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Abstract
This paper is concerned with the Wald test statistic of general restrictions in dynamic regression models with

possiobly integrated regressors. We try to improve the size and power of the Wald statistic through the extended lag

augmentation (LA) in the regression model and the bias correction of the instrumental variable ( IV) estimator. It has

been known that the extended lag augmentation is generally, but not always, useful in increasing the finite sample

power of the Wald statistic. In this papper we propose a new approach, called the variable lag augmentation approach,

which selects an appropriate lag length. The finite sample experiments show that the proposed approach produces

higher power of the test than the conventional LA estimator.

1. INTRODUCTION
Regressions with integrated and/or cointegrated

regressors have been widely discussed. The

asymptotic distributions of the OLS estimator and of

the Wald statistic to test the hypothesis of restrictions

on coefficients have been discussed in Phillips and

Durlauf(1986), and Park and Phillips (1988, 1989). It

has been shown that they don not necessarily have the

standard asymptotic distribution, namely, the normal

or the chi-square ditribution.There have been several

attempts to modified the model and/or statistics so that

the Wald statistic has a chi-squre distribution or can be

approximated by a chi-square distribution. See, for

example, Phillips and Hansen (1990), Park (1992),

Phillips (1995), and more recently, Kitamura and

Phillips (1997). It should be noted that all

forementioned approaches are based upon the correct

model specification.

In the case of the vector autoregressive (VAR)

model, Toda and Yamamoto (1995) proposed to

estimate the model with an intentionally augmented

lag. More precisely, if we know that the true lag length

of the VAR model is equal to k and the order of
integration is either zero or one, we intentionally

estimate the (k+ l)-th order VAR model. We call it as

the ordinary lag augmented (LA) approach in this

paper. Then, the Wald statistic to test the hypothesis

has an asymptotic chi-square distribution. That is, the

standard statistical inference can be valid irrespective

of the order of integration or the cointegrating rank.

This ordinary LA approach is useful in the sense that

we do not have to decide the order of integration or

the cointegration rank before testing the hypothesis.

However, it has been known that it suffers from

inefficiency because of the artificially augmented

lagged variable. Further, it also suffers from the size

ditortion of the test in finite samples.

There have been a few attempts to ovecome the

above mentioned drawbacks of the ordinary LA

approach. Kurozumi and Yamamoto (2000) gave a

procedure in order to reduce the size distortion.

Specifically, they proposed a bias correction method

for the OLS estimator in the ordinary LA approach,

which reduces its bias related to terms of OpiT'1),

where T is the sample size. The bias corrected OLS

estimator based on the LA approach has been called

the modified lag augmented (MLA) estimator. By

finite sample experiments, it has been shown that the

MLA approach is quite effective in reducing the size

distortion of the Wald test statistic.

Yamamotoand Kurozumi (2005) extended the work

of Kurozumi and Yamamoto (2000) in two directions.
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First, the model is generalized to a usual regression

model whose regressors are possibly non-stationary,

which includes a VAR model as a special case.

However, note that in their paper the regressors are

confined to be lagged variables and comtempraneously

uncorrelated with the error term. Thus, the OLS

estimation can be used for estimating coefficient

parameters. Second, in order to improve the power of

the Wald test, the extended MLA approach (denoted

as MLA(p)) with p>.2 is proposed. Note that the

ordinary MLA approach suggests to intentionally

augment the (k+ l)-th lagged variable to the model,

when the true model contains the &-th lagged variable.

Here, the MLA(p) approach intentionally augments

the (k+p)-th (p>2) lagged variable. Oboviously,

whenp=l, the MLA(p) approach reduces to the

ordinary MLA approach. They showed that the

MLA(p) approach generally improves the finite

sample performance of the power of the Wald test

without affecting that of the size.

This paper is a sequel of Yamamoto and Kurozumi

(2005) and genrralize in two directions. First, in this

paper we consider a model where regressors and the

error term are contemporaneously correlated. Thus,

the instrumental variable (IV) estimator instead of the

OLS estimator is called for. Second, we propose a

practical method to choose a suitable lag length p in

the MLA(p) approach. Yamamoto and Kurozumi

(2005) showed that the MLA(^) (p>2) approach

generally, but not always, improves the finite sample

power of the Wald test in comparison with the

ordinary MLA approach. But it has not been clear

which lag length p is approppriate for a certain model

and data. In this paper we propose the variable

modified lag augmented (VMLA) approach which

selects a suitable lag lengthp for each model and data.

The term "variable" comes from the fact that the

chosen lag length/? varies depending upon each model

and data. The experiments in section 4 below show

that the VMLA possess always higher power of the

test than the ordinary MLA approach.

This paper proceeds as follows: In Section 2

presents the model and fundamental assumptions, and

propose the extended lag augmented (LA(p) (p>2))

approach based upon the IV estimation. The

asymptotic theory of this approach is obtained through

the transformed model that partitions variables into

stationary parts and nonstationary parts. Section 3

explains the modification based upon the bias

correction method. The whole sample is divided into

two parts and the bias corrected estimator, which is

called the modified extended lag augmented (MLA(p))

estimator, is constructed by estimators in three

periods, the whole, the first, and the second periods.

Further, an approach to select an appropriate lag

length is proposed. In conjunction with the above

mentioned modification, it is called the variable

modified LA (VMLA) approach. Section 4 gives

experimental results of the MLA(p) and the VMLA

approaches through Monte Carlo simulations. Section

5 concludes the paper.

A summary word on notation. We use vec(A) to

stack the rows ofa matrix A into a column vector, [x]

to denote the largest integer <_x, and the inequality

">0" to denote positive definite when applied to
matrices. The symbols "-!>","-A", and "="

signify convergence in distribution, convergence in

probability, and equality in distribution, respectively.

We use BM(fl) to denote a vector Brownian motion

with covariance matrix n and we write integrals like

Il0B(s)dB(s)' as simply iBdB' to achieve notational

economy, and all integrals are from 0 to 1 except

where otherwise noted. All limits in the paper are

taken as the sample size Ttends to °°.

2. THE MODEL, ASSUMPTIONS, AND
EXTENDED LA(p) APPROACH)

2.1. THE BASIC MODEL

Consider n-vector time series {y,} generated by the

following model.

(1)
y,-Ji\v,-\ \-Jkw,-t+e,,

&w,=C(L)v, ,

where {w,} is an m-variate process, and C(L)- S^o

C,V (Co=/»), and with 27=oyllCy IK °=>. The model is

a generalization of Yamamoto and Kurozumi (2005)

in the sense it now includes a contemporaneous
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regressor w, in addition to lagged ones. Suppose we

know the true lag length k. The basic assumption for

£,=[e !, v',]1 is as follows, although we will impose

further restrictions later.

Assumption 1 :

( / ) { £,} is independently identically distributed

with mean zero and covariance matrix 2°.

et=i.i.d.(0,E°), where E° >0,

where E° = So Soi

(ii) Each element of e_, has afinite 2+S-th

moment with S >0.

E Sit
2+.S <oo for some5>0 (i=!,•E•E•E,T).

 We further assume that {w,} is 1(0) or 1(1) and may

be CI(1,1).

 Suppose our interest is in testing the hypothesis of

restrictions on the parameters. We formulate the

hypothesis as
        Ho : Rvecl=q,

where R is a gX(k+1) n2 matrix with rank (R)=g, q is

agX l vector, andJ_=[•E/ å ", JJ.

2.2. THE EXTENDED LA APPROACH

 Here, we present the extended LA approach.

Following Yamamoto and Kurozumi (2005), we

consider the extended lag augmentation for a

regression model for estimation. Namely, we

intentionally include (k+p)-th (pj>2) lagged variable,

which is denoted as LA(p), rather than the (k+ l)-th

lagged variable, which is denoted as LA(1). We

rewrite D.G.P. (1) with the (k+p)-th lagged variable

and a constant:

(2) y,=JoW,-\ hjtw,-t+j,,-nw,-t-p+p-l+ e,

    =[d,J^n //]w<f'+c,,

where wV =[wl,, w^'],wl,=[w', ,---, w,'-*]', w$'=[w!-
k-p, 1]',J4+i=0 and fx =0, and in the matrix form,

      Y'=[J,Jt+u fl ] W<"+E\

where Y'=\yu-yT], W<"'=[w^,-, w<?], E'=[ eu

•E", £r]. The superscript (p) siginifies that {k+p)-\h

lagged variable is augmented to the original model.

Let Wf be the appropriate instrumental variables for

 (fw such that

T/t/(p)' M/'p)

T* IV IV positive definite,

- Lh$'wc> Op(l), and
T2

1 ( p)' 1

jt WJE 0.

The predictive value of Wm, denoted as X^ is given

by

  X^ [x<<?,- ", xf]' = W<''>Y'W<$ [W<@'WtftY\

Based on the predicted value Xw, the model is

rewritten as
(3) y,=J<,x,-\ \-Jix,-k+Jt+,x,-l-p+n - 1+w,

    =J.X,,+Jt+lX,-l,-p+ fl •E l +«,,

    =dxi,+[Jk-n, fi ] x2,+ ix,,

where u,= e,+[I, Ji+i,fi ](w",< -*<?)> x^'=[x\,,

x%'']', Xi,=[x',,-, x',-t]', and x^=[x',^p, I]1, and in
the matrix form,

     r=JX[+[Ji+u ft ] X<?'+U'

      =U,j>+i, tt]xw+u;

where Y'=\yu-, yT], X\=[xn,-, xiT], X<$'=[x<ft,-;

X£\, X<"=[Xi, Xf], and U'=[uu-, uT]. Though the

constant term is superfluous, it will have an important

role for a bias correction in the next section and thus

we include it here. The instrumental variable (IV)

estimator of1 is
    J{P) = Y'Q%Xi(Xl QpiXiy>

where QS =lT-Xf(Xf'Xfy lX'i'\

 If {w,} is 1(0), it is well known that the IV estimator

ofI is asymptotically normally distributed and the

standard Wald statistic is asymptotically chi-square

distributed. Therefore, we will consider for a while

{w,} is 1(1) and may be CI(1,1) with the cointegration

rankr.

 Let ft be the mXr cointegrating matrix and ji± be

the mX(m-r) full rank matrix such that /?'/?j_=0.

Then define a (k+1) mX(k+l) m matrix Hi and a

(k+2) mX(k+Z) m matrix Has

Hi=

I m - I n ・  0

0 I m

- / ,

0 0 / ,
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H=
Ht

0---0

-In
P
PI

and their inverse matrices are given by

r/,

H^=

//-'=

m Jm

0 Im

0 0

Hi1 «*<

0

(31

PI

where e'=[l, -, 1]' is a (£+l)Xl vector. UsingH~

H=I, werewrite model (3) as

(4) y,=[Jo,"",./», •E/»+å ] H-'H

Xt-1

Xt-k
Xt-k-p J

+ll -l+ll,

=/; Ax,-i H YJ\-i kx,-M +J'k(x,-k-x,-t-p)

+Alp'x,-t-p+A2p±x,-k-p+ fx å  l+i/,

=[J\A!]z<y+A2zl$+;j - l+u,,

=[J\A1] z^!+[A2, fi]z<g+u,.

where J*= 2UJi(j=O,--, k), r=JHi1=[Jl,-,

J\],[AUA2]= i)-\j,[/?,P±]'-\A, andA2 are nXrand

nX(n-/-) matrices, respectively, zf,1 =[Ax,',"-, Ax',-

«+i, (*,-*-x,-,-,)', ( P'x,-k-p)']', z%) = l?±x,-t-p, and

z<;/>=[zf,1', I]1. Let 7<?=(«' v',, zf,1', Azf,1')' and

define

Wepartition 2W,AW, and fiw comformably with -q^.

For example,

£&•E> =

Then, we have the following lemma.

S q  S iO l    y (p )

J l O  S i    V (p )

y (p )  y (p )  y (p )  T (p )^ 2  ^ 2 3

y (p )  y (p )  y (p )  蝣̂ 3

L e m m a  1  :

( i)   V T  蝣^  E f= 1 (ｫ (  ｮ  ^ ;)

B o {s )  1  n
B i (s )  m
B i" ¥ s )  {k + l )m + r

B iｻ ¥ s )  m - r

｣ (p )  I  { {k + l )m + r )n

where fl(s)'"=(flo(s)', B^s)', 52(s)w, 53(s)w)' « " "+

(k+3)m-vector Brownian motion with covariance

matrix Vl(p), c°" « a ((k+l)m+r)n-dimensional

normal random vector with mean zero and covariance

matrix 2o® S?, andB(s)m and c w are independent.

(i i) n0=Eo, Ei, Y^\ and Q.W are

positive definite.

( in) r p/j
J p) Jp)>
z \t z\t s:

H

(p)
'2 •E

å G>)
. ~w ?\ri

;Z^u^lf
VJ t=i

w here vecN^ =£
(p)

(v)

(vi)

(vii)

1 T

-Y1 «=i

,
(p). J B3dB'o.

Iv,#rp/ j
1 t=l

M Jp)>Z 2t zlt
j" I BsdB',

+ s# +a£>)J

32 V32•E

1 v^,W*(*")' d

J (=1

J b3b'3.

Proof: The proofs are obtained as straightforward

generalization of See Toda and Phillips (1993) and are

omitted.
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The OLS estimator of[T, A{\ is

(5)
y«i ~ r^~\

J "',Ai \ =Y'QfZ»:KZ>?'Qi»z«;>r

where Q«?=IT-Zf(Z%)'Z<f)-lZf\ Z^'=[zfl,-,

zg], and Zf=[z%l,"; zf}]. Though our interest is in

J , it is easier to derive the limiting distribution of

J*(jj)with i(xp). By Lemma 1, we have

[ J*(p) x (p)V f [lt*W -rJ^'-Ai

-/ -J-TT'nW> 7.VP>
~~I It*" ^3

VJ

7
(p)\ ( l 7(p)in(p)7(p)V

Iyfl ^3 l)

iv0 (l,2 ; •E

Wepartition 2 ^ comformably with zf, ,

pr_(p)-(p)'i _ y(p) _
yl(p)

V21(p)

yl2(p)

L,2

where S ^' is a covariance matrix of [Ax',,"-, Ax',-i+

i, (x,-t-x,-k-p)']' and 2*"is that of P'x,-k-p. The

limiting distribution of yT{J_ -J*) is the

distribution of the first km columns ofN^\ ~S.fYl and

then it is represented as Nfi if)'^, where S=[Ikm, 0]'

is a (km+r)Xkm matrix. Then,

(6) vec (Nr( 2f)-lS)=N(0, r(p)),

where T(p)= 20®S'(2?))~1'S'> and we can easily

check that S'(2P)"15=(2g)"1 and 2$=25W-2

p>(2^»)-' 2^'. Then,

(7) Vf[r{p) - r] -^ N^\

where vecNp>=N(O, 20®(22<'D"1)- Noting a relation

J =J //j"1, andfollowingtheargumentin

Toda and Yamamoto (1995), we can establish the next

proposition.

Pproposi t ion 1 (TheLA(p)Approach):

The Wald statistic to test the hypothesis Ho has a

chi-square distribution with m degrees offreedom.

Wá" = !VT(Rveci{p)-q\X

{R (£0 ®T(X[Q<$ix1)-1) R'y1

{VT ^RvecJ^ -q)}
Xm'

where Eo = 5; Ef=i utv!t and uu's are residuals

of the IV estimation.

By this proposituion, we can test the hypothesis

Ho without estimating the order of integration and the

cointegrating rank in {w,}.

3. MODIFICATION AND LAG SELECTION
3.1. THE FINITE SAMPLE MODIFICATION

Wehave proposed the extended LA(p) approach in

section 2 based upon the IV estimation. In this

subsection, we propose to modify the LA(p) approach

by correcting a bias of the IV estimator and to modify

its variance covariance materix in order to obtain an

accurate empirical size of the Wald test statistic.

At first we expand the OLS estimator (5) as

(8) [i*(pUip)] - [r^i]

-l ( l jji7{v)\(l7{p)i7(p)\~l

~{vz^) {^^y\z^z^) ^T
+oP(T-

.(p)\-l
2 )

Following Kurozumi and Yamamoto (2000), we

approximate the distribution of the second term by its

limiting distribution and define the "quasi-asymptotic

bias" as the expectation of the first term up to O (7""1)

plus the expectation of the limiting distribution of the

second term. The quasi-asymptotic bias, QBIAS
,j*(p) l(p)i .

[d. >A\ \,isexpressedas

(9) QBIAS\XW,A^]

=~SB-̂̂ NB^\

where both SBW and JV5W are finite valued matrices

independent of T, and then they are constant for any

large T. The above result is straightforward from the

similar result in Kurozumi and Yamamoto (2000). Its

rigorous poof is currently under study.
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Nowwe construct the modified lag augmented

(MLA(p)) estimator, which can eliminate the quasi-

asymptotic bias. Suppose we analyze the regression

model with a sample size T, which is an even integer,

and regress y, on x,-\,m", x,-k, x,-k-p,and 1 for the

whole period (f=l,-, T).

Y' = J{p)X[+ [Ji%^}X'3+U^'

= [j{p),Ji%^] x'+u^'

= \T(P\Aá"] Z^'+ \At\ ~^] Z^'+U(p\

For the first period (t=l,-",T/2) and the second

period (t=T/2+].,•E•E•E, T), we write, with subscripts/

s, respectively,

1/ - J-f *lf+[Jk+ljif1} \A3f+Uf

-|i/ ,Jk+lf,iif ^Xf+Uf

-\r(p) 4(p'l 7(p''4- [i(p) r,(p>l 7(p)'+/7(p)'

y _ f(p)v' _i_r/(p) r.(p)]x' A-ife)'

-\7(p) 7(p) r>'l x'4-r/(p''

-\f*(p) A(p)] 7(p)l4- \A[p) n(ri] 7(p)l 4-77(p>'

where, e.g., Y}= [y1,-, yJ and Y',= \yTI2tl,-, yT].
 Using (9), we have the following results about the

quasi-asymptotic bias in each period.

(10) QBIAs \f{p\A^

=-SB**-iiVBW,

(ll) QBIAS Jf'Jty

=~SB-̂lNB<*\

(12) QBIAs [rsip),A^]

=-|SB(P) - ^NB^.

Using the estimators in three periods, we define the

modified estimator of [J\ A\\, which we call the

MLA(p) estimator, as

(13) [£S,^.] =2[Jrw,^]

We can easily check that this estimator has no quasi-

asymptotic bias by substituting the right hand side of

(13)with (10), (ll) and(12).

The MLA(p) estimator ofJ_ is easily obtained

throughtherelation J_ = J_ H\.

f -,A\ f(p' _ 7*(p)W
(14) J_mla - !mlaHi

We can also show that the asymptotic distribution

of this estimator is the same as that of the estimator for

the LA(p) approach. We summarize the main results:

( i ) The MLA(p) estimator (14) has no quasi-

asymptotic bias irrespective of the order of

integration of {w,}.

(ii) The MLA(p) estimator (14) is

asymptotically normally distributed

irrespective of the order of integration of
{w,}.

We have the following proposition, which is a

direct consequence of the above results.

Proposition 2 :

The Wald statistic to test for the hypothesis Hq

constructed from the MLA(p) estimator,

Wmla, is asymptotically chi-square distributed with g

degrees offreedom irrespective of the order of

integration of {w,}.

/_\

WZL = tvmla
(Rvec£L - q)'

{R (O±) X}-l (R»ec& - q)

xl
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where written as

(15) S& = S<» ® (ixlQ£Ui)~

1 t=i

w/iere Mj '5 are residuals of N estimation for the

wholesample, ## = vecjSa , anrf /?M = vecfv)'.

The explanation of the covariance matrix S^(a is

in order: In theory, we can use any consistent

estimator of 2o® 22~2\ We have tried several

consistent estimators in Monte Carlo simulations. The
test statistic using £j£ia has generally shown the

smallest size distortion among them in the small
sample. Thus, we decided to adopt S^(a as the

estimator of 2o<8> 2jJ. See Yamamoto and Kurozumi

(2005) for detail. Its basic idea is to intentionally

inflate the conventional estimate of 2fa little bit in

order to reduce the size ditortion of the test, since the

conventional estimate of 2^ appears to be

underestimated in finite samples. See also Chigira and

Yamamoto(2007) for a similar attempt.

3.2. SELECTION OF LAG LENGTH

The Monte Carlo experiments in Yamamoto and

Kurozumi (2005) revealed that the extended MLA(p)

is generally more powerful than the ordinary MLA(l)

estimator. On the other hand, they analytically

showed, in a slightly different model specification,

that there could be a case where the extended MLA(/?)

(p_>2) approach is less efficient than the ordinary

MLA, i.e., MLA(l), approach. Thus, the unconditional

use of the extended MLA(p) (p_>2) approach should

be avoided. The issue is that we have to select a

suitable lag lengthp in the extended MLA(p) approach

including the case ofp= 1.

In this paper, we propose a practical method to

select a suitable p. We propose to select a suitable p'

which gives the minimum rfef(S0 ) (p = 1,2,

•E•E-iVmax) , where pmiais a priori specified not-so-

small number, say, /w=10. Mathematically, it is

p* = argmin {det (t{±)}

The use of det(Eg°') as a criteria is motivated the

fact that it is a generalized variance of f)&ja. We call

the MLA(p) with the selectedp' as the variable

modified LA (VMLA) approach.

4. SIMULATION EXPERIMENT
4. 1. EXPERIMENTAL DESIGN

In the following simulations, we assume an univariate

process {y,} generated by

(16)

where

y,= /?iw,+ /?2w,-1+ c, and

vt

e

t I _ Ji n:= c.t.u.iv
of pa£av

0I'[pa£av a%

Three models for data generation of {w,} are

considered.

Model I : a,=1.8, and a2=-0.8.

ModelII:a,=0.2, and «2= 0.8.

Modelm : a,=1.6, and a2=-0.64.

The first two models are non-stationary, that is, they

have a unit root. The first two models can alternatively

expressed as

Model I : Aw,= 0.8Aw,-i+v,, and

Model H : Aw,=-0.8Aw,-i+v,.

Thus, the stationary component of model I exhibits

strong positive autocorrelations, whereas that of model

II a strong negative first order autocorrelation. Model

El is a purely stationary one with strong positive

autocorrelations. Since most sconomic data exibit

positive serial correlations, we are more interested in

the results of Models I and HI than those of Model II.

The three models for the IV estimation of the LA(p)

approach are given by
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(17) ji^'+^+^Wi

Throughout the experimet, the instrumental variables

are w,-,, w,-2,-,w,-2-,.The bias corrected MLA(p)

estimator is given by

where

fr) = [%», %»]', ft) = [ffi, ffi]'

The estimator of its covariance matrix is obtained as

(18) s^« = ^ (^A'{g^A'1)"1

The null hypothesis to test is given by

Ho : P=/9o,

where [i =[/3i, /?2]' and /9o=[/9io, /92o]'. Then, the

test statistic is given by

(19) W,S?« = {VT(#& -/%)'}

sLt: {^(^l -^)}.

and fF£i is asymptotically chi-square distributed with

two degrees of freedom.

4.2. SIMULATION RESULTS

In the following simulation experiments, the number

of replication is 1,000 in all experiments.

Computations are performed by the GAUSS matrix

programming language.

4.2.1. Effects of Bias Correction and

Adjustment of Variance Covariance

Matrix

We first examine how the modifications proposed in

Section 3.1 work in finite samples. Specifically,

Tables la and lb reveal the effects of bias correction

and modification of the variance covariance matrix on

empirical size of the test. Table la gives the empirical

size ofofthe ordinary Wald test based upon the IV

estimation without any adjustment, LA(p) (p= 1, 2,--%

8). On the ther hand, Table lb shows the

corresponding empirical size of MLA(p) (p=l, 2,--,

8) which incorporates the modifications. We find that,

while LA(p) shows a large size distortion, MLA(p) a

relatively small distortion which is acceptable for

practical purposes. Thus, we have confirmed that bias

correction and modification of the variance covariance

matrix proposed in Section 3.1 are useful for reducing

size distortion of the original test statistic, LA(p) (p=

1, 2,---, 8), in finite samples.

4.2.2. Empirical Size and Power when 7=100

Tables 2a-2e show the empirical size and power of

MLA(p) (p= 1,2,-,8) and VMLA for T= 100.

Table 2a shows the empirical size of MLA(p) (p=

1, 2,-, 8) which is replication of Table lb in additon

to VMLA for T= 100. The case of MLA(l)

corresponds to the ordinary MLA approach, and

MLA(p) (p=2,-, 8) to the extended MLA approach.

Table 2a shows that the emprical size of MLA(p)

generally decreases with p. For VMLA, the empirical

size slightly overestimates the corresponding nominal

one for Models I and II. But the size distortion is

relatively large for Model DI.

Tables 2b-2e show the (size unadjusted) empirical

power of the test ofMLA(p) (p=\, 2,-, 8) and

VMLA for 7"=100. As in Yamamoto and Kurozumi

(2005), MLA(p) (p=2, 3,-,8) has generally higher

power than MLA(l). But, in some cases, MLA(l) has

higher power than some ofMLA(p) (p=l, 2,-, 8).

See, for example, modelII in Table 2b, where

MLA(l) is larger than MLA(2). Turning our attention
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to VMLA, it is evident that VMLA generally has

higher power than MLA(p) [p=\, 2,"-, 8), and it is

consitently more powerful than MLA(l). That is, the

lag selection scheme proposed in section 3.2 is quite

useful for the improvement for the power of the

ordinary lag augmention MLA, that is, MLA(l).

4.2.3. Effect of Sample Size

Tables 3a-3e show the empirical size and power of

MLA(p) (p=l, 2,-, 8) and VMLA for 7=200.

These tables exacly correspond to Tables 2a-2e. The

only difference is the sample size. Table 3a shows the

empirical size of MLA(p) (p=l, 2,-, 8) and VMLA

for T=200. Generally, the size distortion of MLA(p)

(p= 1, 2,"*,8) decreases in comparison with Table 2a.

The size distortion ofVMLA also decreases for

models I and III, but not so for Model II. There are

still rooms for improvement for the size of the test,

These will be left to the future research.

Tables 3b-3e show the (size unadjusted) emprical

power of ofMLA(p) 0=1, 2,-, 8) and VMLA for

T=200. They correspond to Tables 2b-2e. The power

smoothly increases as T increases.

5. CONCLUSION
This paper has consider the Wald type test for a

regression model whose regressors are possibly non-

stationary and contemporaneously correlated the error

term.

The present paper has extended our previous works,

Kurozumi and Yamamoto (2000) and Yamamoto and

Kurozumi (2005), in two directions. First, it has dealt

with IV estimator instead of OLS estimator. Socond, it

has proposed a method to select a suitable lag lengthp

in the MLA(p) approach, which is called the variable

MLA (VMLA) approach. The Monte Carlo simulation

in this paper has revealed that the VMLA always gives

higher power of the test than the MLA, that is,

MLA(l). In other words, the VMLA has been shown

to be quite useful in improving the power of the Wald

type test in finite samples.
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Table 1. Effects of Bias Correction and Modification on Empirical Size (7=100)
DGP :y,= /?iW,+0.3w,-i+ e andw,= aiivH+ a2w,-2+v,,

where i.i.d.N 1
0 .9

0.9
1

Modell : ai=1.8, and a2=-0.8.

ModelH: a,=0.2, and «2= 0.8.

Modell : a,=1.6, and a2=-0.64.

Model forEstimation : yt = p0 + plWt + fow^ + fcwt-i-p + ut.

_ u__.__\H0:jff,=0.7 and /32=0.3

riypuuicsis ;    H i : O t h e rw is e .

T a b l e l a . N o A d j u s t m e n t L A ( p ) : / ? , = 0 . 7 a n d /? 2 = 0 . 3 in D G P

M o d e l

S ig n ific a n c e L e v e l    5 %      1 0 %      5 %      1 0 %

p o f L A (p )

l l .2       1 5 .3       4 .2       8 .9

1 0 .2      1 5 .9       6 .3      1 2 .5

1 0 .1       1 6 .3       4 .6       8 .9

9 .3      1 7 .5       6 .8      1 3 .9

1 0 .9       2 0 .0       5 .3       1 0 .7

1 3 . 1      2 0 .8       7 .8      1 4 .3

1 4 . 1       2 1 .4       6 .7       1 3 .4

  1 5 .0 2 4 .3 7 .8 1 5 .6

T a b l e l b . W i t h M o d i f i c a t i o n M L A (p ) : /S ,= 0 . 7 a n d y ? 2 = 0 . 3 i n D G P

M o d e l

S ig n ific a n c e L e v e l    5 %      1 0 %      5 %      1 0 %

p o f M L A ( p )

8 .2       l l .0       3 .1

5 .3       8 .5       5 .0       8 .4

4 .3       6 .7       2 .5       5 .6

3 .5       6 .0       4 .4       8 .2

3 .5       6 .8       3 .5       6 .2

3 .5       6 .3       4 .4       9 .2

3 .6       6 .6       3 .9       7 .5

3 .5       6 .8       4 .0       8 .5

5%

9.1

8.5

9.0

9.7

10.3

ll.9

13.6

15.8

5%

9.6

7.3

7.1

5.9

6.2

5.4

5.5

5.8

10%

ll.6

13.0

13.5

14.5

16.7

19.3

20.4

23.3

10%

12.9

ll.1

10.0

9.2

9.7

9.3

8.6

10.1
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Table 2. Empirical Size and Power of MLA(p) and VMLA (7"=100)

For detailed description of the model and the hypothesis, see Table 1.

Table 2a. Empirical Size : /S,=0.7 and /?2=0.3 in DGP

IModel

Significance Level
p ofMLA (p)

1

2

3
4

5

6

7
8

VMLA

5%

8.2

5.3

4.3

3.5

3.5

3.5

3.6

3.5

7.6

10%

ll.0

8.5

6.7

6.0

6.8

6.3

6.6

6.8

ll.4

5%

3.1

5.0

2.5

4.4

3.5

4.4

3.9

4.0

6.0

10%

6.1

8.4

5.6

8.2

6.7

9.2

7.5

8.5

10.7

5%

9.6

7.3

7.1

5.9

6.2

5.4

5.5

5.8

13.5

10%

12.9

ll.1

10.0

9.2

8.7

9.3

8.6

10.1

18.9

Table 2b. Empirical Power : /?,=0.5 and /S2=0.3 in DGP

Model

Significance Level

p ofMLA (p)

1

2

3
4

5

6

7

8
VMLA

I
5%

83.6

91.3

93.2

93.8

94.1

94.0

94.4

94.3

96.7

10%

85.9

93.2

94.4

95.2

95.9

95.4

95.6

95.8

97.8

n
5%

26.1

15.7

37.0

32.9

48.2

45.3

54.5

53.7

40.5

10%

36.6

26.7

46.8

46.0

58.0

57.8

64.8

66.2

53.0

5%

86.1

93.5

95.0

95.8

94.9

94.5

95.6

95.2

97.6

10%

89.0

95.1

96.1

96.9

96.5

96.7

97.1

96.8

98.7

Table 2c. Empirical Power

Model
I

Significance Level | 5%

p ofMLA (p)

1

/?,=0.65 and &=0.3 in DGP

2

3

4

5
6

7

8
VMLA

I

26.5

33.5

43.3

48.4

49.6

51.6

51.3

51.7

58.2

10%

33.2

40.9

50.0

54.9

56.8

57.9

58.6

58.3

64.1

n
5%

3.3

4.8

3.0

5.3

4.6

5.6

5.5

6.0

5.9

10%

7.7

7.9

8.1

9.7

10.5

ll.6

12.5

12.6

9.8

5%

22.3

24.8

28.8

29.8

31.7

32.6

31.9

32.0

45.4

10%

28.4

32.1

37.0

39.5

41.4

41.8

43.0

41.0

54.8
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T a b le 2 d . E m p i r ic a l P o w e r # = 0 .7 5 a n d /S 2= 0 . 3 in D G P 蝣 I

M od el i                 n m

S ig nifican c e L e ve l    5 % 10 %       5% 10 % 5 % 10 %

/j o f M L A (p ) I ̂ ^ H ^ ^ H I

19 .2 28 .4 8 .9 2 4 .7 3 2 .9

2 5 .4 3 4 .5       7 .1 l l .2 2 7 .8 3 5 .6

2 9 .7 4 0 .4       4 .5 9 .0 2 9 .2 4 0.0

3 3 .7 4 4 .6       6 .9 l l.2 3 0 .0 4 0.9

3 7.5 4 9 .2       5 .4 9 .1 3 2 .2 4 1.1

3 9.8 5 1.6       6 .7 12 .1 3 3 .3 4 0 .8

4 2.8 5 2 .7       6 .1 10 .2 3 3 .6 4 1.5

4 3.3 5 2 .5       6 .5 l l.6 3 4 .2 4 1.8

V M L A 4 5.4

T a b le 2 e . E m p i r ic a l P o w e r

5 5 .7 1 0 .3

/?,= 0 . 9 a n d /?2= 0 . 3 in D G P

16 .6 3 9 .7 4 8 .6

M o de l i                  n m

S ig n ifica n ce L ev el    5 % 10 %       5 % 10 % 5 % 1 0%

p o f M L A O ) I ̂ ^ H ^ ^ H I

9 2 .6 9 5 .3       2 9 .7 3 8 .6 53 .9 6 2 .3

9 7 .4 9 8 .9       2 3 .7 3 3 .9 63 .5 7 2 .2

3         9 8 .8 9 9.6       3 1.1 4 1 .8 68 .0 7 7 .5

9 9 .0 9 9.8       3 0 .7 3 9 .9 70 .8 8 0 .1

9 8 .7 9 9.7       3 4 .1 4 5 .5 72 .4 8 1 .3

9 9 .4 99 .7       3 5 .3 4 5 .5 7 3 .9 8 1 .3

9 9 .4 99 .6       3 7 .2 46 .5 7 4 .5 8 2 .3

8         9 9 .1 99 .6      3 8 .1 48 .7 7 4 .6 8 0 .6

V M L A       9 9 .3 99 .9       4 7 .7 59 .0 9 8 .8 9 9.4

Table 3. Empirical Size and Power of MLA(p) and VMLA (1=200)

For detailed description of the model and the hypothesis, see Table 1.

T a b l e 3 a . E m p i r

M o d e l

S ig n ific a n c e L e v e l

p o f M L A ( p )

1

i c a l S i z e : /S ,= 0 . 7 a n d 0 2 I

5 % 1 0 %

= 0 . 3 i n D G P n

5 % 1 0 %

 n

5 %

5 .2 9 .1 4 .7 8 .6 6 .8

2 4 .1 8 .0 6 .1 1 0 .9 5 .6

3 4 .5 8 .6 4 .5 9 .4 5 .9

4 4 .5 8 .7 5 .4 1 0 .5 6 .6

5 4 .7 1 0 . 1 4 .7 9 .2 6 .6

6 5 .2 9 .6 5 .4 1 0 .2 7 .0

7 4 .9 9 .4 4 .9 1 0 .1 6 .5

8 4 .8 8 .7 6 .5 l l .0 7 .1

V M L A 6 .0 1 0 .4 7 .1 l l .4 1 0 .0

10%

ll.6

10.0

ll.0

10.1

ll.1

ll.2

10.8

ll.5

16.0
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Table 3b. Empirical Power : yS,=0.5 and /?2=0.3 in DGP
M o d e l

L e v e l

p  o f M L A  ( p )

1

5 %

Q  1 0 %

5 %

n  1 0 %

5 %

m  1 0 %

9 8 . 8 9 9 . 2 6 8 . 7 7 4 . 7 9 9 .3 9 9 . 5

2 9 9 . 7 9 9 . 8 5 2 . 1 6 3 . 7 9 9 .7 9 9 . 8

3 9 9 .8 9 9 . 8 7 3 . 2 8 1 . 0 1 0 0 .0 1 0 0 . 0

4 9 9 .7 1 0 0 . 0 7 1 .8 7 9 . 0 1 0 0 .0 1 0 0 . 0

5 9 9 . 8 1 0 0 . 0 7 8 . 7 8 4 .3 1 0 0 . 0 1 0 0 . 0

6 9 9 . 8 1 0 0 . 0 7 7 . 3 8 2 .9 1 0 0 . 0 1 0 0 . 0

7 9 9 . 9 1 0 0 . 0 8 0 . 9 8 5 . 7 1 0 0 . 0 1 0 0 . 0

8 1 0 0 . 0 1 0 0 . 0 8 2 . 0 8 5 .8 1 0 0 . 0 1 0 0 . 0

V M L A 1 0 0 . 0 1 0 0 . 0 7 9 . 0 8 3 .8 1 0 0 . 0 1 0 0 . 0

T a b l e  3 c .  E m p i r i

M o d e l

L e v e l

p  o f M L A  ( p )

1

c a l  P o w e r  :  / ? , = 0 . 6 5  a n d  I

5 %  1 0 %

/ ? 2 = 0 . 3  i n  D G P  n

5 %  1 0 %

 i n

5 %   1 0 %

5 2 . 4 6 1 .8 6 . 3 l l .9 3 5 . 0 4 3 .8

2 6 9 . 9 7 6 . 1 6 . 6 1 2 .6 4 8 . 8 6 1 . 1

3 7 7 . 1 8 3 .0 7 . 5 1 4 .8 6 0 . 2 7 0 .2

4 8 2 . 4 8 6 .0 8 . 9 1 4 .9 6 7 . 7 7 6 .9

5 8 5 . 0 8 8 .2 9 . 6 1 7 .8 7 1 . 2 8 0 .0

6 8 6 . 7 8 9 . 4 1 0 . 2 1 7 . 3 7 3 . 2 8 1 . 8

7 8 7 . 9 9 0 . 2 l l .4 1 9 . 7 7 3 . 8 8 1 . 0

8 8 8 . 1 9 0 . 9 l l . 9 1 9 .4 7 3 . 5 8 1 .4

V M L A 8 9 . 3 9 1 . 7 8 . 6 1 6 .1 7 7 . 9 8 5 . 1

T a b l e  3 d .  E m p i r i

M o d e l

L e v e l

p  o f M L A  ( p )

1

c a l  P o w e r  :  / ? , = 0 . 7 5  a n d  I

5 %  1 0 %

/ ? 2 = 0 . 3  i n  D G P  n

5 %  1 0 %

 I

5 %   1 0 %

5 0 .6 6 3 . 9 8 .7 1 5 . 5 3 9 .3 5 0 . 1

2 7 0 .4 8 2 . 2 1 0 . 5 1 5 . 9 5 2 .3 6 2 . 4

3 8 2 .8 8 8 . 8 l l . 2 1 7 . 1 5 9 .4 7 1 . 0

4 8 7 .2 9 2 . 2 l l . 4 1 8 . 1 6 5 .5 7 5 . 5

5 9 0 . 1 9 4 . 3 l l . 1 1 7 . 9 6 8 .3 7 8 . 3

6 9 2 .6 9 5 . 8 1 3 . 2 1 9 . 4 7 0 .6 8 0 . 2

7 9 3 .9 9 6 . 9 1 2 . 5 2 0 . 0 7 2 .0 8 0 . 3

8 9 4 . 1 9 6 . 8 1 3 . 3 2 1 . 9 7 2 . 4 8 0 . 2

V M L A 9 2 . 9 9 5 . 5 1 7 . 6 2 5 . 3 7 0 .8 7 8 . 9
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Table 3e. Empirical Power : /?,=0.90 and /?2=0.3 in DGP
M o d e l

L e v e l

p  o f M L A  ( p )

1

5 %

I  1 0 %

5 %

n  1 0 %

5 %

i n  1 0 %

1 0 0 . 0 1 0 0 .0 6 9 . 2 7 8 .4 9 9 . 8 1 0 0 . 0

2 1 0 0 . 0 1 0 0 .0 5 4 . 1 6 1 . 6 1 0 0 . 0 1 0 0 .0

3 1 0 0 . 0 1 0 0 .0 7 5 . 5 8 2 .4 1 0 0 . 0 1 0 0 .0

4 1 0 0 . 0 1 0 0 .0 7 1 . 8 7 9 .4 1 0 0 . 0 1 0 0 .0

5 1 0 0 . 0 1 0 0 .0 7 9 . 2 8 4 .6 1 0 0 . 0 1 0 0 .0

6 1 0 0 . 0 1 0 0 .0 7 6 . 9 8 4 .4 1 0 0 . 0 1 0 0 .0

7 1 0 0 . 0 1 0 0 .0 8 1 . 3 8 6 .6 1 0 0 . 0 1 0 0 .0

8 1 0 0 . 0 1 0 0 .0 8 2 . 7 8 8 . 5 1 0 0 . 0 1 0 0 .0

V M L A 1 0 0 . 0 1 0 0 .0 8 5 . 4 9 1 .0 1 0 0 . 0 1 0 0 .0
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