lecture Notes in Math. 862, Springer Verlag, 1981.

[24] S. J. Prides, Identities among relations of group presentations, in “Group the-
ory from a geometrical viewpoint”, E. Ghys et al., eds., pp. 687–717, World
Scientific Publishing, 1991.

[25] C. P. Rourke, Presentations of the trivial groups, in “Topology of Low Dimen-
sional Manifolds” R. Fenn, ed., pp. 134–143, Lect. Notes Math. 722, Springer,
1979.

[26] L. Rudolph, Braided surfaces and Seifert ribbons for closed braids, Comment.
Math. Helv. 58 (1983), 1–37.

[27] L. Rudolph, Special positions for surfaces bounded by closed braids, Rev. Mat.
Iberoamericana 1 (1985), 93–133.

[28] B. Siebert and G. Tian, On hyperelliptic C∞-Lefschetz fibrations of four-
manifolds, preprint (math.GT/9903006).



GRAPHIC DESCRIPTIONS OF MONODROMY REPRESENTATIONS 25

Department of Mathematics, Hiroshima University, Higashi-Hiroshima,
Hiroshima 739-8526, Japan

E-mail address: kamada@math.sci.hiroshima-u.ac.jp


