
Extracting Human Limb Region
using Optical Flow and Nonlinear Optimization

Toru Tamaki 1 Tsuyoshi Yamamura 3 Noboru Ohnishi 24

1 Department of Information Engineering, Faculty of Engineering, Niigata University, Niigata 950–2181 Japan
2 Center for Information Media Studies, Nagoya University, Nagoya 464–8603 Japan

3 Faculty of Information Science and Technology, Aichi Prefectural University, Aichi 480–1198 Japan
4 Bio-Mimetic Control Research Center, RIKEN, Nagoya 463–0003 Japan

Abstract
We propose a method for extracting human limb regions
by combination of optical flow based motion segmentation
and nonlinear optimization based image registration. First,
rotating limb regions with rough boundaries are extracted
and motion parameters are estimated for an approximated
model. Then the extracted region and estimated parame-
ters are used as initial values for nonlinear optimization
that minimizes residuals of two successive frames and esti-
mates motion parameters. Combining the two steps reduces
computational costs and avoids the initial state problem of
optimization. According to estimated parameters, the limb
region is extracted by Bayesian classifier to obtain accurate
region boundaries. Experimental results on real images will
be shown.

1. Introduction
It is important to extract human regions from a movie

as a part of a human activity recognition system, including
gesture recognition for human interfaces and motion recon-
struction in virtual reality. For such applications, detecting
and extracting human arms in a scene plays a key role [1]
showing where a subject is and how he/she acts, especially
for recognition of gestures, which are mainly determined by
the arm movements.

Many human activity recognition studies have been de-
veloped; and they often use parameterized human body
models to reconstruct actual human posture [2, 3]. How-
ever, these methods require that a background is known or
at least is of uniform color to make subtraction easy, other-
wise there must be no moving object except the subject. The
assumption about background is one hurdle to developing
methods so that a recognition system adapts to a changing
real environment.

To overcome the problem, we have proposed a method
[4] to extract regions of rotating human limbs represented
by a stick model and estimate their motion parameters. The
extraction method we proposed is an indirect method; i.e.,
from optical flow of two successive images calculated in

advance, segmenting an image into motion regions and esti-
mating the motion parameters of each region. This method
can extract arm regions from optical flow of a real image se-
quence contaminated by much noise. However, it is impos-
sible to compute optical flow where the motion correspon-
dence can not be found, especially at the edge of motion,
and the indirect method would fail to extract the exact arm
region boundary.

On the other hand, a method of motion segmentation
by comparing intensities of two successive frames directly
[6] has been proposed. This direct method can deal with
motion discontinuity at the motion edge and estimate accu-
rate motion parameters because it doesn’t use optical flow,
which causes failure of the indirect method. The problem
of the direct method is its high computational cost because
it uses nonlinear optimization to minimize intensity residu-
als of two frames all over the image with initial parameters
which may sometimes deviate greatly from true values.

In this paper, we propose a method to extract regions of
rotating human limbs with an accurate boundary by com-
bined use of indirect and direct methods. At first, limb re-
gions are extracted by the indirect method using optical flow
and estimated its motion parameters. Then, the accurate
boundary of the region is obtained by the direct method us-
ing the extracted region and estimates of the indirect method
as initial values. This combination is expected to decrease
computational costs and improve the extraction result of the
indirect method. We describe the indirect method of ex-
traction and estimation based on optical flow in section 2,
and the direct method using nonlinear optimization in sec-
tion 3. Final extraction with MAP estimation is discussed in
section 4. Finally, we provide experimental results of real
images in section 5.

2. Indirect method using optical flow
In this section, we describe the indirect method of ex-

tracting limb region using optical flow. The limb is assumed
to rotate on a plane that is not parallel to the image plane
(Fig.1). There are two cases in which the plane slants; and
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Fig. 1. A stick model moving on a plane rotated by φ about
the y axis (left) and by ψ about the x axis (right).

both can be used as an approximated 3D motion model. In
both cases, motion of a point pj = (xj , yj) on a rotating
limb and its velocity ṗj = (uj , vj) are modeled as follows
[4].

ṗj = Ajq (1)

where

Aj =
(
yj 1 0 0
0 0 xj 1

)
, q = (α, β, γ, δ)T (2)

Here, motion parameters (angular velocity ω and rotation
center (cx, cy) of the rotating limb) are calculated from q as
follows.

cx = −δ/γ, cy = −β/α, ω = −sign(α)
√−αγ (3)

Also, φ and ψ are retrieved[4] from q.
Motion of a point on a limb is modeled as above, but

optical flow computed from real images involves inevitable
noise. We assume that distribution of ṗj is subject to a two-
dimensional Gaussian,

P (ṗj | pj ,q,Σ) =
1

2π|Σ| 12 exp
{−1

2

(
ṗj −Ajq

)T

Σ−1
(
ṗj −Ajq

)}
(4)

where Σ =
(

σ2
x
0

0
σ2

y

)
is a covariance matrix which assumes

that the errors for u and v are mutually independent from
each other because α, β and γ, δ are estimated separately.

Next, we show below the algorithm to segment the limb
region and estimate its parameters [4]. This is an application
of the EM algorithm[10] which assumes that each moving
object has its own motion parameter q and that optical flow
distribution within the object region is Eq.(4).

1. Compute optical flow ṗj = (uj , vj)T at each point
pj = (xj , yj)T (j = 1, . . . , N).

Perform initial segmentation of optical flow based on
direction of velocity to obtain initial clusters Ri (i =
1, . . . ,M) (see section 5).

Then, set weight wij as a probability that a point pj

belongs to a cluster Ri. Set initial values of wij as

follows.

wij =
{

1 (pj ∈ Ri)
0 (pj �∈ Ri)

(5)

2. Normalize weights wij .

w′
ij =

wij

ξi
, ξi =

1
N

∑
j

wij (6)

3. Find parameters qi = (αi, βi, γi, δi) of each cluster
Ri solving the following system of equations by QR
decomposition[11].




√
w′

i1 ṗ1√
w′

i2 ṗ2

...


 =




√
w′

i1A1√
w′

i2A2

...


qi (7)

4. Compute the weighted variances σ2
xi and σ2

yi
for each

cluster Ri.

σ2
xi =

1
N

∑
j

w′
ij(uj − αiy − βi)2 (8)

σ2
yi

=
1
N

∑
j

w′
ij(vj − γiy − δi)2 (9)

5. Update weights wij with the following equation.

wij =
ξiP (ṗj | pj ,qi, σ

2
xi, σ

2
yi

)∑
k

ξkP (ṗj | pj ,qk, σ
2
xk, σ

2
yk

)
(10)

6. For all clusters, if the difference between estimated
parameter values of the current iteration and that of
the previous iteration is larger than a threshold, return
to step 2. Otherwise, proceed.

7. Perform segmentation by making each point p j be-
long to cluster Ri with the largest weight wij .

pj ∈ Ri∗ where i∗ = argmax
1≤i≤M

wij (11)

Then, extracting a region with the largest angular ve-
locity (calculated by Eq.(3)) as the rotating limb re-
gion RΩ.

Ω = argmax
1≤i≤M

ωi (12)

For simplicity, we assume that there is only one limb in
a scene. However, the method described in the following
sections can be applied to each moving region separately
because one can determine the number of movements in a
scene [4], place of the background (no motion), and extract
each region. Actually, section 5 shows results of a scene
with two moving arms.
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3. Direct method using nonlinear optimization
As mentioned previously, the indirect method cannot be

applicable to motion edge discontinuity (shaded line area
of Fig.2) because optical flow cannot be calculated there.
However, we have extracted the rough region of rotating
limb RΩ and estimated motion parameters of approximated
motion model qΩ by the indirect method. These estimates
help us to improve the direct method in terms of computa-
tional cost and initial value problems.

The direct method models motion using eight param-
eters[5, 6], while the method in the previous section uses
only four. Let It and It+1 be images at times t and t+ 1. A
point pj in It corresponds to pj + u(pj ; θ) in It+1, where
u is a motion vector and θ represents motion parameters
θ = (θ1, . . . , θ8)T .

Estimation is done by minimizing the square of residu-
als of intensities ri of two points as

min
θ

∑
pj∈RΩ

r2j (13)

where

rj = It(pj)− It+1(pj + u(pj ; θ)) (14)

u(p; θ) =
(
x y 0 0 1 0 x2 xy
0 0 x y 0 1 xy y2

)
θ ≡Mθ (15)

We use Gauss-Newton method [7] to estimate θ min-
imizing the cost function (Eq.(13)). By iteration of opti-
mization, estimates are modified as θ ← θ + δθ, and the
modification δθ is obtained by solving the following sys-
tems of equations [6].

8∑
l

∑
pj∈RΩ

∂rj
∂θk

∂rj
∂θl

δθl = −
∑

pj∈RΩ

rj
∂rj
∂θk

(16)

for k = 1, . . . , 8, where

∂r

∂θ
=
∂u
∂θ

∂r

∂u
= −MT∇It+1(p + u(p; θ)) (17)

The estimation procedure repeats to solve the system of
equations and update estimates. This requires appropriate
initial values. According to Eqs.(2) and (15), estimates qΩ

obtained by the indirect method correspond to θ as α = θ 2,
β = θ5, δ = θ3, and γ = θ6. So qΩ is used as the initial
value of the four of θ, and others of θ initialized to 0.

After the iteration converges, final estimates for θ (we
write as θ̂) are obtained.

Fig. 2. An example of the motion edge

4. Extraction by Bayesian classifier
Since estimation in the previous section is performed

only in the region RΩ (extracted by the indirect method),
we need to determine the human limb region according to
final estimates θ̂.

To extract the limb region, we use a Bayesian classifier
which maximizes posterior probability assuming that resid-
ual rj at each pixel is subject to Gaussian distribution. So,
conditional probability is defined as

P (rj |θi) =
1√
2πσ2

i

exp
(
− rj

2

2σ2
i

)
(18)

where, i = 1 means the human limb region with θ 1 = θ̂,
and i = 0 is the background with parameters of zero θ 0 =
0 (no movement). Therefore, σ 2

1 is calculated within RΩ

and σ2
0 is calculated outside of RΩ (or in the background

region).
Let |RΩ| be the number of pixels in the region RΩ, and

N be the number of all pixels in the image. We define prior
probabilities of θ1 and θ0 by the ratio of areas, that is,

P (θ̂) =
|RΩ|
N

(19)

P (0) = 1− P (θ̂) (20)

Then computing and comparing posterior probabilities for
each pixel pi (without regarding denominators P (rj)) as
follows;

P (θ̂)P (rj |θ̂) > P (0)P (rj |0) (21)

If the above inequality holds, then the pixel belongs to the
limb region; otherwise, the pixel is the background.

5. Experimental results
The proposed method has been implemented on PC us-

ing C++. Computation of optical flow (algorithm step 1.)
was performed by code released by [8, 9], and initial clus-
ters (step 1.) were made by a simple histogram clustering
which divides directions of velocity vector into 24 sections
and finds peaks in the direction histogram as the center of
the clusters.

Figure 3 shows the experimental result on a real image
sequence of bending arm toward the shoulder fixing the el-
bow position. Figure 3(a) is the first frame and Fig.3(b)
shows superimposed optical flow of motion between the
first and second frame. Fig.3(c) is the indirect method re-
sult showing that, because of inaccurate optical flow at the
motion edge, the indirect method cannot extract the top of
the arm where the motion is large. We can also see that the
region boundary is not identical with that of the actual arm.

Figure 3(d) is the result of extraction by the direct meth-
od which uses the result (estimated parameters and extract-
ed region) of Fig.3(c) as the initial value. Compared with
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(a) original image (b) optical flow

(c) result of indirect method (d) result of direct method

(e) posterior probability
P (θ̂)P (rj |θ̂)

(f) posterior probability
P (0)P (rj |0)

Fig. 3. Experimental result.

Fig.3(c), we can see that the lower arm region is extracted
and boundary is close to the actual contour in Fig.3(d).
However, the region around the elbow is not extracted be-
cause the posterior probability of the area where change of
intensity is flat is small in either class. It is therefore am-
biguous to which class the point should belong. Figure 3(e)
and (f) illustrate posterior probabilities in which high prob-
ability is painted in white and low is in black. In Fig.3(e),
the arm area is white except around the elbow and the back-
ground with uniform intensity is same gray level in both (e)
and (f).

Another experiment is shown in Fig.4. The arm moves
downward, and Fig.4(b) shows that the extracted region by
the indirect method becomes narrow at the top of the arm
because of the motion edge problem. On the other hand,
extraction of the direct method in Fig.4(c) is better in terms
of accuracy of the boundary of extracted region. Ambiguity
at the flat intensity (near the shoulder) is also occurs in this
case.

As mentioned at the end of section 2, the proposed
method can deal with multiple arm motions. Figure 5 shows

(a) Original image

(b) Result of indirect method (c) Result of direct method

Fig. 4. Another experiment

that the two arms move simultaneously; the left arm moves
downward an the right arm moves upward. We can see ex-
traction improvement for the left arm in Figs.5(b) and (c),
but right arm extraction is not improved so much (Figs.5(d)
and (e)). The reason is that there are many areas with flat
intensity.

Finally, note that small regions were removed and holes
buried in Figs.3(c) and (d) and Figs.4(b) and (c).

6. Conclusions
We have proposed a method to extract human limb re-

gions by the direct method which uses two frames directly
with an initial value that is the result of the indirect method
based on optical flow. At first, rotating limb regions which
have rough boundaries are extracted and motion parame-
ters of the approximated model are estimated. Then the ex-
tracted region and estimated parameters are used as initial
values of nonlinear optimization that minimizes residuals
of two successive frames, and estimates motion parameters.
According to estimated parameters, the limb region is ex-
tracted by Bayesian classifier to obtain accurate boundary
of the region. Experimental results on real images show
that the result of the direct method is better than that of the
indirect method from the viewpoint of dealing with the mo-
tion edge. However, there is still difficulty in determining
whether an area is in motion or not when the area has flat
intensity. We will try to handle this problem by applying a
shape model of an arm or using results of several frames.
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(a) Original image

(b) Extraction of arm 1 (c) Extraction of arm 2
Result of indirect method

(d) Extraction of arm 1 (e) Extraction of arm 2
Result of direct method

Fig. 5. Experiment where there are two moving arms.
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