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Abstract
We propose a method for correcting image distortion due to
camera lenses by calibrating intrinsic camera parameters.
The proposed method is based on image registration and
doesn’t require point-to-point correspondence. Parameters
of three successive transformations –– view change, radial
distortion and illumination change –– are estimated using
the Gauss-Newton method. Estimating all 19 unknowns si-
multaneously, we introduce the implicit function theorem for
calculating the Jacobian. To avoid local minima, we first
estimate parameters for view change and employ coarse-to-
fine minimization. Experimental results using real images
demonstrate the robustness and the usefulness of the pro-
posed method.

1. Introduction
Calibrating a camera and correcting image distortion are

important processes for computer vision. Much research
on calibrating extrinsic camera parameters or recovering 3D
structure (for examples, see [1, 2, 3, 4]) formulate the prob-
lems without considering distortion because of simplicity.
However, distortion is inevitable when we use an ordinary
lens installed on an inexpensive camera; sometimes a point
may be displaced more than ten pixels around the corner of
the image due to distortion. Although self-calibration with a
fundamental matrix[5] has been studied well recently, such
studies don’t take into account barrel or pin cushion dis-
tortion. Pre-calibration of intrinsic camera parameters and
correction of distorted image are thus required preprocesses
for such research and to produce quality images.

For researchers’ convenience, some codes to calibrate
intrinsic parameters have been made available through the
internet (e.g., Tsai’s method[6, 7] implemented by [8], or
Intel CV library[9]). However, such ordinary techniques re-
quire a number of correspondences[10, 11, 12] between a
point in the image and a feature point at the known three-
dimensional coordinates (on a plane or on some structure
like a cube or a house) to estimate parameters of transfor-
mation of the corresponding points.

When the correspondences are established manually, er-
rors can be generated by human operation and this compro-
mises reliability. Moreover, it takes much time and patience.
For example, it is too hard to measure distortion parameters
as changes in camera zooming.

An alternative procedure is to detect markers such as cor-
ners[10], circles[12], curves[13] or intersections. This can
be performed by edge detection or template matching tech-
niques that can be done on a subpixel level. However, an-
other correspondence problem arises: When there are many
feature points in a space, how do we decide which should
correspond to a point on an image? It cannot be neglected as
the number of the markers increases in order to improve the
estimation accuracy. Even if the problem can be avoided

[14], the number of points for the correspondence is still
limited.

In this paper, we propose a new method for correcting
image distortion due to camera lenses by calibrating intrin-
sic camera parameters. The proposed method establishes
the correspondence between a calibration pattern (the ideal
image) and a distorted picture of the pattern taken by a cam-
era. The correspondence is based on an image registration
that is often used for motion analysis. The estimation is ex-
pected to be more precise than marker detection because this
method uses all points of the image rather than just using
several markers. The proposed method estimates parame-
ters of transformations of planes under perspective projec-
tion, radial distortion and spatial linear illumination change
by a nonlinear optimization technique that minimizes resid-
uals between two images.

1.1. Image registration for distortion
The basic idea is that correspondence between points is

necessary for calibration, and registration can satisfy this
requirement. The proposed method establishes the corre-
spondence between an ideal calibration pattern I1 and a dis-
torted image I2 of the printed pattern observed by a camera.
The observation is modeled by three transformations (see
Fig.1); view change u, distortion d, and illumination vari-
ation H . I2 is regarded as a product generated from I1 by
applying the three functions. Using the image registration
technique, the proposed method estimates the parameters of
the functions by minimizing the difference between I1 and
I2, that is, the sum of squares of intensity residuals of the
two images.

The procedure of the proposed method is as follows.
First, prepare calibration pattern I1. Any digital image
(taken by a digital camera, scanned photo or CG) can be
used as the pattern. Second, print the pattern on a sheet of
paper using a printer (we assume that the printer makes an
ideal print). Third, use the camera to be calibrated to ac-
quire an image I2 of the printed pattern I1. Finally, register
the pattern I1 and the observed image I2 to determine the
parameters of the functions u, d and H .

Some researchers use registration to calibrate extrinsic
camera parameters[1] or mosaicing[2, 15]. The problems in
employing the image registration technique in a straightfor-
ward manner are that d is not a closed-form but is rather im-
plemented by an iterative procedure, and it is difficult to ob-
tain the gradient of d for gradient-based optimization. This
is because f , the inverse of d, is a nonlinear function and is
often used to model distortion. Although this problem oc-
curs when distortion parameters are estimated, nothing has
been found in researches of fish-eye lens mosaicing[15]. To
obtain the Jacobian of d, we use the implicit function theo-
rem[16, 17]. This enables us to see the registration-based in-
trinsic/extrinsic parameter calibration as a unified approach
including lens distortion and illumination variation.

1

tamaki
in Proc. of ACCV2002: The 5th Asian Conference on Computer Vision, Vol.II, pp.521-526, Jan 2002.



I1 I2f
u

d

H

Figure 1. Observation I2 of the calibration pattern I1 mod-
eled by three transformations.

Some registration-based methods have been developed
[15, 18], but they require rotating a camera around a pro-
jection center for taking two (or more) pictures. In contrast,
our method needs one picture from any viewpoint.

In section 2, we explain models of image transformation
including view change, distortion and illumination varia-
tion. We then describe the algorithm of registration based
on a nonlinear optimization in section 3. Finally, we present
the experimental results in section 4.

2. Models of transformations
In this section, we describe the models of transformation

between the calibration pattern I1 and the observed image
I2. The transformation comprises three subsequent func-
tions. The first is a change of view from pattern I1 to a
printed sheet in a 3D space, the second is the displacement
from the projection of the sheet due to distortion, and the
last is the illumination change that alters the intensity of the
pattern.

2.1. Modeling view change
Given two images of the same planar object from differ-

ent viewpoints, the relationship between them is described
by a planar perspective motion model with eight parameters
[2, 19]. As shown in Fig.2, I1 and I2 can be applied to this
case for the following reason. Since I1 is just a digital im-
age, I1 is a plane exactly identical to the image plane. The
printed sheet is regarded as a plane transformed from the
plane of I1, and I2 is the projection of the sheet onto the
image plane having a slight displacement due to the distor-
tion.

The model warps a point p = (x, y)T on I1 into the cor-
responding point on I2, pu = (xu, yu)T , using the function
u of θu = (θu

1 , . . . , θu
8 )T as follows[2].

pu = u(p, θu) =
1

θu
1x+θu

2y+1

(
θu
3x+θu

4y+θu
5

θu
6x+θu

7y+θu
8

)
(1)

The Jacobian of u is calculated[2] by

∂u

∂θu =
(−x2 −xy x y 1 0 0 0
−xy −y2 0 0 0 x y 1

)
(2)

2.2. Modeling distortion
The relationships between undistorted and distorted co-

ordinates in an image are often modeled by five intrinsic
camera parameters[20, 6]: the radial distortion parameters
κ1 and κ2, the coordinates of image center (cx, cy)T , and
the aspect ratio (sometimes referred to a horizontal scale)
sx. We write these parameters as θd = (θd

1 , . . . , θd
5) =
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Figure 2. Relationship
between I1 and I2.
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Figure 3. Distortion model

(κ1, κ2, cx, cy, sx)T . Although we consider only radial dis-
tortion, the following discussion can be applied when an-
other model involving decentering distortion[21, 22] is em-
ployed.

Distortion is represented with respect to the image center
(cx, cy)T . Let pu = (xu, yu)T be a point in I2 without
considering distortion, that is, pu = u(p); pu is moved
to pd = (xd, yd)T by radial distortion. Here we have two
functions between pu and pd.

pd = d(pu, θd) (3)

pu = f(pd, θd)=


 xd−cx

sx
(1+κ1R

2+κ2R
4)+cx

(yd−cy)(1+κ1R
2+κ2R

4)+cy


 (4)

where R =
√

((xd − cx)/sx)2 + (yd − cy)2. f and d are
the inverse of each other, and d is not a closed-form func-
tion of pu but is implemented by an iterative procedure[20,
p.60].

In addition to the Jacobian of u, the Jacobian of d is
also needed for a gradient method. Here we introduce the
implicit function theorem[16, p.144] for systems[17, p.339].
This theorem can represent the Jacobian of d as an explicit
form through f . Let F be a function of q = (pu, θd) and
pd represented by

F (q, pd) = pu − f (pd, θd) (5)

According to the definition, if F (q, d(q)) = 0 is satisfied
for ∀pu and ∀θd, pd = d(q) is called an implicit function
determined by F (q, pd) = 0. In our case, the condition is
theoretically always satisfied because we defined d as the
inverse of f , and numerically Eq.(5) is almost 0 (it can be
less than 10−10).

According to the theorem, the Jacobian is given by the
following equations.

∂d

∂q
= − ∂F

∂pd

−1 ∂F

∂q
= − ∂F

∂pd

−1 (
∂F

∂pu

∂F

∂θd

)

= −
(

∂F

∂pd

−1∂F

∂pu

∂F

∂pd

−1∂F

∂θd

)
(6)
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unless ∂F
∂pd is singular. The Jacobian can also be decom-

posed into two parts as follows.

∂d

∂q
=

(
∂d

∂pu

∂d

∂θd

)
(7)

Therefore, the second part is the desired gradient of d.

∂d

∂θd
= − ∂F

∂pd

−1 ∂F

∂θd
= − ∂f

∂pd

−1 ∂f

∂θd
(8)

The first part is the differential of d with respect to pu =
u(p) (this is also used in the later formulation).

∂d

∂pu
=

∂d

∂u
= − ∂F

∂pd

−1 ∂F

∂pu
=

∂f

∂pd

−1

(9)

The derivation of elements of the Jacobian is described in
[23].

2.3. Modeling illumination variation
A point p in I1 is transformed into the point pd in I2 by

view change and distortion. However, the intensities of the
corresponding points should not be identical because gray
level of the sheet on which I1 is printed is different from the
original one, and the histogram of I2 depends on exposure
of the camera, illumination of the environment, and so on.

We take the following function as a model of intensity
change:

H(I(p), p, θh) = (θh
1 + θh

2x + θh
3y)I(p)

+ (θh
4 + θh

5 x + θh
6y) (10)

where θh = (θh
1 , . . . , θh

6 )T . This model represents both the
gain and bias as spatial linear functions. This is not an exact
model, but it can deal with simple changes in illumination
[24]. There has been an attempt to eliminate the variation
in illumination[25], although it is not applicable to our case
because it finds basis images from a set of images contain-
ing at least three different planes in a scene.

3. Minimization with some arrangements
In this section, we describe how to estimate the parame-

ters of the functions u, d and H . Image registration seeks
to minimize the residuals ri of intensities of the two images,
I1 and I2.

ri = I1(pi)−H(I2(pd
i ), p

d
i , θ

h) (11)

pd
i = d(pu

i , θd) (12)

pu
i = u(pi, θ

u) (13)

The function to be totally minimized is the sum of squares
of the residuals over the image I1.

min
θ

∑
i

ri
2 , pi ∈ I1 (14)

where θ = (θ1, . . . , θ19)T = (θu, θd, θh)T .

Estimating the parameters θ, the objective function is
minimized by the Gauss-Newton method, a nonlinear op-
timization technique[26]. The parameters are updated from
some initial value by the following rule.

θ ← θ + α δθ (15)

The decent direction δθ = (δθ1, . . . , δθ19)T is calculated
as follows[26]:

δθ = −(JT J)−1JT r (16)

J =
∂r

∂θ
(17)

where r = (r1, r2, . . .)T . This is the same as the least
square formulation, that is, the system of linear equations
[27] written as∑

i

∑
l

∂ri

∂θk

∂ri

∂θl
δθl = −

∑
i

ri
∂ri

∂θk
(18)

for k = 1, . . . , 19 (the number of parameters). The partial
derivatives are the elements of the following Jacobian ob-
tained by the chain rule of vector differentiation[26].

∂r

∂θ
=

(
∂r

∂θu

∂r

∂θd

∂r

∂θh

)
(19)

∂r

∂θu =
∂r

∂H

(
∂H

∂I2

∂I2

∂d
+

∂H

∂d

)
∂d

∂u

∂u

∂θu

= −
(

∂H

∂I2
∇I2(d) +

∂H

∂d

)
∂f

∂pd

−1 ∂u

∂θu (20)

∂r

∂θd
=

∂r

∂H

(
∂H

∂I2

∂I2

∂d
+

∂H

∂d

)
∂d

∂θd

=
(

∂H

∂I2
∇I2(d) +

∂H

∂d

)
∂f

∂pd

−1 ∂f

∂θd
(21)

∂r

∂θh
= −(I2(pd) xdI2(pd) ydI2(pd) 1 xd yd) (22)

Once the direction is decided by solving the system of
equations in Eq.(18), the step length α is optimized by line
minimization[28]. The iteration of update by Eq.(15) is re-
peated until it converges. At each iteration, the parameters
estimated in the previous iteration are used for the current
Jacobian.

3.1. Interpolating pixel value
When we want to obtain the intensity of a pixel whose

coordinate is not on the integer grid, as frequently occurs,
we need to interpolate the intensity using the values of the
pixels that are already located on the grid. For this purpose,
we use the bilinear interpolation[29, p382], a simple and
fast method, which interpolates the values of four neighbor-
ing pixels on a rectilinear grid.

3.2. Initial state
At the beginning of the iteration, we use the following

initial value for each parameters: θu = (0,0,1,0,0,0,1,0)T ,
θd =(κ0

1,0,w
2 ,h

2 ,1)T , and θh =(1,0,0,0,0,0)T , where w and
h represent the width and height of I2, and κ0

1 is the initial
value randomly selected for κ1 to prevent the differentials of
κ1 and κ2 from always being 0 by initializing κ1 = κ2 = 0.
We empirically choose κ0

1 ∈ [−10−7, 10−7].
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3.3. Partial optimization
If there is a large error in estimates at the beginning of the

minimization, the estimation is unstable because the num-
ber of parameters is relatively large, and θh changes the
intensity of the observed image.

Even though, the initial values of the estimates are al-
ways set to the values mentioned above, the minimization
sometimes falls into a local minimum. To avoid the insta-
bility in the early stage of estimation, we perform the opti-
mization for only some of the parameters, not all of them;
only θu is estimated, while θd and θh are unchanged. This
is called search space decomposition[30]. There is no guar-
antee of convergence, but it reduces the dimension of the
search space and stabilize the estimation. After the estima-
tion of θu converges, we estimate all of the parameters.

However, a good initialization is needed for a large dis-
tortion (see section 4.2).

3.4. Coarse-to-fine
To reduce computational time and to perform precise es-

timation even when there is a relatively large error in the
initial state, we employ a strategy for shifting from a coarse
resolution to a fine resolution (known as coarse-to-fine strat-
egy). First, we use filtered blurred images with a large gaus-
sian kernel then change the filter to a smaller one and repeat
the optimization using the filtered images.

3.5. Correcting distortion
After estimating the parameters of distortion θd, we can

correct the distortion and obtain the corrected image I ′
2 by

using the following relation.

I ′2(p) = I2(d(p, θd)) (23)

Once we obtain the distortion parameters, we can use them
for correction as long as the lens zoom is unchanged.

4. Experimental results
We conducted experiments with the proposed method us-

ing real images taken by a camera having a zoom lens. We
used a scanned photograph as the calibration pattern (shown
in Fig.4), printed it with a laser monochrome printer (Ap-
ple Laserwriter 16/600 PS), and then captured images of the
printed sheet by a CCD video camera (Sony EVI-D30) with a
video capture device (IO-DATA GV-VCP2M/PCI) of AT/PC.
We placed the printed pattern in front of the camera almost
parallel to the image plane. The captured image of the pat-
tern is shown in Fig.5(a). We also took an image of a grid
pattern (shown in Fig.5(c)) to help visualize the correction
of distortion.

Figure 5(b) and (d) show the images corrected by Eq.(23)
with the estimated parameters. In the corrected image
Fig.5(d), the curved lines on the grid pattern in the dis-
torted image are corrected to straight lines, so the proposed
method works well. The computational time was about 20
minutes on a PC (866MHz CPU, GNU C++ and CLAPACK).
However, the optimization had almost converged after fewer
than 30 iterations.

We can see the convergence in Fig.6, which shows the
sum of squares of intensity residuals of the first 25 itera-
tions. As we mentioned in section 3.3, only θu is estimated
in the early stage of iteration while θd and θh are fixed
to their initial value. After the estimation of θu converges
(16 iterations), the minimization using all parameters begins
and converges in several iterations.

Figure 4. Calibration pattern (640×480)

(a) (b)

(c) (d)

Figure 5. Experiment results of the proposed method. (a)
Image of the calibration pattern taken by the camera at the
widest view angle. (b) Corrected image of (a). (c) Image of
the grid pattern. (d) Corrected image of (c).

4.1. Distortion parameters as changing zoom
The advantage of the proposed method is convenience

for the human operator. The requirements are just a printed
pattern and one captured image of it; a batch process is
then called without any manual operations. This simplic-
ity enables us to see the distortion parameter change that
arises due to changing the zoom of the camera, while point
correspondence-based conventional methods require an
enormous number of clicking points input by a mouse. The
camera that we used in the experiment above can control its
zooming through a serial communication port by receiving
a command[31], so that we can accurately plot the distortion
parameters against zooming.

Figures 7(a) and (b) show the distortion parameters of
44 zoom settings. The horizontal axis represents the zoom-
ing (0 is the widest view angle, and the maximum zoom is
1023). We can see that the distortion parameter κ1 mono-
tonically decreases as the camera zooms out, while κ2 in-
creases and changes its sign from negative to positive. cx,
cy and sx are shown in Figs.7(c)(d) and (e). Apparently, cx

and sx change and cy stays, however, these three parame-
ters become less precise when κ1 (and κ2) is small because,
if there is no distortion (κ1 = κ2 = 0), cx, cy and sx are
indefinite.

4



estimate
all θu, θd, θh

10

20

30

40

50

60

70

the number of iterations

estimate only θu

co
st

 fu
nc

tio
n 

/ n
um

be
r o

f p
oi

nt
s

0 5 10 15 20 25

Figure 6. Convergence of the estimation. Horizontal axis
is the number of iterations to update the estimates; vertical
axis represents the sum of squares divided by the number of
points in I1.

Note that the horizontal axis of Fig.7 is not identical to
the focal length of the camera but is just a parameter to con-
trol zooming of the lens. The zooming parameter is related
to the focal length, but it doesn’t mean that the parameter is
linearly proportional to the focal length.

4.2. Severe distortion and convergence
Another result of correcting a distorted image is shown

in Fig.8. Figure 8(a) is a grid pattern captured by another
camera (Sony DXC-200A) with a wide angle lens (Sony VCL-
4V10XEA). Figure 8(b) is the image corrected using the pro-
posed method. For such severe distortion, the proposed
method requires an appropriate initial state for the param-
eters to avoid falling into local minima. Instead of using
the values in section 3.2, in this case, we decided the initial
state as follows. We chose the coordinates of four corners
of the pattern in the captured image and solved Eq.(1) as a
system of equations with eight unknowns, then used the so-
lution as the initial state of θu. We also set κ0

1 to 1e-6; this
larger positive value represents severe barrel distortion. Par-
tial optimization is also slightly changed. We first fixed θd

and θh, then fixed θh, and finally estimated all parameters.
These devices seem to be ad hoc, therefore, much more

sophisticated global optimization techniques should be used
for large distortion. Even for small distortion, the optimiza-
tion may fall into local minima because there are 19 un-
knowns. Nevertheless, the proposed method described in
section 3 was executed 44 times to plot Fig.7 without any
change or any interaction, and worked well throughout the
experiment. The reason is that the distortion is relatively
small (κ1 is less than 4e-7) and the pattern occupied a large
area in the captured image.

4.3. Mosaicing using corrected images
One of the applications of this method is improving mo-

saicing of images. Using two distorted images, mosaicing
is imperfect as seen in Fig.9(a) at the corner of the orig-
inal image where the displacement of distortion is severe.
In contrast, the mosaic shown in Fig.9(b) composed of two
images corrected by the proposed method is correctly gen-
erated. The images were taken by a digital camera (Olympus
CAMEDIA C-960ZOOM).

5. Conclusions
We have proposed a new method for correcting image

distortion due to camera lenses by calibrating intrinsic cam-
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Figure 7. Change of the intrinsic parameters. (a) Distortion
parameters κ1 and (b) κ2. (c) Image center cx and (d) cy . (e)
Aspect ratio sx. The horizontal axis represents the zooming
of the camera; left is the wide side and right is the tele side
of zoom.

era parameters without any manual operations. The pro-
posed method is based on image registration and consists
of nonlinear optimization to estimate parameters including
view change, distortion, and illumination variations. Exper-
imental results demonstrated the efficiency of the proposed
method using real images. The nonlinear optimization takes
some time but is fast enough to run as a batch process. We
showed two applications of the proposed method: measur-
ing distortion parameters with changes in camera zooming
and image mosaicing using corrected images.

So far the results of the correction have been evaluated
qualitatively because the actual intrinsic camera parameters
are unknown. A quantitative evaluation of the estimates is
planned for the future.
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