Parabolic Kazhdan-Lusztig polynomials and Schubert varieties

Masaki Kashiwara*and Toshiyuki Tanisaki^

February 16, 2000

Abstract

We shall give a description of the intersection cohomology groups of the Schubert varieties in partial flag manifolds over symmetrizable Kac-Moody Lie algebras in terms of parabolic Kazhdan-Lusztig polynomials introduced by Deodhar.

1 Introduction

For a Coxeter system (W, S) Kazhdan-Lusztig [6], [7] introduced polynomials

$$
P_{y,w}(q) = \sum_{k \in \mathbb{Z}} P_{y,w,k} q^k \in \mathbb{Z}[q], \qquad Q_{y,w}(q) = \sum_{k \in \mathbb{Z}} Q_{y,w,k} q^k \in \mathbb{Z}[q],
$$

called a Kazhdan-Lusztig polynomial and an inverse Kazhdan-Lusztig polynomial respectively. Here, (y, w) is a pair of elements of W such that $y \leq w$ with respect to the Bruhat order. These polynomials play important roles in various aspects of the representation theory of reductive algebraic groups.

In the case W is associated to a symmetrizable Kac-Moody Lie algebra g, the polynomials have the following geometric meanings. Let $X = G/B$ be the corresponding flag variety (see Kashiwara [3]), and set $X^w = B^{-w}B/B$ and $X_w = BwB/B$ for $w \in W$. Here B and B^- are the "Borel subgroups" corresponding to the standard Borel subalgebra b and its opposite \mathfrak{b}^- respectively. Then X^w (resp. X_w) is an $\ell(w)$ -codimensional (resp. $\ell(w)$ dimensional) locally closed subscheme of the infinite-dimensional scheme X .

^{*}Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502, Japan

[^]Department of Mathematics, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan

Here $\ell(w)$ denotes the length of w as an element of the Coxeter group W. Set $X' = \bigcup_{w \in W} X_w$. Then X' coincides with the flag variety considered by Kac-Peterson [2], Tits [10], et al. Moreover we have

$$
X = \bigsqcup_{w \in W} X^w, \qquad X' = \bigsqcup_{w \in W} X_w,
$$

and

$$
\overline{X^w} = \bigsqcup_{y \geq w} X^y, \qquad \overline{X_w} = \bigsqcup_{y \leq w} X_y
$$

for any $w \in W$.

By Kazhdan-Lusztig [7] we have the following result (see also Kashiwara-Tanisaki [4]).

Theorem 1.1. (i) Let $w, y \in W$ satisfying $w \leq y$. Then we have

 $H^{2k+1}({}^\pi{\mathbb{Q}}^H_{X^w})_{yB/B} = 0, \qquad H^{2k}({}^\pi{\mathbb{Q}}^H_{X^w})_{yB/B} = {\mathbb{Q}}^H(-k)^{\oplus Q_{w,y,k}}$

for any $k \in \mathbb{Z}$.

(ii) The multiplicity of the irreducible Hodge module ${}^{\pi} \mathbb{Q}_{X^{\mathbf{y}}}^H[-\ell(y)](-k)$ in the Jordan Hölder series of the Hodge module $\mathbb{Q}^H_{X^w}[-\ell(w)]$ coincides with $P_{w,y,k}$.

Theorem 1.2. (i) Let $w, y \in W$ satisfying $w \ge y$. Then we have

$$
H^{2k+1}({}^\pi{\mathbb{Q}}^H_{X_w})_{yB/B}=0,\qquad H^{2k}({}^\pi{\mathbb{Q}}^H_{X_w})_{yB/B}={\mathbb{Q}}^H(-k)^{\oplus P_{y,w,k}}
$$

for any $k\in\mathbb{Z}$.

(ii) The multiplicity of the irreducible Hodge module ${}^{\pi} \mathbb{Q}_{X_y}^H[\ell(y)](-k)$ in the Jordan Hölder series of the Hodge module $\mathbb{Q}_{X_w}^H[\ell(w)]$ coincides with $Q_{y,w,k}.$

Here $^{\pi}\mathbb{Q}_{X_{w}}^{H}[-\ell(w)]$ and $^{\pi}\mathbb{Q}_{X_{w}}^{H}[\ell(w)]$ denote the Hodge modules corresponding to the perverse sheaves $\sqrt[m]{Q_{X}} = [-\ell(w)]$ and $\sqrt[m]{Q_{X}} = [\ell(w)]$ respectively. In Theorem 1.1 we have used the convention so that $\sqrt[m]{Q_Z^H}[-\text{codim }Z]$ is a Hodge module for a locally closed fmite-codimensional subvariety Z since we deal with sheaves supported on finite-codimensional subvarieties, while in Theorem 1.2 we have used another convention so that $\sqrt[m]{Q_Z^H}$ [dim Z] is a Hodge modules for a locally closed finite-dimensional subvariety Z since we deal with sheaves supported on finite-dimensional subvarieties.

Let J be a subset of S. Set $W_J = \langle J \rangle$ and denote by W^J the set of elements $w \in W$ whose length is minimal in the coset wW_J . In [1] Deodhar introduced two generalizations of the Kazhdan-Lusztig polynomials to this relative situation. For $(y, w) \in W^J \times W^J$ such that $y \leq w$ we denote the parabolic Kazhdan-Lusztig polynomial for $u = -1$ by

$$
P_{y,w}^{J,q}(q) = \sum_{k \in \mathbb{Z}} P_{y,w,k}^{J,q} q^k \in \mathbb{Z}[q],
$$

and that for $u=q$ by

$$
P_{y,w}^{J,-1}(q) = \sum_{k \in \mathbb{Z}} P_{y,w,k}^{J,-1} q^k \in \mathbb{Z}[q]
$$

contrary to the original reference [1]. We can also define inverse parabolic Kazhdan-Lusztig polynomials

$$
Q_{y,w}^{J,q}(q) = \sum_{k \in \mathbb{Z}} Q_{y,w,k}^{J,q} q^k \in \mathbb{Z}[q], \qquad Q_{y,w}^{J,-1}(q) = \sum_{k \in \mathbb{Z}} Q_{y,w,k}^{J,-1} q^k \in \mathbb{Z}[q]
$$

(see § 2 below)

 The aim of this paper is to extend Theorem 1.1 and Theorem 1.2 to this relative situation using the partial flag variety corresponding to J.

Let Y be the partial flag variety corresponding to J. Let 1_Y be the origin of Y and set $Y^w = B^-w1_Y$ and $Y_w = Bw1_Y$ for $w \in W^J$. Then Y^w (resp. Y_w) is an $\ell(w)$ -codimensional (resp. $\ell(w)$ -dimensional) locally closed subscheme of the infinite-dimensional scheme Y. Set $Y' = \bigcup_{w \in W'} Y_w$. Then we have

$$
Y = \bigsqcup_{w \in W^J} Y^w, \qquad Y' = \bigsqcup_{w \in W^J} Y_w,
$$

and

$$
\overline{Y^w} = \bigsqcup_{y \geq w} Y^y, \qquad \overline{Y_w} = \bigsqcup_{y \leq w} Y_y
$$

for any $w \in W^J$.

 We note that the construction of the partial flag variety similar to the ordinary flag variety in Kashiwara [3] has not yet appeared in the literature. In the case where W_J is a finite group (especially when W is an affine Weyl group), we can construct the partial flag variety $Y = G/P$ and the properties of Schubert varieties in Y stated above are established in exactly the same manner as in Kashiwara [3] and Kashiwara-Tanisaki [5]. In the case W_J is an

infinite group we can not define the "parabolic subgroup" P corresponding to J as a group scheme and hence the arguments in Kashiwara [3] are not directly generalized. We leave the necesary modification in the case W_J is an infinite group to the future work.

Our main result is the following.

Theorem 1.3. (i) Let $w, y \in W^J$ satisfying $w \leq y$. Then we have

$$
H^{2k+1}({}^\pi{\mathbb{Q}}^H_{Y^w})_{y1_Y}=0,\qquad H^{2k}({}^\pi{\mathbb{Q}}^H_{Y^w})_{y1_Y}={\mathbb{Q}}^H\,(-k)^{\oplus Q^{J,-1}_{w,y,k}}
$$

for any $k \in \mathbb{Z}$.

(ii) The multiplicity of the irreducible floage module $\mathbb{Z}_{Y}^{y}[-\infty)$ in the Jordan Holder series of the Hodge module $\mathcal{Q}_{Yw}[-\mathcal{E}(w)]$ coincident

Theorem 1.4. (i) Let $w, y \in W^J$ satisfying $w \ge y$. Then we have

$$
H^{2k+1}({}^\pi{\mathbb{Q}}^H_{Y_w})_{y1_Y}=0,\qquad H^{2k}({}^\pi{\mathbb{Q}}^H_{Y_w})_{y1_Y}={\mathbb{Q}}^H(-k)^{\oplus P^{J,q}_{y,w,k}}
$$

for any $k \in \mathbb{Z}$.

(ii) The multiplicity of the irreducible Hodge module $^{\pi} \mathbb{Q}_{Y_{\nu}}^{H}[\ell(y)](-k)$ in the Jordan Hölder series of the Hodge module $\mathbb{Q}_{Y_w}^H[\ell(w)]$ coincides with $Q_{y,w,k}^{J,-1}$.

In Theorem 1.3 we have used the convention so that $\sqrt[m]{Q_Z^H}[-\text{codim }Z]$ is a Hodge module for a locally closed finite-codimensional subvariety Z , and in Theorem 1.4 we have used another convention so that $\sqrt[m]{Q_Z^H}$ [dim Z] is a Hodge modules for a locally closed finite-dimensional subvariety Z.

Wenote that ^a result closely related to Theorem 1.4 was already obtained by Deodhar [1].

The above results imply that the coefficients of the four (oridnary or inverse) parabolic Kazhdan-Lusztig polynomials are all non-negative in the case W is the Weyl group of a symmetrizable Kac-Moody Lie algebra.

We would like to thank B. Leclerc for leading our attention to this problem. Wealso thank H. Tagawa for some helpful comments on the manuscript.

2 Kazhdan-Lusztig polynomials

Let R be a commutative ring containing $\mathbb{Z}[q,q^{-1}]$ equipped with a direct sum decomposition $R = \bigoplus_{k \in \mathbb{Z}} R_k$ into Z-submodules and an involutive ring endomorphism $R \ni r \mapsto \overline{r} \in R$ satisfying the following conditions:

$$
(2.1) \t R_i R_j \subset R_{i+j}, \quad \overline{R_i} = R_{-i}, \quad 1 \in R_0, \quad q \in R_2, \quad \overline{q} = q^{-1}.
$$

Let (W, S) be a Coxeter system. We denote by $\ell : W \to \mathbb{Z}_{\geq 0}$ and \geq the length function and the Bruhat order respectively. The Hecke algebra $H = H(W)$ over R is an R-algebra with free R-basis ${T_w}_{w \in W}$ whose multiplication is determined by the following:

(2.2)
$$
T_{w_1} T_{w_2} = T_{w_1 w_2} \quad \text{if } \ell(w_1 w_2) = \ell(w_1) + \ell(w_2),
$$

(2.3)
$$
(T_s + 1)(T_s - q) = 0
$$
 for $s \in S$.

Note that $T_e = 1$ by (2.2).

We define involutive ring endomorphisms $H \ni h \mapsto \overline{h} \in H$ and $j : H \to H$ by

$$
(2.4) \quad \sum_{w \in W} r_w T_w = \sum_{w \in W} \overline{r}_w T_{w^{-1}}^{-1}, \qquad j(\sum_{w \in W} r_w T_w) = \sum_{w \in W} r_w (-q)^{\ell(w)} T_{w^{-1}}^{-1}.
$$

Note that j is an endomorphism of an R -algebra.

Proposition 2.1 (Kazhdan-Lusztig [6]). For any $w \in W$ there exists a unique $C_w \in H$ satisfying the following conditions:

(2.5)
$$
C_w = \sum_{y \leq w} P_{y,w} T_y \text{ with } P_{w,w} = 1 \text{ and } P_{y,w} \in \bigoplus_{i=0}^{\ell(w)-\ell(y)-1} R_i
$$

for $y < w$,
(2.6)
$$
\overline{C}_w = q^{-\ell(w)} C_w.
$$

Moreover we have $P_{y,w} \in \mathbb{Z}[q]$ for any $y \leq w$.

Note that ${C_w}_{w \in W}$ is a basis of the R-module H. The polynomials $P_{y,w}$ for $y \leq w$ are called Kazhdan-Lusztig polynomials. We write

$$
(2.7) \t\t P_{y,w} = \sum_{k \in \mathbb{Z}} P_{y,w,k} q^k.
$$

Set $H^* = H^*(W) = \text{Hom}_R(H, R)$. We denote by \langle , \rangle the coupling between H^* and H. We define involutions $H^* \ni m \mapsto \overline{m} \in H^*$ and $j : H^* \to$ H^* by

$$
(2.8) \langle \overline{m}, h \rangle = \langle m, \overline{h} \rangle, \quad \langle j(m), h \rangle = \langle m, j(h) \rangle \quad \text{for } m \in H^* \text{ and } h \in H.
$$

Note that j is an endomorphism of an R-module. For $w \in W$ we define elements $S_w, D_w \in H^*$ by

(2.9)
$$
\langle S_w, T_x \rangle = (-1)^{\ell(w)} \delta_{w,x}, \qquad \langle D_w, C_x \rangle = (-1)^{\ell(w)} \delta_{w,x}.
$$

Then any element of H^* is uniquely written as an infinite sum in two ways $\sum_{w\in W}r_wS_w$ and $\sum_{w\in W}r'_wD_w$ with $r_w,r'_w\in R$. Note that we have

(2.10)
$$
S_w = \sum_{y \geq w} (-1)^{\ell(w) - \ell(y)} P_{w,y} D_y
$$

by $C_w = \sum_{y \leq w} P_{y,w} T_y$. By (2.6), we have

$$
\overline{D}_w = q^{\ell(w)} D_w,
$$

and we can write

$$
(2.12) \t\t D_w = \sum_{y \geq w} Q_{w,y} S_y,
$$

where $Q_{w,y}$ are determined by

(2.13)
$$
\sum_{w \le y \le z} (-1)^{\ell(y) - \ell(w)} Q_{w,y} P_{y,z} = \delta_{w,z}.
$$

Note that (2.12) is equivalent to

(2.14)
$$
T_w = \sum_{y \leq w} (-1)^{\ell(w) - \ell(y)} Q_{y,w} C_y.
$$

By (2.13) we see easily that

$$
(2.15) \tQ_{w,y} \in \mathbb{Z}[q]
$$

(2.16)
$$
Q_{w,w} = 1
$$
 and $\deg Q_{w,y} \leq (\ell(y) - \ell(w) - 1)/2$ for $w < y$.

The polynomials $Q_{w,y}$ for $w \leq y$ are called inverse Kazhdan-Lusztig polynomials (see Kazhdan-Lusztig [7]). We write

$$
(2.17) \tQ_{w,y} = \sum_{k \in \mathbb{Z}} Q_{w,y,k} q^k.
$$

The following result is proved similarly to Proposition 2.1 (see Kashiwara-Tanisaki [4]).

Proposition 2.2. Let $w \in W$. Assume that $D \in H^*$ satisfies the following conditions:

(2.18)
$$
D = \sum_{y \geq w} r_y S_y \text{ with } r_w = 1 \text{ and } r_y \in \bigoplus_{i=0}^{\ell(y)-\ell(w)-1} R_i
$$

for $w < y$,

 $(D = q^{\ell(w)})$ Then we have $D = D_w$.

We fix a subset J of S and set

(2.20)
$$
W_J = \langle J \rangle, \qquad W^J = \{ w \in W \, ; \, ws > w \quad \text{for any } s \in J \}.
$$

Then we have

$$
(2.21) \t\t W = \bigsqcup_{w \in W^J} wW_J,
$$

(2.22)
$$
\ell(wx) = \ell(w) + \ell(x) \text{ for any } w \in W^J \text{ and } x \in W_J.
$$

When W_J is a finite group, we denote the longest element of W_J by w_J .

Let $a \in \{q,-1\}$ and define $a^{\dagger} \in \{q,-1\}$ by $aa^{\dagger} = -q$. Define an algebra homomorphism $\chi^a : H(W_J) \to R$ by $\chi^a(T_w) = a^{\iota(w)},$ and denote the corresponding one-dimensional $H(W_J)$ -module by $R^a = R1^a$. We define the induced module $H^{J,a}$ by

$$
(2.23) \t\t\t H^{J,a} = H \otimes_{H(W_J)} R^a,
$$

and define $\varphi^{J,a} : H \to H^{J,a}$ by $\varphi^{J,a}(h) = h \otimes 1^a$

It is easily checked that $H^{J,a} \ni k \mapsto k \in H^{J,a}$ and $j^a : H^{J,a} \to H^{J,a^+}$ are well defined by

(2.24)
$$
\overline{\varphi^{J,a}(h)} = \varphi^{J,a}(\overline{h}), \quad j^a(\varphi^{J,a}(h)) = \varphi^{J,a^{\dagger}}(j(h)) \quad \text{for } h \in H.
$$

Note that j^a is a homomorphism of R-modules and that

(2.25)
$$
\overline{rk} = \overline{r}\overline{k} \quad \text{for } r \in R \text{ and } k \in H^{J,a},
$$

$$
(2.26) \qquad \qquad \overline{k} = k \qquad \text{for } k \in H^{J,a}
$$

$$
(2.27) \t jaT \circ ja = idHJ,a.
$$

For $w \in W'$ set $T_w^{J,a} = \varphi^{J,a}(T_w)$. It is easily seen that $H^{J,a}$ is a free *R*-module with basis $\{T_w^{s,a}\}_{w\in W}$. Note that we have

(2.28)
$$
\varphi^{J,a}(T_{wx}) = a^{\ell(x)}T_w^{J,a} \quad \text{for } w \in W^J \text{ and } x \in W_J.
$$

Proposition 2.3 (Deodhar [1]). For any $w \in W'$ there exists a unique $C_{w}^{\gamma*} \in H^{\gamma,*}$ satisfying the following conditions.

(2.29)
$$
C_w^{J,a} = \sum_{y \leq w} P_{y,w}^{J,a} T_y \text{ with } P_{w,w}^{J,a} = 1 \text{ and } P_{y,w}^{J,a} \in \bigoplus_{i=0}^{\ell(w)-\ell(y)-1} R_i
$$

for $y < w$.
(2.30)
$$
\overline{C_w^{J,a}} = q^{-\ell(w)} C_w^{J,a}.
$$

Moreover we have $P^{ J,a}_{y,w} \in \mathbb{Z}[q]$ for any $y \leq w$.

The polynomials $P^{\sigma,\omega}_{y,w}$ for $y,w \in W^{\sigma}$ with $y \geq w$ are called parabolic Kazhdan-Lusztig polynomials. We write

(2.31)
$$
P_{y,w}^{J,a} = \sum_{k \in \mathbb{Z}} P_{y,w,k}^{J,a} q^k.
$$

Remark 2.4. In the original reference [1] Deodhar uses

$$
(-1)^{\ell(w)}j^{a^{\dagger}}(C_w^{J,a^{\dagger}})=\sum_{y\leqq w}(-q)^{\ell(w)-\ell(y)}\overline{P_{y,w}^{J,a^{\dagger}}}T_y^{J,a}
$$

instead of C_{w} to define the parabolic Kazhdan-Lusztig polynomials. Hence our $P_{y,w}^{J,a}$ is actually the parabolic Kazhdan-Lusztig polynomial $P_{y,w}^{J}$ for $u = a^{\dagger}$ in the terminology of [1].

Proposition 2.5 (Deodhar [1]). Let $w, y \in W^J$ such that $w \geq y$.

(i) We have

$$
P_{y,w}^{J,-1} = \sum_{x \in W_J, yx \leq w} (-1)^{\ell(x)} P_{yx,w}.
$$

(ii) If W_J is a finite group, then we have $P_{y,w}^{J,q} = P_{yw_J,ww_J}$.

Set

(2.32)
$$
H^{J,a,*} = \text{Hom}_R(H^{J,a}, R),
$$

and define ${}^t\varphi^{J,a}:H^{J,a,*}\to H^*$ by

$$
\langle {}^t\varphi^{J,a}(n),h\rangle = \langle n,\varphi^{J,a}(h)\rangle \quad \text{for } n \in H^{J,a,*} \text{ and } h \in H.
$$

Then $\varphi^{\sigma,\alpha}$ is an injective homomorphism of *R*-modules. We define an involution – of $H^{J,a,*}$ similarly to (2.8). We can easily check that

(2.33)
$$
\overline{ {}^t\varphi^{J,a}(n)} = {}^t\varphi^{J,a}(\overline{n}) \quad \text{for any } n \in H^{J,a,*}.
$$

For $w \in W^J$ we define $S_w^{J,a},D_w^{J,a} \in H^{J,a,*}$ by

$$
(2.34) \qquad \langle S_w^{J,a}, T_x^{J,a} \rangle = (-1)^{\ell(w)} \delta_{w,x}, \qquad \langle D_w^{J,a}, C_x^{J,a} \rangle = (-1)^{\ell(w)} \delta_{w,x}
$$

Then any element of $H^{J,a,*}$ is written uniquely as an infinite sum $\sum_{w\in W} r_w S_w^{v,w}$ and \sum $\frac{1}{2}$ wer, r

(2.35)
$$
S_w^{J,a} = \sum_{y \in W^J, y \geq w} (-1)^{\ell(w) - \ell(y)} P_{w,y}^{J,a} D_y^{J,a}
$$

by $C^{J,a}_w = \sum_{y \leq w} P^{J,a}_{y,w} T_y$. We see easily by (2.28) that

(2.36)
$$
{}^{t}\varphi^{J,a}(S_{w}^{J,a}) = \sum_{x \in W_{J}} (-a)^{\ell(x)} S_{wx} \quad \text{for } w \in W^{J}.
$$

By the definition we have

(2.37)
$$
\overline{D_w^{J,a}} = q^{\ell(w)} D_w^{J,a},
$$

and we can write

(2.38)
$$
D_w^{J,a} = \sum_{y \in W_J, y \geq w} Q_{w,y}^{J,a} S_y^{J,a}
$$

where $Q^{J,a}_{w,y} \in R$ are determined by

(2.39)
$$
\sum_{y \in W^J, w \le y \le z} (-1)^{\ell(y) - \ell(w)} Q_{w,y}^{J,a} P_{y,z}^{J,a} = \delta_{w,z}
$$

for $w, z \in W^J$ satisfying $w \le z$.

Note that (2.38) is equivalent to

(2.40)
$$
T_w^{J,a} = \sum_{y \in W^J, y \leq w} (-1)^{\ell(w) - \ell(y)} Q_{y,w}^{J,a} C_y^{J,a}.
$$

By (2.39) we have for $w, y \in W_J$

$$
(2.41) \tQ_{w,y}^{J,a} \in \mathbb{Z}[q],
$$

(2.42)
$$
Q_{w,w}^{J,a} = 1
$$
 and $\deg Q_{w,y}^{J,a} \leq (\ell(y) - \ell(w) - 1)/2$ for $w < y$.

We call the polynomials $Q_{w,y}^{J,a}$ for $w \leq y$ inverse parabolic Kazhdan-Lusztig polynomials. We write

(2.43)
$$
Q_{w,y}^{J,a} = \sum_{k \in \mathbb{Z}} Q_{w,y,k}^{J,a} q^k.
$$

Similarly to Propositions 2.1, 2.2, 2.3, we can prove the following.

Proposition 2.6. Let $w \in W^J$. Assume that $D \in H^{J,a,*}$ satisfies the following conditions:

(2.44)
$$
D = \sum_{y \in W^J, y \geq w} r_y S_y^{J,a} \text{ with } r_w = 1 \text{ and } r_y \in \bigoplus_{i=0}^{\ell(y)-\ell(w)-1} R_i
$$

for $y \in W^J$ satisfying $w < y$.

 (2.45) $\overline{D}=q^{\ell(w)}D$.

Then we have $D = D_w^{J,a}$.

Proposition 2.7 (Soergel [9]). Let $w, y \in W^J$ such that $w \le y$.

- (i) We have $Q_{w,y}^{J,-1} = Q_{w,y}$.
- (ii) If W_J is a finite group, then we have

$$
Q_{w,y}^{J,q} = \sum_{x \in W_J, w \in J \leq yx} (-1)^{\ell(x) + \ell(w_J)} Q_{ww_J, yx}.
$$

3 Hodge modules

In this section we briefly recall the notation from the theory of Hodge modules due to M. Saito [8].

We denote by HS the category of mixed Hodge structures and by HS_k the category of pure Hodge structures with weight $k \in \mathbb{Z}$. Let R and R_k be the Grothendieck groups of HS and HS_k respectively. Then we have $R = \bigoplus_{k \in \mathbb{Z}} R_k$ and R is endowed with a structure of a commutative ring via the tensor product of mixed Hodge structures. The identity element of R is given by $[{\mathbb Q}^H]$, where ${\mathbb Q}^H$ is the trivial Hodge structure. We denote by $R \ni r \mapsto \overline{r} \in R$ the involutive ring endomorphism induced by the duality functor $\mathbb{D}: HS \to HS^{op}$. Here HS^{op} denotes the opposite category of HS. Let $\mathbb{Q}^{H}(1)$ and $\mathbb{Q}^{H}(-1)$ be the Hodge structure of Tate and its dual respectively, and set $\mathbb{Q}^H(\pm n) = \mathbb{Q}^H(\pm 1)^{\otimes n}$ for $n \in \mathbb{Z}_{\geq 0}$. We can regard $\mathbb{Z}[q,q^{-1}]$ as a subring of R by $q^n = [\mathbb{Q}^H(-n)]$. Then the condition (2.1) is satisfied for this R.

Let Z be a finite-dimensional algebraic variety over C . There are two conventions for perverse sheaves on Z according to whether $\mathbb{Q}_U[\dim U]$ is a perverse sheaf or $\mathbb{Q}_U[-\text{codim }U]$ is a perverse sheaf for a closed smooth subvariety U of Z. Correspondingly, we have two conventions for Hodge modules. When we use the convention so that $\mathbb{Q}_U[\dim U]$ is a perverse sheaf, we denote the category of Hodge modules on Z by $HM_d(Z)$, and when we use the other one we denote it by $HM_c(Z)$. Let $D^b(HM_d(Z))$ and $D^{b}(\text{HM}_{c}(Z))$ denote the bounded derived categories of $\text{HM}_{d}(Z)$ and $\text{HM}_{c}(Z)$ respectively. Note that d is for dimension and c for codimension. Then the functor $HM_d(Z) \to HM_c(Z)$ given by $M \mapsto M[-\dim Z]$ gives the category equivalences

$$
HM_{d}(Z) \cong HM_{c}(Z), \qquad D^{b}(HM_{d}(Z)) \cong D^{b}(HM_{c}(Z)).
$$

We shall identify $D^b(\text{HM}_d(Z))$ with $D^b(\text{HM}_c(Z))$ via this equivalence, and then we have

$$
(3.1) \quad \text{HM}_c(Z) = \text{HM}_d(Z))[-\dim Z].
$$

Although there are no essential differences between $HM_d(Z)$ and $HM_c(Z)$, we have to be careful in extending the theory of Hodge modules to the infinite-dimensional situation. In dealing with sheaves supported on finitedimensional subvarieties embedded into an infinite-dimensional manifold we have to use HM_d , while we need to use HM_c when we treat sheaves supported on finite-codimensional subvariety of an infinite-dimensional manifold. In fact what we really need in the sequel is the results for infinite-dimensional situation; however, we shall only give below a brief explanation for the finitedimensional case. The extension of HM_d to the infinite-dimensional situation dealing with sheaves supported on finite-dimensional subvarieties is easy, and as for the extension of HM_c to the infinite-dimensional situation dealing with sheaves supported on finite-codimensional subvarieties we refer the readers to Kashiwara-Tanisaki [4].

Let Z be a finite-dimensional algebraic variety over $\mathbb C$. When Z is smooth, one has a Hodge module \mathbb{Q}_Z^H [dim Z] \in Ob(HM_d(Z)) corresponding to the perverse sheaf $\mathbb{Q}_Z[\dim Z]$. More generally, for a locally closed smooth subvariety U of Z one has a Hodge module ${}^{\pi} \mathbb{Q}_{U}^{H}[\dim U] \in Ob(HM_{d}(Z))$ corresponding to the perverse sheaf $^{\pi}Q_U[\dim U]$. For $M \in Ob(D^b(HM_d(Z)))$ and $n \in \mathbb{Z}$ we set $M(n) = M \otimes \mathbb{Q}^H(n)$. One has the duality functor

$$
(3.2) \quad \mathbb{D}_{d} : HM_{d}(Z) \to HM_{d}(Z)^{op}, \qquad \mathbb{D}_{d} : D^{b}(HM_{d}(Z)) \to D^{b}(HM_{d}(Z))^{op}
$$

satisfying $\mathbb{D}_d \circ \mathbb{D}_d = Id$, and we have

(3.3)
$$
\mathbb{D}_{d}(\ ^{\pi} \mathbb{Q}_{U}^{H}[\dim U]) = \ ^{\pi} \mathbb{Q}_{U}^{H}\dim U
$$

for a locally closed smooth subvariety U of Z.

Let $f : Z \rightarrow Z'$ be a morphism of finite-dimensional algebraic varieties. Then one has the functors:

$$
f^*: D^b(\text{HM}_d(Z')) \to D^b(\text{HM}_d(Z)), \qquad f^!: D^b(\text{HM}_d(Z')) \to D^b(\text{HM}_d(Z)),
$$

$$
f_*: D^b(\text{HM}_d(Z)) \to D^b(\text{HM}_d(Z')), \qquad f_!: D^b(\text{HM}_d(Z)) \to D^b(\text{HM}_d(Z')),
$$

satisfying

$$
f^* \circ \mathbb{D}_d = \mathbb{D}_d \circ f^!, \qquad f_* \circ \mathbb{D}_d = \mathbb{D}_d \circ f_!.
$$

We define the functors $f^*, f^!, f_*, f_!$ for $D^b(HM_c)$ by identifying $D^b(HM_c)$ with $D^b(HM_d)$. For HM_c we use the modified duality functor

(3.4) $\mathbb{D}_{c} : HM_{c}(Z) \to HM_{c}(Z)^{op}, \qquad \mathbb{D}_{c} : D^{b}(HM_{d}(Z)) \to D^{b}(HM_{d}(Z))^{op}$

given by

$$
\mathbb{D}_{\mathrm{c}}(M)=(\mathbb{D}_{\mathrm{d}}(M))[-2\dim Z](-\dim Z).
$$

It also satisfies $\mathbb{D}_{c} \circ \mathbb{D}_{c} = \text{Id}$. For a locally closed smooth subvariety U of Z we have ${}^{\pi} \mathbb{Q}_{U}^{H}[-\text{codim }U] \in \text{Ob}(\text{HM}_{c}(Z))$ and

(3.5)
$$
\mathbb{D}_{\mathbf{c}}(\mathbf{C}_{U}^{H}[-\mathrm{codim}\, U]) = \mathbf{C}_{U}^{H}-\mathrm{codim}\, U.
$$

When $f : Z \to Z'$ is a proper morphism, we have $f_* = f_1$ and hence $f_! \circ \mathbb{D}_d = \mathbb{D}_d \circ f_!$. When f is a smooth morphism, we have $f' = f^*[2(\dim Z \dim Z'$](dim Z – dim Z') and hence $f^* \circ \mathbb{D}_c = \mathbb{D}_c \circ f^*$.

4 Finite-codimensional Schubert varieties

Let g be a symmetrizable Kac-Moody Lie algebra over C . We denote by W its Weyl group and by S the set of simple roots. Then (W, S) is a Coxeter system. We shall consider the Hecke algebra $H = H(W)$ over the Grothendieck ring R of the category HS (see § 3), and use the notation in § 2

Let $X = G/B$ be the flag manifold for g constructed in Kashiwara [3]. Here B is the "Borel subgroup" corresponding to the standard Borel subalgebra of g. Then X is a scheme over $\mathbb C$ covered by open subsets isomorphic to

$$
\mathbb{A}^{\infty} = \operatorname{Spec} \mathbb{C}[x_k; k \in \mathbb{N}]
$$

(unless dim $g < \infty$).

Let $1_X = eB \in X$ denote the origin of X. For $w \in W$ we have a point $w1_X = wB/B \in X$. Let B^- be the "Borel subgroup" opposite to B, and set $X^w = B^{-}w1_X = B^{-}wB/B$ for $w \in W$. Then we have the following result.

Proposition 4.1 (Kashiwara [3]). (i) We have $X = \bigcup_{w \in W} X^w$.

- (ii) For $w \in W$, X^w is a locally closed subscheme of X isomorphic to A^{∞} (unless dim $g < \infty$) with codimension $\ell(w)$.
- (iii) For $w \in W$, we have $\overline{X^w} = \bigsqcup_{y \in W, y \geq w} X^y$.

We call X^w for $w \in W$ a finite-codimensional Schubert cell, and $\overline{X^w}$ a finite-codimensional Schubert variety.

Let J be a subset of S . We denote by Y the partial flag manifold corresponding to J. Let $\pi : X \to Y$ be the canonical projection and set $1_Y = \pi(1_X)$. We have $\pi(w1_X) = 1_Y$ for any $w \in W_J$. For $w \in W^J$ we set $Y^w = B^-w1_Y = \pi(X^w)$. When W_J is a finite group, we have $Y = G/P_J$ and $Y^w = B^{-w} \frac{p_j}{p_j}$, where P_j is the "parabolic subgroup" corresponding to J (we cannot define P_J as a group scheme unless W_J is a finite group).

Similarly to Proposition 4.1 we have the following.

Proposition 4.2. (i) We have $Y=\left[\,\,\right]_{w\in WJ}Y^w$.

- (ii) For $w \in W^J$, Y^w is a locally closed subscheme of Y isomorphic to A^{∞} (unless dim $Y < \infty$) with codimension $\ell(w)$.
- (iii) For $w \in W'$, we have $Y^w = \bigsqcup_{y \in Y} Y^y$ $y \! \sim \! \! \cdot \! \! \cdot \! \! \cdot \!$
- (iv) For $w \in W^J$, we have $\pi^{-1}(Y^w) = \bigsqcup_{x \in W_J} X^{wx}.$

We call a subset Ω of W^J (resp. W) admissible if it satisfies

(4.1)
$$
w, y \in W^{J}(\text{resp. } W), w \leq y, y \in \Omega \Rightarrow w \in \Omega.
$$

For a finite admissible subset Ω of W^J we set $Y^{\Omega} = \bigcup_{w \in \Omega} Y^w$. It is a quasicompact open subset of Y. Let $HM_c^{B^-}(Y^{\Omega})$ be the category of B^- -equivariant Hodge modules on Y^{Ω} (see Kashiwara-Tanisaki [4] for the equivariant Hodge modules on infinite-dimensional manifolds), and denote its Grothendieck group by $K(\text{HM}^{B^-}_c(Y^{\Omega}))$. For $w \in W^J$ the Hodge modules $\mathbb{Q}^H_{Y^w}[-\ell(w)]$ and $^{\pi}\mathbb{Q}_{Y}^{H}[-\ell(w)]$ are objects of $K(\text{HM}_{c}^{B}(Y^{\Omega}))$. Note that $\mathbb{Q}_{Y}=[-\ell(w)]$ is a perverse sheaf on Y because Y^w is affine. Set

(4.2)
$$
\operatorname{HM}^{B^-}_c(Y) = \varprojlim_{\Omega} \operatorname{HM}^{B^-}_c(Y^{\Omega}), K(\operatorname{HM}^{B^-}_c(Y)) = \varprojlim_{\Omega} K(\operatorname{HM}^{B^-}_c(Y^{\Omega})),
$$

where Ω runs through finite admissible subsets of W^J . By the tensor product, $K(\widehat{\text{HM}_c^B}^{-}(Y))$ is endowed with a structure of an R -module. Then any element of $K(\widetilde{HM}_{c}^{B}^{-1})$ is uniquely written as an infinite sum

$$
\sum_{w \in W^J} r_w [\mathbb{Q}_{Y^w}^H[-\ell(w)]]
$$
 with $r_w \in R$.

Denote by $K(\mathop{{\rm HM}^B_{\rm c}}\nolimits{}(Y))\ni m\mapsto\overline{m}\in K(\mathop{{\rm HM}^B_{\rm c}}\nolimits{}(Y))$ the involution induc by the duality functor D_c . Then we have $\overline{rm} = \overline{r}\overline{m}$ for any $r \in R$ and $m \in K(\mathop{{\rm HM}^{B^-}_{\rm c}}\nolimits(Y)).$

We can similarly define $HM_c^{B^-}(X)$, $\mathbb{Q}^H_{X^w}[-\ell(w)]$ and ${}^{\pi}\mathbb{Q}^H_{X^w}[-\ell(w)]$ for $w \in W$, $K(\text{HM}_c^{B^-}(X))$, and $K(\text{HM}_c^{B^-}(X)) \ni m \mapsto \overline{m} \in K(\text{HM}_c^{B^-}(X))$ (for $J=\emptyset$).

Let pt denote the algebraic variety consisting of a single point. For $w \in W$ (resp. $w \in W^J$) we denote by $i_{X,w}:$ pt $\rightarrow X$ (resp. $i_{Y,w}:$ pt $\rightarrow Y$) denote the morphism with image $\{w1_X\}$ (resp. $\{w1_Y\}$). We define homomorphisms

(4.3)
$$
\Phi: K(HM_c^{B^-}(X)) \to H^*, \qquad \Phi^J: K(HM_c^{B^-}(Y)) \to H^{J,-1,*}
$$

of.R-modules by

(4.4)
$$
\Phi([M]) = \sum_{w \in W} \left(\sum_{k \in \mathbb{Z}} (-1)^k [H^k i_{X,w}^*(M)] \right) S_w,
$$

(4.5)
$$
\Phi^{J}([M]) = \sum_{w \in W^{J}} \left(\sum_{k \in \mathbb{Z}} (-1)^{k} [H^{k} i_{Y,w}^{*}(M)] \right) S_{w}^{J,-1}.
$$

By the definition we have

(4.6)
$$
\Phi([\mathbb{Q}_{X^{w}}^{H}[-\ell(w)]]) = (-1)^{\ell(w)}S_{w} \text{ for } w \in W,
$$

(4.7)
$$
\Phi^{J}([\mathbb{Q}_{Y^{w}}^{H}[-\ell(w)]]) = (-1)^{\ell(w)} S_{w}^{J,-1} \text{ for } w \in W^{J},
$$

and hence Φ and Φ^J are isomorphisms of R-modules.

The projection $\pi : X \to Y$ induces a homomorphism

$$
\pi^*: K(\operatorname{HM}^{B^-}_{\operatorname{c}}(Y)) \to K(\operatorname{HM}^{B^-}_{\operatorname{c}}(X))
$$

of R -modules.

Lemma 4.3. (i) The following diagram is commutative.

$$
K(\text{HM}^{B^-}_c(Y)) \xrightarrow{\Phi^J} H^{J,-1,*}
$$

\n
$$
\pi^* \downarrow \qquad \qquad \downarrow \iota_{\varphi^{J,-1}}
$$

\n
$$
K(\text{HM}^{B^-}_c(X)) \xrightarrow{\Phi} H^*
$$

- (ii) $\overline{\pi^*(m)} = \pi^*(\overline{m})$ for any $m \in K(\mathcal{HM}_c^{B^-}(Y)).$
- (iii) $\overline{\Phi(m)} = \Phi(\overline{m})$ for any $m \in K(\mathbf{HM}_{\mathfrak{c}}^{B^-}(X)).$
- (iv) $\overline{\Phi^{J}(m)} = \Phi^{J}(\overline{m})$ for any $m \in K(\mathbf{HM}_{c}^{B^{-}}(Y)).$

Proof. For $w \in W^J$ we have $\pi^*(\mathbb{Q}^H_{Y^w}) = \mathbb{Q}^H_{\pi^{-1}Y_w}$, and hence Proposition 4.2 (iv) implies

$$
\pi^*([\mathbb{Q}_{Y^w}^H]) = \sum_{x \in W_J} [\mathbb{Q}_{X^{wx}}^H].
$$

Thus (i) follows from (4.6), (4.7) and (2.36)

Locally on X the morphism π is a projection of the form $Z \times A^{\infty} \to Z$, and thus $\pi^* \circ \mathbb{D}_c = \mathbb{D}_c \circ \pi^*$. Hence the statement (ii) holds.

The statement (iii) is already known (see Kashiwara-Tanisaki [4]).

Then the statement (iv) follows from (i), (ii), (iii), (2.33) and the injectivity of ${}^t\varphi^{J,-1}$.

Theorem 4.4. Let $w, y \in W^J$ satisfying $w \leq y$. Then we have

 $H^{2k+1}i_{Y,y}^*(\ulcorner \mathbb{Q}^H_{Y^w}) = 0, \qquad H^{2k}i_{Y,y}^*(\ulcorner \mathbb{Q}^H_{Y^w}) = \mathbb{Q}^H(-k)^{\oplus Q^{J,-1}_{w,y,k}}$

for any $k \in \mathbb{Z}$. In particular, we have

$$
\Phi^{J}([\pi \mathbb{Q}_{Y^{w}}^{H}[-\ell(w)]]) = (-1)^{\ell(w)} D_{w}^{J,-1}.
$$

Proof. Let $w \in W^J$ and set

$$
(-1)^{\ell(w)} \Phi^{J}([\pi \mathbb{Q}_{Y^{w}}^{H}[-\ell(w)]]) = D = \sum_{y \in W^{J}, y \geq w} r_{y} S_{y}^{J,-1}.
$$

By the definition of ${}^{\pi} \mathbb{Q}_{Y}^{H} \left[-\ell(w)\right]$ we have

$$
\mathbb{D}_{\mathrm{c}}(\sqrt[\pi]{\mathbb{Q}}_{Y^w}^H[-\ell(w)]) = \sqrt[\pi]{\mathbb{Q}}_{Y^w}^H-\ell(w),
$$

and hence we obtain

$$
\overline{D} = q^{\ell(w)}D
$$

by Lemma 4.3 (iv). By the definition of Φ^J we have

(4.9)
$$
r_y = \sum_{k \in \mathbb{Z}} (-1)^k [H^k i_{Y,y}^* ({}^{\pi} \mathbb{Q}_{Yw}^H)],
$$

and by the definition of $\sqrt[m]{\mathbb{Q}}_{Y^w}^H[-\ell(w)]$ we have

$$
(4.10) \t\t\t r_w=1,
$$

(4.11) for
$$
y > w
$$
 we have $H^k i_{Y,y}^*(\pi \mathbb{Q}_Y^H w) = 0$ unless
\n
$$
0 \le k \le (\ell(y) - \ell(w) - 1).
$$

By the argument similar to Kashiwara-Tanisaki [4] (see also Kazhdan-Lusztig [7]) we have

$$
(4.12)\qquad \qquad [H^k i_{Y,y}^*({}^\pi{\mathbb{Q}}^H_Y)] \in R_k.
$$

In particular, we have

(4.13) for
$$
y > w
$$
 we have $r_y \in \bigoplus_{k=0}^{\ell(y)-\ell(w)-1} R_k$.

Thus we obtain $D = D^{\nu,-1}_{w}$ by (4.8), (4.10), (4.13) Hence $r_y =$ $[H^{2k}i_{Y,y}^*({}^\pi{\mathbb{Q}}^H_{Y,y})] = q^kQ_{w,y,k}$ for any $k \in \mathbb{Z}$. The proof is

By (2.35) and Theorem 4.4 we obtain the following.

Corollary 4.5. We have

$$
[\mathbb{Q}_{Y^\mathit{w}}^H[-\ell(w)]]=\sum_{y\geqq w}P_{w,y}^{J,-1}[{}^\pi\mathbb{Q}_{Y^\mathit{y}}^H[-\ell(y)]]
$$

in the Grothendieck group $K(\mathrm{HM}_c^{\mathcal{B}}(Y))$. In particular, the coefficient P of the parabolic Kazhdan-Lusztig polynomial $P^{J,-1}_{w,n}$ is non-negative and equal equal to $\mathcal{L}_{w,n}$ to the multiplicity of the irreducible Hodge module \mathbb{Q}_{Yv}^n Jordan Hölder series of the Hodge module $\mathbb{Q}_{Y}^H[-\ell(w)]$.

5 Finite-dimensional Schubert varieties

Set

(5.1)
$$
X_w = Bw1_X = BwB/B \text{ for } w \in W.
$$

Then we have the following result.

Proposition 5.1 (Kashiwara-Tanisaki [5]). Set $X' = \bigcup_{w \in W} X_w$. Then X' is the flag manifold considered by Kac-Peterson [2], Tits [10], et al. In particular, we have the following.

(i) We have $X' = \bigsqcup_{w \in W} X_w$.

(ii) For
$$
w \in W X_w
$$
 is a locally closed subscheme of X isomorphic to $\mathbb{A}^{\ell(w)}$.

(iii) For $w \in W$ we have $\overline{X}_w = \bigsqcup_{y \in W, y \leq w} X_y$.

We call X_w for $w \in W$ a finite-dimensional Schubert cell and \overline{X}_w a finitedimensional Schubert variety. Note that X' is not a scheme but an inductive limit of finite-dimensional projective schemes (an ind-scheme).

For $w \in W^J$, we set $Y_w = Bw1_Y = \pi(X_w)$. Similarly to Proposition 5.1 we have the following.

Proposition 5.2. Set $Y' = \bigcup_{w \in W'} Y_w$. Then we have the following.

- (i) We have $Y' = \bigsqcup_{w \in W} Y_w$.
- (ii) For $w \in W^J$, Y_w is a locally closed subscheme of Y isomorphic to $\mathbb{A}^{\ell(w)}$.
- (iii) For $w \in W^J$, we have $\overline{Y}_w = \bigsqcup_{w \in W^J, v \leq w} Y_y$. \sim yew \sim
- (iv) For $w \in W^J$, we have $\pi^{-1}(Y_w) = \bigsqcup_{x \in W_J} X_{wx}.$

For a finite admissible subset Ω of W^J we set $Y'_\Omega = \bigcup_{w \in \Omega} Y'_w$. It is a finite dimensional projective scheme.

Let HM_d^B(Y₀)</sub> be the category of B-equivariant Hodge modules on Y₀. For $w \in W^{J}$ the Hodge modules $\mathbb{Q}_{Y_w}^H[\ell(w)]$ and ${}^{\pi}\mathbb{Q}_{Y_w}^H[\ell(w)]$ are objects of $\text{HM}_{d}^{B}(Y_{\Omega}')$. Note that $\mathbb{Q}_{Y_{w}}[\ell(w)]$ is a perverse sheaf because Y_{w} is affine. Set

(5.2)
$$
\text{HM}_{\text{d}}^B(Y') = \varinjlim_{\Omega} \text{HM}_{\text{d}}^B(Y'_{\Omega}), K(\text{HM}_{\text{d}}^B(Y')) = \varinjlim_{\Omega} K(\text{HM}_{\text{d}}^B(Y'_{\Omega})),
$$

where Ω runs through finite admissible subsets of W^J . By the tensor product $K(\text{HM}^B_{\text{d}}(Y'))$ is endowed with a structure of an R-module. Then any element of $K(\text{HM}_{d}^{B}(Y'))$ is uniquely written as a finite sum in two ways

$$
\sum_{w \in W^J} r_w[\mathbb{Q}_{Y_w}^H[\ell(w)]] \text{ and } \sum_{w \in W^J} r_w[{}^{\pi} \mathbb{Q}_{Y_w}^H[\ell(w)]] \text{ with } r_w, r'_w \in R.
$$

Denote by $K(\text{HM}^{B}_{d}(Y')) \ni m \mapsto \overline{m} \in K(\text{HM}^{B}_{d}(Y'))$ the involution of an abelian group induced by the duality functor \mathbb{D}_d . Then we have $\overline{rm} = \overline{r}\,\overline{m}$ for any $r \in R$ and $m \in K(\mathop{{\rm HM}^B_{\rm d}}\nolimits(Y'))$

We can similarly define $\mathrm{HM}^B_{\mathrm{d}}(X'),$ $\mathbb{Q}_{X_w}^{\mu}[\ell(w)]$ and ${}^{\pi}\mathbb{Q}_{X_w}^H[\ell(w)]$ for $w\in W$ $K(\text{HM}_d^B(X'))$, and $K(\text{HM}_d^B(X')) \ni m \mapsto \overline{m} \in K(\text{HM}_d^B(X'))$ (for $J = \emptyset$).

For $w \in W$ (resp. $w \in W^J$) we denote by $i_{X',w} : \text{pt} \to X'$ (resp. $i_{Y',w} :$ pt \rightarrow Y') denote the morphism with image $\{w1_X\}$ (resp. $\{w1_Y\}$). We define homomorphisms

(5.3) $\Psi:K(\text{HM}_{d}^{B}(X')) \to H, \qquad \Psi^{J}:K(\text{HM}_{d}^{B}(Y')) \to H^{J,q}$

of R -modules by

(5.4)
$$
\Psi([M]) = \sum_{w \in W} \left(\sum_{k \in \mathbb{Z}} (-1)^k [H^k i_{X',w}^*(M)] \right) T_w,
$$

(5.5)
$$
\Psi^{J}([M]) = \sum_{w \in W^{J}} \left(\sum_{k \in \mathbb{Z}} (-1)^{k} [H^{k} i_{Y',w}^{*}(M)] \right) T_{w}^{J,q}.
$$

By the definition we have

(5.6)
$$
\Psi([\mathbb{Q}_{X_w}^H[\ell(w)]]) = (-1)^{\ell(w)} T_w \text{ for } w \in W,
$$

(5.7)
$$
\Psi^{J}([\mathbb{Q}_{Y_w}^H[\ell(w)]]) = (-1)^{\ell(w)} T_w^{J,q} \text{ for } w \in W^J,
$$

and hence Ψ and Ψ^J are isomorphisms.

Let $\pi' : X' \to Y'$ denote the projection. Let Ω be a finite admissible subset of W and set $\Omega' = \{w \in W^J; wW_J \cap \Omega \neq \emptyset\}$. Then Ω' is a finite admissible subset of W^J and π' induces a surjective projective morphism $X'_{\Omega} \to Y'_{\Omega'}$. Hence we can define a homomorphism $\pi_! : K(HM^B(X')) \to$ $K(HM^B(Y'))$ of *R*-modules by

(5.8)
$$
\pi'_{!}([M]) = \sum_{k \in \mathbb{Z}} (-1)^{k} [H^{k} \pi'_{!}(M)].
$$

Lemma 5.3. (i) The following diagram is commutative.

$$
K(\text{HM}_{d}^{B}(X')) \xrightarrow{\Psi} H
$$

\n
$$
\pi_{1}' \downarrow \qquad \qquad \downarrow \varphi^{J,q}
$$

\n
$$
K(\text{HM}_{d}^{B}(Y')) \xrightarrow{\Psi^{J}} H^{J,q}
$$

(ii) $\overline{\pi'(m)} = \pi'(\overline{m})$ for any $m \in K(\mathop{\text{HM}}\nolimits^B_{\sigma}(X')).$ (iii) $\overline{\Psi(m)} = \Psi(\overline{m})$ for any $m \in K(\text{HM}_{d}^{B}(X')).$ (iv) $\overline{\Psi^{J}(m)} = \Psi^{J}(\overline{m})$ for any $m \in K(HM_{d}^{B}(Y')).$ *Proof.* Let $w \in W^J$ and $x \in W_J$. Since $X_{wx} \to Y_w$ is an $A^{\ell(x)}$ -bundle, we have $\pi'_{!}(\mathbb{Q}^n_{X_{\text{max}}}) = \mathbb{Q}^n_{Y_{\text{max}}}[-2\ell(x)](-\ell(x)),$ and hence

$$
\pi'_{!}([\mathbb{Q}_{X_{wx}}^H[\ell(wx)]]) = (-q)^{\ell(x)}[\mathbb{Q}_{Y_w}^H[\ell(w)]].
$$

Thus (i) follows from (5.6), (5.7) and (2.28).

The statement (ii) follows from the fact that π' is an inductive limit of projective morphisms and hence π'_1 commutes with the duality functor \mathbb{D}_d .

The statement (iii) is proved similarly to Kashiwara-Tanisaki [4], and we omit the details (see also Kazhdan-Lusztig [7]). Then the statement (iv) follows from (i), (ii), (iii), (2.24) and surjectivity of $\varphi^{J,q}$.

Theorem 5.4. Let $w, y \in W^J$ such that $w \ge y$. Then we have

$$
H^{2k+1}i_{Y',y}^*({}^\pi{\mathbb{Q}}^H_{Y_w})=0, \qquad H^{2k}i_{Y',y}^*({}^\pi{\mathbb{Q}}^H_{Y_w})={\mathbb{Q}}^H(-k)^{\oplus P_{y,w,k}^{J,q}}
$$

for any $k \in \mathbb{Z}$. In particular, we have

$$
\Psi^J([\pi \mathbb{Q}_{Y_w}^H[\ell(w)]]) = (-1)^{\ell(w)} C_w^{J,q}.
$$

Proof. Let $w \in W^J$ and set

$$
(-1)^{\ell(w)} \Psi^{J}([\pi \mathbb{Q}_{Y_w}^H[\ell(w)]]) = C = \sum_{y \in W^{J}, y \leq w} r_y T^{J,q}.
$$

By the definition of ${}^{\pi} \mathbb{Q}^H_{Y_w}[\ell(w)]$ we have $\mathbb{D}_d({}^{\pi} \mathbb{Q}^H_{Y_w}[\ell(w)]) = {}^{\pi} \mathbb{Q}^H_{Y_w}\ell(w).$ Hence we obtain

$$
\overline{C} = q^{-\ell(w)}C
$$

by Lemma 5.3 (iv). By the definition of Ψ^J we have

(5.10)
$$
r_y = \sum_{k \in \mathbb{Z}} (-1)^k [H^k i_{Y',y}^* ({}^{\pi} \mathbb{Q}_{Y_w}^H)],
$$

and by the definition of ${}^{\pi} \mathbb{Q}_{Y_w}^H [\ell(w)]$ we have

$$
(5.11) \t\t\t r_w=1,
$$

(5.12) for
$$
y < w
$$
 we have $H^k i_{Y',y}^* (\pi \mathbb{Q}_{Y_w}^H) = 0$ unless $0 \leq k \leq (\ell(w) - \ell(y) - 1).$

Moreover, by the argument similar to Kazhdan-Lusztig [7] and Kashiwara-Tanisaki [4] we have

(5.13)
$$
[H^k i_{Y',y}^*({}^\pi{\mathbb{Q}}^H_{Y_w})] \in R_k.
$$

In particular, we have

(5.14) for
$$
y < w
$$
 we have $r_y \in \bigoplus_{k=0}^{\ell(w)-\ell(y)-1} R_k$.

Thus we obtain $C = C^{J,q}_w$ by (5.9), (5.11), (5.14) and Proposition 2.3. Hence $r_y = P_{y,w}^{J,q}$. By (5.10) and (5.13) we have $[H^{2k+1}i_{Y',y}^*(\mathbb{Q}_{Y_w}^H)] = 0$ and $[H^{2k}i_{Y',y}^*(^{\pi}\mathbb{Q}_{Y_w}^H)] = q^{\kappa}P_{y,w,k}$ for any $k \in \mathbb{Z}$. The proof is complete. \Box

We note that a result closely related to Theorem 5.4 above is already given in Deodhar [1].

By (2.40) and Theorem 5.4 we obtain the following.

Corollary 5.5. We have

$$
[\mathbb{Q}^H_{Y'_{w}}[\ell(w)]] = \sum_{y \leqq w} Q^{J,q}_{y,w} [{}^\pi \mathbb{Q}^H_{Y'_{y}}[\ell(y)]]
$$

in K(H $M_d^-(Y')$). In particular, the coefficient $Q_{u,w,k}^{-,u}$ of the inverse parabo Kazhaan-Lusztig polynomial $Q_{y,\bm{w}}^{*,\bm{y}}$ is non-negative and equal to the multipl of the irreducible Hodge module ${}^{\pi} \mathbb{Q}_{Y,V}^H[\ell(y)](-k)$ in the Jordan Hölder series of the Hodge module $\mathbb{Q}_{Y,w}^H[\ell(w)]$.

References

- [1] V. Deodhar, On some geometric aspects of Bruhat orderings II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra, 111 (1979), 483-506.
- [2] V. Kac, D. Peterson, Infinite flag varieties and conjugacy theorems, Proc. Nat. Acad. Sci. U.S.A., 80 (1983), 1778-1782.
- [3] M. Kashiwara, "The flag manifold of Kac-Moody Lie algebra" in Algebraic Analysis, Geometry and Number Theory, Johns Hopkins Univ. Press, Baltimore, 1990.
- [4] M. Kashiwara, T. Tanisaki, "Kazhdan-Lusztig conjecture for symmetrizable Kac-Moody Lie algebras II" in Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Prog. Math. 92 Birkhauser, Boston, 1990, 159-195.
- $[5]$ \longrightarrow , \longrightarrow , $Kazhdan-Lusztig$ conjecture for affine Lie algebras with negative level, Duke Math. J. 77 (1995), 21-62.
- [6] D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math., 53 (1979), 165-184.
- $[7]$, , , , , , , , Schubert varieties and Poincaré duality, Proc. Sympos. Pure Math. 36 (1980), 185-203.
- [8] M. Saito, *Mixed Hodge Modules*, Publ. Res. Inst. Math. Sci. 26 (1989), 221-333.
- [9] W. Soergel, Kazhdan-Lusztig polynomials and a combinatoric for tilting modules, Representation theory 1 (1997), 83-114.
- [10] J. Tits, "Groups and group functors attached to Kac-Moody data" in Workshop Bonn 1984, Lecture Notes in Math. ¹¹¹¹ Springer-Verlag, Berlin, 1985, 193-223.