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Abstract

This paper deals with knot-placement in B-spline scedasitic smooth-
ing. We commonly fit B-spline using knots between which each interval
is the same width. The number of knots is selected by applying an infor-
mation criterion with an optimization algorithm. In order to avoid over
fitting with this method, we consider other arrangements based on the
number of sample points in each interval. We choose knots such that
each interval contains about the same number of samples. These knot
placement schemes are compared through the Monte Carlo simulation.

1. Introduction

B-spline smoothing of data with errors and a complicated trend is use-
ful, because its computation is simpler than that of other nonparametric
methods. In B-spline smoothing, knot selection, which defines the basis
functions, is an important problem, because different knot arrangements
can result in different smoothing curves. The simplest arrangement is
that each interval between knots has the same width. However, some



such intervals will include few data points, resulting in a poor estimator
of the curve in those intervals. As a result, there is the possibility of
over fitting. Other methods of knot-selection may be considered, such
as regarding the knots as variables and deriving them by nonlinear least
squares optimization (De Boor and Rice (1968)). However, it takes sub-
stantial computing time to obtain such knots, and the optimal values
might not be obtained because this equation has many polar values. The
successive division method (Ichida, Yoshimoto and Kiyono (1976)) re-
quires less computing time, but is difficult to apply because it does not
easily accommodate a smoothing parameter. The main purpose of this
paper is to study strategies for placing knots to avoid over fitting in au-
tomated knot-selection algorithms. In considering this problem, we ex-
amine which knot-placement strategies can lead to over fitting and which

are computationally most simple and efficient. The strategies we consider
are as follows.

(i) equidistant : each interval between knots is the same width ;

(1) equipotent: each interval between knots includes, to the extend pos-
sible, the same number of data points ;

(i11) modified equipotent : a width is guaranteed by removing knots from
an equipotent arrangement.

Atilgan and Bozdogan (1990) and Imoto and Konishi (1999a), (1999b)
described an algorithm for choosing the number of knots. We use the
SPIDER algorithm (Ohtaki and Izumi (1999)) to obtain the smoothing
parameter by minimizing an information criterion.

The present paper is organized in the following way. In Section 2,
we introduce the B-spline nonlinear regression model. In Section 3, we
consider the three knot-placement strategies and study their influences

through simulation. The strategies are compared by iterating numerical
examples in Section 4.

2. B-spline nonlinear regression model

Let {(zi,y:) | © = 1,2,...,n} be n observable data pairs on an

explanatory variable X and a response variable Y. Consider a regression
model

Vi=Mi+&, 1=12,...,n



In this model, it is assumed that the ¢; are independently distributed
according to a normal distribution with mean 0O and variance o2. A
nonparametric regression model applies a complicated nonlinear structure
to data. Using a smooth function g(-), the model is defined by

E(Y;|z:) = pi=g(z), i=12,...,n

In the B-spline nonlinear regression model, p is regarded as a linear
combination of known basis functions. That is to say, making use of m
basis functions B(-), it is expressed as

m
[JIZZCL]'BJ'(:I),;), i=1,2,...,n.
J=1

Figure 1 shows the cubic basis functions for m = 6. For an description of
basis functions, see Yoshimoto and Ichida (1973). Let

B1($1) Bm(Il)
B= F :

Bi(zn) -+ Bm(za)

v = (y1,¥2,---,¥n) and @ = (ay,4z,...,a,)". Then the model may be
rewritten as

y = Ba.

Therefore, in B-spline smoothing, we have to estimate a and 2.

When the parameters a and o? are estimated using the maximum
likelihood method, the more knots used, the more strongly dependent
the estimated model is on the individual data pairs. Hence we estlmate
a and o2 by maximizing a penalized log-likelihood function

Iia,d?) = > log f (yilzs; a,o?) — %a'D}cha

a=1
n 1 ni
= -3 log(2mo?) — 50—2(1; — Ba)'(y — Ba) — —é—a'DLDka,

which is taken into consideration for local variation in the log-likelihood
function. In this equation, the smoothing parameter A controls local
variation in to estimated curve, and a’D;.Dia is a penalty term related
to the variation of a regression curve. Dy is the matrix representation of



kth differences,

(=1)%Cs -~ (=D&%C: 0 .- 0
0 (D% - (=DKG - 0
Dy = : : : .. .. : ;
0 0 (1%, ... (~1)5GC:

where ,C} is the binomial coefficient. This penalized log-likelihood func-
“tion cannot be solved via normal equations to estimate a and ¢?. There-

fore, it is necessary to consider other maximization methods. We use the
algorithm described Imoto and Konishi (1999a).

The algorithm for selecting the number of knots automatically is as
follows.

Stepl.
Step2.

Step3.

Step4.

Step5.

Determine an arrangement and the initial number of knots.

Choose an initial value of A, A,.

Search for the minimum value of the information criterion as a
function of A by applying the SPIDER algorithm.

Change the number of knots and seek the minimum value of the

information criterion for each number of knots by iterating between
Step2 and Step4.

Compare the information criteria minimal for each number of knots

and carry out the smoothing using the number of knots that mini-
mizes the criterion.

In this algorithm, we use the modified AIC (Eilers and Marix (1996)),
which is defined by

mAIC = -2 Zlog f(yilzs; @,8%) + 2(trS + 1),

=1

where S is the hat matrix

S = B(B'B +né*\D,Dy)"'B,

and @ and &° are estimators of @ and o2, respectively. The modified
AIC is used because computation of its information is relatively simple.

Moreover, we use the cubic basis functions and second differences as they
are the most commonly employed.



3. Knot-placement strategies

3.1. Equidistant arrangement

The simplest method is to space the knots evenly, i.e. with equal
width intervals between knots. We call this arrangement equidistant. Let
Tmar = max{z; | 1 = 1,2,...,n} and Zp, = min{z; | ¢ = 1,2,...,n}.
Then n; knots are defined by

t(a) = Tin + (@ — ) (Tmaz — Tmin) /(@ =T7), a=1,2,...,n4.

Note that data are not included outside ¢(4) to t(n; — 3) in this arrange-
ment. In actual use, T and Zp,i, can be replaced by same other two
values whose interval includes all data points. Moreover, the number of
basis functions m is n — 4.

When the sample size n is large enough and the data are scattered
uniformly, it is sensible to use this arrangement in B-spline smoothing.
However, if the sample size n is small or the data are distributed nonuni-
formly on the x-axis, over fitting may occur in intervals with sparse data.
We conjecture that the estimator of the coefficient a which is related ba-
sis function containing its interval is not obtained for a good one. Figures
2 and 3 display B-spline smoothing curves with the equidistant arrange-
ment using different numbers of knots. Different curves result despite
being fit to the same data. In these figures, o and + represent data
and knots, respectively. Solid and broken lines illustrate the smooth-
ing curve and fitted basis functions. In the case of Figure 2, m = 14,
mAIC = —108.667 and A = 0.165658 x 10~3. In Figure 3, m = 19,
mAIC = —121.7841 and A = 0.35619 x 105. Comparing the two in-
formation criteria, it seems that the smoothing curve in Figure 3 fits
better than the one in Figure 2. But over fitting obviously occurs in the
sparse interval in Figure 3. Figure 4 shows the information criterion ‘as
a function of the number of knots. Over fitting occurs frequency in the
neighborhood of the end of points of z, but may also occur away from
the end points, for instance, see Figure 5.

We posit that these situations can be avoided by shifting knots under
the restriction of equidistant arrangement or by using a stopping rule,
finishing if an interval does not include data, in the process of the opti-
mization algorithm. However, to shift knots it is necessary to recalculate.
Moreover, another problem is how to shift the knots. On the other hand,
if the algorithm is stopped when an interval is found not to contain any
data, then a good curve may not be obtained because the number of
available knots is smaller than one without a stopping rule.



As stated above, there are limits the equidistant knot arrangement,
so we must consider other arrangements.

3.2. Equipotent arrangement

In this subsection, we deal with a new knot-placement strategy,
called the equipotent arrangement, where intervals between knots include
the same number of data point as much as possible. These knots do not
necessarily coincide with values of z;. For that reason, the elements of
B have value 0 on coinciding knots, unlike on non-coinciding ones. (Be-
cause, coinciding knots with data, several data are corresponding with
the enp points of basis functions, hence, B;(z) is 0 in these data points.)
Therefore, in the case of coinciding knots, if n is small then the estimation
of a does not have a high degree of efficiency. Using this arrangement,
we conjecture that a poor estimator of a is hard to be obtained than
equidistant arrangement. Moreover, in the some case, to use the equipo-
tent arrangement is not only an avoiding over fitting but also a getting
more improvement for an information criterion than to use equidistant
arrangement. However, since the interval width is reduced when the
number of knots is large, the smoothing curve is extremely sensitive to
the data in the narrow interval. Figure 6 depicts over fitting as with
the previous situation. The results are m = 19, mAIC = —131.765 and
A = 0.519465 x 1072, This smoothing curve is also constructed by knots
whose number minimizes the information criterion. Examination of Fig-
ure 6 reveals that over fitting occurred in the narrow intervals.

3.3. Modified equipotent arrangement

In order to avoid over fitting as in the previous case, it is necessary
that the interval widths do not become too narrow. Therefore, we con-
sider another arrangement, called the modified equipotent arrangement.
This arrangement is invoked if interval widths are smaller than a certain
limit, in which case one of knots used to construct the interval is removed.
Figure 7 shows a smoothing curve for same data in Figure 6 obtained by
this method. Although 19 knots was optimal, only 15 were actually used
; four knots were removed because their intervals were smaller than a
chosen limit (Zmaz — Zmin)/20 = 1.162. This number of knots is an op-
timized value which is obtained by using the information criterion. The
resulting mAIC = —120.286 and A\ = 0.23070 x 10~2. By comparing Fig-
ure 7 with Figures 5 and 6, it seems that using the modified equipotent
arrangement avoids the over fitting that results from using the equipotent



arrangement, but there is some loss in the information criterion.

At this time, we cannot put forth a method for specifying the limit
on interval width. However, it seems from our experience that dividing
the range of z by 20 provides a satisfactory value.

4. Monte Carlo simulation

In this section, we compare the three arrangements by iterating
Monte Carlo simulations. Figures 8, 9 and 10 show the fluctuation in
smoothing results with the equidistant, equipotent and modified equipo-
tent arrangements. Normal random deviates were generated repeatedly.
The values z; (1 = 1,2,...,n) of the explanatory variable X were fixed at
the observed values through out these experiments. Moreover, the opti-
mal number of knots ranged from 8 to 20. We repeated the Monte Carlo
simulation 10 times for each knot-placement strategy. From these figures,
we can see that the equipotent and modified equipotent arrangements are.
avoided over fitting relative to the equidistant arrangement. Moreover,
the modified equipotent arrangement produced smaller variation than the
equipotent arrangement.

Next, we examined the fluctuation in smoothing curves quantitatively.
In Figures 11 and 12, box plots illustrate the differences between smooth-
ing curves and true trend. For each knot-placement strategy, we repeated
the Monte Carlo simulation 500 times and calculated the mean squared
errors between smoothing curves and true trend, dividing Tmez — Zmin
equally into 100 points. Figure 11 gives the case n = 20, and the case

= 50 is given in Figure 12. These figures show that the modified
equlpotent arrangement can avoid over fitting, though the average mean
squared error is larger.
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