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Abstract

Wegive an algorithm to determine the isomorphism classes of 4-dimensional complex
Lie algebras from the representation theoretic viewpoint. For this purpose, we give
the GL(y)-irreducible decomposition of the polynomial ring of the space A2V* ® V
{V = C4) up to degree three, and show that intrinsic concepts defined by the
vanishing of these covariants are sufficient to distinguish the isomorphism classes.
As an application, we describe the variety of 4-dimensional Lie algebras and their
degenerations in a comparatively simple form, by introducing a new family of normal
forms of 4-dimensional Lie algebras that are just fitted for these purposes.

Mathematics Subject Classification. Primary 17B05; Secondary 13A50, 14L24, 14L30.
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Introduction

In this paper, we study the set of 4-dimensional complex Lie algebras from the rep-
resentation theoretic viewpoint. In particular, we give an algorithm to determine the
isomorphism class of a given 4-dimensional Lie algebra, in terms of a finite number of
covariants and invariants of the group GL(V).

Many results are already known for 4-dimensional (real or complex) Lie algebras, such
as the classification, degeneration and deformation, and the number of varieties consisting
of Lie algebras, etc. (cf. [7], [9], [12], [19], [20], [24], [27], [31].) But, in spite of these

results, several important problems are still left unsolved. For example, it is in general a
hard algebraic problem to determine the explicit isomorphism class of a given Lie algebra g,
i.e., which normal form in the classification table is isomorphic to a given g. Of course, the
dimensions of [g, g] and [[g, g], [g, g]], etc. give some necessary conditions to determine this
isomorphism class. But, these conditions are not in general enough to determine it. In this
paper, we give a finite number of intrinsic concepts of 4-dimensional complex Lie algebras,
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by which we can determine their isomorphism classes uniquely without constructing the
explicit isomorphisms. (See the examples at the end of §6.)

For this purpose, we consider the set of all Lie algebra structures on a fixed 4-
dimensional complex vector space V". By fixing a basis of V, the structure constant {c^}
of g can be naturally considered as an element of A2V* ® V, and we may identify it with
the Lie algebra g itself. Since {c^} satisfies the Jacobi identities that are the quadratic
polynomial relations of {c£j, the set of all Lie algebra structures on V constitutes an
algebraic set of A2V* <2> V, which splits into four irreducible varieties, (cf. [9], [12], [19],
[27]. See also Proposition 8.) The group GL(V) naturally acts on this space, and it is
clear that the orbit decomposition of this algebraic set is equivalent to the classification
of Lie algebras.

In order to distinguish these GL(^)-orbits, we consider the polynomial ring of A2V*®V
and its GL(Vr)-irreducible decomposition as a main tool. The above mentioned "intrinsic
concepts" on g can be expressed as the vanishing of some irreducible components of the
polynomial ring (= covariants). For example, the space of linear polynomials of {cfj}
splits into two GL(V)-irreducible components, and the vanishing of one component is
equivalent to the "unimodularity" of g, the vanishing of the other component is equivalent
to the condition that the Lie bracket is expressed as [X,Y] = f(X)Y - f(Y)X for some
/ G g*. Both concepts play fundamental roles in determining the isomorphism classes.
Two fundamental values dim [g,g] and dim [[g, g], [g, g]] also can be characterized by the
vanishing or non-vanishing of some covariants. (For details, see Proposition 4.)

But to distinguish the individual GL(V)-orbits, we need more delicate additional de-
vice. Since there exists a family of continuously deformable Lie algebras depending on two
parameters (see Table 1), we must introduce at least two independent invariants of g in
order to distinguish them. These invariants are a natural generalization of the invariants of
3-dimensional Lie algebras introduced by [19], [35], etc., and they can be defined as a ratio
of some covariants. As a result, we can show that "intrinsic concepts" that are needed
in determining the isomorphism classes of g are all expressible in terms of polynomials
of {d-j} up to degree three. And by these concepts, we can explicitly give an algorithm
to determine the isomorphism classes of 4-dimensional complex Lie algebras, which is the
main result of this paper (Theorem 10 and Figure 2).

As a by-product of this method, we can also show several facts on the set of 4-
dimensional Lie algebras, in particular, degenerations and the variety of Lie algebras.
(For the definition of degeneration, see §5.) Degenerations of 4-dimensional Lie algebras
are already completely determined in [7]. But the final results given in [7] are quite compli-
cated. In this paper, we introduce a new family of normal forms of 4-dimensional complex
Lie algebras that are just fitted to describe the varieties and the degenerations. And in
terms of these normal forms, we summarize the results on these subjects in a compara-
tively simple form. To give such nice normal forms is another main result of the present

paper.
Now, we state the contents of this paper. In §1, we give a new classification table

of 4-dimensional complex Lie algebras, consisting of ten normal forms (Table 1). These
normal forms possess several nice properties, and after explaining these features, we next

-103-



4-dimensional complex Lie algebras 3

summarize the fundamental quantities of these Lie algebras (Table 2). Among others, we
state a remarkable property that except for one Lie algebra, the ratio of the eigenvalues
of ad X does not depend on the choice of X à¬g if X is sufficiently generic (Proposition
2). This property leads us to define three fundamental invariants of 4-dimensional Lie
algebras, which play a crucial role in determining the isomorphism classes. In §2, we give
the GL(y)-irreducible decomposition of the polynomial ring of the space A2V* <g>V up to
degree three. We also explicitly give the generators of these irreducible components which
we use in this paper. And we evaluate them for each normal form by using computers
(Table 3). To know the vanishing or non-vanishing of each generator for a given Lie
algebra is one crucial step in the actual determination of the isomorphism classes. In §3,
wecharacterize "intrinsic concepts" on g determined by the vanishing of these covariants.
Some unfamiliar but important properties naturally appear. In §4, by using the ratio of
the eigenvalues of ad X stated above, we define three fundamental invariants Xi ~ X3 of
4-dimensional Lie algebras. Roughly speaking, these invariants serve as the coordinate of
the moduli space of the variety of Lie algebras, because the parameters appearing in the
normal forms in Table 1 are uniquely determined by these invariants Xi ~ X3(Proposition
5).

In §5, by using the above results, we summarize some known facts and some new results
on degenerations and the varieties of 4-dimensional Lie algebras. On account of the nice
properties of our normal forms, these results are expressed in a comparatively simple form.
In particular, we give the defining equations of four irreducible varieties of Lie algebras,
and the explicit orbit decompositions of them, including their degenerations (Proposition
9, Figure 1). We know that there exists one principal line of degenerations in each variety.
But, several "singular" Lie algebras make the situation a little complicated. In the final
section (§6), we give an algorithm to determine the isomorphism classes of 4-dimensional
complex Lie algebras, which is the main subject of this paper. The results are summarized
in Theorem 10 and Figure 2. Roughly speaking, dimensions of [g, g] and [[g, g], [g, g]], three
invariants Xi ~ X3>and three kinds of covariants are enough to determine the isomorphism
classes.

In Appendix, we construct explicit isomorphisms between normal forms in Table 1 and
those of [7] for our reference. In view of this correspondence, the readers can easily see
that the list of degenerations given in Proposition 6 just coincides with the result in [7;
p.736].

Finally, we add some comments for higher dimensional case. Theoretically, we can
continue to develop our method to higher dimensional Lie algebras. But unfortunately,
calculations of covariants and invariants, and the irreducible decomposition of the poly-
nomial ring become complicated as the dimension becomes large, and we do not know
what kind of concepts will be required in order to distinguish the isomorphism classes.
This is mainly due to the lack of our knowledge on the GL(V)-irreducible decomposition
of the space SP(A2V* ® V), especially due to the lack of decomposition formulas of the
"plethysm" {I2} ® {A} (cf. §2, [23], [4]).

We can apply the results of this paper to other geometric problems. For example,
we can describe the existence (or non-existence) of left invariant symplectic structures
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on 4-dimensional complex Lie groups in terms of several intrinsic concepts introduced in
this paper. (For details, see [6].) In addition, we can apply the representation theoretic
method of this paper to other kind of geometric problems on multi-tensor spaces, such as
the exterior space APV* (p > 3), the space of curvature like tensors on V, etc. We will
treat these problems in the forthcoming papers.

Preliminary Remark

A Lie algebra is by definition a pair (V,[ , ]), where V* is a vector space and [ , ] is an
element of A2V* ® V satisfying the Jacobi identity. In this paper, we often express the
vector space V as g if a Lie algebra structure [ , ] on V is explicitly or implicitly given.
But sometimes, in case the underlying vector space V is fixed, we often identify the Lie
bracket [ , ] with g, and we consider g as an element of A2V* ® V. This is clearly an
abuse of notation. But, the author believes that the readers can correctly understand the
situation without any confusion. (In this paper, V" always means C4.)

1. Normal forms

In this section, we give a classification table of 4-dimensional complex Lie algebras, fit-
ted to describe an algorithm to determine the isomorphism classes in addition to several
properties on the varieties of Lie algebras, such as deformations, degenerations, orbit de-
compositions, etc.

There are already several classifications of 4-dimensional Lie algebras. But unfortu-
nately, it seems that all of them are not fitted to describe the above subjects. In fact, for
these classifications, several normal forms depending on parameters often degenerate to
singular Lie algebras at some special values of parameters. (An example is given in Remark
(6) below.) And this phenomenon makes a description of the above subjects quite compli-
cated. Here, based on previously known classifications, we give a new classification table
of 4-dimensional complex Lie algebras fitted for our purposes. Explicit correspondences
to other normal forms are given in Appendix.

Proposition 1. Any A-dimensional complex Lie algebra is isomorphic to one of the
following Lie algebras in Table 1 (a and (3 are complex parameters):

Table 1

w ^ m n o n - t riv ia l  b r a c k e t  o p e r a t io n s

L o

u [A ' , , X ,]  =  A -3

L -> [A ' , , A '2 ]  =  A '3 ,  [A ', , A '3 ]  =  A -4

L 3 [A r, , X , ]  = X 2 ,  [A ', , A '3 ]  =  A '3 >  [A ', , A "4 ]  = A ',

L t (a ) [A ', , A '2 ]  = A ', ,  [A ' , , A '3 ]  =  A '3 ,  [A ', , A .,]  = A '3  + o A %

｣ <  (ｫ >) [A 'l 5 X >]  =  X >

L 5 [A ', , A '2 ]  = X , ,  [A ', , A '3 ]  = A '3 ,  [A '1 , A '4 ]  =  2 A '.I|  [X 3 , X 3 ]  =  X 4

u -V i . A 'a ]  =  A 'o ,  [A 'i , A '3 ]  =  - A '3 ,  [A '2 ,A '3 ]  =  A i

L 7 (a , 0 ) [A 'i , A "2 ]  =  A 'j ,  [A ', , A '3 ]  =  A '2  + q A '3 ,  [A ', , A '4 ]  =  A '3  +  O X A

L 8  ( a ) [X , , X >]  = A ', ,  [A ', , A 3 ]  = A 2  + q A ', ,  [A , , A 4 ]  =  ( ｫ +  1 ) A '4 ,  [A 2 , A '3 ]  =  X ,

u [.Y l , X ,]  =  X ,,  [A '3 , A '4 ]  =  A '4

-105-



4-dimensional complex Lie algebras 5

These Lie algebras are not isomorphic to each other except for the following cases:

•EL7(a,/3)=L7{a',P') if and onlyif two ratios 1 : a:/? and 1:a':/3'

coincide after a suitable change of ordering.
•EL$(a) =Ls(a') if and onlyif a=a' or aa'=1.

(As for the Lie algebra L^(a) (a 6 CU {oo}), L±(a) is isomorphic to L4(a') if and only
ifa=a'.)

Outline of the proof. We can show that the above table exhausts all 4-dimensional
complex Lie algebras by constructing the isomorphisms to other known normal forms.
(For details, see Appendix.) By calculating the dimensions of [Li, Li] and the GL(V)-
orbit of Li, we have immediately Li % Lj for i ^ j. (See Table 2 below.) The remaining
special isomorphisms for L4) L7 and Lg can be checked directly. å¡

Wemust state some remarks on the typical features of these normal forms in order to
understand the arguments in this paper.

Remark. (1) Among these Lie algebras, the following ones are expressed as sums of
lower dimensional Lie algebras:

Lo^C\ LX^MX@C,
Z,4(0) ^ M2 @C, L4(oo) £ M3(0) ©C £* off(l,C) ©C2,
L6S0l(2,C)*<sl(2,C)©C, L7(a,0)^M3{a)®C, (a^O),
L9 ^ off(l,C) ©aff(l,C).

Here, the Lie algebra aff(l, C) means the non-abelian 2-dimensional Lie algebra, and Mi
are 3-dimensional complex Lie algebras defined by

Mt : [Yi,Y2] =Y3,

M2 : [YUY2]=Y2, [YUY3] =Y3,

M3(a) : [Y1,Y2]=Y2, [YUY3]=Y2+aY3.

It should be remarked that the set of these decomposable Lie algebras does not form
a "closed" subset of A2V* ® V in the usual topology because the limitting Lie algebra
\ima^o L7(a, Q) = 1/7(0, 0) is not decomposable. See also Remark (1) after Proposition 6
in§5.

(2) Nilpotent Lie algebras are exhausted by Lo, L\, L2. All 4-dimensional Lie algebras
are solvable except for the unimodular Lie algebra L& = gt(2, C). As we see later, four Lie
algebras L$ ~ L9 constitute the "principal part" of the set of 4-dimensional Lie algebras
(cf. Proposition 8), and the remaining Lie algebras L3, L4, L5 are intermediate degenerate
Lie algebras.

(3) For the Lie algebra L7(a,P), we often say that two "unordered ratios" 1 : a : ft
and 1 : a' : /?' coincide in case these ratios coincide after a suitable change of ordering.
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In this case, two Lie algebras L7(a, ft) and L7(a', j5') are isomorphic, as stated above. For
example, it is easy to see that L7(a,P) with a+/5 = 1 is isomorphic to 1/7(7,7+ 1) f°r
some7 G C.

(4) It is convenient to use the symbolical notation £7(00, 1) = L7(0, 0) in considering
the degeneration of Lie algebras (cf. §5, Figure 1). In fact, from the above remark, we
have £7(0:,1) = L7(^,£) for a ^ 0, and hence lim^ooL7(a,1) = L7(0,0). By the same
reason, we may consider L7(oo,00) = L7(l,0) and L7(oo, -00) = L7(-1,0).

(5) We may say that the Lie algebra L,\(a) converges to £4(00) as a -> 00 in spite
of its appearance. To check this fact, we consider the family of Lie algebras L\{k,l)
((fc,Q # (0,0)) defined by

[YuY2] = kY2, [YuI3] = kY3, [YuYA] = kY3+IY4.

Then, we have

4(')=l^(i) Mo.

In particular, L'A{k,I) = L'A(k',I') if and only if (k1,ll) = (ck,cl) for some c =£ 0, and we see
that the parameter space of L^a) can be naturally identified with the 1-dimensional com-
plex projective space PX(C). From these facts, we have lim^oo -L^o:) = limQ_^ooL4(l,Q:)
£ lim^ooLUs.l) = L\%\) S L4(oo).

(6) For most previously known classifications, the Lie algebra L'7(a, @) defined by

[i-i,r2] =r2, [n,y3] =aY3, [yuya] =/?r4-

is adopted as one normal form. Clearly, the bracket operation of L'7(a, f3) is simpler than
that ofL7(a,/?), and this Lie algebra is isomorphic to L7(a,/?) ifa ^ /?, o: ^ 1 and (3 ^ 1-
But, for the remaining singular cases, L'7(a, P) is isomorphic to other Lie algebras:

L'7(*,P) =

L4(oo) a=P=0,
L3 a=P=l,
LA(±) a=0^0,1,
LA{P) a=1,p#1,
L4(q) /?=1,a#1.

For most classifications, the Lie algebras L7(a,a) (= L7(l,^) if a ^ 0) and L7(l,0),
not appearing in this family {L'7(a,ft)} are treated as other separate normal forms. But
actually, by calculating the dimension of GL(V)-orbits of these Lie algebras, we know
that the above Lie algebras L3 and L.\{a) arc singular. (For example, the Lie algebra
L3 is a degeneration of £7(1,1). See Table 2 and Figure 1 in §5.) On the contrary, the
dimension of the GL(V*)-orbit of L-(a,ft) is constant for any a, ft. And hence, L7(a,a)
and L7(l,0) should be included in the continuous family of Lie algebras, instead ofL3 and
L4{a). Therefore, the family of Lie algebras L-(a, ft) is better than L'7(a, ft) in describing
deformations and degenerations. (In terms of the language of matrices, we may symboli-
cally say that L'7(a, ft) corresponds to a "diagonal" matrix and L7(a, ft) corresponds to a
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matrix with a non-trivial "Jordan block". Clearly, the former is simple and the latter is
generic in the set of matrices with multiple eigenvalues.)

As for the Lie algebra La(a), it is isomorphic to the Lie algebra L'8(a) defined by

[Yi,Y2] =Y2, [YuY3] =aY3, [YUY4] = (a+1)Y4, [Y2,Y3) =Y4,

if a ^ 1. And the bracket operation of this Lie algebra is simpler than that of Ls(a).
But L'8(a) degenerates to L5 in the case a = 1. A similar phenomenon occurs for the Lie
algebra L4(a). The Lie algebra defined by

[Yi,Y2] =Y2, [YUY3] =Y3, [YuY4] =aY4

is isomorphic to L4(a) ifa ^ 1, and to L3 ifa = 1. By the same reason as above, it is
better to adopt the Lie algebras Ls(a) and L4(a) as our normal forms.

Next, as one peculiar feature of 4-dimensional Lie algebras, we consider the ratio of
the eigenvalues of ad X (X à¬g). The following proposition is quite important, especially
in defining the invariants of 4-dimensional Lie algebras in §4.

Proposition 2. Assume g is not isomorphic to L9. Then, the ratio of the eigenvalues
ofad X does not depend on the choice ofX ifX is sufficiently generic.

Proof. We can easily show this fact by using Table 1. For example, for the Lie algebra
L7(a, (3), we have

ad (aXi +bX2+cX3+dXA) =

and the eigenvalues of this matrix are {0, a, aa, a/3}. Hence, if a ^ 0, the ratio of the
eigenvalues of ad {aX\ + bXi + cX3 + dX±) is always equal to 0 : 1 : a : (3. We can easily
calculate the ratio for the remaining Lie algebras. Results are summarized in Table 2.
å¡

Remark. (1) For the Lie algebra Lg, the eigenvalues of ad (aXi + bX-i 4- cX$ + dX^)
are given by {0,0,a,c}, and this ratio essentially depends on the choice of X. Among
4-dimensional comlex Lie algebras, Lg is uniquely characterized by this property. We also
remark that the ratios for real solvable 4-dimensional Lie algebras are listed up in [36;
p.180 ~ 181].

(2) If possible, it is desirable to prove Proposition 2 without the help of the classifica-
tion. But unfortunately, we do not know such a proof at present.

In Table 2, we summarize fundamental quantities of Lj, including the ratios of the
eigenvalues of adX. We remark that our normal forms are selected such that the dimension
of the GL(F)-orbit of Li does not depend on the parameters (a and /3), as we stated

0   0 0  0

- b - c a a  0

- ca - d 0 a a  a
- d (3 0 0 a /3 I
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T able 2

^ 蝣 i dim g(i) dim q(2) dim 0 (g) ratio
L o 0 0 0 0 :0 :0 :0

L x 1 0 6 0 :0 :0 :0

u 2 0 9 0 :0 :0 :0

u

�������������������3

0 4 0 :1 :1 :1

LA(a ) 0 8 0 :1 :1 :a (*)i

u 1 9 0 :1 :1 :2

L a 3 3 12 0 :0 :1 :- 1

L 7(a , f3) 2 a = Oor/?= 0
3 a,0 ^ O

0 10 0 :1 :a :0

L 8(a) o = OQ # 0 0 Q = 01 Q ^ O ll 0 :1 :a :a + 1

｣g 2 0 12 (*)a

9(1) = [g,g] , 0 (2) = [g (1) , s (1 ) ] .

(*)i : Weconsider0:1:1:oo=0:0:0:1.

(*)2: Two eigenvalues are 0. But the remaining two eigenvalues essentially depend on the
choice ofX à¬L9.

above. Perhaps, this is the most important feature of our normal forms. But instead,
the dimensions of g^ and g(2) may vary for singular a and /3, where q^ = [g,g], g'2^
=[[9ifl]»[8,fl]]- I" thc following, we denote by O(g) the GL(F)-orbit of g in A2V* ® V.
Note that the dimension of O(g) can be calculated by the formula:

dimO(g) = dimg* ®g-dimDer(g),

where Z)er(g) is the space of derivations of g, i .e. ,

Der(g)= {Aà¬g'®g|A[X,Y]=[AX,Y]+[X,AY], VA',YeQ}.

Theoretically, the value dimO(g) may serve as one measure to determine the isomorphism
class of g. But for general (un-normalized) g, the determination of dimO(g) requires many
calculations, and we do not use this value as our device.

Finally, it should be remarked that thc dimensions of GL(V*)-orbits are not preserved
by summations of Lie algebras. For example, we can show that the dimension of the
GL(F)-orbit of thc 3-dimonsional complex Lie algebra M^{a) is 5 for any a G C. But
curiously, by adding a 1-dimcnsional abolian center, a singular parameter a appears. In
fact, we have

dim O(il/3(a) e C)
å { dimO(L4(oo))=8 a=0,

dimO(L7(a,0))= 10 a^O.
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2. Polynomial ring of A2V* <S> V

In order to give an algorithm to determine the isomorphism classes of Lie algebras, we
need several intrinsic concepts of g, by which we can distinguish non-isomorphic Lie alge-
bras. These intrinsic concepts are all characterized by the vanishing of GL(l/)-invariant
sets of polynomials of structure constants up to degree three. For example, by fixing a
basis {Xi,--- ,Xi} of g and by putting [.X^X,] = E c^XA, the unimodularity of g is
characterized by the vanishing offour linear polynomials E/t d-k = 0 (i = 1 ~ 4), as stated
in Introduction. These four polynomials {E^ c^} constitute a GL(V)-invariant irreducible
subspace of (A2V* <g>V)*. Other intrinsic concepts ofg which we use in this paper are also
characterized by the vanishing of some GL(V)-irreducible components of the polynomial
nng Zp.Sr(A2V* ® Vy.

In this section, we give the explicit GZ,(V)-irreducible decomposition of the space
SP(A2V* <g> V)* for p = 1 ~ 3, and calculate their generators. In addition, we evaluate
these generators for each normal form in Table 1. From these results, we obtain several
nice devices to distinguish the isomorphism classes of g. Intrinsic meaning defined by the
vanishing of these GL(Vr)-invariant sets of polynomials is explained in detail in the next
section.

Wewill calculate the generator of each GL(V)-irreducible component of SP(A2V* ®V)*
by the method stated in [1; p.115 ~ 116]. For this purpose, we modify the space A2V*®V
in the following way. We fix a volume form Q, of V once for all. Since V is 4-dimensional,
we can naturally identify two spaces A2V* and A2V by using this volume form £"2. Hence
SP(A2V* ®V)* is isomorphic to SP{A2V®V)* as £>L(V)-modules. In particular, they have
the same 5L(V)-irreducible decompositions. As GL(Vr)-modules, irreducible components
of SP(A2V* ® V)* and the corresponding components of SP(A2V ® V)* are isomorphic to
each other by multiplying some powers of det g (g à¬ GL(V)). In this paper, we only use
the concepts determined by the vanishing of polynomials, or the concepts determined by
the ratio of two polynomials with the same degree. And hence, our arguments do not
depend on the choice of the volume form of V, and in the following, we use the space
A2V <g> V instead of A2V* <g> V.

Now, under this situation, we give the explicit GL(V)-irreducible decomposition of the
space of polynomials on A2V ® V up to degree three. We express the GL(V)-irreducible
representation space corresponding to the partition A = (Ai, •E•E•E, A4) by the symbol Sx
=S\(V). (For the representation theory of the group GL{V), see [23], [17], [1], etc.) For
example, the symbol S2 expresses the space of symmetric 2-forms S2V*. Strictly speaking,
this space S2V* should be expressed as 50,0,0,-2- But, for simplicity, we use the above dual
notation throughout this paper.

Then, in the case of degree = 1, by using Littlewood-Richardson's rule, we obtain
the irreducible decomposition immediately: (A2V <g> V)* = Sn <8>S\ = S21 + Sin. F°r
higher degree cases, we use the formula SP(A2V 0 V")* = EA SX{A2V*) 0 S\{V), where
A runs all over the partitions with |A| = p and depth < 4. The decomposition of the
plethysm S\(A2V*) (= {I2} <g> {A}, in the classical notation) for small |A| is given for
example in [3], [8]. (Or one can calculate it by using the software "SYMMETRICA":
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http : //www.mathe2.uni-bayreuth.de.) As a result, we have:

Proposition 3. GL(V)-irreducible decompositions ofSP(A2V<g>V)* forp = 1 ~ 3 are
givenby

p=1:52i+5m,
p=2 : 542 + 2S321 +253m +2S222 +^2211)

P=3 : ^63 + 2^531 + S522 + 255211 + £441 + 35432 + 3543H

+ 554221 ~t~ 35333 "t" 453321 "H 353222-

Remind that the partitons A with depth > 4 do not appear in the above decomposition
because dim V = 4. The coefficient of 5a implies its multiplicity. In the following, we
often call the irreducible component 5a in SP(A2V ® V)* covariant.

Remark. Theoretically, we can continue to decompose the space 5P(A2V ® V)* for
large p. But unfortunately, closed decomposition formulas of SP(A2V <2> V)* for general p
are not known yet even in the case dim V = 4. We often encounter this type of difficulty
in considering multi-tensor spaces (cf. [1], [2], [13], [34]).

Next, of all irreducible components of SP(A2V <8> V)* (p < 3), we give here generators
Pa °f Sx for nine components, by which we can determine the isomorphism classes of 4-
dimensional Lie algebras. (We omit the generators of the remaining irreducible components
because some of them are quite lenghty and we do not use them in this paper.) Incidentally,
among the components with multiplicity > 1 in the above decomposition, we use at most
one component in this paper, and we may express it simply as 5a in the following. Then,
by fixing a basis {Xi,•E •Eå ,X4} of V", we have the following list:

•E p=1:

P21 =^4 eS21,

Pin =cj4+clA+c\A=-TradX4 à¬5m,

•E p=2:

P321 = 44C34 - 034^4 e 5321,

P3111 = c}244 ~ ^3^4+cu43 à¬ 53111,

P222 = cl4^4 "+" C14C34 ~~C24C14 ~ C34C14 "+" ^4C34 ~ C34C24

=1/2•E {(TradX,)2 -Tr (adXA)2} e 5222,

・ p =

P 4 4 1  = C

P 4 2 2 1  =

3 :

1 4 C 3 4 ^ 4  +  c 2 4 l C 3

- 2 3  ^ 3  ^ 3

- 2 4  - 2 4  - 2 4

- 3 4  ^ 4  C 3 4

t)  ~  ¥ C z A )  - 14 ~ C z A ^ w A  ^  ^ 4 4 1 ,

e  S ,4 2 2 1 )
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P333 =

P3222 =

1 4 - 14 C V1 4

- 2 1 - 2 4 - 2 4

, 1'3 4 C 3 4 C 3・3 4

- 1 / 6 ・ { ( T r a d X 4 f - 3 T r a d X , ・T r ( a d X 4 ) 2 + 2 T r ( a d X ,) 3 } 牀 5 3 3 3 ,

r l r 2 r 3c 1 2 C 12 C 12 r l r 2 r *--1 2 C 12 C 1 2 C 1 3 C 13 C 13  C 1 3 - 2 3c 13 C 1 3

- 2 3 ^ 3 - 2 3 + - 2 4 ^ 4 - 2 4 + A r 3 r 4  - r l r 2 r 3

C 3 4 C 3 4 - 3 4
r i - 2 r 4L -*a t-3 4 C 3 4,1'3 4 c * a c 3 4 c 3 4.1'3 4      4 4 - 2 4 - 2 4

,1'1 4 C ? 4 C A1 4 r l r z r Al-14 1-1 4 C "' 14 C 1 4 1 4 ^ 3 - 2 3 - 2 3

- K , 4 :3 - 2 Z
- 2 3 - 2 3 - 2 3

+ 2 c m 4 4 a e 5 3 2 2 2 .

- 2 4 <% 蝣!4 - 2 i C 3 4 d・3 4 C 3 4 ^ 4 C 3 4 C 3 4

These generators can be obtained by applying the method satated in [1; p.115 ~ 116]. We
give here one example. For details, see [1]. We denote by {u>i, •E•E•E,u;4} the dual basis of
{Xi,å •E•E ,Xj. Then, the bracket [ , ] à¬ A2V*<g>V is expressed as Ej<jc^cjjAUj®Xk. In
terms of the volume form Q, = u>\ A å å •EA u>4, this bracket is transformed into the element
£i<jaijkXiAXj®Xk à¬ A2V<g)V, where ank = <&, am = -<%a, auk = 4,, a23k = cf4,
fl24Jt = -C13, a34/t = d[2. Then, the generator of the space 532i C 52(A2F(g)V)* is given by

SCTee3,T6S2 (~1)°r(-1)Taa(i)T(i)<7(2)aiT(2)<7(3) = 01210132 - 01220131

= C24C34 ~C34C24

= P321-

Here, Sn denotes the symmetric group with degree n and (-1)CT denotes the sign ofa G ©n.
Other generators can be calculated in the same way. But the above repeated sum requires
many computations on polynomials, and for most cases, we used computers to obtain p\.
Of course, the polynomial p\ itself essentially depends on the choice of a basis of V.

Note that the set of sixteen polynomials appearing in the Jacobi identity splits into two
irreducible components of S2(f\2V®V)*: S2211 and one component of 253iii in Proposition
3. (We have dim52211 = 6 and dimS3111 = 10.) Note that the above S3111 generated by
P3111 does not involve the Jacobi identity.

Among the above generators, three polynomials pm, P222, P333 play a special role in
§4, where we define the invariants of 4-dimensional Lie algebras. In addition, the cubic
polynomial

V = 8^333 - 4pmP222 +P\n

also plays an important role. (Namely, it gives a part of the defining equations of a variety
of Lie algebras. See Proposition 9 in §5.) The polynomial <p generates an irreducible
subspace of S3(A2V<g>V)*, which is equivalent to 5333 as a GL(y)-module. In the following,
we denote this space by (y?).

We express the eigenvalues of adX (X G g) as {0, £1, £2, e3}. Then, by putting X4
=Xin the above list of generators, we have immediately
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12 Y. Agaoka

Pin = -{£i+e2+e3),

P222 = £1^2 +^2^3 +£3^11

P333 = -£l£2^3-

By substituting these values to the above (p, we have

(p= (£1+e2-£s)(£i+£3-£2)^2+£3~£i)-

Hence, the vanishing of this polynomial also gives some intrinsic property of the Lie algebra
g (cf. Proposition 4).

As stated above, the generator p\ G S\ depends on the coice ofa basis {Xi, •E•E•E,Xj}.
Hence, the vanishing or non-vanishing of the generator p\ itself has no intrinsic meaning.
But the vanishing of all polynomials in 5a generated by p\ possesses an intrinsic meaning
of g. In the following, we express this situation symbolically as "5a = 0", and often
say that the covariant 5a vanishes for g. Our next task is to clarify the meaning of the
intrinsic property defined by "5a = 0". But, before stating this meaning, we give a table
summarizing the vanishing or non-vanishing of 5a for each Lie algebra Lj (Table 3). The
symbol "0" in Table 3 implies "5a = 0", and the symbol "*" implies that there exists a
non-vanishing polynomial in 5a- To check these results, we evaluate the generator px of
5a in terms ofa generic basis ofLj. Namely, ifp\ ^ 0 for some basis, we write "*" in the
table, and ifp\ = 0 for a generic (and hence any) basis, we have "5a = 0". In the actual
calculations, we used computers. We use Table 3 frequently in the subsequent sections. It
is easy to see that at the present stage, we can distinguish ten classes of Lie algebras Lo ~
L9 by using this table. But the value of the parameters a and (3 in L4, Lj and Lg cannot
be determined by only using these concepts. Explicit determination of the parameters will
be carried out in §4.

3. Intrinsic concepts determined by the vanishing of covariants

In this section, we state several intrinsic concepts of g determined by the vanishing of
covariants appeared in §2. The results are summarized in the following proposition. Most
concepts appearing in this proposition are actually used in the algorithm to determine the
isomorphism classes of Lie algebras, which we will state in detail in §6. We denote by {0,
£i) £2, £3} the eigenvalues ofadX for generic X G g, as before.

Proposition 4. (1) S21 = 0 if and only if there exists an element / G g* such that
[X,Y] = f(X)Y - f(Y)X.
(2) 5m = 0 if and only ifg is unimodular.
(3) 53m =0 if and only if daAda=0foranyaG g*. (The conditiondaAda-0 is
equivalent to the decomposability of da for the A-dimensional case).
(4) 5222 =0 if and only if E\Ei+£2£3+£3£i =0.
(5) 544i =0 :/and only if dim{X, Y, [X,Y], [X,[X,Y]]) < 3for anyX, Y G g.
(6) 5422i = 0 if and only if dim{[X,Y],[Y,Z],[Z,X}) < 2 foranyX, Y, Z G g. This
condition is also equivalent to [[g,g], [g,g]] = 0.
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Table 3
^ H i

? 2 1 ' I l l 一・32 1 蝣>3 i n ? 2 2 2
L Q 0 0 0 0 0

L x * 0 0 0 0

u * 0 * 0 0

u 0 * 0 0 *

L 4 ( a ) *
a = - 2a ? - 2 Q  =  O Oa  jt o o 0 0  q = - 1 /2 , o o*  a ^ - 1/ 2 , o o

u * * * * *
u * 0 * 0 *

L 7 { a ,  i *
0  a + 0 = - 1

*  a + 0 ? - 1
* 0 0  a O + a + B = 0

*  a P + a + P ^ O
L s ( a ) *

a = - 1a / - 1
*

Q = - 1 0  a 2 + 3 a + 1 = 0*  a 2 + 3 q + 1 ^ 0

u * * * * *

^ B s ,4 4 1 S A42 2  1 5 .3 3 3 5 3 2 2 2 V
u 0 0 0 0 0

L x 0 0 0 0 0

L 2 * 0 0 0 0

u 0 0 * 0 *

U { a ) 0 0 0  a = 0 , o o*  a ｣ 0 , o o 0 0  q = 0 , 2*  a 5* 0 , 2

L b 0 * * 0 0

u * * 0 * 0

L 7 ( a ,  0 ) * 0 0  q o r p = 0*  a , 0 ^ 00  a = 0 , - 1-  ' n _ l 0  q - /3| = 1  o r q + P = 1
*  ¥a - 0 ¥ ? l , a + 0 ? l

! *  { <* ) * o = 0 0 0

L o * 0 0 0 *
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14 Y. Agaoka

(7) 5333 = 0 if and only if some ei = 0. This condition is also equivalent to rankadAr
<2foranyXeg.
(8) 53222 = 0 if and only if dim [[g,g],[g,g]] < 1 (or equivalently < 2). This condition is
also equivalent to the solvability of g.
(9) 52i = 5*111 = 0 if and only ifg is abelian.
(10) S*in = S222 = ^333 ='O */and °nly */9 iS nilpotent.
(ll) 5321 = S222 = 0 z/and °nly if (nm [9>8] < 1- This condition is also equivalent to
rankadA" < 1foranyXà¬g.
(12) S4221 = S333 =0 if and only if dim[g,g] < 2.
(13) (ip) =0 ifandonlyif £j=Ej+e^ forsome distincti,j, k.

Proof. (1), (2), (9). We put f(X) = \TradA', and define a new bracket operation [ , ]'
by [A', Y}' = [X, Y]-f(X)Y+f(Y)X. Then, we have [A', 1'] = [X, Y]'+{f(X)Y-f(Y)X},
and this gives the GL(V')-irreducible decomposition of the space A2V* <g> V. In fact, we
already know that the space /\2V* ®V splits into two irreducible components (Proposition
3). And it is easy to see that the trace of the adjoint map Y h-» [A',Y]' is zero for any
A". Hence, [ , ]' gives the tracelcss part, and f(X)Y - f(Y)X gives the contracted part of

[ , ] G A2V* ® V, respectively. By definition, the condition 5m = 0 is equivalent to the
unimodularity of g, i.e., the vanishing of /. And hence, the remaining condition £21 = 0
is equivalent to [ , ]' = 0, i.e., [A',Y] is expressed as f{X)Y - f(Y)X. Clearly, combined
conditions S21 = 5m = 0 are equivalent to c^- = 0, which implies that g is abelian.

(3) The condition S3111 = 0 is equivalent to the vanishing of ten polynomials c\2^ -
ciscL + <Aa4s + 4-JC12 ~ 44^13 + 43^14- Since da(XuXj) = -a([Xi,Xj\) = -E ^(Xk)

for a 6 g* and Xj 6 g, this condition is equivalent to (daAda)(Xi,•E•Eå  ,X^) = 0.
(4), (7), (13). These are clear from the definition ofP222, P333, V- For the second

statement in (7), we can directly check that the Lie algebras satisfying the condition
rankadA' < 2 for any Ar à¬ g are exhausted by Lo, Li: L2, L4(0), £4(00), L6, L7(a,0),
L8(0), L8(-1), Lq, and by using Table 3, we can show that these Lie algebras are just
characterized by the condition 5333 = 0.

(5) We can rewrite the polynomial pU\ in the form

P441 =
rl y rl Jz
_ 2 y r2JfcC31 ^t c4Jcc34

Then, it is easy to check that this polynomial is equal to the determinant of the matrix
(A^A^JA^A^], [A'tjA^,A'3]]) in case A\ ~ A*4are linearly independent. Hence, the
condition S,M1 = 0 is equivalent to dim (A',Y,[A",1'], [A', [X,Y}]) < 3 for any A", Y à¬ g.

(6) The polynomial 7^221 is equal to the principal minor of the (4,3)-matrix ([A2, A'3],
[A"2,A'i], [A'3,A'.|]). Hence, the condition 54221 = 0 is equivalent to dim ([A",Y], [Y, Z],
[Z,X]) < 2 forany A", Y, Zà¬ g. In view of Table 2 and Table 3, we can check that this
condition is just equivalent to [[g, g], [g, g]] = 0.

(8). (10), (ll), (12). These statements can be directly verified by using Table 1 ~
Table3. å¡
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Remark. (1) In the above proof, we often used the classification table. But, it is
desirable to prove this proposition by an intrinsic way without the help of the classification.

(2) Among the above conditions, the condition S3111 = 0 in (3) plays a crucial role
in considering the existence or non-existence of left invariant symplectic strucutres on
4-dimensional complex Lie groups. For details, see [6].

(3) Unfortunately, we do not know the intrinsic meaning defined by the single condition
<->321-U .

(4) As we stated before, 4-dimensional Lie algebras are unimodular or solvable. The
same fact also holds for 3-diincnsional Lie algebras. In the 3-dimensional case, all Lie
algebras satisfy the so-called "fundamental identity": &x,y,z (Tr ad A') •E[Y, Z] = 0, where
G implies the cyclic sum. And by using this identity, we can show the above fact directly
without the help of the classification (cf. [5; p.6 ~ 8]). In the 4-dimensional case, the
Jacobi identity implies 5m = 0 or 53222 = 0, as a result of the classification. But, we
do not know whether there exists a similar "fundamental identity" for 4-dimensional Lie
algebras, by which we can directly prove the above fact.

4. Invariants of 4-dimensional Lie algebras

To distinguish the isomorphism classes of Lie algebras, we need more delicate additional
devices. For example, as stated in Proposition 1, two Lie algebras L4(a) and L4(a')
are isomorphic if and only if a = a'. Hence, we must extract the value a from the Lie
algebra structure of L4(a) in order to determine the isomorphism class. For this purpose,
we introduce three fundamental invariants of 4-dimensional Lie algebras taking values in
C U {00} as follows:

, v P222 , s P333 / x P333
Xl(s)=-2-i X2(fl)=-3-» X3(9)=-3-•E

Pill Pill P222

Clearly, these invariants satisfy the relation Xi(g)3X3(g) = X2(g)2- We express the eigenval-
uesofadA' (A' G g) as {0, £1, e2, £3} as before. Then, by substitutingpm = -{e\+£2+£z),
P222 = £i£2 +£2£3+£3£i, P333 = -Zittz into the above, we know that Xi{o) are essentially
determined by the ratio of E{, which indicates that Xi{o) are the intrinsic invariants of g,
except for the followingexceptional cases: For the nilpotent Lie algebras Lo, L\ and L2, the
invariants Xt(fl) are undetermined because pnl = P222 = P333 = 0. Similarly, the following
cases arc also undetermined because both denominators and numerators simultaneously
vanish.

X2(fl)

X 3(g)

L7(a,P) {a+(3=-l, a/?=l),
L6, L7(-1,O), L8(-l),
L,,(oo), L7(0,0).

As for the Lie algebra L9, the ratio ofc, has not an intrinsic meaning, and hence Xi(9) is
also undetermined. But, since one e, is always zero, we have ^333 = 0. Hence, we may put
X2(fl) = X'3(o) = 0 for this Lie algebra.
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16 Y. Agaoka

Wecan easily calculate the explicit values of Xi(A?) m vieVtT °f Table 2. For a general
(un-normalized) Lie algebra g, we first calculate the values Tr (ad A')fc (k = 1 ~ 3) for
generic X £ g. Then, by the definition ofPkkk, we have

Pin = -TradA',
P222 = H(TradX? - Tr (adA')2}'
P.333 = -H(TradA')3 "3Tra(lA" ' Tr(adA')2 +2Tr(adA')3}'

and Xiid) are obtained from these values, though it requires not a little computations in
general. (Sec the examples at the end of§6.) Of course, we can know the value oipkkk by
calculating the characteristic polynomial

\XI- adA'| = A(A3 +PlllA2 +p222A+P333).

In general, the value X3(s) is automatically determined by Xi(s) and X2(s)- This third
invariant X3(s) is mainly used in case the denominator pm of Xi(s) and X2(g) vanishes,
i.e., for unimodular Lie algebras. (See Proposition 5 (3).)

Wesummarize the explicit values of Xi(Lj) in Table 4. The symbol " - " in this table
implies that it is undetermined.

Table4

u
L8(a)

U

Xi(fl)

2n+l
(o+2)2

oo
a0+a+0 i \

(t2+3a+l
4(a+l)2

X2(fl)

27
Q

(a+2)3

(*)sn/3
(Q+/3+1)3 ^2

Q=-l
a#-l8(0+1)*

0

x*(b)

27

«2

(2a+l)3

Q =OO

a9^oo
4

00
2 fl2j££ (*);

(O/3+Q+0)3
o2(q+1)2

(q2+3q+1)3

0

(*)i : undeterminedincasecv+ft=-1, aft=1.
(*)2 : undeterminedincase {a,ft) = (-1,0), (0,-1).
(*)3 : undeterminedincasecv=ft=0. Ifft= -a- 1, we have Xz(§)

_q2(q+1)2
(a*+a+l)3 -

In terms of those invariants, the parameters a and /3 in L4, L7, L8 are essentially
uniquely determined as follows.

Proposition 5. (1) L.\(a) is isomorphic to L.\(a') if and only z/Xi(-^4(^)) = Xi{Li{a'))
fori = l,2. In this case, the parametera is given by
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00 xi=X2=0,

-2 Xi = oo,
1 Xi=I

?i'(1"3xi] otherwise.
Xi-+3*1X2-4X2

For this Lie algebra, X\ and X2 satisfy the relation 3(3*2 - Xi)2 +4(xi3 - Xi2 +X2) = 0
in case they have finite values.
(2) L7{a,ft) {a+ft ^ -I, a, ft ^ 0) is isomorphic to L7{a',ft') (a'+ft' ± -1, a', ft'
^ 0) if and only ifXi(L7{a,ft)) = Xi(L7(a',ft')) fori = 1,2. The parameters a andft are
determined from Xi> X2 by two conditions a+ft = a - 1 and aft = X2«3, where a is a
complex-number satisfying the condition X20? - Xifi2 + a - 1 = 0.
(3) L7(a,-{a+1)) (a ^ 0,-1) is isomorphic to L7(a',-(a'+1)) (a' ^ 0,-1) :/and
only ifXz{L7(a, -(a + 1))) = x^(L7{a', -(a' + 1))). The parameter a is determined from
the equationX3 = -a2(a+l)2/(a2+a+I)3 ifX3 ¥" 00. In caseX3 = 00, we have a
=(-1 ± \fZi)/2, both of which define the isomorphic Lie algebras.
(4) L7(a,0) is isomorphic to L7(a',0) if and only if Xit-Ma,0)) = Xi(-Ma',0))- The
parametera is determined from the equation X\ = a/(a+l)2 ifXi ¥" °°- -^n case Xi = °°>

wehavea=-1.
(5) L8{a) is isomorphic to L8(a') if and only i/xi(-^8(«)) = Xil^sCci'))- The parameter
a is determined from the equation Xi = (a2 +3a+ l)/(4(a+ I)2) ifXi ¥" °°- In case Xi
=00, wehavea=-1.

Proof. We prove the "if part of this proposition. The "only if part is clear from
Proposition 2 and the definition of Xt(o)-

(1) Assume a ^ 1, -2,oo. Then, from the definition of Xi(o) and X2(8), we have

2x2(l - 3Xl) = i£i^
Xi2+3xiX2 -4X2 =^g£

for g = Li(a). Hence, the value a is uniquely determined from Xi(g) and X2(j))- For the
remaining cases, we can easily check that a is also uniquely determined from the values
Xi(g)> X2(fl)-

(2) Assume Xi(L7(a,ft)) = Xl(L7(a>',ft')) and X2(L7(a,ft)) = X2(L7(a', ft')). From

the condition a, ft ^ 0, we have X2 ^ 0, and it is easy to see that the solutions of the
cubic equation X2*3 -Xi*2+<- l =0 are a+/3+l, (a+ft+I)/a and (a+ft+1)/ftif
Xi = {aft+a+ft)/(a+ft+ I)2 and x'2 = a/?/(o+ft+ I)3. Replacing a, ft by a', ft' and
considering the same cubic equation, we know that two sets of solutions

{a+jg+lf 2i£fci) «±g±i} mul {j+p,+li SZ±g±Li S!±p±}

must coincide because two invariants have the same values. There are six combinations of
correspondence between these two sets, and by checking them, it follows that (a', ft') is
equal to one of the following:
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\ aa) \aaj \P P.
'aI

For any case, two unordered ratios 1 : a : (3 and 1 : a' : /?' coincide, and hence we have
L7(a,{3) ^ L7(a',P').

Next, we determine the values of parameters a, [1 from Xi and X2- We assume that the
invariants are expressed as Xi = (^oAt+«o+A))/("o+Po+ I)2, X2 = «o/?o/(«o+A)+ I)3
forsome a0, A) (c*o+A) ^ -1, fto, A) ¥" 0)- And let a be a solution of the cubic equation
X2*3-Xi*2+£-1 = 0. Then, aswesee above, aisequal toone ofao+Po+l, (q;o+/3o+1)/«o
and (a0+fi0+1)//50. First, we take a solution a = ao+(30+1. Then, the equations a+/5
=a- 1and a/3 = X2^3 are equivalent to a+(3 - q0 +Po and a/? = c*oA)> which implies
that (a,/?) = (a0,/?o) or ([3Q,a0). If we take a different solution a = (a0+A)+l)/tto, then
we have a+/? = a- l = (/30+l)/ao and a/3 = X2O3 = A)/ao2. In this case, we have
(°>0) = (S'i) or (i'S)' and hence' ^(",/3) = L7(g,i) asL7(ao,/?o). By using the

third solution a = (ao + A) + l)//5o, we obtain the same conclusion. Hence, we may say
that the parameters a and /? are essentially determined from Xi and %2> by the procedure
stated in (2).

(3) Assume x^a, -(a+1))) = Xz(L7(a', -(a'+l))) ^ 00. Then, we have -7$^

=~(a>2+a^|)3> and by solving this sextic equation, we have

1 , . .x -1 «+l -a

3

a=a,-,-(a+L),a a +l' a a+l
Hence, for any case, the unordered ratios 1 : a : -(a+ 1) and 1 : a' : -(a' + 1) coincide,
which implies L7(a, -(a+1)) = L7(a', -(cv'+l)). IfX3{L7{a, -(a+1))) = oo, then we have
a = (-1±\/3i)/2, and this Lie algebras is isomorphic to L7((-l+ V3i)/2, (-1 - v/3i)/2).

(4) Assume X\{Li(a,0)) = Xi^^'.O)) 7^ 0,oo. Then, from this condition, we have
easily a = a' or aa' = 1, and hence L7(a,0) is isomorphic to £7(0:',0). IfXi(^7(a,0)) = 0
(resp. 00), then we have a = 0 (resp. -1), and Lj(a,0) is also uniquely determined.

(5) IfXi(Z/s(a)) = Xi(Ls(a')) 7^ 00, then wehavea = a' orqq' = 1 fromthiscondition,
which implies L&(a) = L$(a'). In case XiC-ksia)) = 00, we have a = -1, and L8(a) is also
uniquely determined. å¡

Remark. The invariant Xz{q) f°r tne unimodular Lie algebra L7(a, -(a+ 1)) resembles
thejf-invariant of the ellipticcurve y2 = x(x+l)(x-a), where j = 28^^2 (cf. [16], [28;

p.140]). The invariant X3(-^7(«i -(tt+ 1))) is a rational function of a, and it is invariant
under the action of the symmetric group 63 consisting of transformations a ^ a' given
in the proof of (3). This is essentially the unique rational function of a possessing this

property.

We can also describe several intrinsic properties of g in terms of these invariants. For
example, we can verify that the rank of the exterior differential map d : A2g* -> A3g* is 3
for "generic" 4-dimensional Lie algebras, and the set of "singular" Lie algebras satisfying
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rank d < 2 constitutes two irreducible subvarieties of A2V* ® I'. We can characterize
these varieties in terms of the covariants 5a and invariants Xi appeared in §2 and §4. (For
details, see [6].) This result plays an essential role in considering left invariant symplectic
structures on 4-dimcnsional complex Lie groups.

Our invariants Xi(9) au(l X2(s) arc essentially related to the (z, j)-invariants introduced
in [7; p.734]. In fact, it is easy to see that any (i,j)-invariant of [7] can be expressed as a
rational function of xi and Xi because it is equal to

(gti+g2' +g3')0lJ +g2J +g3J)

in our notation. For example, we have

(1, l)-invariant = , (2, l)-invariant = --,
l-2xi 1-3xi+3x2 2

(3,l)-invariant=, \~*Xln+?X2A , (2,2)-invariant= (1~2xi^ ,
V ' 1-4xi+2Xi2+4X2 V ' 1-4xi+2Xi2+4x2

etc.

5. Varieties of 4-dimensional Lie algebras and their degenerations

As a by-product of the results in the previous sections, we can describe the varieties and the
degenerations of 4-dimensional Lie algebras. It is convenient to summarize these results
before exhibiting an algorithm to determine the isomorphism classes because they give one
basis of the understanding of the algorithm. The results in Proposition 6 and Proposition
8 are essentially already known. But, these results can be summarized in a comparatively
simple form, on account of our normal forms that are fitted to describe degenerations.

Wefirst recall the definition of degeneration. We say that a Lie algebra 0i degenerates
to 02 if0i £ 02 and g2 à¬ O(0i), where O(0i) denotes the Zariski closure of the GX(V)-orbit
(D(0i). In this case, we have dimO(gi) > dim0(02). Degenerations of 4-dimensional com-
plex Lie algebras are already completely determined in [7; p.736]. Here, we re-summarize
the results in terms of our normal forms. In the following, the symbol Qi -^ 02 implies
that 0i degenerates to g2. (We sometimes drop the symbol "deg" on the arrow if there is
no danger of confusion.) Note that the notion of degeneration is transitive, i.e., if Qi -^»

02 and 02 -> 0.}, then we have 0! -> 03.

Proposition 6. (cf. [7; p.736].) Essential degenerations of4-dimensional complex Lie
algebras are exhausted by the following, i.e., all degenerations are obtained by composing
the following degenerations:

-120-



20 Y. Agaoka

L4(l) -> L3 -)å  Lo,
L6 -> L8(-l),
L7{a,/3) -> L2 -> Li -> Lo,
L7(a,l) -> L4(a) -> ^ (aeCU{oo}),
Ls(a) -> L7{a,a+l),
L8(l) -> L5 -> L4(2),
L9 -» L7(a,0),
L9 -åº L8(0).

(iVote £/ia£ we use £/ie notational convention L7(oo, 1) =.£7(0, 0) as stated in §1.)

Outline of the proof. We can explicitly construct a curve in A2V* <S>V which expresses
a degeneration for each case. For example, the Lie algebra

[Xi,X2] =X3, [Xi,X3] =X4,

[XUX4] = t3apX2 -t2(ap+a+p)X3 +t(a+/3+1)XA

is isomorphic to L7(a,{3) in case t ^0, and to L2 in case t = 0. The Lie algebra

[X1)X2] =X2+X4, [X1,X3] =X2+aX3> [XuX4] = (a+l)Xi, [X2,X3) =tXi

is isomorphic to L8(a) in case i ^ 0, and to L7(a,a+ 1) in case £ = 0. These facts show
that there exist degenerations L7(a,/3) -^ L2 and L8(a) -% L7(a,a + 1). Remaining
degenerations can be checked in a similar way.

On the other hand, we need several devices to show the non-existence of degenerations.
First, as we stated before, if dim 0({ji) < dim O(g2), then gi cannot degenerate to g2. In
case dim O(gi) > dim O(g2), we show the non-existence of degenerations by using the
covariants and invariants which we introduced in §2 and §4. For example, for the Lie
algebra L2, we have 5m = S222= 0 fr°m Table 3. But, for the Lie algebra L4(a), two
covariants 5m and S222 cannot simultaneously vanish, which implies that a degeneration
L2 -^ L4(a) does not exist for any a. (Note that dimO(L2) = 9 > dim0(L4(a)) = 8.)

As another example, we consider the case L7(a,/3) -^ L3. In case a+@+ 1 = 0, we can
show the non-existence of degenerations in the same way as above by using the covariant
Sin- In case a+@+1 ^ 0, we use two invariants Xi and Xi t0 check the non-existence of
degenerations. Note that in this case, Xi and X2 are well-defined for both Lie algebras. If
there exists a degeneration L7(a, @) -^ L3, then the values of invariants of L7(a, p) must
coincide with that of L3 because L3 is contained in the Zariski closure of the GL(V)-orbit
of L7(a,f3). Hence, from Table 4, we obtain two conditions

(o+p)2-3a(3-(a+p)+l=Q,
(a+p)3+3(o+(3)2 -27a/?+3(a+0)+1 =0.

From these conditions, we have immediately a = /3 = 1, which implies that L7(a, ft) cannot
degenerate to L3 in case (a, P) ^ (1, 1). (We already know the existence of a degeneration
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L7(l,l) -^ L3.) For the remaining cases not listed in Proposition 6, we can similarly

prove the non-existence of degenerations. Note that for this purpose, we have only to
use the covariants 5m, 5222, 5333 (and three invariants Xi, X2, A'3)> except for the cases
L7(a,(3) -% L5 and L9 -^ Ls(a) (a ^ 0). For these two exceptional cases, we use the

covariant 54221 to show the non-existence of degenerations. å¡

Remark. (1) Two Lie algebras L6 and L9 are sums of lower dimensional Lie algebras.
But their degenerate Lie algebras are not necessarily expressed as sums of Lie algebras
such as L8(-l), L8(0), £2 (cf. Remark (1) after Proposition 1).

(2) Nilpotent Lie algebras are all contained in O(L2). Namely, any nilpotent Lie algebra
is obtained as a degeneration of L2 (or L2 itself) in the 4-dimensional case.

As a corollary of Proposition 6, we can show several facts on the variety of 4-dimensional
Lie algebras. But, before stating them, we first calculate the cohomology space of g for
later use.

Proposition 7. The dimensions of the second cohomology space H2(q, q) with coeffi-
cients in the adjoint representation are given as follows:

d im i2"- (g , g )

u 2 4

L i 1 3

In 6

u

U {a )

u

8

7 a = 0

6 a = oo

5 a = 2
4 a # 0 ,2 ,o o

3

i ^ H i d im / P (g , g )

L e

L 7 (a , 0 )

0
5 (a ,0 ) = (- 1 ,0 ), (0 ,- 1 )

3 o # - l ,j8 = O o r a # - l ,/3 = a + l

2 cv + /M l , |a - /? | / l , a ,/3 ^ 0

L 8 (a )
2 a = 0 , - 1
1 a # 0 ,- 1

^ 9 0

We can check this result by direct calculations. By the deformation theory of Lie algebras
[26], the dimension of the space H2(q, q) indicates the degree of freedom of non-trivial
infinitesimal deformations of g. In particular, if H2(q,q) = 0 (such as Lq, Lg), then g
is rigid, i.e., the orbit space O(g) is Zariski open in the set of Lie algebra structures in
A2V* ® V, and its closure O(g) is irreducible.

From Proposition 6, the Lie algebras that cannot be expressed as degenerations of
other Lie algebras are exhausted by Lf), L7(a,(3) (\a- ft\ ^ 1, a ^ 0, [5 ^ 0), L$(a)
(a 7^ 0,-1) and L9. (Note that the Lie algebra L7(a,/3) with a+P = 1 also should be
excluded. But this Lie algebra is isomorphic to £7(7,7 4- 1) for some 7. See Remark (3)
after Proposition 1.) For two families of non-rigid Lie algebras £7(0:, /3) and L8(o;), the
number of parameters just coincide with the dimension of H2(q, g) for generic parameters.
Hence, we obtain the following well known fact on the irreducible decomposition of the
variety of Lie algebras.
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Proposition 8. (cf. [9], [12], [19], [27].) The algebraic set ofA2V* <g> V consisting

of all A-dimensional Lie algebras is a union offour irreducible varieties Si ~ £4. These
varieties are the Zariski closures of the following GL(V)-orbits.

Si = 0(L6), E2 - ufti<3 O(L7(a,/?)),

£3 = UQO(L8(a)), E4 = O(L9).

In view of Table 3, we can characterize these varieties in terms of GL(l/)-invariant sets of
polynomials with degree at most three.

Proposition 9. The defining equations of the varieties Ei ~ E4 are given by:

£i : 'S'm = 5333 = 0 (linear and cubic polynomials),
£2 : 531H =54221 =0 (quadratic and cubicpolynomials),
^3 : (v) = ^3222 = 0 (cubic polynomials),
E4 : 5422i = 5333 = 0 (cubic polynomials),

in addition to the Jacobi identity.

Remark. By definition, Lie algebras are defined by the vanishing of polynomials of
{d-j} corresponding to the Jacobi identity. But by this proposition, {c^} must satisfy the
additional different types of polynomial identities.

The orbit decompositions of Ej and their degenerations are summarized in Figure 1.
For each variety £;, it is clear that there exists one principal line of degenerations. But,
there also appear several singular Lie algebras such as L3, L5, etc., and these degenerate
Lie algebras make Figure 1 a little complicated.

Note that the variety E2 mainly consists of the Lie algebras L7(a,@). Among them,
Lie algebras which satisfy dimi/2(g, g) > 2 constitute a family {L7(a, 0), L7(a, a+1)} (cf.
Proposition 7). And theyjust coincide with the ones that are situated in the intersection of
other varieties Ex, E3, E4. Similar phenomenon occurs for the variety E3 - UQ0(L8(a)).

In addition, from Table 3 and Figure 1, we can easily see that the set of all 4-dimensional
unimodular Lie algebras splits into two varieties Ei and UQ 0(L7(a, -a - 1)) (C E2) with
dimensions 12 and ll, respectively.

6. An algorithm to determine the isomorphism classes of 4-dimensional Lie
algebras

Now, in this final section, we give an algorithm to determine the isomorphism classes of
4-dimcnsional complex Lie algebras, by using the devices prepared in the previous sections.
This algorithm is the main result of the present paper.

First, among 4-dimcnsional Lie algebras, Lo, Lq, £9 and non-abelian nilpotent Lie
algebras L\, L2 can be characterized by simple properties. In fact, the Lie algebra L6
has a characteristic property dim [[g,g],[g,g]] = 3, and the Lie algebra L9 is uniquely
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dim 0(g)

12

ll

10

0

dim 0(g)

10 L7(l, l)

L4(l)

Figure 1

M-l)

L7(-l,0)

u

u

u

Si

* « (;//>) Mci) ( o%u1{0O> )

Ma) (-6f;<-» )

22

Note that L7(oo, 1) = L7(0,0).
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Figure 1 (continued)
dim 0(g)

ll L8(0) L8(a) (a # 0,1) L8(l)

1 0 L7(l,0) L7(a,a+1) (a?0,1) L7(2,1)

u

MO)

0

dim 0(g)
12

u

u

l l Ls(O)

1 0 L7(l,0) L7(a,0) (a # 0,l)

^(0)

Li

L4(2)

s4

£7(o, o)

^(oo)
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characterized by the property that the ratio of the eigenvalues of ad
on the choice ofX. Nilpotent Lie algebras are characterized by the
=S333 - 0, which are also equivalent to £\ - £2 = £3 = 0, where
eigenvalues of ad A' for generic A' (cf. Proposition 4 (10)). Three
Lo, L\, Z/2 can be distinguished by the. value dim [g,g].

Next, we state a method to determine the isomorphism classes
algebras L3, £4(0:), L5, L7(a, f3) and L8(a). These Lie algebras are
four classes by the values dim [g,g] = dimg^ and dim [[g,g], [g,g]]

A' essentially depends
properties 5m = 5222
{0, elf £2, £3} are the

nilpotcnt Lie algebras

for the remaining Lie
roughly classified into
=dimV2):

dimgW=1
dimgW =2
dimg(1) = 3, dimg<2>

d img^ = 3, dimg(2)

=0

=1

L4(oo),

L4(0), L7(«,0), I8(0),

Z,3, L4(a) (a# 0,oo), L7(a,^)(a,/3^0),

L5, L8(a) (a^0).

In particular, £4(00) is uniquely characterized by the property dim [g,g] = 1. We give a
method to determine the isomorphism classes for the remaining Lie algebras in terms of
several covariants and invariants.

(i) We first consider three Lie algebras L3, L4(l) and L7(l,l). These Lie algebras
constitute special degenerations: L7(l, l) -^ L4(l) -^ L3, and they are characterized
by the properties Xi = | an(l X2 - yj among the above remaining Lie algebras (in case
the invariants have definite values). From Table 3, we have

^ B
'21 ?441

u 0 0

M i) * 0

M M ) * *

and hence, these three Lie algebras can be distinguished to each other by two covariants
521 3-nd 5441-

(ii) Next, we consider the case dim [g,g] = 2. Among these Lie algebras, there exist
degenerations L8(0) -^ L7(l,0) -^ L4(0). The value of Xi for these three Lie algebras
is |. Hence, ifxi # |, it is isomorphic to the remainingLie algebra L7(a,0) (a ^ 1), and
from Proposition 5 (4), the value of the parameter of Li(a,0) is uniquely determined by
Xi- For the above three Lie algebras with Xi = \, we have from Table 3,

L,(0)

MM)
I*(0)

Hence, they are distinguished by two covariants 5.3m and S.u\-
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(iii) The case dim[g,g] = 3 and dim[[g,g], [g,g]] = 1. Among these Lie algebras, there
degK

is a degeneration Ls(l) -> L-o.For these two Lie algebras, the value of xi is equal to ^,
and hence, if Xi 7^ fjj> it is isomorphic to L8(a) (a ^ 0, 1). In this case, from Proposition
5 (5), the value of the parameter a is uniquely determined by Xi- To distinguish two Lie
algebras Ls{l) and L5, we have only to use the covariant 5441 (cf. Table 3).

(iv) The case dim[9, g] = 3 and [[g, g], [g, g]] = 0. Remaining Lie algebras are exhausted
by LA(a) (a ^ 0,1,00) and L7(a,p) (a, p # 0, (a,/?) ^ (1,1)). From Table 3, two Lie
algebras L4(a) and L7(a, /3) are distinguished by the covariant 5,441. And from Proposition
5 (1), (2) and (3), we can determine the values of the parameters of L4(a) and L7(a,@)
in terms ofXi ~ X.3-

By these procedures, in terms of covariants and invariants which we introduced in this
paper, we can uniquely determine the isomorphism classes of 4-dimensional Lie algebras
without constructing the explicit isomorphisms. Summarizing these results, we obtain the
following main theorem of this paper.

Theorem 10. The isomorphism classes of 4-dimensional complex Lie algebras are
determined uniquely in terms of the following quantities:

•E dim[g,g], dim[[g,g],[g,g]].

•E 52i, 53m, 5441.

•E The ratio of the eigenvalues 0/adX for generic X G g, (i.e., three invariants x\>
X2andX3-)

An algorithm to determine the isomorphism classes of4-dimensional Lie algebras is sum-
marized in Figure 2.

Concerning three covariants appeared in this theorem, remind the results in Proposition
4:

•E 52i =0 if and onlyifthereexists an element / à¬ g* such that [X,Y] =f{X)Y-
f(Y)X.

•E 53m=0 ifandonlyif daAda=0 foranyaà¬g*.
•E 544i=0 ifandonlyif dim(X,Y,[X,Y],[X,[X,Y]]) <3 foranyX,Feg.

Hence it is now an easy task to verify whether a given Lie algebras satisfies the condition
5a = 0 or not. (Notice that once we proved Proposition 4, we need not to repeat a hard
polynomial calculation which we carried out in § 2.) Of course, the above two values
dim [g, g] and dim [[g, g], [g, g]] are also characterized by the vanishing or non-vanishing of
several covariants, as stated in Proposition 4.

Example. We give here two examples, which shows the usefulness of our algorithm.
We first consider the following Lie algebra:

[XUX2] = -Xi -X2+X3, [A'!,A'3] = -6A-2+4X3,
[XUX4] =2A', -X2+A'4> [A'2>X3] =3A'i -9A'2+5A'3,
[A'2>X,] = 4Xi -2A"2+2X4, [Ar3,X,] = 6X1 - 3X2+3X4.

-127-



4-dimensional complex Lie algebras 27
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We can easily check that [g,g] = (2Ai -X2,3Xt -X3,X4) and [[g,g],[g,g]] = 0. And by
putting X = aXi + bX2 + cX2 + <iAr4, we have

adA' =

/ b-2d -a-Zc-Ad 36-6d 2a+4b+6c\
b+6c+d -a+9c+2d -Qa-9b+3d -a-2b-3c
-b-Ac a-5c 4a+56 0

V -d
-

2d
-

3d a+26+3c )

Hence, after some calculations, we have TracLY = 4(a+26+3c), Tr(acLY)2 = 6(c+26+3c)2,
Tr (ad A')3 = 10(a + 2b + 3c)3. From these values (or by calculating the characteristic
polynomial of ad A' directly), we have

pm =-TradA' = -4(a+2b+3c),
P222 = H(TradA')2 - Tl"(adAT} = 5(°+2b+3C)2'
P333 = -H(TradA')3 ~3Tl"adX å Tr(adXf +2Tf(adAr)3}

=-2(a+26+3c)3,

and hence, Xi = P222M11 = i|, X2 = ftm/Pm = 3V In addition, four elements Xu X4,
[A'i,A'4] = 2A'i - A'2+ A'4 and [A'i, [A'i,A"4]] = 3A"i - A'3+ A'4 are linearly independent,
and hence we have S441 ^ 0. Since the value ofpiu is non-zero, this Lie algebra is not
unimodular. Therefore, by applying the algorithm in Figure 2, we know that this Lie
algebrais isomorphicto L7(a,@) with xi = Jq, X2 = ^ and a+(3 ^ -1, (a,0) ^ (1,1),
a, 0 y^ 0. By solving the equations

q/7+a+P _ 5 a/3 _ 1
(a+0+1)2~16' (a+^+1)3~32'

we have for example, (a, /?) = (2, 1), and hence this Lie algebra is isomorphic to Lj(2, 1).
As another example, we consider the following Lie algebra:

[Xi,X2] = 4A'i + 3Ar2 - 6X3 + 2X4, [A'i,A'3] = 15^i + 5A"2 - 15A'3 + 5Ar4,
[XuXd = 50Xi + 15A'2 -4SX3 + 16A'4, [A'2>X3] = 21Ari +2X2 - 15A"3 +5A'4|
[X2,Xi] = 93Xi +2LY2 - 8IX3 +27A'4) [A"3,A'4] = 90A'i +25Ar2 - 84A'3 +28A'4.

Then, for A" = aA'i + bX2 + cAT3 + dA'4, we have

-4b-15c-50cZ 4a-21c-93rZ 15a+21b-90rf 50a+936+90c
it. c ikJ o« o.. oi.; (: i oj. or,; k. i nit i oc

a dA"=| -OU-UC-UK OU-̂ U-^AU OilT £.V- £.OU 1OIIT£JLUT 6OC
/?i. i 1 r _ » .1o.1 /».. i i r. i ou i r_ ici. . o «.l .10.. on. n^ _

oo+ loc-t-ion -ua-t- ioc-i- oi« -loo - 100+Oria -iaa -oio- o-ic
-2o-5c- lGrf 2a-5c- 27rZ 5n+56-28rf lCa+276+28c

In this case, by puttingp = a+2b+3c+tid, q = 3a+Gb+8c+9d, we have TracLY = p+q,
Tr (adA')2 = p2 +q2, Tr (adA")3 = p* + q*. Hence, the eigenvalues of adA' is given by
{0, 0,p,<7}, and the ratio essentially depends on A', (cf. Remark (1) after Proposition 2.)
Thus, by the algorithm in Figure 2, it follows that this Lie algebra is isomorphic to Lg.
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Appendix. Relation to normal forms in [7]

There are already several classifications of 4-dimensional real or complex Lie algebras. (For
example, [7], [20], [22], [24], [27], [29], [30], [31], [33], [36], etc. But, as for the classification

table in [27; p.209], it seems that it contains some mistakes. See also the comments in [7;
p.732].) In this appendix, we give explicit isomorphisms between our normal forms in Table
1 and the normal forms in [7; p.733] which was essentially taken from [31]. By checking
these correspondences in detail, we see that the list of degenerations in Proposition 6 just
coincides with the result in [7; p.736]. Note that to find the isomorphic Lie algebra among
several normal forms is now an easy task for us on account of the algorithm in Figure
2. But, to construct the explicit isomorphism is another problem, which requires many
tedious trials.

In this appendix, {Xi,•Eå •E ,X4} denotes the basis ofLi in Table 1, and {ei,•E•E•E ,e4}
denotes the basis of the Lie algebras in [7]. We use the same symbols as in [7]. But,
for three Lie algebras 02, 03. 08, we replace the parameters a and /? in [7] by A and //,
respectively. We drop the parameter restrictions in [7] because singular cases often give
good examples of deformations of Lie algebras (cf. Figure 1). In the following list, we give
the isomorphisms only for non-trivial cases. For the explicit bracket operations [e,, e,-], see
[7;p.733].

•E C43Lo.

•En^^eC^Li.

•E t2(C)©C2^L4(oo).

•E r3(C)eCSL7(l,0),

ei=Xi,62=X2,e$=Xz,e4=Xi-X3+X4.

L4(oo), A=0,
/ J*-»\ *~*a.. I T /*-»\ \ 1

•E tai(C-')®C;= < LiiU), A=l,
,..V , - I •EN /-

L7(A,0), A#0,1,

ei=Xi, e2=X2, e3=X3, e4=X3-X4,
ei=Xi, e2=X2, e3=X2+(A-1)X3)
e4 =X2-Xz+XX4.

•E t2(c)et2(c) s*l9.

•E sl2(C)©C^L6,

ei=X2, e2=2X3,e3=2Xi,e4=X4.

•E m(C)sl2.

0 1(«) =
Lz,
L i(a),

a=l,
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a#l : ei=Al5e2=A2,e3=A'3)e4=A"3+(a-1)A4.

•E g2(A,/z)^L7(a,/3), (a+0^-1),

ei = ^Ai, e2 =a2A4, e3 =a(A'3+0X4), eA = A2+(a+/?)A3+£2A4.

Here, for given A and //, we define two complex numbers a, ft by cv+ft = a - 1 and
a/3 = a3A, where o is a non-zero complex number satisfying Aa3 - //.a2 + a - 1 = 0. Since
fl / 0, we have a+ft ^ -1. And from the definition ofa- and ft, we can easily show the
equalities

a ft aft + a + ftX=(a+ft+iy=X^ /t=(a+/3+l)2=Xl(9)-

Remark. In case A ^ 0, other solutions of the cubic equation A.x3 - pi.x2+x - 1 = 0
are given by a/a, a/ft. And if we use a/a instead of a in the above isomorphism, then
the solutions ofa'+ft' = §-1, a'ft' = (^)3A are (a',ft') = (i,f), (£,±). But the
unordered ratio 1 : a' : ft' corresponding to this new solution coincides with the original
ratio 1 : a : ft, and hence we may use any solution ofA.T3-[ix2+x- 1 = 0 in constructing
the above isomorphism. (See the proofofProposition 5 (2).) In case A = 0, we can easily
show that the same fact holds.

m W
a{ L2, A=0,

L7{a,-(a+l)), A^O, (a?0,-1,a2+a+1^0),

A^O : e{=kXu e2=a2(a+1)2X4,
e3 =a(a+l)(a2+a+1){-A'3+{a+1)A'4},
e4 = (a2+a+1)2{X2 -A'3+(a+1)2A'4},

Here, in the case A ^ 0, the number a is a solution of the equation (x2 +x + I)3 =
Xx2(x+ I)2. Clearly, we have q ^ 0,-1 and a2 +a+ 1 ^ 0. In this case, the parameter
A satisfiestheequalityA= a^'V^U = rr-1 J 0^(0+1)^ X3(0)

Remark. Other solutions of the equation (x2 +x + I)3 = Xx2(x + I)2 are given by £,
-(a+1), ^pj, -^, ^-, and itiseasy tocheck that the unordered ratio 1 : a : -(a+1)
does not depend on the choice of these solutions. Hence, as above, we may use any solution
of this equation in constructing the isomorphism. (See also the proof of Proposition 5 (3).)

. 04^L7(W,u;2), (u;3=1,u#1),

ex =Ar!, c2 =A'i, e3 =A"3+w2A'i, e4 =A'2-A'3+uX.x.

•E g5=L4(l),

ei = jA'i, c2 =3Ar4, e3 =A'3> e., =A'2.

•E96=U-
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. g7£L8(-l),

e\ =Xi, e2=A'3, e.3=X<i-Xz, e4 = -X\.

•EJsW^W, A=^(=8x2(0)), (o#-l),
ei = S+T^'i' e2 = («+1)A'3) e3 =A'2+ftl3, e4 = -(a+1)A'4.

Remark. In case A ^ 0, the solutions of the equation tj^W = A arc of the form a, £ for

each fixed A. Since L8(a:) - ^8(£)> wc maY use any solution of , ^w = A in constructing
the above isomorphism.

Finally, we add some comments. For the Lie algebra g2(A,/it), the parameters A and
fi just coincide with our invariants ^(g), Xi(fl)) an(l they appear in the coefficients of
the bracket [ei,e4] = Ae2 - /ie3 4-e4 in a natural way (cf. [7; p.733]). Normal forms of
03(A) and 08(A) also possess this property. These facts imply that the normal forms in [7]
(or [31]) are elegantly selected from the invariant theoretic viewpoint because the bracket
operations are simply and uniquely expressed by their invariants. (In the 3-dimensional
case, the normal form in [35] also possesses this property.)

But on the other hand, the normal forms in [7] are not necessarily fitted to describe
deformations or degenerations of Lie algebras. For example, in view of the above isomor-
phism list, the Lie algebras c3(C) ©C, c3iA(C) ©C (A / 0,1), 02(A,/z), g3(A) (A ^ 0)
and 04 should be gathered together to construct one family of Lie algebras because they
are continuously deformable, possessing the same dimensional GL(\/)-orbits. As another
example, the family of Lie algebras Qi(a) contains a degenerate Lie algebra L3 in case
a = 1. And as normal forms, it is desirable to adopt a family of Lie algebras such that
0i(a) corresponds to 05 = £4(1) in case a = 1. (Note that there exists a degeneration
05 -^4 0i(1).) In addition, this family should contain the Lie algebra t2(C) © C2 because
lim^oo 0i(a) = r2(C) © C2. Our family of Lie algebras L${a) is selected to satisfy these
conditions.
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