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A novel image x is represented as
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Pose EstimationPose Estimation

Learn finite samples, Generate many images :
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Compare images projected onto the subspace :
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When an object rotates…When an object rotates…

� Images are taken.

� They make a 

manifold…?

� Images are taken.

� They make a 

manifold…?

camera

tu
rn
s
 a
ro
u
n
d
!

What are these images?
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View-based pose estimationView-based pose estimation

� Learns the relationship between images (input) and 
parameters (output)

� Learns the relationship between images (input) and 
parameters (output)

Learning Estimation
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In and Off: 1DOF rotationsIn and Off: 1DOF rotations

� in-plane rotation

� about the optical axis 

of the camera

� appearance rotates in 

the image plane
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� Analitical solutions

� Eigenimages are 

obtained by DFT.

� (Uenohara et al., 1998)

� (Chang et al., 2000)

� (Park, 2002)

� (Jorgan et al., 2003)

� (Sengel et al., 2005)

� But, hopeless for 

extending off-the-plane 

rotation.
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In and Off: 1DOF rotationsIn and Off: 1DOF rotations

� Pose estimation

� Parametric 

Eigenspace method

� (Murase et al., 1995)

� linear regression

� (Okatani et al., 2000)

� (Amano et al., 2007)
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� (Ando et al., 2005)

� Manifold learning
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In and Off: 1DOF rotationsIn and Off: 1DOF rotations

� Questions:

� Can we represent 

these images 

analytically?

� and How?
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The Key : Cyclic Permutation.The Key : Cyclic Permutation.

The relationship between images:

jx 0x
jG=

1x 0xG=

2x 1xG=

0x 1−nGx=
M

A matrix G transforms

an image to another:

Gj transforms x0 to xj directly.
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 mod 
=+1 jG G

G

G
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Why Cyclic Permutation?Why Cyclic Permutation?

� Pose Estimation
� Find j such that

for a given image x

� View Generation
� Create an image xj

for given j

� Pose Estimation
� Find j such that

for a given image x

� View Generation
� Create an image xj

for given j
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j

j G= 0  xx
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j G=

0  xx
jG= 0  xx
jG=

nj     0 <≤
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Obtaining the matrix G…Obtaining the matrix G…

Matrix representation
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1
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Using pseudoinverse

+
= 01    XXG
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1x0x 1−nx2−nx1x 0x1−nx2−nx
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with Column permutation.with Column permutation.
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1X

+
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But,But,
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Does really G transform x0 to x1 ?

Yes, it does !
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Block diagonalizationBlock diagonalization
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2A

Decomposing the matrix GDecomposing the matrix G

WTW0X
+

0X=

1

O
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D

G

=G 2U 1UD

=jG 2U 1U
jD
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View generationView generation

0120     xxx UDUG jj

j == nj     0 <≤

Extend j to arbitrary number

Using only finite number of images x0, x1, …, xn-1 ,

Generating xj for any j .

0120     xxx UDUG jj

j == 1 ,  ,2 ,1 ,0  −= nj K

Equations for leaning samples
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Pose estimationPose estimation

0120     xxx UDUG jj
== nj     0 <≤

Estimating j of arbitrary number

0120     xxx UDUG jj

j == 1 ,  ,2 ,1 ,0  −= nj K

Equations for leaning samples

x1U 0121 xUDUU j=

01xUD j
x1U =

=x′
0x′

jD jj U xx 1    =′

An image

in the subspace
Compare two images

projected in the subspace
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What’s the power of G?What’s the power of G?

Does Gj really transform x0 to xj ?

=jG 2U 1U
jD 1x

2x

1−nx

2−nx

0x

jx
jG

jG=

Can Gj really produce

the back from the front?
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Pixel-wise DFTPixel-wise DFT
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Reconstruction by DFT basisReconstruction by DFT basis
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Reconstruction by DFT basisReconstruction by DFT basis
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Reconstruction by DFT basisReconstruction by DFT basis
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L

1x 0x1−nx2−nx

1X

Phase shift of DFT basisPhase shift of DFT basis
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L

jx

jX

Continuous phase shiftContinuous phase shift
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This is the power of G!This is the power of G!

Does Gj really transform x0 to xj ?

=jG 2U 1U
jD 1x

2x

1−nx

2−nx

0x

jx
jG

jG=

Can Gj really produce

the back from the front?

Yes, it does by pixel-wise DFT!
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ConclusionsConclusions

� Introduced cyclic permutation to 

represent images of rotationg object.

� Applied to view generation and pose 

estimation.

� Closely related to DFT in pixel-wise for 
generating novel image by xj = G

j x0.
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