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The Key: Cyclic Permutation

The relationship between images
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View Generation

Learn finite samples, Generate many images: z,,,;=G""'z,=X,W' D"/W X =,
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VWhen an ebject rotates...

Images are taken.

They make a
manifold...?

camera

o

What are these images?




VIEw-based pose estimation

Learning Estimation

\parameter 6, 0, e Hn/ i 0 ke

Learns the relationship between images (input) and
parameters (output)




Inand Ofif: 1DOFE rotatiens

iIn-plane rotation off-the-plane rotation
about the optical axis about any axis in 3D
of the camera appearance changes
appearance rotates in due to the object
the image plane geometry
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Inand Ofif: 1DOFE rotatiens

in-plane rotation

about the optical axis
of the camera

appearance rotates in
the image plane
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Analitical solutions

Eigenimages are
obtained by DFT.
(Uenohara et al., 1998)
(Chang et al., 2000)
(Park, 2002)
(Jorgan et al., 2003)
(Sengel et al., 2005)

But, hopeless for
extending off-the-plane
rotation.



Pose estimation

Parametric
Eigenspace method
(Murase et al., 1995)

linear regression
(Okatani et al., 2000)
(Amano et al., 2007)

kernel methods
(Melzer et al., 2003)
(Ando et al., 2005)

Manifold learning

Inand Ofif: 1DOFE rotatiens

off-the-plane rotation
about any axis in 3D

appearance changes
due to the object
geometry
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Questions:

Can we represent
these images
analytically?

and How?

What is the key to
understand?
In terms of “linear”

Inand Ofif: 1DOFE rotatiens

off-the-plane rotation
about any axis in 3D

appearance changes
due to the object
geometry
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lhe Key:: Cyclic Permutation.

The relationship between images:
=Gz,

A matrix GG transforms
an image to another:
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GJ transforms x, to x; directly.
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Why: Cyclic Permutation?

Pose Estimation
Find 5 such that
=Gz,
for a given image x

View Generation
Create an image «,

r. =G'x,
for given j

0<j5<n



Obtaining the matrix G ...

Matrix representation
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Using pseudoinverse
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Does really G transform x, to x, ? [ G = X MX* }
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Yes, it does !
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Block diagoenalization

G = X,MX; =X,| % |Xx¢{

SR < W X,

A, \
= = DFT basis
D \

2x2 blocks
(rotation matrix)




Decomposingthe matrix G
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View generation

Equations for leaning samples
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x, =G'xy=U,D'Ux, j=012..,n1

Extend j to arbitrary number gt N

T, = Glx, =ULDU,x, 0<j<n

/Using only finite number of images z,, =, ...
Generating x; for any j .
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Pose estimation

Equations for leaning samples
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VWhat's the power: ofi G7

Does G’ really transform x to ; ? el
T J
G’ = U, D’ U,

Can GV really produce
the back from the front?
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Pixel-wise DET

_1 D = / DFT basis
= W X¢
A, 2
DFT
WT coefficients
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[Reconstruction' by DEIF basis

X, W'

DFT /7/

coefficients

DFT basis
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[Reconstruction' by DEIF basis

- DFT basis

b
WX




[Reconstruction' by DEIF basis

DFT basis

b
WX

{ x, =Gz, J




DFT
coefficients

Phase shift off DETF basis
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Continuous; phase shifit
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Thisiis the power; ofi G

Does G’ really transform x to ; ?
- J
G/ =U,D’ U,

Can GV really produce
the back from the front?
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Yes, it does by pixel-wise DFT!
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Conclusions

Introduced cyclic permutation to
represent images of rotationg object.

Applied to view generation and pose
estimation.

Closely related to DFT in pixel-wise for
generating novel image by =, = G’ x,
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