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Abstract We propose a method for measuring a spin of a ball accurately by the image regis-
tration with a 3D model. The proposed method estimates the parameters of the transformation
between two images containing a known shape object with depth information. The Gauss-
Newton method is used to minimize the residuals of intensities of the two images, and the
rotation and the translation are estimated. Experimental results using real images of a spinning
ball demonstrate the robustness of the proposed method.

1 Introduction
Estimating the parameters of the transformation

between images is an important process for com-
puter vision. The transformation is caused by cam-
era motion or movement of an object in a scene.
Methods for estimating the parameters have been
developed for stereo vision[1], motion estimation[2],
and shape from motion[3].
Usually, such methods require a number of cor-

respondences between a point in one image and the
corresponding point in the other image, to estimate
the parameters of the transformation between the
corresponding points (for example, corners or edge
intersections). The correspondences are established
by manual operations or the marker detection, how-
ever, it is difficult to reconstruct a smooth curved
surface from patches surrounded by the points.
Another way is the image registration

technique[4] developed for image mosaicing[5]
or motion estimation[2]. The image registration
estimates the parameters of the transformation
between two images by minimizing the difference
in intensities, that is, the sum of the squares of
the intensity residuals between the two images.
Therefore, the image registration doesn’t require
to establish the point-to-point correspondence.
Registration methods for recovering arbitrary

shape were proposed by adding extra term to the
planar model[4], or by decomposing a scene into
piecewise planar objects[2]. This can recover 3D
depth map of a scene containing unknown shape
object, however, it can not estimate the accurate
motion parameters including rotation and transla-
tion.
But, there are some cases where we know the

shape of the object, such as camera calibration us-

ing a cube[6], or motion tracking of a spinning ball.
In such cases the problem can be solved by differ-
ent way. Our approach is to use information of the
shape of a known object to improve the estimation.
In this paper, we propose a method to measure

a ball spin by using the image registration method
for estimating motion parameters of a known shape
object using depth information of the first image
in order to register two images. We will show ex-
periments of motion estimation using two succes-
sive frames with manually fitted model to generate
depth information.
In sectoin 2, we explain models of the transforma-

tion between two images using depth information.
We describe the algorithm of registration based on
a nonlinear optimization in section 3. Experimen-
tal results for motion estimation of the proposed
method is shown in section 4.

2 Registration between two frames
In this section, we describe the model of the

transformation between two images using depth in-
formation.
As shown in Fig.1, given the first image I1 the

depth of a known object (a 3D model) is produced
by known rotation R and translation T . The object
in the second image is slightly moved with unknown
motion Q and S.

2.1 Modeling the transformations

At first, we have a first image I1 of the object
with known shape. A point P 0 on the object is
represented with respect to the origin of the coordi-
nate system (Fig.1(a)). Note that the transforma-
tions use the same coordinate system throughout
the formulation. Then P 0 is moved to P 1 by the
rotation matrix R and the translation vector T as
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Fig. 1: Outline of the transformations. (a) The ob-
ject (b) Moved object at the first image. (c) Moved
object at the second image. (d) The first image I1

of the object. (e) The second image I2. The object
at the first image is drawn in dotted line.

follows.

P 1 = RP 0 + T (1)

R = Rz(a)Ry(b)Rx(c)

=

(

cos a − sin a 0
sin a cos a 0
0 0 1

)

·

(

cos b 0 sin b
0 1 0

− sin b 0 cos b

)

·

(

1 0 0
0 cos c − sin c
0 sin c cos c

)

(2)

T = (tx, ty, tz)
T (3)

Then the point P 1 = (X1, Y1, Z1)
T is projected

to p1 = (x1, y1)
T on the image I1 (Fig.1(d)).

p1 =

(

f
X1

Z1

, f
Y1

Z1

)T

(4)

where f is the focal length that is given as well as
R and T . Note that the depth Z1 is known because
the object is represented as a 3D model.
Then we consider on the second image I2. We

assume that I2 is similar to but slightly different
from I1 (Fig.1(e)). The coordinates of the point
P 2 = (X2, Y2, Z2)

T is also transformed from P 0

by the rotation matrix Q and the translation S as
follows;

P 2 = QP 0 + S (5)

Q = Qz(α)Qy(β)Qx(γ) (6)

S = (sx, sy, sz)
T (7)

then P 2 is projected to p2 = (x2, y2)
T on the image

I2.

p2 =

(

f
X2

Z2

, f
Y2

Z2

)T

(8)

2.2 The transformation between two im-

ages

Figure 1(c) shows the transformation between P 1

and P 2 through P 0. From p1 in the first image
I1 and the depth Z1 (the depth is provided when
I1 is created), three dimensional coordinates P 1 is
calculated.

P 1 =

(

x1Z1

f
,
y1Z1

f
, Z1

)T

(9)

Then P 1 is moved back to P 0, and further moved
to P 2.

P 2 = QP 0 + S = QR−1(P 1 − T ) + S (10)

then P 2 is projected to p2. Therefore, p1 in I1
corresponds to p2 in I2 through given R,T , f, Z1

and unknown Q,S.
We estimate the unknown parameters by mini-

mizing the difference between the intensity of p1 in
I1 and that of p2 in I2.

3 Estimating parameters
In this section, we describe how to estimate the

parameters of Q and S. Image registration[6] seeks
to minimize the residuals ri of intensities of the two
images, I1 and I2.

ri = I1(p1i)− I2(p2i) (11)

where I1(p1) is the intensity at the point p1 in the
image I1, and I2(p2) is the intensity at the point p2

in the image I2. The function to be minimized is
the sum of squares of the residuals over the image
I1.

min
θ

∑

i

ri
2 (12)

where θ = (α, β, γ, sx, sy, sz)
T ≡ (θ1, . . . , θ6)

T and
the summation i is taken over the points of the ob-
ject region in I1 and is visible in I2 (see section 3.2).
Estimating the parameters θ, the objective func-

tion is minimized by the Gauss-Newton method, a
nonlinear optimization technique[7]. The parame-
ters are updated with some initial value by the fol-
lowing rule: θ ← θ + α δθ. The decent direction
δθ = (δθ1, . . . , δθ6)

T is calculated as follows[7]:

δθ = −(JTJ)−1JT r, J =
∂r

∂θ
(13)

where r = (r1, r2, . . .)
T . This is the same as the

least square formulation, that is, the system of lin-
ear equations[2] written as

∑

i

∑

l

∂ri

∂θk

∂ri

∂θl
δθl = −

∑

i

ri
∂ri

∂θk
(14)



for k = 1, . . . , 6. The partial derivatives are derived
by the chain rule of vector differentiation[7].

∂r

∂θk
= −

∂p2

∂θk

∂I2

∂p2

= −

(

∂x2

∂θk
,
∂y2

∂θk

)T

∇I2(p2)

(15)
Once the direction is decided by solving the sys-

tem of equations in Eq.(14), the step length α is
optimized by line minimization[8]. The parameter
update is repeated until it converges. At each it-
eration, the parameters estimated in the previous
iteration are used for the current Jacobian.

3.1 Initial state

At the beginning of the iteration, we use the fol-
lowing initial value for each parameters: Q = R,
S = T , because we assumes that the difference be-
tween the first and the second images is small.

3.2 Visible test

To remove a point which is not visible in I2, we
perform the following visible test. Let P be a vis-
ible point on the objet in I1, a normal vector N

of the surface at P is given by[9] N =
∂P

∂x
×

∂P

∂y
.

Assuming that the camera center is identical to the
origin, the angle between the normal and the view-

ing direction is given by cos−1

(

|N · P |

|N ||P |

)

. If the

angle is larger than ±π
4
, then the point is excluded

from the calculation of Eq.(12) and Eq.(14).

3.3 Depth from the z buffer

The proposed method uses the depth informa-
tion to obtain the three dimensional coordinates
Z1 in Eq.(9). Actually, we use the depth infor-
mation provided by a graphic library, for example,
OpenGL[10], DirectX[11] and so on. However, a
value stored in the z buffer is usually different from
the actual depth. The reason is that for computer
graphics the z buffer is used to decide the relative
depth of objects in order to perform the hidden sur-
face elimination.
Furthermore, the precision of the z buffer is not

uniform over the depth range, and it becomes very
poor if we deal with it carelessly. Let zb be a value
in the z buffer, and Z be the actual depth. The
relation between zb and Z is given by the following
equation [12, 10].1

Z =
fznz

zb

s
(fz − nz)− fz

(16)

where fz, nz are the distances from the view point
to the front and the rear clipping planes; the z buffer

1This equation is for OpenGL[10], however, actually Di-
rectX has the same[11].

0

200

400

600

800

1000

0 2 4 6 8 10 12 14 16

xe+06

ac
tu

al
 d

ep
th

z buffer

(a)

750

755

760

765

770

775

780

785

790

795

800

0 2 4 6 8 10 12 14 16

xe+06

ac
tu

al
 d

ep
th

z buffer

(b)

Fig. 2: Examples of the precision of z buffer. (a)
fz = 1000, nz = 1. (b) clipped between fz = 800
and nz = 750.

holds the depth between fz and nz. s is the max-
imum of the z buffer (for example, s = 224 − 1 for
unsigned 24 bits z buffer).
Usually there is more precision at the front of the

z buffer, and the precision is affected by the ratio
of fz to nz. When the ratio is large such as the
example shown in Fig.2(a), the precision becomes
pretty poor at the rear of the z buffer.
Therefore, we create an image with the z buffer

twice. At first time, we have the ratio of fz to nz
very large, and find the maximum and the mini-
mum values in the z buffer. The values are trans-
formed by Eq.(16) to obtain the corresponding ac-
tual depth. Then at the second time, we specify
the actual depth as fz and nz in order to make the
precision of the z buffer good (the example of the
appropriately clipping is shown in Fig.2(b)).

4 Experimental results
Experimental results of the proposed method are

shown. The parameters to be estimated for a spin-
ning ball include the angular velocity and the trans-
lation. To estimate the parameters, we use a CG
model carefully fitted to I1 by a GUI tool, and the
depth buffer is obtained for the first frame.

4.1 Preliminary experiment

At first, to demonstrate the correctness of our
method, we conducted a preliminary experiment.
We captured clearly an image of a colored table-
tennis ball with randomly drawn marks as the first
image I1 (shown in Fig.3(a)). The ball was ro-
tated although the location was unchanged, then
the second image I2 was taken (Fig.3(b)). Figure
3(c) show the difference between the first and the
second images. The depth buffer shown in Fig.3(e)
was obtained by fitting a CG sphere model to I1.
The CG sphere model is drawn as a wire frame as
shown in the Fig.3(d). Unlike the cube model, the
rotation matrix R for the sphere model is set to I

(there is no rotation) because the sphere model has
no information about the rotation.
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Fig. 3: Preliminary experiment. (a) The first and
(b) the second image of a table tennis ball. (c)
Difference between two images. (d) Wire frame of
the CG sphere model fitted on the fist image. (e)
Visualized depth buffer.

To visualize the convergence of the proposed
method, at each step of the optimization we pro-
duced a synthetic image which is transformed by
the same way in the previous section. Each image
of Fig.4 illustrates the difference between I2 and
the synthetic image. At 0th iteration, the two im-
ages were quite different. But the synthetic im-
age changed drastically within a few iterations, and
after 10 iterations the estimation had almost con-
verged and the difference image had many dark pix-
els. It means that the synthetic image and I2 be-
came quite similar to each other (see Fig.5) and that
the estimation result was good.
The estimated parameters are shown in Tab.1

and Fig.5(c). According to the estimates, the ball
was turned from right to left about y axis (the ver-
tical axis, its positive direction is downward) and
this is correct as we see in Figs.5(a) and (b).

4.2 Experiment with real image sequence

Then we conducted an experiment using real im-
ages in which a table tennis ball bounces off a board.
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Fig. 4: Difference of the two images at each step of
the optimization.
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Fig. 5: (a) The second image. (b) The synthetic
image. (c) Estimated parameters with direction su-
perimposed on the first image.

Table 1: Initial parameters R,T and estimated pa-
rameters Q,S of a table tennis ball. Angles are
represented in radian.

a b c tx ty tz
initial 0 0 0 1 2 208

α β γ sx sy sz
final -0.194 0.328 -0.119 1.28 1.93 206.3

Figure 6 shows an image sequence of the ta-
ble tennis ball (the same one in the previous ex-
periment) taken by a high-speed camera (Redlake
MASD, MotionMeter500) with a fixed focus lens
(Canon PHF6 1.4). The interval between frames
was set to 1/500 second and the shutter speed was
1/10000 second so that the motion blur does not
occur. The high spin was imparted to the ball, and
the ball rebounded off the board. The rebound was



Fig. 6: Image sequence of a table tennis ball taken
by a high-speed camera
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Fig. 7: Experimental result of motion tracking. The
translations (a) sx, (b) sz, and (c) sy and (d) the
angular velocities about each axis.

captured in 16 frames as shown in Fig.6.
We performed the fitting of the sphere model to

only the first frame. The estimated parameters in
the previous frame is used to produce the depth
buffer for each frame except the first frame, R is
set to the identity matrix I at each frame so that
the estimated rotation angles α, β and γ are ragard
as the anglar velocities ωx, ωy and ωz between two
frames.
Figure 7 shows the results of the estimated pa-

rameters over 12 frames. As shown in Fig.7, the
ball bounced at between the sixth and the seventh
frame. The translation sy changed its direction
(from downward to upward). The angular velocity
about the x axis was about 0.25 radians per 1/500
second ≈ 40 rps at the beginning, and it almost
disappeared after the bounce.

4.3 Measuring a ball spin in a real rally

Here we show a result of an experiment for real
table tennis rallies to see the difference of skills of an
experienced player and a beginner. Two sequences
of images in Figure 8 are taken under the same con-
dition in the previous experiment except a varifocal
lens (Canon V6X16-1.9 MACRO) is used. In the
top two rows of Fig.8 an expert player hit a ball
with top spin, and the bottom two rows of Fig.8
shows the impact of a biginner.
Estimated spins in the sequences of two players

are shown in Fig.9 where the left is for the expert
and right for the beginner. Besides angular veloc-
ities about the axes, the total angular velocity is
plotted. We can see that the spin of the expert sig-
nificantly increases after the impact, while the be-
ginner’s return did not give mush spin to the ball.

5 Conclutions
In this paper, we have proposed a method for

measuring a spin of a spinning ball by the im-
age registration with a 3D model. The proposed
method estimates the parameters of the transfor-
mation of a known shape object using depth infor-
mation and minimizes the residuals of intensities
of the two images. Experimental results using real
images demonstrated the robustness and the use-
fulness of the proposed method.
Since the proposed method does not estimate the

focal length, another method is required for a com-
plete calibration.
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