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Abstract

We shall give a description of the intersection cohomology groups
of the Schubert varieties in partial flag manifolds over symmetrizable
Kac-Moody Lie algebras in terms of parabolic Kazhdan-Lusztig poly-
nomials introduced by Deodhar.

1 Introduction

For a Coxeter system (W, S) Kazhdan-Lusztig [6], [7] introduced polynomials

Py,w(Q) = Z P, ,w,qu € Z[Q]: Qy,w(Q) = Z Qy,w,qu € Zlg],

keZ keZ

called a Kazhdan-Lusztig polynomial and an inverse Kazhdan-Lusztig poly-
nomial respectively. Here, (y,w) is a pair of elements of W such that y £ w
with respect to the Bruhat order. These polynomials play important roles in
various aspects of the representation theory of reductive algebraic groups.
In the case W is associated to a symmetrizable Kac-Moody Lie algebra
g, the polynomials have the following geometric meanings. Let X = G/B be
the corresponding flag variety (see Kashiwara [3]), and set X*¥ = B~wB/B
and X,, = BwB/B for w € W. Here B and B~ are the “Borel sub-
groups” corresponding to the standard Borel subalgebra b and its opposite
b~ respectively. Then X" (resp. X,) is an £(w)-codimensional (resp. £(w)-
dimensional) locally closed subscheme of the infinite-dimensional scheme X.
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Here ¢(w) denotes the length of w as an element of the Coxeter group W.
Set X' = U,ew Xw- Then X' coincides with the flag variety considered by
Kac-Peterson [2], Tits [10], et al. Moreover we have

X=|]xv, X=X
wew weW
and

Xu=||xy, X.o=[]X

y2w ySw

for any w € W.

By Kazhdan-Lusztig {7] we have the following result (see also Kashiwara-
Tanisaki [4]).

Theorem 1.1. (i) Let w,y € W satisfying w £ y. Then we have

F2k+1 ("Q;;Iw)yB/B =0, H2k(wQ§w )yB/B — QH(__k)eQw,y,k
forany k € Z.

(ii) The multiplicity of the irreducible Hodge module "Q3%, [—€(v)](—k) in
the Jordan Holder series of the Hodge module Q¥.[—£(w)] coincides
with Pw,y,k-

Theorem 1.2. (i) Let w,y € W satisfying w 2 y. Then we have

H2k+1(7rQ}h('w)yB/B =0, H2k (WQﬁ(IW )yB/B — QH(—k)@Pv.w,k
forany k € Z.
(ii) The multiplicity of the irreducible Hodge module "Q¥ [£(y)|(=k) in the

v

Jordan Hoélder series of the Hodge module Q¥_[f(w)] coincides with
Qy,'w,k-

Here "Qf.[—£(w)] and "Qf_[¢(w)] denote the Hodge modules corre-
sponding to the perverse sheaves "Qxw [—£(w)] and "Qx, [¢(w)] respectively.
In Theorem 1.1 we have used the convention so that "Q¥ [— codim Z] is a
Hodge module for a locally closed finite-codimensional subvariety Z since
we deal with sheaves supported on finite-codimensional subvarieties, while
in Theorem 1.2 we have used another convention so that "Qf [dim Z] is a
Hodge modules for a locally closed finite-dimensional subvariety Z since we
deal with sheaves supported on finite-dimensional subvarieties.
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Let J be a subset of S. Set W; = (J) and denote by W the set of
elements w € W whose length is minimal in the coset wW,. In [1] Deodhar
introduced two generalizations of the Kazhdan-Lusztig polynomials to this
relative situation. For (y,w) € WY x WY such that y £ w we denote the
parabolic Kazhdan-Lusztig polynomial for v = —1 by

Pla(q) =D _ Pl .q* € Zlg),

keZ

and that for u = ¢q by

P-’ J(g) =D _P)id* € Z]g]

kezZ

contrary to the original reference [1]. We can also define inverse parabolic
Kazhdan-Lusztig polynomials

Qyi(a) =D Qi " € Zg, )= Qpuid € Zg]

keZ keZ

(see § 2 below)

The aim of this paper is to extend Theorem 1.1 and Theorem 1.2 to this
relative situation using the partial flag variety corresponding to J.

Let Y be the partial flag variety corresponding to J. Let 1y be the origin
of Y and set Y¥ = B-wly and Y,, = Bwly forw € W”. Then Y" (resp. Y,)
is an £(w)-codimensional (resp. £(w)-dimensional) locally closed subscheme
of the infinite-dimensional scheme Y. Set Y’ = [J, ¢ Yo. Then we have

Y = l_J )/w, }”:: LJ Y;7

wewJ weWwJ
and
v %=l
y2w ySw

for any w € W,

We note that the construction of the partial flag variety similar to the
ordinary flag variety in Kashiwara [3] has not yet appeared in the literature.
In the case where W is a finite group (especially when W is an affine Weyl
group), we can construct the partial flag variety Y = G/P and the properties
of Schubert varieties in Y stated above are established in exactly the same
manner as in Kashiwara [3] and Kashiwara-Tanisaki [5]. In the case W} is an
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infinite group we can not define the “parabolic subgroup” P corresponding
to J as a group scheme and hence the arguments in Kashiwara [3] are not
directly generalized. We leave the necesary modification in the case W is
an infinite group to the future work.

Our main result is the following.

Theorem 1.3. (i) Let w,y € W7 satisfying w £ y. Then we have

H2k+1("Q¥W)y1Y = 0) sz(WQ{/]‘")yl‘{ = QH (_k)@Qi';,lk
for any k € Z.

(i) The multiplicity of the irreducible Hodge module "Q¥,[—£(y)](=k) in
the Jordan Hélder series of the Hodge module QF.[—£(w)] coincides

with P}

Theorem 1.4. (i) Let w,y € W7 satisfying w 2 y. Then we have

J,
H2k+1(wQ¥w)y1y = 0’ H2k(7rQ¥w )le = QH(_k)®Py'i'k
forany k € Z.
(ii) The multiplicity of the irreducible Hodge module "Q% [£(y)](—k) in the

v

Jordan Holder series of the Hodge module Qf [£(w)] coincides with
Qi

In Theorem 1.3 we have used the convention so that "Q¥ [— codim Z] is
a Hodge module for a locally closed finite-codimensional subvariety Z, and
in Theorem 1.4 we have used another convention so that "Q¥ [dim Z] is a
Hodge modules for a locally closed finite-dimensional subvariety Z.

We note that a result closely related to Theorem 1.4 was already obtained
by Deodhar [1].

The above results imply that the coefficients of the four (oridnary or
inverse) parabolic Kazhdan-Lusztig polynomials are all non-negative in the
case W is the Weyl group of a symmetrizable Kac-Moody Lie algebra.

We would like to thank B. Leclerc for leading our attention to this prob-
lem. We also thank H. Tagawa for some helpful comments on the manuscript.

2 Kazhdan-Lusztig polynomials

Let R be a commutative ring containing Z[g, ¢~'] equipped with a direct
sum decomposition R = ;5 Ry into Z-submodules and an involutive ring
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endomorphism R 3 7 — T € R satisfying the following conditions:
(21) RlRJ C 'R’i+j) E = R—ia le RO) qge R2a a = q-l

Let (W, S) be a Coxeter system. We denote by £ : W — Z>; and 2
the length function and the Bruhat order respectively. The Hecke algebra
H = H(W) over R is an R-algebra with free R-basis {Ty }wew Whose multi-
plication is determined by the following:

(22) TwlTwZ = Twuuz if B(’wlwz) = E(wl) + 2(11)2),
(2.3) (T,+1)(Ts—q)=0 forseS.
Note that T, =1 by (2.2).

We define involutive ring endomorphisms H S h+— h € Handj: H - H
by

(2'4) Z Twl, Z er -1, ](Z TwTw) = Z Tw(_q)e(w)T-,;—lv
weWw weWw weW weWw

Note that j is an enddmorphism of an R-algebra.

Proposition 2.1 (Kazhdan-Lusztig [6]). For any w € W there ezists a

unique Cy, € H satisfying the following conditions:

(25)  Cu=Y,c, PuTy with Pyy =1 and P,y € @R,
fory < w,

(26)  C,=q"0e,.

Moreover we have Py,, € Z[q] for anyy S w.

Note that {Cy }wew is a basis of the R-module H. The polynomials P, ,,
for y £ w are called Kazhdan-Lusztig polynomials. We write

(2.7) P = Py
k€Z
Set H* = H*(W) = Homg(H, R). We denote by ( , ) the coupling
between H* and H. We define involutions H* > m+—m € H* and j : H* —
H* by

(2.8) (m,h) = (m,h), (j(m),h)=(m,j(h)) form € H*and h€ H.



Note that 7 is an endomorphism of an R-module. For w € W we define
elements S, D,, € H* by

(2.9) (Sy, Tz) = (=16, , (Dy, Cz) = (=1)"¥)5, .

Then any element of H* is uniquely written as an infinite sum in two ways
> wew TwSw and >y, 70, Dy with 7y, € R. Note that we have

(2.10) Su= S (-1~ p, D,

y2w

by Cuw = >, <y, PywTy- By (2.6), we have

(2'11) —Ew = qe(w)Dw;
and we can write

(2.12) Dy =Y QuySy,

y2w

where @, are determined by

(2.13) 3 (-1 tQ, P, = 6,
wly<z
Note that (2.12) is equivalent to
(2.14) T, = Z(_1)‘(w’““y’@y,w0y~
ySw
By (2.13) we see easily that

(2.15) Quy € Zlg],
(2.16) Quw =1 and deg Qyy S (U(y) — (w) — 1)/2 for w < y.

The polynomials @, for w £ y are called inverse Kazhdan-Lusztig polyno-
mials (see Kazhdan-Lusztig [7]). We write

(2.17) Qw,y = Z Qw,y,qu'

kezZ

The following result is proved similarly to Proposition 2.1 (see Kashiwara-
Tanisaki {4]).



Proposition 2.2. Let w € W. Assume that D € H* satisfies the following
conditions:

(2.18) D=3 5, TySy withry =1 andry € @Y-t)-1 p,
forw <y,
(2.19) D = ¢"®)p.

Then we have D = D,,.
We fix a subset J of S and set

(2.20) W; = (J), W/ ={weW;ws>w foranyseJ}.
Then we have
(2.21) W= || v,
weWwJ
(2.22) Y(wz) = £(w) + £(z) for any w € WY and z € W.

When W; is a finite group, we denote the longest element of W; by wj.

Let a € {¢,—1} and define a! € {q,—1} by aal = —q. Define an alge-
bra homomorphism x* : H(W;) — R by x*(T,,) = a®®), and denote the
corresponding one-dimensional H(W;)-module by R* = R1%. We define the
induced module H”¢ by

(2.23) H’* = H @uw,) R*,

and define ”: H — H”® by p™*(h) = h®1°.
It is easily checked that H*® > k +— k € H”* and j° : H%* — H7*' are
well defined by

(224)  @re(R) =¢"(R), i*(¢™(h)) =¢™'(j(h) forhe H.

Note that j° is a homomorphism of R-modules and that

(2.25) rk=7 for r € R and k € H’*,
(2.26) E=k forke H’?
(2.27) 7% 0% = idgua .

For w € WY set TJ® = ¢7¢(T,). It is easily seen that H’* is a free
R-module with basis {7}, ews. Note that we have

(2.28) 0" (Tyz) = a®@Th¢  for w e W’ and z € Wj.



Proposition 2.3 (Deodhar [1]). For any w € WY there ezists a unique
Cle e H7e satisfying the following conditions.

(229)  Clo=Y ., PJeT, with PJ% =1 and Pj2 € @)V B,
fory <w.

(2.30)  Ca? =gt e,

Moreover we have Pya € Zg] for any y < w.

YW

The polynomials B¢ for y,w € WY with y £ w are called parabolic
Kazhdan-Lusztig polynomials. We write

(2.31) PJa=) Pl q"
kez ”

Remark 2.4. In the original reference [1] Deodhar uses

(=) (Co) = Y (- RS

ySw

instead of CJ® to define the parabolic Kazhdan-Lusztig polynomials. Hence
our PyJ’;ﬁ is actually the parabolic Kazhdan-Lusztig polynomial Pd , foru = al
in the terminology of [1].

Proposition 2.5 (Deodhar [1)]). Let w,y € W7 such that w 2 y.
(i) We have

Pl = Z (-1)!@P,, .

zeW,,yzsw
(i) If Wy is a finite group, then we have P)3 = Pyy; wu, -
Set
(2.32) H’%* = Homp(H"*, R),
and define tp’® : H)%* — H* by

(g% (n),h) = (n, @**(h)  forn e H'* and h & H.



Then 7 is an injective homomorphism of R-modules. We define an invo-
lution — of H”/%* similarly to (2.8). We can easily check that

(2.33) tpla(n) =tp"e(m)  for any n € HI%*,
For w € W7 we define S¢, D2 ¢ H7** by
(@230 (SInTI) = (<10, (DIe,Ce) = (~1)s,,,

Then any element of H”%* is written uniquely as an infinite sum in two ways
s TS0 and s 7t D% with ry,,r" € R. Note that we have
weW w weW/J 'wHw w

(2.35) Sir= Y (-1t pJephe
yeW’ y2w
by C® = 3 <, PoaTy. We see easily by (2.28) that
(2.36) tph(8§0%) = Z (—a)¥®S,,  for we W7.
T€W;

By the definition we have
(2.37) Dy* = ¢")DJ",
and we can write

(2.38) D= > Qlsre
YEW,,y2w
where Q% € R are determined by

(2.39) Y (-pt-teQleple~s,,

yeWJ wsy<z

for w, z € W7 satisfying w £ z.
Note that (2.38) is equivalent to

(2.40) The= Y (-1)-tglecte.
yeWwJ ysw
By (2.39) we have for w,y € W;
(2.41) wy € Zlal,
(2.42) 28, =1and deg Q% < (€(y) — (w) ~ 1)/2 for w < y.



We call the polynomials Q;{,‘L for w £ y inverse parabolic Kazhdan-Lusztig
polynomials. We write

(2.43) e =Y Qe gt

keZ
Similarly to Propositions 2.1, 2.2, 2.3, we can prove the following.

Proposition 2.6. Let w € W’. Assume that D € H’** satisfies the fol-
lowing conditions:

(2.44) D= Zyewj’ygw rySy® with ry =1 and ry € @f(zyg"(“’)‘l R;
fory € WY satisfying w < y.
(245) D=q@Dp.

Then we have D = D,

Proposition 2.7 (Soergel [9]). Let w,y € W’ such that w < .
(i) We have Q)3 = Quy-

(ii) If W; is a finite group, then we have

wy= D (CUOTIQuy,

zeW wwySyz

3 Hodge modules

In this section we briefly recall the notation from the theory of Hodge modules
due to M. Saito [8].

We denote by HS the category of mixed Hodge structures and by HSg
the category of pure Hodge structures with weight £ € Z. Let R and Ry
be the Grothendieck groups of HS and HSj respectively. Then we have
R = @,z Rr and R is endowed with a structure of a commutative ring via
the tensor product of mixed Hodge structures. The identity element of R
is given by [QF], where Q¥ is the trivial Hodge structure. We denote by
R > r = 7 € R the involutive ring endomorphism induced by the duality
functor D : HS — HS°P. Here HS®® denotes the opposite category of HS. Let
Q¥ (1) and Q¥ (—1) be the Hodge structure of Tate and its dual respectively,
and set Q7 (£n) = Q¥ (£1)®" for n € Zyy. We can regard Z[g,¢" '] as a
subring of R by ¢" = [Q¥ (—n)]. Then the condition (2.1) is satisfied for this
R.
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Let Z be a finite-dimensional algebraic variety over C. There are two
conventions for perverse sheaves on Z according to whether Qu[dim U] is
a perverse sheaf or Qy[— codim U] is a perverse sheaf for a closed smooth
subvariety U of Z. Correspondingly, we have two conventions for Hodge
modules. When we use the convention so that Qy[dim U] is a perverse
sheaf, we denote the category of Hodge modules on Z by HM4(Z), and
when we use the other one we denote it by HM.(Z). Let D*(HMy4(Z)) and
D*(HM,(Z)) denote the bounded derived categories of HMg4(Z) and HM(Z)
respectively. Note that d is for dimension and ¢ for codimension. Then the
functor HMy4(Z) — HM.(Z) given by M — M|[—dim Z] gives the category
equivalences

HMq(Z) 2 HM(Z),  D"(HMa(Z)) = D*(HM.(Z)).

We shall identify D*(HM4(Z)) with D*(HM,(Z)) via this equivalence, and
then we have

(3.1) HM,(Z) = HMy(Z))|- dim Z].

Although there are no essential differences between HM4(Z) and HM.(Z),
we have to be careful in extending the theory of Hodge modules to the
infinite-dimensional situation. In dealing with sheaves supported on finite-
dimensional subvarieties embedded into an infinite-dimensional manifold we
have to use HMy4, while we need to use HM. when we treat sheaves supported
on finite-codimensional subvariety of an infinite-dimensional manifold. In
fact what we really need in the sequel is the results for infinite-dimensional
situation; however, we shall only give below a brief explanation for the finite-
dimensional case. The extension of HMy to the infinite-dimensional situation
dealing with sheaves supported on finite-dimensional subvarieties is easy, and
as for the extension of HM, to the infinite-dimensional situation dealing with
sheaves supported on finite-codimensional subvarieties we refer the readers
to Kashiwara-Tanisaki [4].

Let Z be a finite-dimensional algebraic variety over C. When Z is smooth, -
one has a Hodge module QF [dim Z] € Ob(HM4(Z)) corresponding to the per-
verse sheaf Qz[dim Z]. More generally, for a locally closed smooth subvariety
U of Z one has a Hodge module "Qf [dimU] € Ob(HM4(Z)) corresponding
to the perverse sheaf "Qy [dim U]. For M € Ob(D*(HM4(Z))) and n € Z we
set M(n) = M ® Q(n). One has the duality functor

(3.2) Dy : HMy4(Z) » HMy(2)®, Dy : D°(HMy4(Z)) — D*(HM4(Z))°P
satisfying D3 oDy = Id, and we have
(3.3) Dy ("Qf [dim U)) = Q¥ [dim U](dim U)
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for-a locally closed smooth subvariety U of Z.
Let f : Z — Z' be a morphism of finite-dimensional algebraic varieties.
Then one has the functors:

f*: D°(HMy(Z") — D°(HMq¢(Z)),  f': D*(HMa(Z")) — D*(HM4(Z)),
f« : D°(HMy4(Z)) — D*(HMq4(Z")),  fi: D (HMq4(Z)) — D*(HM4(Z')),
satisfying

ffoDy=Dgof,  fioDy=Dgof.

We define the functors f*, f*, f., fi for D*(HM,) by identifying D°(HM.)
with D®(HMg). For HM, we use the modified duality functor

(3.4) D, :HM.(Z) — HM(Z)", D, : D*(HM4(Z)) — D°(HM4(Z))°P
given by
D, (M) = (Dg(M))[-2dim Z](— dim Z).

It also satisfies D, oD, = Id. For a locally closed smooth subvariety U of Z
we have "Qf [— codim U] € Ob(HM,.(Z)) and

(3.5) D ("Qf [~ codim U]) = "Qff |- codim U](— codim U).

When f : Z — Z' is a proper morphism, we have f, = f, and hence
fioDy =Dy ofi. When f is a smooth morphism, we have f' = f*[2(dim Z —
dim Z")](dim Z — dim Z’) and hence f* o D = D, of*.

4 Finite-codimensional Schubert varieties

Let g be a symmetrizable Kac-Moody Lie algebra over C. We denote by W its
Weyl group and by S the set of simpleroots. Then (W, S) is a Coxeter system.
We shall consider the Hecke algebra H = H(W) over the Grothendieck ring
R of the category HS (see § 3), and use the notation in § 2

Let X = G/B be the flag manifold for g constructed in Kashiwara {3].
Here B is the “Borel subgroup” corresponding to the standard Borel subal-
gebra of g. Then X is a scheme over C covered by open subsets isomorphic
to

A® = SpecClzy;k € N|

(unless dim g < o).

Let 1x = eB € X denote the origin of X. For w € W we have a point
wlx = wB/B € X. Let B~ be the “Borel subgroup” opposite to B, and set
X% =B wlx = B~wB/B for w € W. Then we have the following result.
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Proposition 4.1 (Kashiwara [3]). (i) We have X =[], X¥.

(i) Forw € W, X% is a locally closed subscheme of X isomorphic to A%
(unless dim g < oo0) with codimension {(w).

(iii) Forw € W, we have X¥ = || XV.
YyEWy2w

We call X¥ for w € W a finite-codimensional Schubert cell, and X¥ a
finite-codimensional Schubert variety.

Let J be a subset of S. We denote by Y the partial flag manifold cor-
responding to J. Let @ : X — Y be the canonical projection and set
ly = m(lx). We have m(wlx) = 1y for any w € W;. For w € W’ we
set Y¥ = B~wly = n(X¥). When W is a finite group, we have Y = G/P;
and Y¥ = B~wP;/P;, where P; is the “parabolic subgroup” corresponding
to J (we cannot define P; as a group scheme unless W; is a finite group).

Similarly to Proposition 4.1 we have the following.

Proposition 4.2. (i) We haveY =| |, s Y.

(ii) Forw € W7, Y¥ is a locally closed subscheme of Y isomorphic to A®
(unless dimY < oo) with codimension £(w).

(iii) Forw e WY, we haveY¥ = || YV.

yEWY y2w
(iv) Forw € WY, we have 771 (Y") = | | cp, X**.
We call a subset Q of W7 (resp. W) admissible if it satisfies
(4.1) w,y € W (resp. W),w Sy, y€ Q= we Q.

For a finite admissible subset Q of W7 we set Y = |J,, .o Y. It is a quasi-

compact open subset of Y. Let HMZ™ (Y'?) be the category of B~-equivariant-
Hodge modules on Y? (see Kashiwara-Tanisaki [4] for the equivariant Hodge
modules on infinite-dimensional manifolds), and denote its Grothendieck

group by K(HMZ™ (Y?)). For w € WY the Hodge modules Q¥.[—{(w)]
and "Qf,[—£(w)] are objects of K(HMZ™ (Y?)). Note that Qyw[—£(w)] is a
perverse sheaf on Y because YV is affine. Set

(42) HMZ (Y) = ImHMZ™ (¥?), K(HM () = im K (HM; (Y?)),
0 Q
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where Q runs through finite admissible subsets of W”. By the tensor product,
K(HM2™ (Y)) is endowed with a structure of an R-module. Then any element
of K(HMZ™ (Y)) is uniquely written as an infinite sum

Z 7o [QF.[—£(w)]] with r, € R.

wewJ

Denote by K(HMZ™(Y)) 3 m — m € K(HMZ™ (Y)) the involution induced
by the duality functor .. Then we have ¥m = 7m for any » € R and
m € K(HMZ™(Yv)).

We can similarly define HM?™ (X), Q%.[—£(w)] and "Q%. [—£(w)] for
w € W, K(HMEZ™ (X)), and K(HMZ™ (X)) 3 m — m € K(HMEZ™ (X)) (for
J =0).

Let pt denote the algebraic variety consisting of a single point. Forw € W
(resp. w € W) we denote by ix,, : pt = X (resp. iy, : pt — Y) denote the
morphism with image {wlx} (resp. {wly}). We define homomorphisms

(4.3) ®: K(HMZ (X)) - H*, & :KHME (v)) - HI!»
of R-modules by

(4.4) (M) = (Z(—l)’“[H"i},w(M)]) Sw,

weW \keZ
(4.5) (M) = (Z(—l)’“[H kii‘f,w(M)]> Sy
weWJ \k€Z
By the definition we have
(4.6) d([QL. [-L(w)]) = (-1)*™)8, forweW,
(4.7) & ([Qfu[—£(w)]) = (-1)*™SE™  forw e WY,

and hence ® and ®’ are isomorphisms of R-modules.
The projection 7 : X — Y induces a homomorphism

™ K(HME™ (Y)) - K(HM? (X))
of R-modules.

Lemma 4.3. (i) The following diagram is commutative.

K(HME(v)) 2 HI-1

wtl ltwl,—l

K(HME (X)) — H*
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(i) 7*(m) = 7*(m) for any m € K(HME™(Y)).

(iii) B(m) = B(7) for any m € K(HME™ (X)).
(iv) ®7(m) = &’ (m) for any m € K(HMZ (Y)).

Proof. For w € W’ we have 7*(Qf») = Q. , and hence Proposition 4.2
(iv) implies

o

T([QF) = ) [Qfe-].

zeWy

Thus (i) follows from (4.6), (4.7) and (2.36)

Locally on X the morphism 7 is a projection of the form Z x A*® — Z,
and thus 7* o D, = D, on*. Hence the statement (ii) holds.

The statement (iii) is already known (see Kashiwara-Tanisaki [4]).

Then the statement (iv) follows from (i), (ii), (iii), (2.33) and the injec-
tivity of 2ol L. a

Theorem 4.4. Let w,y € WY satisfying w < y. Then we have
J,-1
H2k+1ZYy(WQ{'IW) =0, HZkZYy Q{’I‘”) = QH(_k)eQw'y'k
for any k € Z. In particular, we have

o/("Qfu[-Lw)])) = (-1)™Dg.
Proof. Let w € WY and set

()™ ([Qful—Lw)) =D= Y 1Sy

yeWJ y2uw
By the definition of "Q¥.[—£(w)] we have
De ("Qu[~£(w)]) = "Qu[-L(w))(¢(w)),
and hence we obtain
(4.8) D =¢®Dp

by Lemma 4.3 (iv). By the definition of $’ we have

(4.9) ry =y (~DFH G, ((QF)),

kez
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and by the definition of "Qf.{—£(w)] we have

(4.10) ro = 1,
(4.11) for y > w we have H*i}, ("Qf.) = 0 unless
0= ks (Uy) —lw) - 1)

By the argument similar to Kashiwara-Tanisaki [4] (see also Kazhdan-Lusztig
[7]) we have

(4.12) H*3, ( Qﬁw)] € Ry.
In particular, we have
(4.13) for y > w we have r, € @i(g%‘l(w)_l Ry.

Thus we obtain D D)= by (4.8), (4.10), (4.13) and Proposition 2.6.
Hence ry = Q1. By (4. 9) and (4.12) we have [H#**1i}, ("QYf.)] = 0 and
[H 2’°zyy("QHw)] = ¢*Qu . for any k € Z. The proof is complete a

By (2.35) and Theorem 4.4 we obtain the following.

Corollary 4.5. We have

[QFu[—t(w)]] = Y Pl QL [~ w)])

y2w

in the Grothendieck group K(HMZ™ (Y)). In particular, the coefficient Pwy p
of the parabolic Kazhdan-Lusztig polynomial PJ ~1 is non-negative and equal
to the multiplicity of the irreducible Hodge module "Qf,[—£L(y))(—k) in the
Jordan Hélder series of the Hodge module Q. [—£(w)).

5 Finite-dimensional Schubert varieties
Set,
(5.1) Xy =Bwlx = BwuB/B forwe W.

Then we have the following result.

Proposition 5.1 (Kashiwara-Tanisaki [5]). Set X' = |J,cw Xw- Then
X' is the flag manifold considered by Kac-Peterson (2], Tits [10], et al. In
particular, we have the following.
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(i) We have X' =] . X

weW “-w:*

(ii) Forw e W X, is a locally closed subscheme of X isomorphic to AX®),
(iii) Forw € W we have Xo, = || X,

yeWysw

We call X, for w € W a finite-dimensional Schubert cell and X, a finite-
dimensional Schubert variety. Note that X' is not a scheme but an inductive
limit of finite-dimensional projective schemes (an ind-scheme).

For w € WY, we set Y,, = Bwly = 7(X,). Similarly to Proposition 5.1
we have the following.

Proposition 5.2. Set Y’ =J, s Yu. Then we have the following.
(i) We have Y' = |, cpyr Yo
(ii) Forw € WY, Y, is a locally closed subscheme of Y isomorphic to AX®) .
(iii) Forw e W/, wehave Y, = || Y.

yeWJ y<uw

(iv) Forw € W7, we have 771 (Yy) = |l ew, X

TEW; “rwz-

For a finite admissible subset Q of W7 we set Y = U, cq Yo It is a finite
dimensional projective scheme.

Let HMZ(Y3) be the category of B-equivariant Hodge modules on Y.
For w € W7 the Hodge modules Qf [¢(w)] and "Qf [£(w)] are objects of
HMZ(Y{). Note that Qy, [£(w)] is a perverse sheaf because Y;, is affine. Set

(5.2)  HMJ(Y') = lim HMZ (Yg), K(HME(Y")) = lim K (HM (Yg)),
Q Q

where 2 runs through finite admissible subsets of W”. By the tensor product
K (HM2(Y")) is endowed with a structure of an R-module. Then any element -
of K(HMJ(Y")) is uniquely written as a finite sum in two ways

3 rolQE ()] and Y ru["QL [6w)]] with Ty, 7, € R.

wewJ wewJ _

Denote by K(HMZ(Y")) 5 m — m € K(HMZ(Y")) the involution of an
abelian group induced by the duality functor Dy. Then we have 7m = 7m
for any r € R and m € K(HMZ(Y")).

We can similarly define HMg (X"), Q% [£(w)] and "Q%_ [¢(w)) forw € W,
KHMEF (X)), and K(HMZ(X")) > m = m € K(HMEZ(X")) (for J = 0).
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For w € W (resp. w € W”) we denote by ix:, : pt = X' (resp. tyr
pt — Y') denote the morphism with image {wlx} (resp. {wly}). We define
homomorphisms

(5.3) ¥ KHME(X) = H, ¥ :KHMEY")) > H

of R-modules by
(5.4) (M) = (Z( D*H 0 (M)]) T.
) weW \ke€Z ,
(5.5) v(M) =) (Z( DMH 5, (M)]) T,
weWJ \keZ
By the definition we have
(5.6) \Il([(@ﬁf’m [L(w)]]) = (-1)!™)T, forw e W,
(5.7) \IIJ([QQU [e(w)]]) = (=1)!TI for w e W,

and hence ¥ and ¥’/ are isomorphisms.

Let 7' : X' — Y’ denote the projection. Let €2 be a ﬁmte admissible
subset of W and set Q = {we W' ; wW;NQ # 0} Then & is a finite
admissible subset of WY and ' induces a surjective projective morphism
X¢§ — Y. Hence we can define a homomorphism 7| : K(HMB(X')) —
K(HMB(Y")) of R-modules by

(5.8) m((M)) =) (=1 [H*m(M)].

keZ

Lemma 5.3. (i) The following diagram is commutative.

KHM3(x")) Y5 H

i

K(HMZ(Y') — H%
v

(ii) =!(m) = (M) for any m € K(HMZ(X")).
(

= ¥(m) for any m € K(HMZ(X")).
(iv) ¥(m) = ¥/ (m) for any m € K(HME(Y")).

(iii) ¥(m

18



Proof. Let w e W7 and z e WJ Since Xyz — Yy, is an A _bundle, we
have 7j(Qf ) = Qff [-24(x)](—¢(z)), and hence

7 ([QK,.. [e(w2)]]) = (~0)*[QF, [E(w)]].

Thus (i) follows from (5.6), (5.7) and (2.28). _
The statement (ii) follows from the fact that 7' is an inductive limit of
projective morphisms and hence 7; commutes with the duality functor Dj.
The statement (iii) is proved similarly to Kashiwara-Tanisaki [4], and we
omit the details (see also Kazhdan-Lusztig [7]). Then the statement (iv)
follows from (i), (ii), (iii), (2.24) and surjectivity of ©’9. O

Theorem 5.4. Let w,y € WY such that w 2 y. Then we have
H2k+lzyl ﬂQ{’Iw) =0, szlw (ngw) — QH( k)eapy’g X
for any k € Z. In particular, we have
V([QY, [e(w)]) = (-1)*™Cye.
Proof. Let w € WY and set

() ([QE [ew)) =C = Y, T

yew7 y<uw

By the definition of "Q¥, [¢(w)] we have Dg ("QF, [£(w)]) = "QF, [¢(w)](€(w)).
Hence we obtain

(5.9) C=qtC
by Lemma 5.3 (iv). By the definition of ¥’ we have
(5.10) y = > _(-LF[HFE. ("QF)],
kezZ
and by the definition of "Qf, [¢(w)] we have
(5.11) ~1,
(5.12) for y < w we have H¥}, ("Qf ) = 0 unless
0 k< (¢w) - £y) ~ 1).

Moreover, by the argument similar to Kazhdan-Lusztig [7] and Kashiwara-
Tanisaki [4] we have

(513) 1y/ WQ{fl) € Ry.
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In particular, we have
(5.14) for y < w we have r, € P )~tw)-1 g,

Thus we obtain C = CZ? by (5.9), (5.11), (5.14) and Proposition 23
Hence r, = P;3. By (5 10) and (5.13) we have [H*+145, ("Qf )]
and [H*}, ("Qf, )] = ¢*Pyu for any k € Z. The proof is complete D

We note that a result closely related to Theorem 5.4 above is already given
in Deodhar [1].
By (2.40) and Theorem 5.4 we obtain the following.

Corollary 5.5. We have

[QF; [e(w)]] = > QA QY [E(w)]]

ySw

in K(HMZ(Y")). In particular, the coefficient Qyw ¢ of the inverse parabolic
Kazhdan-Lusztig polynomial QJ"? s non-negative and equal to the multiplicity
of the irreducible Hodge module ”QH [(y)](—k) in the Jordan Hélder series

of the Hodge module Qf, [£(w)].
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