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1. Introduction

5-splines are often used in nonparametric regression as a flexible smoother (see
de Boor (1978), Eilers and Marx (1996)). They can provide various styles of curves, from
approximate linear curves to complicated nonlinear curves, but it is impossible for B-
spline to express a genuine linear curve or a constant line, which plays a role as the null
trend curve in nonparametric regression models. These curves have the advantage of easy
handling: estimation, confidence bound, prediction, etc., and putting interpretations on
actual situations. Therefore we sometimes face the problem of choosing between a simple
regression model and a B-spline model. In this paper, we propose a method to select the
best model among those models. Models and information criterion are discussed in Section
2. Some illustrative examples shown in Section 3 demonstrate the good performance of the
procedure. The methodology can be directly applied to semi-parametric multiple regression
analysis, for example, through the ACE-algorithm of Breiman and Friedman (1985).

2. Models and Criterion

The J5-spline model is essentially a multiple linear regression model with a spe-
cial design matrix. For given n pairs of observation points: (xi,yi),•E •E•E(xn,yn), let y =
(2/1)•E•E*>yn)' be a n x 1 response vector and x = (x\,å •E•E,xny be an n x 1 explanatory
vector. The design matrix consists of m B-spline basis functions expressed as X =
{t>i(x) •E•E•Ebm(x)} with bj(x) = {Bj{x{) å •E•EBj(xn)}'. Then, the model is written as

y=Xa+e, e~Nn{0,a2In),

where a is an unknown coefficient vector, e is an error vector, and each element of e is
independently distributed as normal distribution with mean zero and unknown variance
a2. Bj is the jth. basis function, which is defined on an equidistant mesh as

Bj(x)=B0{h,a+h(j-2),z}, j=1,•E•E•E,m,

where h - (b-a)/(m-3) for m > 4witha =minj(xj) andb = maxt(:ri). Bo is asymmetric
function on Xq defined by

2 _ ^Y-Ji-^Yj d-xoi</,)v

n [ \
I I I J

B0(h>xQ,x) =

0 (otherwise)

Then, the predictor of the response with a penalty term is given by

yw =Swy, Sw=X(X'X+na*\D'2D2ylX\
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where a2 = ||y - y(A)||/n, A is a smoothing parameter and D2 is a (m - 2) x m second
difference matrix expressed as

Do=

Note that the when A = 0 the fitted predictor is the same as that of maximum likelihood
estimator.

Since the minimum number of B-spline components is commonly four and the
B-spline can't itself express a linear curve, we suggest using the extended B-spline model
where the B-spline design is replaced by that of a polynomial regression model when the
number of components is less than four, as follows way:

X=(x°---xm-1), m=1,2or3,

where xJ = (x{,---,x3n)'. Thus, the quadratic model (m = 3) is a bridge between the
simple regression models (m = 1,2) and the B-spline models (m > 4). Note that the
predictor of the response under the quadratic model has the penalty term as given in Table
1, because the curve is twice continuously differentiable.

-Insert Table 1 Here -

In order to select the best model among the extended B-spline models, we suggest
using an improved Akaike information criterion (AIC, Akaike, 1973) CAIC, due to Sugiura
(1978). The properties of CAIC ware investigated by Bedrick and Tsai (1994) and modified
by Fujikoshi and Satoh (1997). Hurvich, Simonoff and Tsai (1998) proposed using it
in nonparametric regression models and it was compared to other criteria by Imoto and
Konishi (1999). The criterion is written in the following simple form:

CAIC =nloga' +
n(trS + n)

n-trS-2"

Note that tvS is m, the number of basis functions, and it is the same criterion as that- of
linear regression models when the smoothing parameter is unused or estimated to be zero.
The trace term might be considered as the dimension of the projection space spaned by
S(\). The optimization of the smoothing parameter is obtained by minimizing the criterion
for each model. Thus, we can choose the model that minimizes the criterion among the
extended 5-spline models: low order polynomials and B-spline models.

3. Examples
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In this section we use Monte Carlo simulation to investigate the behavior of the
criterion. We simulations examine the performance of the criterion as it relates to the true
regression function and confirm the role of the quadratic model as a bridge.

In our simulation study, sample sizes n = 30 and 300 were examined. Note that
consideration of the larger sample size is equivalent to that of a smaller error variance.
First, Xi, (i = l,- --,n) were generated from uniform distribution on (-10,10) and the
following five types of the true regression models were considered,

1) constant line: y* = 0+e*,

2) linear curve: y, = Xj+4ei:

3) quadratic curve: y* = Xi - x\ +40ej,

4) cubic curve: yi = Xi -xf +x] +400ej

5) sine curve: yt = ZiSin(zi) +4ej,

where e, is independently distributed as N(0, 1) and independent of X{. We obtained n
pairs of observation points from each true regression model and Sselected the best model
by CAIC among the extended B-spline models with m = 1, •E•E•E, 15. The typical shape
of the criterion values and the fitted curve under the best model for n = 30 are shown in
Figures 1-5.

-Insert Fig. 1. Here -
-Insert Fig. 2. Here -
-Insert Fig. 3. Here -
-Insert Fig. 4. Here -
-Insert Fig. 5. Here -

The optimazation of A using CAIC was performed on A = 0, 10~2, 10"1, 10°, 101 and
102. The best models selected by CAIC seem to give suitable fits to the observation points.
The value of CAIC for the quadratic model might take on a reasonable value so that there
is a continuum in our extended B-spline models because of the smoothing term. Tables
2 and 3 show the frequencies of the best model selected by CAIC among the extended
5-spline models. We examined 1000 repetitions for each of the above five true regression
models.

-Insert Table 2. Here -
-Insert Table 3. Here -

In the small sample case, the criterion tended to choose simpler models even if the true
model was more complicated, especially the cubic and sine curves. The results depended
on the fact that CAIC or AIC was based on a predictive density function. In the large
sample case, we can easily see that the criterion did not select the models that are simpler
than the true model. The frequencies for a true constant line is remarkable, since the total
frequencies for m = 1 and 2 attain nearly 80% for the case of small sample and 70% even
for the case of large sample. Therefore it is possible for the criterion to choose a linear curve
from the extended S-spline models even in situations where we unknowingly do not have
to use B-spline models, i.e., nonparametric regression. As a result, we can take advantage
of these simple nonparametric curves to analyze real data.
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Table 1. The role of the quadratic model as a bridge between simple regression models
and B-spline models.

Model
Constant, Linear

Quadratic
5-spline

#Basis functions Smoothing parameter
111=1,2

m=3
m>4

A=0
A>0
A>0

Table 2. The frequencies of various models selected by CAIC for each true regression
model when n = 30. The best model is expressed by its number of basis functions (m).

B e s t  m o d e l:  m 4  5  6 - 1 0  l l - 1 5

C o n s  t  a n t 6 9 3   9 1  1 1 5   1 8  1 7   5 5    l l

L  in e a r 0  6 4 7   1 3  1 1 9  7 5   9 9    4 7

Q u a d r a t ic 1 4   5  7 6 3   5 1  4 8   9 3    2 6

C u b ic 6  3 4 2   9  2 6 5  9 4  2 3 7    4 7

S  in e 1 6 4   2 8   9 4   1 3  1 8  5 1 8   1 6 5

Table 3. The frequencies of various models selected by CAIC for each true regression
model when n = 300. The best model is expressed by its number of basis functions.

B e s t  m o d e l:  m 5  6 -1 0  l l - 1 5

C o n s ta n t 6 1 9   9 8  1 3 4   2 3  2 1   6 9    3 6

L in e a r 0  5 3 3   1 2  1 4 7  8 3  1 3 4    9 1

Q u a d r a tic 0  6 8 7   5 1   8 8  1 2 6    4 8

C u b ic 0   0   0  5 7 1  1 0 8  2 6 3    5 8

S in e 0   0   0   0          9 9 8
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Fig. 1. The fitted spline under the best model and the profile of CAIC for extended
models; the true regression model: constant line, the best model: m = 1, the smoothing
parameter: A is unused;
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Fig. 3. The fitted spline under the best model and the profile of CAIC for extended
models; the true regression model: quadratic curve, the best model: m = 3, the optimal
smoothing parameter: A = 100;
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Fig. 4. The fitted spline under the best model and the profile of CAIC for extended mod-
els; the true regression model: cubic curve, the best model: m = 4, the optimal smoothing
parameter: A = 0;
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Fig. 5. The fitted spline under the best model and the profile of CAIC for extended mod-
els; the true regression model: complicated curve, the best model: m = ll, the optimal
smoothing parameter: A = 100;
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