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Abstract

Weshall give a description of the intersection cohomology groups
of the Schubert varieties in partial flag manifolds over symmetrizable
Kac-Moody Lie algebras in terms of parabolic Kazhdan-Lusztig poly-
nomials introduced by Deodhar.

1 Introduction
For a Coxeter system (W, S) Kazhdan-Lusztig [6], [7] introduced polynomials

Jtez kez

called a Kazhdan-Lusztig polynomial and an inverse Kazhdan-Lusztig poly-
nomial respectively. Here, (y,w) is a pair of elements of W such that y ^ w
with respect to the Bruhat order. These polynomials play important roles in
various aspects of the representation theory of reductive algebraic groups.

In the case W is associated to a symmetrizable Kac-Moody Lie algebra
g, the polynomials have the following geometric meanings. Let X = G/B be
the corresponding flag variety (see Kashiwara [3]), and set Xw = B~wB/B
and Xw = BwB/B for w e W. Here B and B~ are the "Borel sub-
groups" corresponding to the standard Borel subalgebra b and its opposite
b~ respectively. Then Xw (resp. Xw) is an ^(lu)-codimensional (resp. £(w)-
dimensional) locally closed subscheme of the infinite-dimensional scheme X.
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Here £{w) denotes the length of w as an element of the Coxeter group W.
Set X' = \JweWXw. Then X1 coincides with the flag variety considered by
Kac-Peterson [2], Tits [10], et al. Moreover we have

x=\_\xv, x'=\Jxw,

wew wew

and

X*=\Jxv>. X^=\_\Xy
y^w y^w

forany w £ W.
By Kazhdan-Lusztig [7] we have the following result (see also Kashiwara-

Tanisaki [4]).

Theorem 1.1. (i) Letw,yE W satisfyingw 5: y. Then wehave

tf2fc+1rQ^)yB/B = 0, H2k(«Q$w)yB/B =Q*(-*)««-»å "

for any feeZ.

(ii) The multiplicity of the irreducible Hodge module irQx» [~^(2/)](~^)?n
the Jordan Holder series of the Hodge module Q^w [-£(w)] coincides
with Pw,y,k-

Theorem 1.2. (i) Letw,ye W satisfyingw ^. y. Then wehave

H2k+1(*<Q$JyB/B = 0, H2k(*Q$w)yB/B = <F{-k)*P'»*

for any fcà¬ Z.

(ii) The multiplicity of the irreducible Hodge module "'Qf [£(y)](-k) in the
Jordan Holder series of the Hodge module Qj^ \£{w)] coincides with
(°£y,w,k-

Here *Q%W[-£(w)\ and *Qxw[£(w)\ denote the Hodge modules corre-
sponding to the perverse sheaves TQx">[~£(w)] and vQxw[£(w)] respectively.
In Theorem 1.1 we have used the convention so that 'Qf[-codimZ] is a
Hodge module for a locally closed fmite-codimensional subvariety Z since
we deal with sheaves supported on finite-codimensional subvarieties, while
in Theorem 1.2 we have used another convention so that ^Qf[dimZ] is a
Hodge modules for a locally closed finite-dimensional subvariety Z since we
deal with sheaves supported on finite-dimensional subvarieties.



Let J be a subset ofS. Set Wj = (J) and denote by WJ the set of
elements w à¬W whose length is minimal in the coset wWj. In [1] Deodhar
introduced two generalizations of the Kazhdan-Lusztig polynomials to this
relative situation. For (y,w) à¬ WJ x WJ such that y ^ w we denote the
parabolic Kazhdan-Lusztig polynomial for u = -1 by

andthat for u=q by

O«) =Ep^«* eZW'
Jtez

^x(«) =E^»i9* eZW
kez

contrary to the original reference [1]. We can also define inverse parabolic

Kazhdan-Lusztig polynomials

  Qi:M=EQJ
v%*tezm> QiJto)=EQizWezw
             kez                         fcez

(see § 2 below)

 The aim of this paper is to extend Theorem 1.1 and Theorem 1.2 to this

relative situation using the partial flag variety corresponding to J.

 Let Y be the partial flag variety corresponding to J. Let ly be the origin
ofYandset Yw = B~wlY andYw = Bw\Yforw e WJ. ThenYw (resp. Yw)

is an ^(to)-codimensional (resp. ^(ty)-dimensional) locally closed subscheme

of the infinite-dimensional scheme Y. Set Y' = \JW&WJ ^v>- Then we have

      y=LJy: y=|Jyw,

                  wewJ         wewJ

and

       Y*=\jYy, YZ=\jYy

for any w £ VFJ.

 We note that the construction of the partial flag variety similar to the

ordinary flag variety in Kashiwara [3] has not yet appeared in the literature.

In the case where Wj is a finite group (especially when W is an affine Weyl

group), we can construct the partial flag variety Y = G/P and the properties

of Schubert varieties in Y stated above are established in exactly the same

manner as in Kashiwara [3] and Kashiwara-Tanisaki [5]. In the case Wj is an



infinite group we can not define the "parabolic subgroup" P corresponding
to J as a group scheme and hence the arguments in Kashiwara [3] are not
directly generalized. We leave the necesary modification in the case Wj is
an infinite group to the future work.

Our main result is the following.

Theorem 1.3. (i) Letw,y6WJ satisfyingw^y. Then wehave

foranyk£Z.

(ii) The multiplicity of the irreducible Hodge module "Qyyf-^(y)](-k) in
the Jordan Holder series of the Hodge module Qyu,[-£(w)] coincides

Theorem 1.4. (i) Letw,ye WJ satisfyingw ^l y. Then we have

for anyfce Z.

(ii) The multiplicity of the irreducible Hodge module ^Qy [^(?/)](-k) in the
Jordan Holder series of the Hodge module Qy [£(w)] coincides with

In Theorem 1.3 we have used the convention so that "'Qf[- codimZ] is
a Hodge module for a locally closed finite-codimensional subvariety Z, and
in Theorem 1.4 we have used another convention so that ""Of[dimZ] is a
Hodge modules for a locally closed finite-dimensional subvariety Z.

Wenote that a result closely related to Theorem 1.4 was already obtained
by Deodhar [1].

The above results imply that the coefficients of the four (oridnary or
inverse) parabolic Kazhdan-Lusztig polynomials are all non-negative in the
case W is the Weyl group of a symmetrizable Kac-Moody Lie algebra.

Wewould like to thank B. Leclerc for leading our attention to this prob-
lem. Wealso thank H. Tagawa for some helpful comments on the manuscript.

2 Kazhdan-Lusztig polynomials
Let R be a commutative ring containing Z[q,q~l] equipped with a direct
sum decomposition R = ®fceZ Rk into Z-submodules and an involutive ring



endomorphism R b r h->r G R satisfying the following conditions:

(2.1) RiRjcRi+j, R~=R-i, leR0, qeR2, q=q~l.

Let (W,S) be a Coxeter system. We denote by I : W -»å  Z>0 and ^
the length function and the Bruhat order respectively. The Hecke algebra
H = HiyV) over R is an iZ-algebra with free.R-basis {Tw}wew whose multi-
plication is determined by the following:

(2.2) TW1TW2 = TW1W2 if £{wlW2) = t{wx) + £{w2),

(2.3) (Ts+l)(Ts-q)=0 forseS.

Note that Te = 1 by (2.2).
WedefineinvolutiveringendomorphismsH 3 h ^ h e Handj : H -+ H

by

(2.4) Ylr»T»= Ef-T^> i(Er-T-)= Eu-?)^-1-
wew wew wew wew

Note that j is an endomorphism of an i?-algebra.

Proposition 2.1 (Kazhdan-Lusztig [6]). For any w E W there exists a
unique Cw G H satisfying the following conditions:

(2.5) Cw=J2y^wPy^Ty withPw,w=1 andPy>w eSS'^"1Ri

fory<w,
(2.6) Cw = q-e{w)Cw.

Moreover we have Py>w6 Z[q] for any y ^ w.

Note that {Cw}wew is a basis of the.R-module H. The polynomials Py>w
for y ^ w are called Kazhdan-Lusztig polynomials. We write

(2.7) Py,w = Y, py^k-

kez

Set H* = H*(W) = UomR(H,R). We denote by ( , ) the coupling
between H* and H. We define involutionsH* 3 mum GH* andj : H* ->
#*by

(2.8) (m,h)=(m,h), (j(m),h)=(m,j(h)) formeH*andhEH.



Note that j is an endomorphism of an i2-module. For w G W we define
elements SW,DWG H* by

(2.9) (Sw,Tx) = (-1)^5W,X, {Dw,Cx) = (-iy^5w,x.

Then any element of H* is uniquely written as an infinite sum in two ways
Y^wewrvSu> and Ylwewr'wDw with rw,r'w G R. Note that we have

(2.10) Sw = £>l)'(wMWJWDv

by C^ = E^u,-P»,«,Ttf. By (2.6), we have

(2.ll) Dw = ge^Dw,

and we can write

(2-12) Dw = Y, Qw,vSy,

where Qw>y are determined by

(2-13) Yl (-lY{y)-l{w)Qw,yPy,* = <W-

Note that (2.12) is equivalent to

(2.14) Tw= ^(-lY^-^Qy^Cy.
y^w

By (2.13) we see easily that

(2.15) Qw>y g Z[q],

(2.16) QWiW= 1 and degQw>y <: (£(y) -£(w) - l)/2 for w < y.

The polynomials Qw>y for w ^ y are called inverse Kazhdan-Lusztig polyno-
mials (see Kazhdan-Lusztig [7]). We write

(2-17) Qw,y = Y^ Q^kQk-

kez

The following result is proved similarly to Proposition 2.1 (see Kashiwara-
Tanisaki [4]).



Proposition 2.2. Let w G W. Assume that D G H* satisfies the following
conditions:

(2.18) D = £^wrySy with rw = 1 andry G ©Sg"^"1ft

/orw<y,
(2.19) £ = ^Z).

TTien toe /mue £> = Dw.

Wefix asubset J of5 and set

(2.20) WO=(J), W7={wà¬W;ws>w foranyseJ}.

Then we have

(2.21) W= [J io^j,

wewJ
(2.22) f(war) = £(to) +£{x) for any «/ £ lf; and i e Wj.

When Wj is a finite group, we denote the longest element of Wj by wj.
Let a e {q,-1} and define a* e {?,-1} by aa* = -9. Define an alge-

bra homomorphism xa å H(Wj) -* i? by x°(^) = a£(u)), and denote the
corresponding one-dimensional H(Wj)-module by Ra = Rla. We define the
induced module HJ>a by

(2.23) HJ<a = H ®H{Wj) Ra,

and define ipJ'a : H -> /f7'a by pJ-B(/i) = A ® la.
It is easily checked that HJ<a 3 k ^ fc G if-7'0 and ja : i7J-° -> FJ'at are

well defined by

(2.24) ^{h)=<pJ'a(h), f{ipJ'a{h))=<pJ'a\j(h)) forheH.

Note that ja is a homomorphism of iZ-modules and that

(2.25) Hfe=fk fovreR&ndkeHJ>a,

(2.26) I=k forJfcGffJ)Q,

(2.27) jat oja =idH^.

For w <= WJ set 2#a = ^(T,,,). It is easily seen that HJ'a is a free
.R-module with basis {T£a}weWj. Note that we have

(2.28) <pJ'a(Twx) =a^Ti'a forw G WJ andx G W^j.



Proposition 2.3 (Deodhar [1]). For any w E WJ there exists a unique
C£a £ HJ'a satisfying the following conditions.

(22Q\ dJ>a - V ^ pJ^T with PJ'a - 1 n-nd P'7'a G fft^1")"^)"1 R.

/ory<w.
(2.30) C?=q-l^Ci'a.

Moreover we have P^ à¬Z[q] for anyy ^ w.

The polynomials P^ for y,w £ WJ with y ^ w are called parabolic
Kazhdan-Lusztig polynomials. We write

(2-31) ^ =£^V-
fcez

Remark 2.4. In the original reference [1] Deodhar uses

instead of C^a to define the parabolic Kazhdan-Lusztig polynomials. Hence
our Py£ is actually the parabolic Kazhdan-Lusztig polynomial Py Wfor u = a}
in the terminology of [1].

Proposition 2.5 (Deodhar [1]). Let w,y G WJ such that w ^. y.

(i) We have

xeWj,yx^w

(ii) //Wj is a finite group, then we have Pfy - Pywj,WWj.

Set

(2.32) HJ'a'* = UomR(HJ>a, R),

and define V'a : HJ>a>* -> H* by

(VJ'a(n),h> = (n,v?J'a(h)) fornà¬ #J'a-* and h à¬ H.



Then V"7'0 is an injective homomorphism of /^-modules. We define an invo-
lution - of HJ>a>*similarly to (2.8). We can easily check that

(2.33)    Va(«) =V'a(«) for any n6 HJ<a<*.

 For w £ WJ we define 5^a,L>£a G i?-7-01* by

(2.34)  (Si*,T/'a) = (-1)^^,,, (D^,CJ
x'a) = {-l)l{w)5w,x.

Then any element of HJ>a>* is written uniquely as an infinite sum in two ways

Etoew" r^swa and l^wew-' r'
wDwa with rw,r'
w e i2. Note that we have
(2.35)    5^ = Yl (-^Y{w)-£iy)P^yDJ
y'a

by C^a = J2y^w Pj$Ty. We see easily by (2.28) that

(2.36)  V'a(^'°) = J2 i-afx)sá" forw G W>/-

By the definition we have

(2.37)        Di;a = qiiw)D^a,

and we can write

(2.38)      Dta= J2 Q&Si*

                    yà¬Wj,y'Z/w

where Q^y 6 R are determined by

(2.39)   Yl (-i)«yM(w)Qdy# = ^

       yeWJ,wgy£z

              for w,z (E. W3 satisfying w ^ z.

Note that (2.38) is equivalent to

(2.40)    T£a = Y, (~lYM-l{y]QJ
y%C3'a.
               yeWJ,y^w

By (2.39) we have for w,y e Wj

(2.41)  g£- e ZM,

(2.42)  Q^= 1 anddegQ%y ^ (£{y)-£{w) - l)/2 forw <y.



Wecall the polynomials QJJ^y for w ^ y inverse parabolic Kazhdan-Lusztig
polynomials. We write

(2-43) *y = EOfc-
kez

Similarly to Propositions 2.1, 2.2, 2.3, we can prove the following.

Proposition 2.6. Let w G WJ. Assume that D e HJ'a'* satisfies the fol-
lowing conditions:

(2.44) D= Eyew'&v,rvSi'a withrá"= 1 andrv G SJS"^"1ft

/ory G WJ satisfying w < y.
(2.45) D=^(U))D.

T/ien we have D = Dif.'w

Proposition 2.7 (Soergel [9]). Let w,y G WJ such that w f^ y.

(i) We have Qi;-1 = Qw>y.

(ii) //Wj is a finite group, then we have

n J,q _ V^ (_-t \t(x)+i(wj)n
^å w,y ~ / j \ XJ Wwwj,yx-

xeWj,wwj^yx

3 Hodge modules
In this section we briefly recall the notation from the theory of Hodge modules
due to M. Saito [8].

We denote by HS the category of mixed Hodge structures and by HS/t
the category of pure Hodge structures with weight k G Z. Let R and R^
be the Grothendieck groups of HS and HS^ respectively. Then we have
R = 0fc6Z-Rfc and R is endowed with a structure of a commutative ring via
the tensor product of mixed Hodge structures. The identity element of R
is given by [Q*7], where Q^ is the trivial Hodge structure. We denote by
R 3 r h-> r G R the involutive ring endomorphism induced by the duality
functor D : HS -*å HSop. Here HSop denotes the opposite category of HS. Let
0^(1) and QH(-1) be the Hodge structure ofTate and its dual respectively,
and set QP(±n) = <^I(±l)®n for n e Z>0. We can regard 1[q,q~l] as a
subring of R by qn = [QH(-n)]. Then the condition (2.1) is satisfied for this
R.
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Let Z be a finite-dimensional algebraic variety over C. There are two
conventions for perverse sheaves on Z according to whether Qf/[dim £/] is
a perverse sheaf or Qy[-codimU] is a perverse sheaf for a closed smooth
subvariety U of Z. Correspondingly, we have two conventions for Hodge
modules. When we use the convention so that Q[/[dimt/] is a perverse
sheaf, we denote the category of Hodge modules on Z by HMd(Z), and
when we use the other one we denote it by EMC(Z). Let Db(EMd(Z)) and
Db(EMc(Z)) denote the bounded derived categories of HMd(Z) and HMC(Z)
respectively. Note that d is for dimension and c for codimension. Then the
functor HMd(Z) ->å HMC(Z) given by M i-> M[- dimZ] gives the category
equivalences

HMd(Z) s*HMC(Z), Db(UMd(Z)) sDb(EMc(Z)).

We shall identify Db(EMd(Z)) with Db(EMc(Z)) via this equivalence, and
then we have

(3.1) HMc(Z) = HMd(Z))[- dimZ].

Although there are no essential differences between EMd(Z) and EMC(Z),
we have to be careful in extending the theory of Hodge modules to the
infinite-dimensional situation. In dealing with sheaves supported on finite-
dimensional subvarieties embedded into an infinite-dimensional manifold we
have to use HMd, while we need to use HMC when we treat sheaves supported
on finite-codimensional subvariety of an infinite-dimensional manifold. In
fact what we really need in the sequel is the results for infinite-dimensional
situation; however, we shall only give below a brief explanation for the finite-
dimensional case. The extension of HMd to the infinite-dimensional situation
dealing with sheaves supported on finite-dimensional subvarieties is easy, and
as for the extension of HMC to the infinite-dimensional situation dealing with
sheaves supported on finite-codimensional subvarieties we refer the readers
to Kashiwara-Tanisaki [4].

Let Z be a finite-dimensional algebraic variety over C. When Z is smooth,
one has a Hodge module Qf[dim Z] à¬ Ob(HMd(Z)) corresponding to the per-
verse sheaf Qz [dim Z). More generally, for a locally closed smooth subvariety
U of Z one has a Hodge module xQ$[dim£/] e Ob(HMd(Z)j corresponding
to the perverse sheafvQu[dimU\. For M e Ob(£>6(HMd(Z))) and n G Z we
set M(n) = M ®Q^(n). One has the duality functor

(3.2) Dd : EMd(Z) ->HMd(Z)°P, Bd : Db{EMd{Z)) -> D6(HMd(Z))op

satisfying Dd oB>d = Id, and we have

(3.3) Dd (n®§[dim U]) = *Q%[dim U](dim U)

ll



for a locally closed smooth subvariety U of Z.
Let / : Z -> Z' be a morphism of finite-dimensional algebraic varieties.

Then one has the functors:

/* : Db(RMd(Z')) -> Db(RMd(Z)), f : Db{EMd(Z')) ->£>6(HMd(Z)),

f, : Db{EMd(Z)) -> £>6(HMd(Z')), /i : £>6(HMd(Z)) -> £>6(HMd(Z')),

satisfying

/*oDd=Ddo/!, /,oDd=Ddof,.

We define the functors /*, /', /», /. for Db(EMc) by identifying £>6(HMC)
with D6(HMd). For HMC we use the modified duality functor

(3.4) 1D>C :HMC(Z) ->HMc(Z)op, Dc :Db{EMd{Z)) -> D6(HMd(Z))op

given by

DC(M) = (Bd(M))[-2dimZ](- dimZ).

It also satisfies Dc oDc = Id. For a locally closed smooth subvariety U of Z
we have *<Q#[- codimU] G Ob(HMc(^)) and

(3.5) Dc CQg [- codim C/]) = 'rQ^[- codim t/](- codim C/).

When / : ^ -> Z' is a proper morphism, we have /* = ft and hence
/i oD,) = Ddo/j. When / is a smooth morphism, we have /! = /*[2(dimZ -
dimZ')](dimZ - dimZ') and hence /* oBc = Bcof*.

4 Finite-codimensional Schubert varieties
Let g be a symmetrizable Kac-Moody Lie algebra over C Wedenote by W its
Weyl group and by S the set of simple roots. Then (W, 5) is a Coxeter system.
Weshall consider the Hecke algebra H = H(W) over the Grothendieck ring
R of the category HS (see § 3), and use the notation in § 2

Let X = G/B be the flag manifold for g constructed in Kashiwara [3].
Here B is the "Borel subgroup" corresponding to the standard Borel subal-
gebra of g. Then X is a scheme over C covered by open subsets isomorphic
to

A°° = SpecC[zfc;ifc e N]

(unless dimg < oo).
Let lx = eB G X denote theoriginofX. Forw 6 W we have apoint

wlx = wB/B G X. Let B~ be the "Borel subgroup" opposite to B, and set
Xw=B~wlx =B~wB/B for w G W. Then we have the following result.
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Proposition 4.1 (Kashiwara [3]). (i) We have X = \_\weWXw.

(ii) Forw G W, Xw is a locally closed subscheme ofX isomorphic to A°
(unless dimg < oo) with codimension £(w).

(iii) ForweW,wehaveXw= \_\ Xy.

We call Xw for w G W a finite-codimensional Schubert cell, and Xw a
finite-codimensional Schubert variety.

Let J be a subset of S. We denote by Y the partial flag manifold cor-
responding to J. Let 7T : X -> V be the canonical projection and set
ly = tt(Ia-). We have 7r(iulx) = ly for any to G Wj. For to G W"7 we
set 1á" = B~wlY =n(Xw). When Wj is afinite group, we have Y = G/Pj
and Yw= B~wPj/Pj, where Pj is the "parabolic subgroup" corresponding
to J (we cannot define Pj as a group scheme unless Wj is a finite group).

Similarly to Proposition 4.1 we have the following.

Proposition 4.2. (i) We haveY=\}w^wjYw.

(ii) For w G WJ, Yw is a locally closed subscheme ofY isomorphic to A00
(unless dimy < co) with codimension £(w).

(iii) ForwGWJ,wehaveYá"= \_\ Yy.
yà¬WJ,y^.w

(iv) Forw G WJ, we have -k-\Yw) = \JxeWjxwx-

We call a subset Q of WJ (resp. W) admissible if it satisfies

(4.1) w,yeWJ(resp. W),w ^y,yGfi=>wGQ.

For a finite admissible subset Q of WJ we set yn = {JweaYw. It is a quasi-
compact open subset ofY. Let HMf~ (Yn) be the category ofS~-equivariant
Hodge modules on Yn (see Kashiwara-Tanisaki [4] for the equivariant Hodge
modules on infinite-dimensional manifolds), and denote its Grothendieck
group by K(UM^~(YU)). For w G WJ the Hodge modules <^w[-£(w)}
and *Q[LHM] are objects of K(HMf~(Yn)). Note that Qy»[-£(w)} is a
perverse sheaf on Y because Yw is affine. Set

(4.2) HMf"(y) = hjnHMf"(yn), K{HM*~(Y)) = hjnii:(HMf"(yn)),

n n

13



where fi runs through finite admissible subsets ofWJ. By the tensor product,
iT(HMf (Y)) is endowed with a structure of an i?-module. Then any element
of if(HMf (Y)) is uniquely written as an infinite sum

^2 rti»[Q?»HM]] with rw à¬R.

wewJ

Denote by /T(HMf"(K)) B m ^ ffi e K(HMJ?~(Y)) the involution induced
by the duality functor Dc. Then we have rfn = rm for any r G R and
me K(KM*-(Y)).

We can similarly define HMf"(X), QjB[^(tu)] and "Q^MM for
to G W, K{m/L?~(X)), and X(HMf~(X)) 9 m^ m à¬K(HMf"(X)) (for
J=0).

Let pt denote the algebraic variety consisting ofa single point. For w £ W
(resp. w G WJ) we denote by ix,w : pt -> X (resp. iy,w '•Ept -> V) denote the
morphism with image {wlx} (resp. {iuly}). We define homomorphisms

(4.3) $ :K(KM*~(X)) ->H*, $J :K(UM*~(Y)) -»å i/J'-ll+

of.R-modules by

(4.4) *([M\)=^ fa-lWff^cW)5^,
tuew \fcgz /

(4.5) &([M\)= E fe(-l)*[ff**uW)^'-1-

By the definition we have

(4.6) $([Q^[-£H]]) = (-1/^S^ forw eW,

(4.7) S'dQri.MM]]) = i-lY^Si'-1 for to e P^7,

and hence $ and $J are isomorphisms of.R-modules.
The projection -k : X -> Y induces a homomorphism

7T* : K(EM*~ (Y)) -> iiT(HMcB"(X))

of jR-modules.

Lemma4.3. (i) The following diagram is commutative.

tf(HMf~(y)) -^ /f7'-1'*

iir(HMf"(x)) --^ if*

14



(ii) 7r*(m) =7r*(m) for anym G K(EMf (F)).

(iii) $(m) = $(m) /or any m e iiT(HMf"(X)).

(iv) $->(m) = $J(m) for anym e K(UM*~(Y)).

Proof. For w e WJ we have 7r*(Q^v,) = Qf-iy , and hence Proposition 4.2
(iv) implies

**([Q?-D = £ [<&å -]•E

Thus (i) follows from (4.6), (4.7) and (2.36)
Locally on X the morphism?r is a projection of the form Z x A°° -> Z,

and thus tt* o Dc = Dc ott*. Hence the statement (ii) holds.
The statement (iii) is already known (see Kashiwara-Tanisaki [4]).
Then the statement (iv) follows from (i), (ii), (iii), (2.33) and the injec-

tivity of V7'"1- n

Theorem 4.4. Let w,y à¬WJ satisfying w ^ y. Then we have

T T2k+i:* (-Kfnfi \ _ n H2ki* ^(TD? ) -- <ThHS-k\®^7y]k
n lY,y{W»J-u> å " lY,y\W'W-V! K K) 'y'K

for any k à¬ Z. /n particular, we have

Proo/. Let t^ G W"7 and set

(-1)<<»>*J([*QS.[-*(W)]]) =£>= J] r.5^1.

By the definition of w<Q$w[-£(w)] we have

B-crOy-KH]) = 7rQ?.[-^)](-^)))

and hence we obtain

(4.8) D = q^w)D

by Lemma 4.3 (iv). By the definition of $J we have

(4.9) ry = £(-l)fc[ff*ik(*Q?.)],

fcà¬Z
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and by the definition of ^Qy^-t(w)] we nave

(4.10)    rw = 1,

(4.ll)   for y > w we have i/^y^Qy*,) = 0 unless

       0gk£ (£(y)-e(w)-1).

By the argument similar to Kashiwara-Tanisaki [4] (see also Kazhdan-Lusztig

[7]) we have

(4.12)        &% (*<$.)] 6 Rk.

In particular, we have

(4.13)   for y > w we have ry E ©S"^"1 ^fc-

Thus we obtain D = D^"1 by (4.8), (4.10), (4.13) and Proposition 2.6.

Hence ry = QJ
y'~l. By (4.9) and (4.12) we have [^2fc+1iy,yCr<^»)] = 0 and[H^ty.yO'Qyi.)] = q Qw,y,k for any k e Z. The proof is complete.   å¡

By (2.35) and Theorem 4.4 we obtain the following.

Corollary 4.5. We have

     [q?.[-« = Epi-1Wv[-«

in the Grothendieck group K(HMf (Y)). In particular, the coefficient P^\

of the parabolic Kazhdan-Lusztig polynomial P^y 1 i5 non-negative and equal

to the multiplicity of the irreducible Hodge module ^Qyvf-£(y)](-k) in the

Jordan Holder series of the Hodge module Qytu f-^(iu)].

5 Finite-dimensional Schubert varieties

Set

(5.1)      Xw=Bwlx =BwB/B forwà¬ W.

Then we have the following result.

Proposition 5.1 (Kashiwara-Tanisaki [5]). Set X' = \JweWXw. Then

X' is the flag manifold considered by Kac-Peterson [2], Tits [10], et al. In

particular, we have the following.
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(i) We haveX' =Uw&wXá"-

(ii) Forw G W Xw is a locally closed subscheme ofX isomorphic to Ae(wK

(iii) ForwGWwehaveXw= \_\ Xy.

We call Xw for w e W a finite-dimensional Schubert cell and Xw a finite-
dimensional Schubert variety. Note that X' is not a scheme but an inductive
limit of finite-dimensional projective schemes (an ind-scheme).

For w G WJ, we set Yw= Bwly = ir(Xw). Similarly to Proposition 5.1
we have the following.

Proposition 5.2. Set Y' = {JweWj Yw. Then we have the following.

(i) We have Y' = UwewJYw.

(ii) Forw G WJ, Ywis a locally closedsubscheme ofY isomorphic to Ae^.

(iii) ForwGWJ,wehaveYw= [_] Yy.
yewJ,y^w

(iv) Forw G WJ, we have -k~1(Yw) - [JxeWjX^-

For a finite admissible subset Q, of WJ we set Yq = \Jwen Y^. It is a finite
dimensional projective scheme.

Let HMf(Yq) be the category of B-equivariant Hodge modules on Yq.
For w e WJ the Hodge modules Q^[£(w)] and *Q$w[£(w)] are objects of
HM^(Y^)- Note that Qyw[£(w)] is a perverse sheaf because Ywis affine. Set

(5.2) HM?(y') = UmHMf(F^), K{UMg(Y')) = limtf(HMf(^)),

n n

where Q runs through finite admissible subsets of WJ. By the tensor product
K(HM^(Y')) is endowed with a structure of an i?-module. Then any element
of K(HM%(Y')) is uniquely written as a finite sum in two ways

E *»[<&[*(*>)]] and E rvrtirM*)]] ^th rw, r'w G R.

wewJ we\vJ

Denote by K{UM^{Y')) 3 m h-> m G K(HM${Y')) the involution of an

abelian group induced by the duality functor Dj. Then we have rm = ffn
for any r G R and m G /T(HMf(y1))-

We can similarly define HM^(X'), Qfw \£{w)] and wQgw[£(w)] for w G W,
A"(HMf(X')), and tf"(HM?(X')) 9 m ^m G A"(HMf(A"")) (for J = 0).
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Forw G W (resp. w G WJ) we denote by i\\w 'å pt -» X' (resp. iyiU, :
pt -> Y') denote the morphism with image {wl^} (resp. {wly}). We define
homomorphisms

(5.3) *:K{KM${X')) -+tf, $J :K(HMf(Y'))->#J'9

of i?-modules by

(5.4) *([M])=Yl (E(-1)fc^^'.-(M)])r««

tuew \fcez /
(5.5) 9J{[M\)= E (E(-1)"^^'-^M)1)T-9-

By the definition we have

(5.6) tf([Q^[/( ,)]]) = (-i)MTw foru; G W,

(5.7) *J([^[à¬(«,)]]) = (-lY^T^ for u e WJ,

and hence ^ and \&J are isomorphisms.
Let tt' : X' -> F' denote the projection. Let f2 be a finite admissible

subset ofW andset Q.' = {w à¬ WJ;wWjnO / 0}. Then ft' isafinite
admissible subset of WJ and tt' induces a surjective projective morphism
X'n -> Y^,. Hence we can define a homomorphism vrf : K(HMB(X')) ->
if(#MB(Y')) of ^-modules by

(5.8) A[M]) = J2(-l)k[Hk^.(M)}.

feez

Lemma 5.3. (i) The following diagram is commutative.

K(KM*(X')) -^ H

K{m/L$(Y')) > HJ'i

(ii) if(^) = 7r[(m) /or any m e ir(HMf(X')).

(iii) q(mj= *(m) /or any m G /f(HMj(X')).

(iv) ¥VJ= VJ(m) for any m G K{EM$(Y')).

18



Proof. Let w G WJ and x e W'j. Since Xwx -> F^ is an A^x)-bundle, we
have 7rf(Q^ ) = Q* [-2*(a;)](-*(zj), and hence

AmwM^)}}) = (-qY(xwj^)}}-

Thus (i) follows from (5.6), (5.7) and (2.28).

The statement (ii) follows from the fact that n' is an inductive limit of
projective morphisms and hence 7rf commutes with the duality functor Dj.

The statement (iii) is proved similarly to Kashiwara-Tanisaki [4], and we
omit the details (see also Kazhdan-Lusztig [7]). Then the statement (iv)
follows from (i), (ii), (iii), (2.24) and surjectivity of <pJ'q. å¡

Theorem 5.4. Letw,ye WJ such thatw ^.y. Then we have

for any k e Z. In particular, we have

Proof. Let w £ WJ and set

(-l)«t«)<^([*Qgi[à¬(u,)]]) = C= J2 rvTJ'9-
y£WJ,y^w

By the definition of"Q^ [i(w)} we have Bd^Qg, [£(w)]) = w^ [%)](£(iw)).
Hence we obtain

(5.9) C = q-t{m)C

by Lemma 5.3 (iv). By the definition of\&J we have

(5.10) r^ ^im^CQS.)].
kez

and by the definition of ""Qj^ [^(w)] we have

(5.ll) rw = 1,

(5.12) for y < tu we have Hkfy,ty{*Q$w) = 0 unless

0^*^(£H-*(y)-l).

Moreover, by the argument similar to Kazhdan-Lusztig [7] and Kashiwara-
Tanisaki [4] we have

(5.13) &% {*<&)] e Rk.
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In particular, we have

(5.14) for y < w we have ry G ©[S"^"1Rk.

Thus we obtain C = C^ by (5.9), (5.ll), (5.14) and Proposition 2.3.
Hence ry = Pj«. By (5.10) and (5.13) we have [H2k+H*Y,>y{nQ?J] = 0
and [H^iy.^QgJ] = qkPy>w>kfor any k à¬ Z. The proof is complete. å¡

We note that a result closely related to Theorem 5.4 above is already given
in Deodhar [1].

By (2.40) and Theorem 5.4 we obtain the following.

Corollary 5.5. We have

in K(HM%(Y')). In particular, the coefficient Qy'^ k of the inverse parabolic
Kazhdan-Lusztig polynomial Qfy is non-negative and equal to the multiplicity
of the irreducible Hodge module 7rQy/[^(y)](-^) in the Jordan Holder series

of the Hodge module Qy, [^(iw)].
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