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1 Introduction

Since the late 1970's there have been a great many articles written on meth-
ods of finding solutions to the self-dual Yang-Mills (SDYM) equations (see
for example [1-6]). The main aim of this article is not to find solutions that
are necessarily new but rather to find closed form expressions for a large
class of solutions written in terms of determinants. Also, we aim to achieve
this by employing a standard technique used in soliton theory and elsewhere;
the application of Darboux transformations. In doing this we give a simple
way of understanding the form of the solutions of these equations to read-
ers familiar with Darboux transformations or Hirota's method but not with
the more sophisticated methods that have been used in the literature. The
original motivation of this work was to find a generalisation to the general
case of the work ofSasa et al [7] on the Hirota form ofSU(2) SDYM. In in-
dependent work, Darboux transformations have been used recently to study
a reduced version of the SDYM equations [8].

This article is set out as follows. In §2 we describe the standard formu-
lation of the SDYM equations as the compatibility of a Lax pair and show
the equivalence of this system to Yang's equation, a single equation written
in terms of an N x N matrix J. We then observe that the Lax pair lies out-
side the class of operators described in the standard theorem on Darboux
transformations [9].

In §3 we recall this theorem and describe the dimensional reduction
that is appropriate to tackling the SDYM Lax pair. In this reduction the
Darboux transformation changes from a differential operator to become a
multiplicative operator, linear in the spectral parameter. This discussion
confirms the inapplicabilityofthe theorem in its original form. By examining
part of the proof of the reduced version of the theorem we then obtain a
generalisation which can be used in the present case. In §4 we describe the
binary Darboux transformation and its form in the reduced case.
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Specialisation of the result of §3 and §4 to the SDYM are given in §5
and we obtain formulae for solutions J in either of two forms. First, us-
ing the Darboux transformations expressions for the entries of J as ratios
of wronskian-like determinants are obtained. We term these determinants
'wronskian-like' because in the unreduced case of the Darboux transforma-
tion they are precisely wronskians. In the reduction the derivatives in these
determinants are replaces by multiplication by a spectral parameter but
their structure is otherwise unchanged. In a similar way, the binary Darboux
transformation gives expressions for these entries as ratios of grammian-like
determinants.

Finally, we discuss the case J G SU(iV) in which the Lax pair is self-
adjoint. Here we show that the binary Darboux transformation may be
chosen to preserve this property of J in a natural way.

2 The self-dual Yang-Mills equations

We begin by describing Yang's form of these equations and its formulation
as the compatibility condition of a Lax pair. Consider four N x N matrices
Ao, A\, A2 and ^3 which are each functions of four complex variables a;0,
a;1, x2 and x3. Let da := d/dxa for a = 0,1,2,3 and define the covariant
derivative operators

Da = da +Aa. (2.1)

The self-dual Yang-Mills (SDYM) equations are the compatibility conditions
for the Lax pair

L:=Do+XDU M :=D2+XD3, (2.2)

namely [L, M] = 0 or, more explicitly,

[D0,D2]=0, [DuD3]=0, (2.3)

[D0,D3) + [DuD2} = 0. (2.4)

The equations (2.3) imply that the pairs of operators Do, D2 and D\, D3 are
compatible so that there exist commonsolutions, invertible N x N matrices
h and k such that

D0{h) =D2{h) =0

Dx{h) =D3{k) =Q.

By solving these equation for Aa, each Aa may be expressed in terms of h
or k. Then

Do =hdoh-\ D2 =hd2h-\ (2.5)

Dx =kdik~\ £3 = kd3k-\ (2.6)



Note that here and elsewhere we use parentheses to indicate that an operator
has acted on an argument and juxtaposition of operators to indicate an
operator product. For example, in the above, Do(h) is the matrix

dh
+ AOndx°

whereas hdoh l is the operator equal to

A._j^-idx° dx° '

Furthermore, the remaining part of the SDYM equations, equation (2.4),
may be expressed in terms of the matrix J = k-1h alone;

d3(do(J)J-1) + d2(d1(J)J-1) = 0. (2.7)

This is known as Yang's equation and is equivalent to the SDYM equations.
After the gauge transformation L -»å k~lLk, M ->k~lMk, the Lax pair

(2.2) of the SDYM equations is also expressed in terms of J, and we obtain
a simpler Lax pair for Yang's equation

L= JdoJ'1+Xdu M= Jd2J-1 +Xd3. (2.8)

Prom the above we see that in each of the formulations of the SDYM equa-
tions we have described, the Lax pairs comprise operators of the form

L :=J>V (2.9)

where a* are first order linear operators and, in this case, M = 1. In the next
section it will be seen that such an operator lies outside the class to which
Darboux transformations are usually applied. As a result, an extension
of the normal theory needs to be obtained in order to study the SDYM
equations.

3 The standard Darboux transformation

In a paper on a Darboux transformation for the time-dependent Schrodinger
operator [9], it was indicated that the standard Darboux transformation
which applies to, for example, the Schrodinger equation, may be used for a
rather general class of operators. It does not however apply to the operators
in the Lax pair of the SDYM equations. In this section we will examine the
proof of this general result and investigate how it may be extended to deal
with the case we wish to consider.



Theorem 1. Let

M

where d = d/dx and a.{ are operators independent ofd, let 6 be an invertible
matrix such that Hfi) = 6A where d(A) = 0 and Gg := OdO'1. Then L is
form invariant under the Darboux transformation

L->L=GeLGgl

if and only if

ao=ady+mo

ai=mi, i>0

where a is scalar and constant (d(a) = 0), mi are matrices and dy denotes
a differential operator independent of d.

As usual with Darboux transformations, the theorem implies that given
any solution <f> of L{(f>) = 0, 4> := G{4>) is a solution of L(<f>) = 0 and the
coefficients ai in L are given in terms of the coefficients aj in L and 6.

There is a natural dimensional reduction of this theorem obtained by
making the x-dependence explicit in the solutions. Let <f> = (pre^x, A a
constant scalar and 6 = #reAx, A a constant matrix, where <pr and BT are
independent of x. In the following we will omit the superscript r. If A is
a diagonal matrix then the entries are eigenvalues and the corresponding
columns eigenfunctions, but there is in general no requirement that A is
restricted to these circumstances.

Corollary 1. Let L = YliLo*1^ where aj are operators independent of

A, let 6 be an invertible matrix such that X]t=oa»(^)^1 = 0 and @e '•E=
0(\I-h)6-1 = A- 0, where 0 = 6h9~l. Then L is form invariant under
the Darboux transformation

L -> L = GgLGj1 (3.2)

if

ao = ady +tuq (3.3)

a{=mi, i>0 (3.4)

where a is scalar and constant (d(a) = 0) and mi are matrices.

While this does not on the face of it include operators of the form (2.9),
a generalisation of this Corollary may be found which does. To see how this
comes about it is instructive to consider part of the proof of the Theorem.



Sketch proof of Theorem 1.

The transformed operator

L = 6d9-1 J2aidiGd~le~1-

has a pseudo-differential tail unless the 9-independent part of
M

R := 9d6-l Y,aidie
i=0

iszero.
This can come about in one of two ways; '

1. a.i = m,iThe multiplicative part ofR is then
M

e
a 5-iy|m,-a*(fl) = ed(e-1L(e))

t=0

which vanishes since L(9) = 9A.

2. a,- = ctidi where d{ := d/dxx are differential operators independent of
d and a* are scalar constants. In this case

M

r =edo-^Mdii&V) +5W») + 0{d)
i-0

M
å =9d{9-lL{0)) + ^2ai9d9-1di{6)di + 0(5).

i-0
This first term on the right hand side vanishes as in case 1. and so R
is 0(d) if and only if, for each i, ai = 0 or d commutes with 9~1dl(9).
Thus it is seen that, without imposing further constraints on 9, only
c*o may be non-zero.

When the same technique of proof is applied to the Corollary, the di-
mensional reduction replaces dl(9) with 9A% and d with A. Clearly in the
second case, d9~1dl(9) -> X9~19At = A'A and so we make take a,- ^ 0 for
all i, not just if i = 0. Thus the Corollary has the generalisation
Theorem 2. Let L = X)£foai^* where a* are operators independent of X,
let 9 be an invertible matrix such that Yliio0-^)^1 = 0 and.G$ :- 9(XI -
A)0-1 = A-0, where Q = 9K9~l. Then L is form invariant under the
Darboux transformation

L->L= GeLGj1

if and only if '

a.i=aidi+mi, i>0

where a,- are scalar and constant and mi are matrices.



4 The standard binary Darboux transformation

As well as the Darboux transformation there is a standard binary Darboux
transformation constructed, in one form, by composing a Darboux transfor-
mation with inverse of another. We use S to denote the set ofeigenfunctions
for L and similarly S for L etc. With L and Gq as given in Theorem 1, if

L := GeLGj1

then Gg : S -)•ES. Taking formal operator adjoints gives

Z* = G-^L^Gg-t

where the notation (•E) * is shorthand for ((•E)*) •E Thus Gg-t: S^
Furthermore, since for any p, Gp(p) = 0, it follows from (4.1) that

Zt(0-t) = o.

(4.1)

(4.2)

Let L be a third copy ofL, with new coefficients. Suppose that 6^E S and
GfLG-1 = L (i.e. the same as GgLGg 1.) From (4.2) one has 0-t,§"-t G 5*.

Given p 6 5*, 0 may be defined up to a constant through the expression
Gg-i@~]) = p. Specifically,

-1e = en{9,P)

where £1 is the potential defined by

(4.3)

(4.4)

One may then construct a binary Darboux transformation BgiP = G~ o
Gg which can be written explicitly as

Be,p = i-e^e,Pr1n(-,p). (4.5)

By writing the formula for BgtP in this way one sees that the transformation
makes sense for any N x n matrices 6,p such that L(6) = L^(p) = 0 and
not just N x N ones. Indeed one may prove that, for any operator L of the
form given in Theorem 1,

L = B0tPLBll (4.6)

is an operator of the same form as L.
As for the dimensionally reduced Darboux transformation described in

Theorem 2 again we take 4> = 4>reXx, A a constant scalar and 0 = 6reAx, A a
constant n x n matrix and the adjoint eigenfunction is p = pre~x where S is



another constant n x n matrix. Prom this it follows that the x dependence
of the potential Cl can also be made explicit

ft(0,p) = eEtxfir(0r,pr)eAl where ~tftr(0r,pr) +ftr(0r,pr)A = prt0r

(4.7)

and

ft(0,p) = e(Et+A/)lftr(<£r,pr) where (S* +AJ)Qr(tf>r,pr) = prV- (4.8)

Then the dimensionally reduced binary Darboux transformation is given
by (4.5) with all terms replaces with the reduced versions described above.
From nowon, for notational simplicity, we will omit the superscript r de-
noting reduced objects and only discuss the Darboux transformation in this

case.
So now, in the reduced case fi is an algebraic potential satisfying the

condition

Etfi(0,p) + n{9,p)A = pt0. (4.9)

For example, if we were to choose the constant matrices to be diagonal,
A = diag(Ai,...,An) and E = diag(£i,...,fn), then we could obtain the
explicit expressions : •E å ;-. å ...

mii>-(!gk) and n(Ap)=(<£%). (4.10)

5 Explicit version for the case of Yang's equation

For Yang's formulation of the SDYM equations the Lax pair is given by
(2.8), and the action of the Darboux transformation denned in Theorem 2
is encapsulated in a transformation of the matrix J.

Theorem 3. Let G = A-0 where 0 := 0A0"1, A is a constant matrix and
6 an invertible matrix satisfying

Jdo{J-16) + d1{e)A = O,

jd2(J-1e) + d3{e)A = o.
rs.-n

-

1, r\ //i\ i

The operators L, M given by (2.8), the Lax pair of Yang's equation, are form
invariant under the Darboux transformation L -> GLG~l, M ->•EGMG~l
and this transformation is expressed entirely as the transformation J -» 0J.

Note that the matrix 0 arises as the dimensional reduction of d(6)9~1.
It is also possible to write down compact explicit formulae for solutions

Jn obtained after n iterations of this Darboux transformation.



Corollary 2. For each k = 1,...,n take a constant matrixA^ and a non-
singular solution (matrix) 6k of (5.1) with A = A*. From these N x N
matrices, the N xnN matrix8 = {0\,...,9n) andnN x nN matrix A =
diag(Ai,... , An) are constructed. The following notation is also introduced;
#w := 0Ak (i.e. what is obtained in the dimensional reduction from the kth
x-derivative of9) and Q\2yi '•E-[6^ with the jth row replaced by the ith row

of0(*+*)). Then define the scalar F and the N x N matrix G

F=det

/ow\0(1)

^(»-oy

and Gij=det

(ow^
0(1)

0(»-2)

Vi-»' /

(5.2)

After n iterations of the Darboux transformation defined in Theorem 2 the
solution of Yang's equation is

h-p (5.3)

Using Theorem 3, the binary Darboux transformation as constructed in
§4 arises from the composition of two Darboux transformations, J -> J and
J -¥ J. Thus we have

J= and J=QJ (5.4)

where 0 = 0A0"1 as in Theorem 3 and 0 = -eQ^E^nO'K This expression
for 0 is the dimensionally reduced version ofd(9)6~1 with 0 = Oft'1 as given
in (4.3). Then, from (5.4), we get

and using (4.9) this can be written as

(5.5)

(5.6)

This second formula for J has the advantage that it is valid even when the
inverse of 0 is not defined and in particular is valid when 9 and p are chosen
to be N x n matrices where n is arbitrary rather than JV x N.

Using (5.5) we may determine the inverse of J in an obvious way and
then use (4.9) to obtain an expression valid in the more general case when
6 and p are not invertible

j-1 =j-l(i-eArla-lpt). (5.7)



Theorem 4. Let A,S be invertible n x n constant matrices and let 9 satisfy
(5.1) and p satisfy the adjoint equations

J-ido{J*p) +dl{p)E = O,

J-%(J^p) +d3(p)E = 0.
(5.8)

Then define B by (4.5) where Q is defined by (4.9).
The operators L,M given by (2.8) are form invariant under the binary

Darboux transformation L -> BLB~l, M ->BMB~l and this transforma-
tion is expressed entirely as

J-> (I-flft-^-V)./= %J '
b

where G is an N x N matrix andF a scalargiven by

F= \n(9,P)\

and

,=-ltf.
Gij =

n(o,p) (ps-1)?;
Oi. >ij

. (5-9)

(5.10)

Here we use the notation (•E•E•E)«•E *° denote the ith row and (•E•E•E)-j the jth
column. In a similar way,

j-i _, j-i(7_ffA-iQ-ipt) = j-iE.
F

where H is an N x N matrix given by

Ha=
n («, o) 4{OA)i. St »J

(5.ll)

6 The SU(iV) reduction

It is well known that in general a symmetry in the Lax pair is not preserved
by a Darboux transformation but can be preserved by a binary one. This
is possible because of the extra freedom allowed in the choice eigenfunction
and and adjoint eigenfunction. This situation arises here if wish to construct
solutions J in SU(iV). Before showing how this done, we first comment
that recently Sasa et al [7] were able to construct solutions similar to the
wronskian like ones given in Corollary 2 but only for the case of SU(2). This
was done by building the SU(2) symmetry into J from the start but it not
clear how one could do this in any other case.



Let J à¬ U(iV) so that J * = J. Then Lax pair (2.8) is self-adjoint and
hence, if we choose E = A, equations (5.1) and (5.8) are identical and we
may choose p - 9. As a consequence of this, £l{9,p) is a Hermitian matrix.

After applying the binary Darboux transformation with these choices we
get a new solution given by (from Theorem 4)

j= (i-en-1\-W)j and j-l =j-l(i-9A-1n-lo*)

where the relation (4.9) now reads A*ft + fiA = 6*9. It is clear from this
that J* = J~l andso Jà¬U(N).

Since J G V(N) if follows that detJ = ±L To show that J G SU(iV)
we have to prove that detJ = 1 =*•E detJ = 1. In the general case
that 9 is an N x n matrix, it is not possible to show this except, maybe,
for special choices of 9 which are difficult to identify. However, if 9 is an
invertible N x N matrix, and hence the binary Darboux transformation can
be considered as the composition of Darboux transformations, then we can
use the formula (5.5) for J. From this we see that

detJ = (-l)"=^£detJ
(detA)

so that choosing the NxN matrix A such that det A = (-l);v(det A) realises
the required property. In other words, J à¬ SU(N) whenever J 6 SU(iV)
provided

detAeR forNeven, detAeiR forNodd. (6.1)

This restricted form of binary Darboux transformation may also be it-
erated to obtain solutions as described in Theorem 4 with n a multiple of
JV.

Corollary 3. Fori = 1,... ,m, let Aj be invertible NxN constant matrices
satisfying (6.1) andletA = diag(Ax,...,Am). Take J G SU(N) so that (5.1)
are self-adjoint, and choose a N x mN solution matrix 9. Set E = A and
p = 9 so that Cl is Hermitian.

Subject to the above modifications, the solutions constructed in Theo-
rem 4 o,re in SU(N).

7 Conclusion

In this article we have show that after minor modifications, Darboux trans-
formations can be applied to construct solutions of the self-dual Yang-Mills
equations. These solutions take the form of the wronskian type or grammian
type determinants. As well as arising through Darboux transformations,
such determinants are familiar as ansatze used in Hirota's method such as
the recent work of Sasa et al [7].

It is also shown that V(N) or SU(N) solutions can be readily constructed
by suitably specialised versions of the binary Darboux transformation.
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