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Abstract

In this paper, we propose a novel pose estimation method
for a cyclic image squence of a rotating object with sub-
space by block diagonalization of a matrix representing
transformation from an image to another. The transfor-
mation by the matrix is formulated as the action of cyclic
group, and the power of a block diagonal matrix represents
pose and appearance change in the sequence. Distance-
based and angle-based methods are proposed to estimate
pose. Experimental results with real image sequences of
COIL-20 demonstrate that the subspace proposed in this
paper is useful for pose estimation.

1 Introduction

When a three dimensional object rotates about an axis
(as shown in Fig.1), the sequence of images of the object is
cyclic: the last image is followed by the first image. When
we have such a sequence of n images x0, x1, . . . , xn−1, the
cyclic property is represented by cyclic group:

xj+1 mod n = Gxj .

G is an element of a cyclic group, however, we can think
it is a matrix. This relationship is essential for images of
one parameter rotation, but no attentions have been paid.
We propose to use the cyclic property for view-based pose
estimation by linear subspace approach.

1.1 Related works

Estimation of pose of an object in an image is an im-
portant task in computer vision and pattern recognition, and
methods are categorized into model-based and view-based.
Model-based methods, such as [8], assume a model is given:
such as known object shape, rigid motion, and projections.
This approach estimates 3DOF (degrees of freedom) ro-
tation of objects, however, requires precise geometry and

(a) (b)

Figure 1. Images of an object by (a) in-plane
and (b) off-the-plane rotation.

restricted scene where the model can be applied. On the
other hand, the advantage of view-based or appearance-
based methods is to use just images of the object and make
no assumptions about shape of objects and projections from
3-D to 2-D. Although it is difficult to deal with 3DOF ro-
tation, many studies have been done even if the rotation is
1DOF (one parameter rotation).
A major view-based method is Parametric Eigenspace

method proposed by Murase et al.[10]. It learns Eigenspace
of images of an object with continuously changing pose pa-
rameters. This method has been applied in a variety of areas
and demonstrated its usefulness. However, there are prac-
tical problems including that it is not easy to extend the
expression of spline to many (more than 2) DOF, and the
search over a spline curve/surface is not closed-form but
an iterative search involving expensive computation. And a
theoretical question arises: what is the Eigenspace or sub-
space of images of a 3D object rotating about an axis?
For some special cases, analyses has been developed.

Uenohara et al. [19, 5] proposed an efficient computation
of Eigenspace for images rotating about the optical axis (so
just two dimensional image rotation, or in-plane rotation as
shown in Fig.1(a)) by using DCT or DFT[13]. Chang et
al.[3] showed the same result for translational shift. Jorgan
et al.[7, 5] extended for images of multiple objects rotating
in-plane. Sengel et al.[17] considered in the limit when the
number of images is infinite for Jorgan’s method[7], then
estimated a pose parameter directly with arctan.
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It is not easy for off-the-plane rotation: when an object
is rotated about an arbitrary axis in three dimensional space
(see Fig.1(b)). In the case of in-plane rotation, appearance
of an object in images basically does not change. But in
three dimensional rotation, even for 1DOF, it is impossi-
ble to find eigenvectors analytically because the appearance
change depends on many properties of an object, such as
shape, reflectance, shadow and etc. Therefore, many re-
searches have been done with kernel methods or nonlinear
manifold learning such as [21, 18]. Gabriele [14, 15] pro-
posed feature-based pose estimation and view generation
with elaborated grid graph representation with Gabor jets.
Zhao et al.[21] used kernel PCA instead of linear PCA[10],
and recently Vik et al.[20] proposed non-Gaussian model-
ing of appearance subspace with a method similar with [10].
However, there are few linear subspace approaches while

it is still important[4]. Chang et al.[3] demonstrated to com-
pute eigenvectors for synthetic images of an 3D cylinder
just painted in black and white and rotated about an axis,
then observed that eigenvectors of the images are similar
with cosines. Sengel et al.[17] handled appearance changes
in images of a rotating object as different image templates,
but continuous pose parameters are not estimated.
A subspace approach for off-the-plane rotation was pro-

posed by Okatani et al.[12]. They applied linear regression
to the problem: first relates images with parameters by a lin-
ear map (matrix), and estimates the matrix by using pseu-
doinverse, then parameters are estimated by applying the
matrix to an image of novel view. Amano et al.[1] used a
variation of pseudoinverse with dimensionality reduction of
Eigenspace of images, then estimated pose parameter lin-
early. Some authors use kernel methods: Ando et al.[2]
used support vector regression instead of linear regression
for 3DOF rotation, and Melzer et al.[9] employed kernel
canonical correlation analysis (kernel CCA) for 2DOF.
These regression-like methods have shown their ability

of pose estimation. However, they do not explain how the
images are represented in a subspace. The answer has been
shown for in-plane rotation by analytically obtained eigen-
vectors, but still not for off-the-plane rotation.

1.2 Our approach

In this paper, we propose a novel approach for off-the-
plane rotation with a cyclic group acting on an image se-
quence. As mentioned above, analytical methods derived
eigenvectors of images of in-plane rotating object, while re-
gression methods used a matrix between images and param-
eters for off-the-plane rotation. In contrast, the proposed
method focuses on the transformation from an image to an-
other in an image sequence of off-the-plane 1DOF rotation
in three dimensional space. The transformation can be seen
as cyclic group, and we represent it as a matrix decomposed

by block diagonalization. The main contribution of this pa-
per is to show that the appearance change in an off-the-plane
sequence can be realized by the power of the block diago-
nal matrix discussed from the view point of subspace. This
have never been done by regression/CCA subspace methods
or analytical Eigenspace methods.

2 Formulation of appearance change in im-
age sequence with cyclic permutation

2.1 Matrix representation of relationship
between images

We represent a relationship of n images in a given im-
age sequence x0, x1, . . . ,xn−1. The images are taken
by rotating an object about an axis in three dimensional
space (i.e., off-the-plane rotation), and each image xj =
(xj1, xj2, . . . , xjN )T ∈ IRN is a N dimensional vector
taken at angle1 θj = 2jπ/n. Throughout the paper, we
assumeN > n, the number of pixels in the images is larger
than the number of images.
First we consider the following matrixG that transforms

an image vector xj into xj+1:

xj+1 mod n = Gxj , xj = Gjx0, xj = Gnxj . (1)

This transformation is the result of the action by a cyclic
group Gn = {G,G2, . . . , Gn} of degree n acting from left
side on the image sequence. G is called a generator (or
primitive element) of Gn, and Gn is an identity element.
The group theory is an abstract concept, however, we focus
only on linear transformation: that is, throughout the paper,
G ∈ IRN×N is a matrix and x ∈ IRN is a vector.
However, one can ask the question: Why can you obtain

the jth image xj from the first image x0 by just multiplying
a matrix j times? When x0 is the frontal pose and xj is
the back, due to occlusions and so, does not xj have any
common information with x0? The answer is below.
The transform can be written in a matrix form as follows:

[x1 x2 · · · xn−1 x0] = G[x0 x1 · · · xn−2 xn−1], (2)

or

X1 = GX0, (3)

where

X1 = [x1 x2 · · · xn−1 x0], (4)
X0 = [x0 x1 · · · xn−2 xn−1]. (5)

1For simplicity, the angles are evenly spaced. If the angles are irregu-
larly sampled, the linear function θ(j) = 2jπ/n is replaced with an ap-
propriate nonlinear function such as piecewise linear functions or a spline
curve.
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Figure 2. Two projections X+
0 , X0 and a rota-

tion M composing the transformation G.

Here we obtain G with X+
0 , a Moore-Penrose general-

ized (pseudo) inverse ofX0 with the singular value decom-
position (SVD) X0 = EΣV T , as follows:

G = X1X
+
0 , X+

0 = (XT
0 X0)−1XT

0 = V Σ−1ET . (6)

Therefore, the answer of the question above is that the ma-
trix G indeed transforms x0 to xj whatever the geometry
of an object in the images is2. The reason is that Eq.(3) is
an under-determined system becauseN > n. Of course the
pseudoinverse in Eq.(6) is not a unique3 and many pseu-
doinverses hold Eq.(3), however, this is not a problem but a
necessary condition that Eq.(1) and Eq.(3) exactly hold.
When we consider the transformation from X0 to X1, it

can be represented with a n×n column permutation matrix
M multiplied from right side of X0:

X1 = X0

⎛
⎜⎝

0 1
1 0

1 0

. . .
. . .
1 0

1 0

⎞
⎟⎠ = X0M, (7)

then Eq.(6) is rewritten as follows:

G = X0MX+
0 . (8)

2.2 Two projections and a rotation

With Eq.(8), it is interesting that we can interpret G as
an combination of projections to an subspace and a rotation
in the subspace. See Fig.2.
First G transforms the sequence X0 into In (n × n

identity matrix) because of X+
0 X0 = In. This means

xj−1 �→ ej , i.e., each image xj−1 is mapped to a canoni-
cal unit vector ej in which all components are 0 except j th

2Imagine how largeG is —N ×N ! Even whenG is decomposed, U1

and U2 are the same size with X0. Therefore, G has so enough elements
that represent information between images even if x0 and xj do not have.

3It is unique in the sense that a minimum norm solution is given.

Figure 3. Rotations by Aj
k in 2-D subspaces.

component is 1. Next,M moves the unit vector ej to ej+1.
This can be done by just shifting components in ej , butM
is indeed rotation about the axis n = (1, 1, . . . , 1) ∈ IRn

and makes the unit vector form a locus of a hypercircle on a
hyperplane4 in IRn. Finally X0 projects vectors back to the
image space from the subspace.
Therefore, the images in the sequence are projected onto

the circle in the subspace, and well separated with distance√
2 from each other5, and transfered from one to the next

byM .
For recognizing unknown pose between learned poses,

the concept of the proposed method is to extend this dis-
crete rotation M into continuous rotation by interpolating
M with block diagonalization discussed below.

2.3 Decomposition of G

M is decomposed with a real block diagonal matrix D
and a real orthogonal matrix W as M = WDW T . Then,
the decomposition of G is

G = U2DU1, U1 = WT X+
0 , U2 = X0W, (9)

where

D =

⎛
⎜⎜⎜⎝

1
A1

A2

. . .

⎞
⎟⎟⎟⎠ , Ak ∈ IR2×2, (10)

D has 2 × 2 blocks Ak at its diagonal part. See appendix
for the detail of the block diagonalization.
With U1U2 = In, the transformation from x0 to xj can

be represented as

xj = U2D
jU1x0, (11)

instead of xj = Gjx0.
Here, the matrix U1 can be regarded as a projection from

the image space onto a n-dimensional subspace represent-
ing the pose of an object in the images. See Fig.3 in which
we call x′ = U1x an image in the subspace. Each pair of

4It is perpendicular to n, and the distance to the origin is 1√
n
.

5∀j, k, j �= k ⇒ ||ej − ek|| =
√

1 + 1 =
√

2.
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row vectors of U1 corresponding a 2 × 2 block Ak of D is
a linear projection from the image space onto two dimen-
sional (2-D) subspace spanned by the row vectors. These 2-
D subspaces are independent and orthogonal to each other
because all blocks do not overlap. Therefore, the projection
of an original image is a set of projections onto different 2-
D subspaces, and multiplyingD in the subspace means 2-D
rotations (with Ak by θk) of 2-D vectors comprised of two
pixels of the image in the subspace.

2.4 Demonstrating the subspace

As the derivation above, the matrix G transform an im-
age to another in the image sequence X0 by the power of
G:

xj = Gjx0, or xj = U2D
jU1x0. (12)

Therefore, j (the power ofDj) decides howmuch the image
x0 is transformed in the image sequence.
Now we are interested in not only observing the trans-

formation from x0 to xj but also extending the range of the
power j from several integer numbers (0, 1, . . . , n − 1) to a
real interval [0, n[.
For an off-the-plane rotation sequence, Fig.4(a) demon-

strates an example using object 4 in COIL-20 [11]. 36
images including x0, x1, x2 (0, 10, 20[deg]) are used
for learning. Two images (5,15 [deg]) corresponding to
x0.5, x1.5 are shown for comparison. The lower row shows
images x0.1j created by

x0.1j = G0.1jx0 = U2D
0.1jU1x0, (13)

for j = 0, 1, 2, . . . , 20. The created images x1.0 and x2.0

are exactly same with the learned images x1 and x2. For
the other images between learned images, especially x0.5

and x1.5 for comparison, the appearance are very similar
with actual intermediate images. Actually they look like
one made by blending two learned images, but our objec-
tive is not to make created images close to the real ones,
but to utilize them for pose estimation as shown in the next
section.
Although the proposed method is formulated for a sin-

gle axis rotation, Eq.(3) can be applicable to any revolv-
ing image sequence such as a light turns around in front
of a face. Fig.4(b) illustrates such an example for differ-
ent light directions. 20 face images of P00 in the Yale Face
Database B [6] including x1, x2,x3, x4, x5 (cropped) are
used for learning. The lower row shows images are created
by x0.25j = G0.25jx0. Discussion on the estimation of
light direction is out of scope of this paper, but this example
implies that the proposed method can be used for estimating
illumination change.
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Figure 5. Euclidean distance in the subspace
between Djx′

0 and x′
j (learned j = 5, 11, 17,

and not learned j = 22.5, 28.5, 34.5). Horizon-
tal axis is the power j of Dj .

3 Estimation of pose of an object in novel
view

In this section, we propose two methods for estimation
of pose of a new image by using the subspace described in
the previous section.

3.1 Estimation by distance in the sub-
space D

As shown at the end of the last section, we have shown
that extending real numbers of the power j of Dj gives im-
ages between learned samples.
Here we make an assumption that a novel image x is

matched with Gjx0 for some j and this also holds for im-
ages in the subspace: x′ is matched for some j with Djx′

0

in the subspace, where x′ = U1x and ′ denotes an image in
the subspace. For matching, we use the Euclidean distance
in the subspace:

j = argmin
j∈[0,n[

||x′ − Djx′
0||2, (14)

θ = jθ1 =
2π

n
j. (15)

See appendix for θ1 and constructing Dj .
The estimation performs exhaustive search for j and it

seems to be computationally expensive. However, we can
use an effective algorithm for the search by using coarse-
to-fine strategy. Fig.5 shows distances in the subspace by
Eq.(15) for some real image sequence (see the later section
for details). We can observe that the distances have sharp
minima at corresponding j for learned images. Even for
images not used for the learning, the distances have smooth
minima around correct j. Based on this observation, first we
search a minimum of j with a large step, then find around
the minimum again with more smaller step, and gradually
the interval of search shrinks. This strategy decreases com-
putational cost and achieves estimation at any precision.
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(a)

x0 x1 x2

x0.0 x0.1 x0.2 x0.3 x0.4 x0.5 x0.6 x0.7 x0.8 x0.9 x1.0 x1.1 x1.2 x1.3 x1.4 x1.5 x1.6 x1.7 x1.8 x1.9 x2.0

(b)

x0 x1 x2 x3 x4 x5

x0.0 x0.25 x0.50 x0.75 x1.0 x1.25 x1.50 x1.75 x2.0 x2.25 x2.50 x2.75 x3.0 x3.25 x3.50 x3.75 x4.0 x4.25 x4.50 x4.75 x5.0

Figure 4. Images created by repeatedly multiplying a matrix Gj to the first image x0. (a) images of
off-the-plane rotation from COIL-20. Gj = G0.1. (b) images of changing light direction from Yale Face
Database B. Gj = G0.25. Upper row shows learned images, and lower row shows created images
between each learned images. Note that supplemental full-length movies are attached/embedded in this PDF file
(use Adobe Reader to see it).

3.2 Estimation by angle of vectors in a 2D
subspace A1

The estimation method described above involves itera-
tive search for minimum even if there is the efficient algo-
rithm. Here we propose a direct estimation method without
any searching. As mentioned before, an image is projected
by U1 onto many different 2-D subspaces in which a 2-D
vector of two pixels is rotated by Ak. Now we focus on
two pixels correspondingA1 where the pair of pixels in two
learned images next to each other, xj and xj+1, have the
angle θ1, the incremental step of the rotation.
So we propose to estimate a pose parameter for a novel

image in the subspace x′ with x′
0 by using the angle sub-

tended by two 2-D vectors, x′′,x′′
0 ∈ IR2, corresponding to

the 2-D subspace of A1. To extract a 2-D vector x′′ ∈ IR2

from x′ ∈ IRn corresponding to A1, just multiply the fol-
lowing 2 × n matrix:

x′′ =
(

0 1 0 0 · · · 0
0 0 1 0 · · · 0

)
x′. (16)

Butx′ = U1x is substituted above, the 2-D vectorx′′ ∈ IR2

is directly extracted fromx ∈ IRN by combiningU1 and the
2 × n matrix:

x′′ = U ′
1x, (17)

U ′
1 =

(
0 1 0 0 · · · 0
0 0 1 0 · · · 0

)
U1, (18)

and x′′
0 ∈ IR2 is extracted:

x′′
0 = A1U

′
1x0. (19)

Here U ′
1 is the 2-D subspace proposed in this paper for esti-

mating the pose angle.

Figure 6. A part of images used for the ex-
periments. x0, x1, . . . are learned (with box
marks), x0.5,x1.5, . . . are tested images.

The angle θ subtented by the two 2-D vectors is calcu-
lated with cos θ and sin θ. The innter product between x′′

and x′′
0 computes cos θ:

cos θ =
x′′T

0 x′′

||x′′
0 || ||x′′|| . (20)

sin θ is computed by cross product with two 3-D vectors
extented with 0:

x′′′
0 = (x′′T

0 , 0)T ∈ IR3, (21)

x′′′ = (x′′T , 0)T ∈ IR3, (22)

(0, 0, sin θ)T =
x′′′ × x′′′

0

||x′′
0 || ||x′′|| . (23)

Then, θ = tan−1
(

sin θ
cos θ

)
is the angle between x′′ and x′′

0 ,
then the estimate of the pose of the image x.

4 Experimental results

We implemented the proposed method with Scilab-4.1
and evaluated with a real image sequence of the object 4
(the cat) from COIL-20[11]. The 72 images areN = 128×
128 in size, taken by rotating the object by 5 degrees each
(see Fig.6). The rotation of the images is 1DOF (single axis
rotation), but it is off-the-plane rotation because the axis is
not the optical axis of the camera.
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Figure 7. Estimation results with (a)(b) distance-based and (c)(d) angle-based method for images
xj (j = 0, 0.5, 1, 1.5, 2, . . . , 35.5). (a)(c) Estimated pose.

Table 1. RMSEs with two methods for 20 objects in COIL-20 (in [deg]).
object No. 1 2 3 4 5 6 7 8 9 10
with distance 1.21 1.39 1.56 1.80 1.23 29.71 1.44 1.60 1.05 1.53
with angle 0.73 1.69 3.84 1.23 2.55 7.33 2.97 2.69 6.74 1.66
object No. 11 12 13 14 15 16 17 18 19 20 average
with distance 1.58 23.05 1.03 1.90 8.33 8.83 7.71 13.10 1.64 3.32 5.65
with angle 5.78 4.18 3.11 7.38 2.01 1.53 2.35 3.64 6.99 2.21 3.53

Figure 8. RMSEs of estimation with std. for
10 trials for noisy images. Horizontal axis is
the magnitude [−d, d] of uniform noise added.
Vertical axis is average RMSE for 20 objects
for only images not learned, but with noise.

For learning eigenspace and computing U1, we used
36 images corresponding to 0, 10, 20, . . . degrees as im-
ages x0, x1, . . . , x35 in the experiment. Therefore, θ1 =
10[deg] in this experiment. Another 36 images correspond-
ing to 5, 15, 25, . . . degrees were used not for learning but
for evaluation as images x0.5, x1.5, . . . , x35.5.
To illustrate properties of the subspace, we computed

Euclidean distances between learned images x′ and the im-
age x′

0 rotated by the power of D in the subspace. Fig.5
shows the distances, and the horizontal axis is the power j
of Dj , and the vertical axis is the Euclidean distance. For

example, the distance with x5 is ||x′
5 − Djx′

0||2 and has a
sharp minimum at j = 5 which means that the subspace is
well learned. The distances with x′

5 and the other learned
images x′

j , or equivalentlyDjx′
0, are all the same distance,√

2. When the power j is a real number, the distance devi-
ates from

√
2 and seems to be an interpolated curve com-

prised of sinusoids with different frequencies. The devia-
tion from

√
2 (or ripple width) is so small that the search

for minimum is not affected.
Fig.5 also shows distances with images not used for

learning. Even if the images are not learned, the distance
have smooth minimum around correct power. This means
that the distance in the subspace is useful for the pose esti-
mation.
Next, in Fig.7(a)(b) we show result of pose estimation

with the method described in section 3.1, the search for min-
imum of j with the distance. Correct poses for the learned
images xj (j = 0, 1, 2, . . .) are estimated with no error.
Poses for the images not learned xj (j = 0.5, 1.5, 2.5, . . .)
are also estimated well. The maximum error is about
7[deg], and almost less than ±2[deg], and RMSE (root
mean squared error) for tested images only (not including
learned images) is 1.80[deg]. Fig.7(c)(d) shows estimation
result with the method described in section 3.2, the use of
angle of two vectors in 2-D subspace. The maximum error
is about 4[deg], and RMSE is 1.23[deg]. This means that
the angle-based method is better than the distance-based
method, and the angle of the two vectors in the 2-D sub-
space well represents the pose of the object in an image.
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This is supported by estimation results shown in Tab.1
for all 20 objects in COIL-20 with both distance-based and
angle-based methods. The result of Fig.7 is shown at ob-
ject No. 4 in Tab.1. In average, RMSE of the angle-based
method (3.53[deg]) is smaller than that of the distance-
based (5.65[deg]).
Fig.8 shows the robustness of the angle-based method

for noisy images shown. These images are contaminated
by uniform noise up to ±200 without any intensity normal-
ization (negative pixel values and large values are just used)
where the range of pixel value in original images is between
0 and 255. Even when ±200 uniform noise is added, the
average RMSE of angle-based method is less than 7[deg],
while error of the distance-based method increases larger
than 14 [deg]. This result demonstrates how robust the
angle-based method is as well as the subspace proposed in
this paper is useful for pose estimation. Note that for clut-
terd images (e.g., objects are occluded by a black rectangle),
the proposed angle-based method has shown a good perfor-
mance (not shown in this paper).

5 Conclusions

We have proposed a novel framework with cyclic group
for appearance change in an image sequence of a rotat-
ing (1DOF but off-the-plane) object in 3-D. The proposed
method constructs a subspace by block diagonalization of a
matrix that represents cyclic group acting on the image se-
qeunce and transforms an image to another in the sequence.
We have shown how the power of the block diagonal ma-
trix produces the transform between images in and not in
the sequence, then proposed two methods to estimate pose
of a novel image; distance-based and angle-based. Experi-
mental results with real image sequences demonstrated that
the angle-based method is robust against noise and better
than the distance-based method. The experiments are still
limited, and comparisons with conventional methods are
planned for the future.
Some limitations of the proposed method should be no-

ticed. First, the method is applicable to sequences in which
an object in images are revolutionary rotated: for example,
a face sequence taken from left side to right side with frontal
face has no images of the back of the head, so it is not ap-
plicable. Second, it seems to be difficult to extend the pro-
posed method to handle with 3DOF rotation of an object.
These are caused by the use of the matrix G as a cyclic
group. Therefore, future works include to find an appropri-
ate representation of relationship between such image se-
quences with group theory for extending application area of
the proposed method. And also we have to investigate the
pseudoinverse used in the derivation that is theoretically not
determined uniquely because we assume N > n. It is clear
that the linear map defined by the pseudoinverse is crucial

to improve generalization and decrease estimation error for
unknown pose.
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A Complex diagonalization ofM

A n × n permutation matrix M to be diagonalized and
its characteristic equation are[16, 3, 13, 7]:

M =

⎛
⎜⎝

0 1
1 0

1 0

. . .
. . .
1 0

1 0

⎞
⎟⎠ ,

|M − λI| =

∣∣∣∣∣∣∣
λ −1
−1 λ

−1λ

. . .
. . .
−1 λ

−1 λ

∣∣∣∣∣∣∣ = λn − 1,

so the eigenvalues λ are n different primitive n-th roots of
unity ζn:

λk = n
√

1 = ζk
n = e

2kπ
n i, k = 0, 1, 2, . . . , n − 1,

where i =
√−1. Let wk = (w1, w2, . . . , wn)T be the

eigenvector corresponding ζk
n, then

Mwk = ζk
nwk

(wn, w1, w2, . . . , wn−1)T = (ζk
nw1, ζ

k
nw2, . . . , ζ

k
nwn)T .

Therefore, the eigenvector is

wk = (ζ(n−1)k
n , . . . , ζ2k

n , ζk
n, 1)T ,

andM is diagonalized asM = W ′D′W ′H with:

D′ = diag(1, ζn, ζ2
n, . . . , ζn−1

n ), (24)
W ′ = (w0, w1, w2, . . . , wn−1),

where H denotes complex conjugate andW ′ is the basis of
complex DFT (Discrete Fourier Transform) [13].

B Real block diagonalization ofM

Next, block diagonalization ofM is shown[16, 3, 13]. ζk
n

and ζn−k
n , eigenvalues ofM , are complex conjugate to each

other. To make corresponding complex conjugate eigen-
vectors wk, wn−k real vectors, dividing them into real and
imaginary parts:

wk =
1√
2
(ck + isk), wn−k =

1√
2
(ck − isk).
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Then, the multiplication ofM with the vectors

M(wk,wn−k) = (wk, wn−k)
(

ζk
n 0
0 ζn−k

n

)
,

is rewritten with ζk
n = cos θk + i sin θk as follows:

M(ck, sk) = (ck, sk)
(

cos θk sin θk

− sin θk cos θk

)
= (ck, sk)Ak.

NowM is diagonalized with block diagonal matrixD as
M = WDW T , where

D =

{
diag(1, A1, A2, . . . , As), n is odd,
diag(1, A1, A2, . . . , As,−1), n is even,

W =

{
(w0, c1, s1, c2, s2, . . . , cs, ss), n is odd,
(w0, c1, s1, c2, s2, . . . , cs, ss, wn/2), n is even,

s =

{
n−1

2 , n is odd,
n−2

2 , n is even,

whereW is the basis of DFT[13]. Note thatW ′ andW are
normalized so that norm of each column vector is 1.

C The power of D

If we need Dj , the angle in the 2 × 2 blocks Ak are
multiplied:

Dj =

{
diag(1, Aj

1, A
j
2, . . . , A

j
s), n is odd,

diag(1, Aj
1, A

j
2, . . . , A

j
s, (−1)j), n is even,

Aj
k =

(
cos jθk sin jθk

− sin jθk cos jθk

)
.

Note that Dj becomes a complex matrix when n is even.
This property is the most usefull one for the proposed

formulation because Gj can be calculated by just multiply-
ing the angle θk with j. If you use the Jordan (normal or
canonical) form as block diagonalization of M , Dj is not
easy to compute. And actually all eigenvectors of M are
different to each other, the Jordan form of M is equivalent
to the eigendecomposition Eq.(24); no Jordan form exists
forM .
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